1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_FORMAT_H 3 #define _BCACHEFS_FORMAT_H 4 5 /* 6 * bcachefs on disk data structures 7 * 8 * OVERVIEW: 9 * 10 * There are three main types of on disk data structures in bcachefs (this is 11 * reduced from 5 in bcache) 12 * 13 * - superblock 14 * - journal 15 * - btree 16 * 17 * The btree is the primary structure; most metadata exists as keys in the 18 * various btrees. There are only a small number of btrees, they're not 19 * sharded - we have one btree for extents, another for inodes, et cetera. 20 * 21 * SUPERBLOCK: 22 * 23 * The superblock contains the location of the journal, the list of devices in 24 * the filesystem, and in general any metadata we need in order to decide 25 * whether we can start a filesystem or prior to reading the journal/btree 26 * roots. 27 * 28 * The superblock is extensible, and most of the contents of the superblock are 29 * in variable length, type tagged fields; see struct bch_sb_field. 30 * 31 * Backup superblocks do not reside in a fixed location; also, superblocks do 32 * not have a fixed size. To locate backup superblocks we have struct 33 * bch_sb_layout; we store a copy of this inside every superblock, and also 34 * before the first superblock. 35 * 36 * JOURNAL: 37 * 38 * The journal primarily records btree updates in the order they occurred; 39 * journal replay consists of just iterating over all the keys in the open 40 * journal entries and re-inserting them into the btrees. 41 * 42 * The journal also contains entry types for the btree roots, and blacklisted 43 * journal sequence numbers (see journal_seq_blacklist.c). 44 * 45 * BTREE: 46 * 47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically 48 * 128k-256k) and log structured. We use struct btree_node for writing the first 49 * entry in a given node (offset 0), and struct btree_node_entry for all 50 * subsequent writes. 51 * 52 * After the header, btree node entries contain a list of keys in sorted order. 53 * Values are stored inline with the keys; since values are variable length (and 54 * keys effectively are variable length too, due to packing) we can't do random 55 * access without building up additional in memory tables in the btree node read 56 * path. 57 * 58 * BTREE KEYS (struct bkey): 59 * 60 * The various btrees share a common format for the key - so as to avoid 61 * switching in fastpath lookup/comparison code - but define their own 62 * structures for the key values. 63 * 64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max 65 * size is just under 2k. The common part also contains a type tag for the 66 * value, and a format field indicating whether the key is packed or not (and 67 * also meant to allow adding new key fields in the future, if desired). 68 * 69 * bkeys, when stored within a btree node, may also be packed. In that case, the 70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can 71 * be generous with field sizes in the common part of the key format (64 bit 72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. 73 */ 74 75 #include <asm/types.h> 76 #include <asm/byteorder.h> 77 #include <linux/kernel.h> 78 #include <linux/uuid.h> 79 #include <uapi/linux/magic.h> 80 #include "vstructs.h" 81 82 #ifdef __KERNEL__ 83 typedef uuid_t __uuid_t; 84 #endif 85 86 #define BITMASK(name, type, field, offset, end) \ 87 static const __maybe_unused unsigned name##_OFFSET = offset; \ 88 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 89 \ 90 static inline __u64 name(const type *k) \ 91 { \ 92 return (k->field >> offset) & ~(~0ULL << (end - offset)); \ 93 } \ 94 \ 95 static inline void SET_##name(type *k, __u64 v) \ 96 { \ 97 k->field &= ~(~(~0ULL << (end - offset)) << offset); \ 98 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ 99 } 100 101 #define LE_BITMASK(_bits, name, type, field, offset, end) \ 102 static const __maybe_unused unsigned name##_OFFSET = offset; \ 103 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 104 static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ 105 \ 106 static inline __u64 name(const type *k) \ 107 { \ 108 return (__le##_bits##_to_cpu(k->field) >> offset) & \ 109 ~(~0ULL << (end - offset)); \ 110 } \ 111 \ 112 static inline void SET_##name(type *k, __u64 v) \ 113 { \ 114 __u##_bits new = __le##_bits##_to_cpu(k->field); \ 115 \ 116 new &= ~(~(~0ULL << (end - offset)) << offset); \ 117 new |= (v & ~(~0ULL << (end - offset))) << offset; \ 118 k->field = __cpu_to_le##_bits(new); \ 119 } 120 121 #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) 122 #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) 123 #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) 124 125 struct bkey_format { 126 __u8 key_u64s; 127 __u8 nr_fields; 128 /* One unused slot for now: */ 129 __u8 bits_per_field[6]; 130 __le64 field_offset[6]; 131 }; 132 133 /* Btree keys - all units are in sectors */ 134 135 struct bpos { 136 /* 137 * Word order matches machine byte order - btree code treats a bpos as a 138 * single large integer, for search/comparison purposes 139 * 140 * Note that wherever a bpos is embedded in another on disk data 141 * structure, it has to be byte swabbed when reading in metadata that 142 * wasn't written in native endian order: 143 */ 144 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 145 __u32 snapshot; 146 __u64 offset; 147 __u64 inode; 148 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 149 __u64 inode; 150 __u64 offset; /* Points to end of extent - sectors */ 151 __u32 snapshot; 152 #else 153 #error edit for your odd byteorder. 154 #endif 155 } __packed 156 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 157 __aligned(4) 158 #endif 159 ; 160 161 #define KEY_INODE_MAX ((__u64)~0ULL) 162 #define KEY_OFFSET_MAX ((__u64)~0ULL) 163 #define KEY_SNAPSHOT_MAX ((__u32)~0U) 164 #define KEY_SIZE_MAX ((__u32)~0U) 165 166 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) 167 { 168 return (struct bpos) { 169 .inode = inode, 170 .offset = offset, 171 .snapshot = snapshot, 172 }; 173 } 174 175 #define POS_MIN SPOS(0, 0, 0) 176 #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) 177 #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) 178 #define POS(_inode, _offset) SPOS(_inode, _offset, 0) 179 180 /* Empty placeholder struct, for container_of() */ 181 struct bch_val { 182 __u64 __nothing[0]; 183 }; 184 185 struct bversion { 186 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 187 __u64 lo; 188 __u32 hi; 189 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 190 __u32 hi; 191 __u64 lo; 192 #endif 193 } __packed 194 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 195 __aligned(4) 196 #endif 197 ; 198 199 struct bkey { 200 /* Size of combined key and value, in u64s */ 201 __u8 u64s; 202 203 /* Format of key (0 for format local to btree node) */ 204 #if defined(__LITTLE_ENDIAN_BITFIELD) 205 __u8 format:7, 206 needs_whiteout:1; 207 #elif defined (__BIG_ENDIAN_BITFIELD) 208 __u8 needs_whiteout:1, 209 format:7; 210 #else 211 #error edit for your odd byteorder. 212 #endif 213 214 /* Type of the value */ 215 __u8 type; 216 217 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 218 __u8 pad[1]; 219 220 struct bversion bversion; 221 __u32 size; /* extent size, in sectors */ 222 struct bpos p; 223 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 224 struct bpos p; 225 __u32 size; /* extent size, in sectors */ 226 struct bversion bversion; 227 228 __u8 pad[1]; 229 #endif 230 } __packed 231 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 232 /* 233 * The big-endian version of bkey can't be compiled by rustc with the "aligned" 234 * attr since it doesn't allow types to have both "packed" and "aligned" attrs. 235 * So for Rust compatibility, don't include this. It can be included in the LE 236 * version because the "packed" attr is redundant in that case. 237 * 238 * History: (quoting Kent) 239 * 240 * Specifically, when i was designing bkey, I wanted the header to be no 241 * bigger than necessary so that bkey_packed could use the rest. That means that 242 * decently offten extent keys will fit into only 8 bytes, instead of spilling over 243 * to 16. 244 * 245 * But packed_bkey treats the part after the header - the packed section - 246 * as a single multi word, variable length integer. And bkey, the unpacked 247 * version, is just a special case version of a bkey_packed; all the packed 248 * bkey code will work on keys in any packed format, the in-memory 249 * representation of an unpacked key also is just one type of packed key... 250 * 251 * So that constrains the key part of a bkig endian bkey to start right 252 * after the header. 253 * 254 * If we ever do a bkey_v2 and need to expand the hedaer by another byte for 255 * some reason - that will clean up this wart. 256 */ 257 __aligned(8) 258 #endif 259 ; 260 261 struct bkey_packed { 262 __u64 _data[0]; 263 264 /* Size of combined key and value, in u64s */ 265 __u8 u64s; 266 267 /* Format of key (0 for format local to btree node) */ 268 269 /* 270 * XXX: next incompat on disk format change, switch format and 271 * needs_whiteout - bkey_packed() will be cheaper if format is the high 272 * bits of the bitfield 273 */ 274 #if defined(__LITTLE_ENDIAN_BITFIELD) 275 __u8 format:7, 276 needs_whiteout:1; 277 #elif defined (__BIG_ENDIAN_BITFIELD) 278 __u8 needs_whiteout:1, 279 format:7; 280 #endif 281 282 /* Type of the value */ 283 __u8 type; 284 __u8 key_start[0]; 285 286 /* 287 * We copy bkeys with struct assignment in various places, and while 288 * that shouldn't be done with packed bkeys we can't disallow it in C, 289 * and it's legal to cast a bkey to a bkey_packed - so padding it out 290 * to the same size as struct bkey should hopefully be safest. 291 */ 292 __u8 pad[sizeof(struct bkey) - 3]; 293 } __packed __aligned(8); 294 295 typedef struct { 296 __le64 lo; 297 __le64 hi; 298 } bch_le128; 299 300 #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) 301 #define BKEY_U64s_MAX U8_MAX 302 #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) 303 304 #define KEY_PACKED_BITS_START 24 305 306 #define KEY_FORMAT_LOCAL_BTREE 0 307 #define KEY_FORMAT_CURRENT 1 308 309 enum bch_bkey_fields { 310 BKEY_FIELD_INODE, 311 BKEY_FIELD_OFFSET, 312 BKEY_FIELD_SNAPSHOT, 313 BKEY_FIELD_SIZE, 314 BKEY_FIELD_VERSION_HI, 315 BKEY_FIELD_VERSION_LO, 316 BKEY_NR_FIELDS, 317 }; 318 319 #define bkey_format_field(name, field) \ 320 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) 321 322 #define BKEY_FORMAT_CURRENT \ 323 ((struct bkey_format) { \ 324 .key_u64s = BKEY_U64s, \ 325 .nr_fields = BKEY_NR_FIELDS, \ 326 .bits_per_field = { \ 327 bkey_format_field(INODE, p.inode), \ 328 bkey_format_field(OFFSET, p.offset), \ 329 bkey_format_field(SNAPSHOT, p.snapshot), \ 330 bkey_format_field(SIZE, size), \ 331 bkey_format_field(VERSION_HI, bversion.hi), \ 332 bkey_format_field(VERSION_LO, bversion.lo), \ 333 }, \ 334 }) 335 336 /* bkey with inline value */ 337 struct bkey_i { 338 __u64 _data[0]; 339 340 struct bkey k; 341 struct bch_val v; 342 }; 343 344 #define POS_KEY(_pos) \ 345 ((struct bkey) { \ 346 .u64s = BKEY_U64s, \ 347 .format = KEY_FORMAT_CURRENT, \ 348 .p = _pos, \ 349 }) 350 351 #define KEY(_inode, _offset, _size) \ 352 ((struct bkey) { \ 353 .u64s = BKEY_U64s, \ 354 .format = KEY_FORMAT_CURRENT, \ 355 .p = POS(_inode, _offset), \ 356 .size = _size, \ 357 }) 358 359 static inline void bkey_init(struct bkey *k) 360 { 361 *k = KEY(0, 0, 0); 362 } 363 364 #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) 365 366 #define __BKEY_PADDED(key, pad) \ 367 struct bkey_i key; __u64 key ## _pad[pad] 368 369 enum bch_bkey_type_flags { 370 BKEY_TYPE_strict_btree_checks = BIT(0), 371 }; 372 373 /* 374 * - DELETED keys are used internally to mark keys that should be ignored but 375 * override keys in composition order. Their version number is ignored. 376 * 377 * - DISCARDED keys indicate that the data is all 0s because it has been 378 * discarded. DISCARDs may have a version; if the version is nonzero the key 379 * will be persistent, otherwise the key will be dropped whenever the btree 380 * node is rewritten (like DELETED keys). 381 * 382 * - ERROR: any read of the data returns a read error, as the data was lost due 383 * to a failing device. Like DISCARDED keys, they can be removed (overridden) 384 * by new writes or cluster-wide GC. Node repair can also overwrite them with 385 * the same or a more recent version number, but not with an older version 386 * number. 387 * 388 * - WHITEOUT: for hash table btrees 389 */ 390 #define BCH_BKEY_TYPES() \ 391 x(deleted, 0, 0) \ 392 x(whiteout, 1, 0) \ 393 x(error, 2, 0) \ 394 x(cookie, 3, 0) \ 395 x(hash_whiteout, 4, BKEY_TYPE_strict_btree_checks) \ 396 x(btree_ptr, 5, BKEY_TYPE_strict_btree_checks) \ 397 x(extent, 6, BKEY_TYPE_strict_btree_checks) \ 398 x(reservation, 7, BKEY_TYPE_strict_btree_checks) \ 399 x(inode, 8, BKEY_TYPE_strict_btree_checks) \ 400 x(inode_generation, 9, BKEY_TYPE_strict_btree_checks) \ 401 x(dirent, 10, BKEY_TYPE_strict_btree_checks) \ 402 x(xattr, 11, BKEY_TYPE_strict_btree_checks) \ 403 x(alloc, 12, BKEY_TYPE_strict_btree_checks) \ 404 x(quota, 13, BKEY_TYPE_strict_btree_checks) \ 405 x(stripe, 14, BKEY_TYPE_strict_btree_checks) \ 406 x(reflink_p, 15, BKEY_TYPE_strict_btree_checks) \ 407 x(reflink_v, 16, BKEY_TYPE_strict_btree_checks) \ 408 x(inline_data, 17, BKEY_TYPE_strict_btree_checks) \ 409 x(btree_ptr_v2, 18, BKEY_TYPE_strict_btree_checks) \ 410 x(indirect_inline_data, 19, BKEY_TYPE_strict_btree_checks) \ 411 x(alloc_v2, 20, BKEY_TYPE_strict_btree_checks) \ 412 x(subvolume, 21, BKEY_TYPE_strict_btree_checks) \ 413 x(snapshot, 22, BKEY_TYPE_strict_btree_checks) \ 414 x(inode_v2, 23, BKEY_TYPE_strict_btree_checks) \ 415 x(alloc_v3, 24, BKEY_TYPE_strict_btree_checks) \ 416 x(set, 25, 0) \ 417 x(lru, 26, BKEY_TYPE_strict_btree_checks) \ 418 x(alloc_v4, 27, BKEY_TYPE_strict_btree_checks) \ 419 x(backpointer, 28, BKEY_TYPE_strict_btree_checks) \ 420 x(inode_v3, 29, BKEY_TYPE_strict_btree_checks) \ 421 x(bucket_gens, 30, BKEY_TYPE_strict_btree_checks) \ 422 x(snapshot_tree, 31, BKEY_TYPE_strict_btree_checks) \ 423 x(logged_op_truncate, 32, BKEY_TYPE_strict_btree_checks) \ 424 x(logged_op_finsert, 33, BKEY_TYPE_strict_btree_checks) \ 425 x(accounting, 34, BKEY_TYPE_strict_btree_checks) \ 426 x(inode_alloc_cursor, 35, BKEY_TYPE_strict_btree_checks) 427 428 enum bch_bkey_type { 429 #define x(name, nr, ...) KEY_TYPE_##name = nr, 430 BCH_BKEY_TYPES() 431 #undef x 432 KEY_TYPE_MAX, 433 }; 434 435 struct bch_deleted { 436 struct bch_val v; 437 }; 438 439 struct bch_whiteout { 440 struct bch_val v; 441 }; 442 443 struct bch_error { 444 struct bch_val v; 445 }; 446 447 struct bch_cookie { 448 struct bch_val v; 449 __le64 cookie; 450 }; 451 452 struct bch_hash_whiteout { 453 struct bch_val v; 454 }; 455 456 struct bch_set { 457 struct bch_val v; 458 }; 459 460 /* 128 bits, sufficient for cryptographic MACs: */ 461 struct bch_csum { 462 __le64 lo; 463 __le64 hi; 464 } __packed __aligned(8); 465 466 struct bch_backpointer { 467 struct bch_val v; 468 __u8 btree_id; 469 __u8 level; 470 __u8 data_type; 471 __u8 bucket_gen; 472 __u32 pad; 473 __u32 bucket_len; 474 struct bpos pos; 475 } __packed __aligned(8); 476 477 /* Optional/variable size superblock sections: */ 478 479 struct bch_sb_field { 480 __u64 _data[0]; 481 __le32 u64s; 482 __le32 type; 483 }; 484 485 #define BCH_SB_FIELDS() \ 486 x(journal, 0) \ 487 x(members_v1, 1) \ 488 x(crypt, 2) \ 489 x(replicas_v0, 3) \ 490 x(quota, 4) \ 491 x(disk_groups, 5) \ 492 x(clean, 6) \ 493 x(replicas, 7) \ 494 x(journal_seq_blacklist, 8) \ 495 x(journal_v2, 9) \ 496 x(counters, 10) \ 497 x(members_v2, 11) \ 498 x(errors, 12) \ 499 x(ext, 13) \ 500 x(downgrade, 14) 501 502 #include "alloc_background_format.h" 503 #include "dirent_format.h" 504 #include "disk_accounting_format.h" 505 #include "disk_groups_format.h" 506 #include "extents_format.h" 507 #include "ec_format.h" 508 #include "inode_format.h" 509 #include "journal_seq_blacklist_format.h" 510 #include "logged_ops_format.h" 511 #include "lru_format.h" 512 #include "quota_format.h" 513 #include "reflink_format.h" 514 #include "replicas_format.h" 515 #include "snapshot_format.h" 516 #include "subvolume_format.h" 517 #include "sb-counters_format.h" 518 #include "sb-downgrade_format.h" 519 #include "sb-errors_format.h" 520 #include "sb-members_format.h" 521 #include "xattr_format.h" 522 523 enum bch_sb_field_type { 524 #define x(f, nr) BCH_SB_FIELD_##f = nr, 525 BCH_SB_FIELDS() 526 #undef x 527 BCH_SB_FIELD_NR 528 }; 529 530 /* 531 * Most superblock fields are replicated in all device's superblocks - a few are 532 * not: 533 */ 534 #define BCH_SINGLE_DEVICE_SB_FIELDS \ 535 ((1U << BCH_SB_FIELD_journal)| \ 536 (1U << BCH_SB_FIELD_journal_v2)) 537 538 /* BCH_SB_FIELD_journal: */ 539 540 struct bch_sb_field_journal { 541 struct bch_sb_field field; 542 __le64 buckets[]; 543 }; 544 545 struct bch_sb_field_journal_v2 { 546 struct bch_sb_field field; 547 548 struct bch_sb_field_journal_v2_entry { 549 __le64 start; 550 __le64 nr; 551 } d[]; 552 }; 553 554 /* BCH_SB_FIELD_crypt: */ 555 556 struct nonce { 557 __le32 d[4]; 558 }; 559 560 struct bch_key { 561 __le64 key[4]; 562 }; 563 564 #define BCH_KEY_MAGIC \ 565 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ 566 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ 567 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ 568 ((__u64) 'e' << 48)|((__u64) 'y' << 56)) 569 570 struct bch_encrypted_key { 571 __le64 magic; 572 struct bch_key key; 573 }; 574 575 /* 576 * If this field is present in the superblock, it stores an encryption key which 577 * is used encrypt all other data/metadata. The key will normally be encrypted 578 * with the key userspace provides, but if encryption has been turned off we'll 579 * just store the master key unencrypted in the superblock so we can access the 580 * previously encrypted data. 581 */ 582 struct bch_sb_field_crypt { 583 struct bch_sb_field field; 584 585 __le64 flags; 586 __le64 kdf_flags; 587 struct bch_encrypted_key key; 588 }; 589 590 LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); 591 592 enum bch_kdf_types { 593 BCH_KDF_SCRYPT = 0, 594 BCH_KDF_NR = 1, 595 }; 596 597 /* stored as base 2 log of scrypt params: */ 598 LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); 599 LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); 600 LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); 601 602 /* 603 * On clean shutdown, store btree roots and current journal sequence number in 604 * the superblock: 605 */ 606 struct jset_entry { 607 __le16 u64s; 608 __u8 btree_id; 609 __u8 level; 610 __u8 type; /* designates what this jset holds */ 611 __u8 pad[3]; 612 613 struct bkey_i start[0]; 614 __u64 _data[]; 615 }; 616 617 struct bch_sb_field_clean { 618 struct bch_sb_field field; 619 620 __le32 flags; 621 __le16 _read_clock; /* no longer used */ 622 __le16 _write_clock; 623 __le64 journal_seq; 624 625 struct jset_entry start[0]; 626 __u64 _data[]; 627 }; 628 629 struct bch_sb_field_ext { 630 struct bch_sb_field field; 631 __le64 recovery_passes_required[2]; 632 __le64 errors_silent[8]; 633 __le64 btrees_lost_data; 634 }; 635 636 /* Superblock: */ 637 638 /* 639 * New versioning scheme: 640 * One common version number for all on disk data structures - superblock, btree 641 * nodes, journal entries 642 */ 643 #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) 644 #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) 645 #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) 646 647 /* 648 * field 1: version name 649 * field 2: BCH_VERSION(major, minor) 650 * field 3: recovery passess required on upgrade 651 */ 652 #define BCH_METADATA_VERSIONS() \ 653 x(bkey_renumber, BCH_VERSION(0, 10)) \ 654 x(inode_btree_change, BCH_VERSION(0, 11)) \ 655 x(snapshot, BCH_VERSION(0, 12)) \ 656 x(inode_backpointers, BCH_VERSION(0, 13)) \ 657 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \ 658 x(snapshot_2, BCH_VERSION(0, 15)) \ 659 x(reflink_p_fix, BCH_VERSION(0, 16)) \ 660 x(subvol_dirent, BCH_VERSION(0, 17)) \ 661 x(inode_v2, BCH_VERSION(0, 18)) \ 662 x(freespace, BCH_VERSION(0, 19)) \ 663 x(alloc_v4, BCH_VERSION(0, 20)) \ 664 x(new_data_types, BCH_VERSION(0, 21)) \ 665 x(backpointers, BCH_VERSION(0, 22)) \ 666 x(inode_v3, BCH_VERSION(0, 23)) \ 667 x(unwritten_extents, BCH_VERSION(0, 24)) \ 668 x(bucket_gens, BCH_VERSION(0, 25)) \ 669 x(lru_v2, BCH_VERSION(0, 26)) \ 670 x(fragmentation_lru, BCH_VERSION(0, 27)) \ 671 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \ 672 x(snapshot_trees, BCH_VERSION(0, 29)) \ 673 x(major_minor, BCH_VERSION(1, 0)) \ 674 x(snapshot_skiplists, BCH_VERSION(1, 1)) \ 675 x(deleted_inodes, BCH_VERSION(1, 2)) \ 676 x(rebalance_work, BCH_VERSION(1, 3)) \ 677 x(member_seq, BCH_VERSION(1, 4)) \ 678 x(subvolume_fs_parent, BCH_VERSION(1, 5)) \ 679 x(btree_subvolume_children, BCH_VERSION(1, 6)) \ 680 x(mi_btree_bitmap, BCH_VERSION(1, 7)) \ 681 x(bucket_stripe_sectors, BCH_VERSION(1, 8)) \ 682 x(disk_accounting_v2, BCH_VERSION(1, 9)) \ 683 x(disk_accounting_v3, BCH_VERSION(1, 10)) \ 684 x(disk_accounting_inum, BCH_VERSION(1, 11)) \ 685 x(rebalance_work_acct_fix, BCH_VERSION(1, 12)) \ 686 x(inode_has_child_snapshots, BCH_VERSION(1, 13)) \ 687 x(backpointer_bucket_gen, BCH_VERSION(1, 14)) \ 688 x(disk_accounting_big_endian, BCH_VERSION(1, 15)) \ 689 x(reflink_p_may_update_opts, BCH_VERSION(1, 16)) \ 690 x(inode_depth, BCH_VERSION(1, 17)) \ 691 x(persistent_inode_cursors, BCH_VERSION(1, 18)) \ 692 x(autofix_errors, BCH_VERSION(1, 19)) \ 693 x(directory_size, BCH_VERSION(1, 20)) \ 694 x(cached_backpointers, BCH_VERSION(1, 21)) \ 695 x(stripe_backpointers, BCH_VERSION(1, 22)) \ 696 x(stripe_lru, BCH_VERSION(1, 23)) \ 697 x(casefolding, BCH_VERSION(1, 24)) \ 698 x(extent_flags, BCH_VERSION(1, 25)) 699 700 enum bcachefs_metadata_version { 701 bcachefs_metadata_version_min = 9, 702 #define x(t, n) bcachefs_metadata_version_##t = n, 703 BCH_METADATA_VERSIONS() 704 #undef x 705 bcachefs_metadata_version_max 706 }; 707 708 static const __maybe_unused 709 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work; 710 711 #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) 712 713 #define BCH_SB_SECTOR 8 714 715 #define BCH_SB_LAYOUT_SIZE_BITS_MAX 16 /* 32 MB */ 716 717 struct bch_sb_layout { 718 __uuid_t magic; /* bcachefs superblock UUID */ 719 __u8 layout_type; 720 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ 721 __u8 nr_superblocks; 722 __u8 pad[5]; 723 __le64 sb_offset[61]; 724 } __packed __aligned(8); 725 726 #define BCH_SB_LAYOUT_SECTOR 7 727 728 /* 729 * @offset - sector where this sb was written 730 * @version - on disk format version 731 * @version_min - Oldest metadata version this filesystem contains; so we can 732 * safely drop compatibility code and refuse to mount filesystems 733 * we'd need it for 734 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) 735 * @seq - incremented each time superblock is written 736 * @uuid - used for generating various magic numbers and identifying 737 * member devices, never changes 738 * @user_uuid - user visible UUID, may be changed 739 * @label - filesystem label 740 * @seq - identifies most recent superblock, incremented each time 741 * superblock is written 742 * @features - enabled incompatible features 743 */ 744 struct bch_sb { 745 struct bch_csum csum; 746 __le16 version; 747 __le16 version_min; 748 __le16 pad[2]; 749 __uuid_t magic; 750 __uuid_t uuid; 751 __uuid_t user_uuid; 752 __u8 label[BCH_SB_LABEL_SIZE]; 753 __le64 offset; 754 __le64 seq; 755 756 __le16 block_size; 757 __u8 dev_idx; 758 __u8 nr_devices; 759 __le32 u64s; 760 761 __le64 time_base_lo; 762 __le32 time_base_hi; 763 __le32 time_precision; 764 765 __le64 flags[7]; 766 __le64 write_time; 767 __le64 features[2]; 768 __le64 compat[2]; 769 770 struct bch_sb_layout layout; 771 772 struct bch_sb_field start[0]; 773 __le64 _data[]; 774 } __packed __aligned(8); 775 776 /* 777 * Flags: 778 * BCH_SB_INITALIZED - set on first mount 779 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect 780 * behaviour of mount/recovery path: 781 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits 782 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 783 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides 784 * DATA/META_CSUM_TYPE. Also indicates encryption 785 * algorithm in use, if/when we get more than one 786 */ 787 788 LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); 789 790 LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); 791 LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); 792 LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); 793 LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); 794 795 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); 796 797 LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); 798 LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); 799 800 LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); 801 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); 802 803 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); 804 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); 805 806 LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); 807 LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); 808 LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); 809 LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); 810 811 LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); 812 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); 813 814 LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); 815 LE64_BITMASK(BCH_SB_PROMOTE_WHOLE_EXTENTS, 816 struct bch_sb, flags[0], 63, 64); 817 818 LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); 819 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); 820 LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); 821 822 LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); 823 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); 824 825 /* 826 * Max size of an extent that may require bouncing to read or write 827 * (checksummed, compressed): 64k 828 */ 829 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, 830 struct bch_sb, flags[1], 14, 20); 831 832 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); 833 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); 834 835 LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); 836 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); 837 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); 838 839 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, 840 struct bch_sb, flags[2], 0, 4); 841 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); 842 843 LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); 844 LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); 845 LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); 846 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); 847 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); 848 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); 849 /* one free bit */ 850 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); 851 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); 852 LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); 853 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); 854 LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); 855 856 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); 857 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, 858 struct bch_sb, flags[4], 60, 64); 859 860 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, 861 struct bch_sb, flags[5], 0, 16); 862 LE64_BITMASK(BCH_SB_ALLOCATOR_STUCK_TIMEOUT, 863 struct bch_sb, flags[5], 16, 32); 864 LE64_BITMASK(BCH_SB_VERSION_INCOMPAT, struct bch_sb, flags[5], 32, 48); 865 LE64_BITMASK(BCH_SB_VERSION_INCOMPAT_ALLOWED, 866 struct bch_sb, flags[5], 48, 64); 867 LE64_BITMASK(BCH_SB_SHARD_INUMS_NBITS, struct bch_sb, flags[6], 0, 4); 868 LE64_BITMASK(BCH_SB_WRITE_ERROR_TIMEOUT,struct bch_sb, flags[6], 4, 14); 869 LE64_BITMASK(BCH_SB_CSUM_ERR_RETRY_NR, struct bch_sb, flags[6], 14, 20); 870 LE64_BITMASK(BCH_SB_CASEFOLD, struct bch_sb, flags[6], 22, 23); 871 872 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) 873 { 874 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); 875 } 876 877 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 878 { 879 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); 880 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); 881 } 882 883 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) 884 { 885 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | 886 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); 887 } 888 889 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 890 { 891 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); 892 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); 893 } 894 895 /* 896 * Features: 897 * 898 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist 899 * reflink: gates KEY_TYPE_reflink 900 * inline_data: gates KEY_TYPE_inline_data 901 * new_siphash: gates BCH_STR_HASH_siphash 902 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE 903 */ 904 #define BCH_SB_FEATURES() \ 905 x(lz4, 0) \ 906 x(gzip, 1) \ 907 x(zstd, 2) \ 908 x(atomic_nlink, 3) \ 909 x(ec, 4) \ 910 x(journal_seq_blacklist_v3, 5) \ 911 x(reflink, 6) \ 912 x(new_siphash, 7) \ 913 x(inline_data, 8) \ 914 x(new_extent_overwrite, 9) \ 915 x(incompressible, 10) \ 916 x(btree_ptr_v2, 11) \ 917 x(extents_above_btree_updates, 12) \ 918 x(btree_updates_journalled, 13) \ 919 x(reflink_inline_data, 14) \ 920 x(new_varint, 15) \ 921 x(journal_no_flush, 16) \ 922 x(alloc_v2, 17) \ 923 x(extents_across_btree_nodes, 18) \ 924 x(incompat_version_field, 19) \ 925 x(casefolding, 20) 926 927 #define BCH_SB_FEATURES_ALWAYS \ 928 (BIT_ULL(BCH_FEATURE_new_extent_overwrite)| \ 929 BIT_ULL(BCH_FEATURE_extents_above_btree_updates)|\ 930 BIT_ULL(BCH_FEATURE_btree_updates_journalled)|\ 931 BIT_ULL(BCH_FEATURE_alloc_v2)|\ 932 BIT_ULL(BCH_FEATURE_extents_across_btree_nodes)) 933 934 #define BCH_SB_FEATURES_ALL \ 935 (BCH_SB_FEATURES_ALWAYS| \ 936 BIT_ULL(BCH_FEATURE_new_siphash)| \ 937 BIT_ULL(BCH_FEATURE_btree_ptr_v2)| \ 938 BIT_ULL(BCH_FEATURE_new_varint)| \ 939 BIT_ULL(BCH_FEATURE_journal_no_flush)| \ 940 BIT_ULL(BCH_FEATURE_incompat_version_field)) 941 942 enum bch_sb_feature { 943 #define x(f, n) BCH_FEATURE_##f, 944 BCH_SB_FEATURES() 945 #undef x 946 BCH_FEATURE_NR, 947 }; 948 949 #define BCH_SB_COMPAT() \ 950 x(alloc_info, 0) \ 951 x(alloc_metadata, 1) \ 952 x(extents_above_btree_updates_done, 2) \ 953 x(bformat_overflow_done, 3) 954 955 enum bch_sb_compat { 956 #define x(f, n) BCH_COMPAT_##f, 957 BCH_SB_COMPAT() 958 #undef x 959 BCH_COMPAT_NR, 960 }; 961 962 /* options: */ 963 964 #define BCH_VERSION_UPGRADE_OPTS() \ 965 x(compatible, 0) \ 966 x(incompatible, 1) \ 967 x(none, 2) 968 969 enum bch_version_upgrade_opts { 970 #define x(t, n) BCH_VERSION_UPGRADE_##t = n, 971 BCH_VERSION_UPGRADE_OPTS() 972 #undef x 973 }; 974 975 #define BCH_REPLICAS_MAX 4U 976 977 #define BCH_BKEY_PTRS_MAX 16U 978 979 #define BCH_ERROR_ACTIONS() \ 980 x(continue, 0) \ 981 x(fix_safe, 1) \ 982 x(panic, 2) \ 983 x(ro, 3) 984 985 enum bch_error_actions { 986 #define x(t, n) BCH_ON_ERROR_##t = n, 987 BCH_ERROR_ACTIONS() 988 #undef x 989 BCH_ON_ERROR_NR 990 }; 991 992 #define BCH_STR_HASH_TYPES() \ 993 x(crc32c, 0) \ 994 x(crc64, 1) \ 995 x(siphash_old, 2) \ 996 x(siphash, 3) 997 998 enum bch_str_hash_type { 999 #define x(t, n) BCH_STR_HASH_##t = n, 1000 BCH_STR_HASH_TYPES() 1001 #undef x 1002 BCH_STR_HASH_NR 1003 }; 1004 1005 #define BCH_STR_HASH_OPTS() \ 1006 x(crc32c, 0) \ 1007 x(crc64, 1) \ 1008 x(siphash, 2) 1009 1010 enum bch_str_hash_opts { 1011 #define x(t, n) BCH_STR_HASH_OPT_##t = n, 1012 BCH_STR_HASH_OPTS() 1013 #undef x 1014 BCH_STR_HASH_OPT_NR 1015 }; 1016 1017 #define BCH_CSUM_TYPES() \ 1018 x(none, 0) \ 1019 x(crc32c_nonzero, 1) \ 1020 x(crc64_nonzero, 2) \ 1021 x(chacha20_poly1305_80, 3) \ 1022 x(chacha20_poly1305_128, 4) \ 1023 x(crc32c, 5) \ 1024 x(crc64, 6) \ 1025 x(xxhash, 7) 1026 1027 enum bch_csum_type { 1028 #define x(t, n) BCH_CSUM_##t = n, 1029 BCH_CSUM_TYPES() 1030 #undef x 1031 BCH_CSUM_NR 1032 }; 1033 1034 static const __maybe_unused unsigned bch_crc_bytes[] = { 1035 [BCH_CSUM_none] = 0, 1036 [BCH_CSUM_crc32c_nonzero] = 4, 1037 [BCH_CSUM_crc32c] = 4, 1038 [BCH_CSUM_crc64_nonzero] = 8, 1039 [BCH_CSUM_crc64] = 8, 1040 [BCH_CSUM_xxhash] = 8, 1041 [BCH_CSUM_chacha20_poly1305_80] = 10, 1042 [BCH_CSUM_chacha20_poly1305_128] = 16, 1043 }; 1044 1045 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) 1046 { 1047 switch (type) { 1048 case BCH_CSUM_chacha20_poly1305_80: 1049 case BCH_CSUM_chacha20_poly1305_128: 1050 return true; 1051 default: 1052 return false; 1053 } 1054 } 1055 1056 #define BCH_CSUM_OPTS() \ 1057 x(none, 0) \ 1058 x(crc32c, 1) \ 1059 x(crc64, 2) \ 1060 x(xxhash, 3) 1061 1062 enum bch_csum_opt { 1063 #define x(t, n) BCH_CSUM_OPT_##t = n, 1064 BCH_CSUM_OPTS() 1065 #undef x 1066 BCH_CSUM_OPT_NR 1067 }; 1068 1069 #define BCH_COMPRESSION_TYPES() \ 1070 x(none, 0) \ 1071 x(lz4_old, 1) \ 1072 x(gzip, 2) \ 1073 x(lz4, 3) \ 1074 x(zstd, 4) \ 1075 x(incompressible, 5) 1076 1077 enum bch_compression_type { 1078 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n, 1079 BCH_COMPRESSION_TYPES() 1080 #undef x 1081 BCH_COMPRESSION_TYPE_NR 1082 }; 1083 1084 #define BCH_COMPRESSION_OPTS() \ 1085 x(none, 0) \ 1086 x(lz4, 1) \ 1087 x(gzip, 2) \ 1088 x(zstd, 3) 1089 1090 enum bch_compression_opts { 1091 #define x(t, n) BCH_COMPRESSION_OPT_##t = n, 1092 BCH_COMPRESSION_OPTS() 1093 #undef x 1094 BCH_COMPRESSION_OPT_NR 1095 }; 1096 1097 /* 1098 * Magic numbers 1099 * 1100 * The various other data structures have their own magic numbers, which are 1101 * xored with the first part of the cache set's UUID 1102 */ 1103 1104 #define BCACHE_MAGIC \ 1105 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ 1106 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) 1107 #define BCHFS_MAGIC \ 1108 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ 1109 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) 1110 1111 #define BCACHEFS_STATFS_MAGIC BCACHEFS_SUPER_MAGIC 1112 1113 #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) 1114 #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) 1115 1116 static inline __le64 __bch2_sb_magic(struct bch_sb *sb) 1117 { 1118 __le64 ret; 1119 1120 memcpy(&ret, &sb->uuid, sizeof(ret)); 1121 return ret; 1122 } 1123 1124 static inline __u64 __jset_magic(struct bch_sb *sb) 1125 { 1126 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); 1127 } 1128 1129 static inline __u64 __bset_magic(struct bch_sb *sb) 1130 { 1131 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); 1132 } 1133 1134 /* Journal */ 1135 1136 #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) 1137 1138 #define BCH_JSET_ENTRY_TYPES() \ 1139 x(btree_keys, 0) \ 1140 x(btree_root, 1) \ 1141 x(prio_ptrs, 2) \ 1142 x(blacklist, 3) \ 1143 x(blacklist_v2, 4) \ 1144 x(usage, 5) \ 1145 x(data_usage, 6) \ 1146 x(clock, 7) \ 1147 x(dev_usage, 8) \ 1148 x(log, 9) \ 1149 x(overwrite, 10) \ 1150 x(write_buffer_keys, 11) \ 1151 x(datetime, 12) \ 1152 x(log_bkey, 13) 1153 1154 enum bch_jset_entry_type { 1155 #define x(f, nr) BCH_JSET_ENTRY_##f = nr, 1156 BCH_JSET_ENTRY_TYPES() 1157 #undef x 1158 BCH_JSET_ENTRY_NR 1159 }; 1160 1161 static inline bool jset_entry_is_key(struct jset_entry *e) 1162 { 1163 switch (e->type) { 1164 case BCH_JSET_ENTRY_btree_keys: 1165 case BCH_JSET_ENTRY_btree_root: 1166 case BCH_JSET_ENTRY_write_buffer_keys: 1167 return true; 1168 } 1169 1170 return false; 1171 } 1172 1173 /* 1174 * Journal sequence numbers can be blacklisted: bsets record the max sequence 1175 * number of all the journal entries they contain updates for, so that on 1176 * recovery we can ignore those bsets that contain index updates newer that what 1177 * made it into the journal. 1178 * 1179 * This means that we can't reuse that journal_seq - we have to skip it, and 1180 * then record that we skipped it so that the next time we crash and recover we 1181 * don't think there was a missing journal entry. 1182 */ 1183 struct jset_entry_blacklist { 1184 struct jset_entry entry; 1185 __le64 seq; 1186 }; 1187 1188 struct jset_entry_blacklist_v2 { 1189 struct jset_entry entry; 1190 __le64 start; 1191 __le64 end; 1192 }; 1193 1194 #define BCH_FS_USAGE_TYPES() \ 1195 x(reserved, 0) \ 1196 x(inodes, 1) \ 1197 x(key_version, 2) 1198 1199 enum bch_fs_usage_type { 1200 #define x(f, nr) BCH_FS_USAGE_##f = nr, 1201 BCH_FS_USAGE_TYPES() 1202 #undef x 1203 BCH_FS_USAGE_NR 1204 }; 1205 1206 struct jset_entry_usage { 1207 struct jset_entry entry; 1208 __le64 v; 1209 } __packed; 1210 1211 struct jset_entry_data_usage { 1212 struct jset_entry entry; 1213 __le64 v; 1214 struct bch_replicas_entry_v1 r; 1215 } __packed; 1216 1217 struct jset_entry_clock { 1218 struct jset_entry entry; 1219 __u8 rw; 1220 __u8 pad[7]; 1221 __le64 time; 1222 } __packed; 1223 1224 struct jset_entry_dev_usage_type { 1225 __le64 buckets; 1226 __le64 sectors; 1227 __le64 fragmented; 1228 } __packed; 1229 1230 struct jset_entry_dev_usage { 1231 struct jset_entry entry; 1232 __le32 dev; 1233 __u32 pad; 1234 1235 __le64 _buckets_ec; /* No longer used */ 1236 __le64 _buckets_unavailable; /* No longer used */ 1237 1238 struct jset_entry_dev_usage_type d[]; 1239 }; 1240 1241 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) 1242 { 1243 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / 1244 sizeof(struct jset_entry_dev_usage_type); 1245 } 1246 1247 struct jset_entry_log { 1248 struct jset_entry entry; 1249 u8 d[]; 1250 } __packed __aligned(8); 1251 1252 static inline unsigned jset_entry_log_msg_bytes(struct jset_entry_log *l) 1253 { 1254 unsigned b = vstruct_bytes(&l->entry) - offsetof(struct jset_entry_log, d); 1255 1256 while (b && !l->d[b - 1]) 1257 --b; 1258 return b; 1259 } 1260 1261 struct jset_entry_datetime { 1262 struct jset_entry entry; 1263 __le64 seconds; 1264 } __packed __aligned(8); 1265 1266 /* 1267 * On disk format for a journal entry: 1268 * seq is monotonically increasing; every journal entry has its own unique 1269 * sequence number. 1270 * 1271 * last_seq is the oldest journal entry that still has keys the btree hasn't 1272 * flushed to disk yet. 1273 * 1274 * version is for on disk format changes. 1275 */ 1276 struct jset { 1277 struct bch_csum csum; 1278 1279 __le64 magic; 1280 __le64 seq; 1281 __le32 version; 1282 __le32 flags; 1283 1284 __le32 u64s; /* size of d[] in u64s */ 1285 1286 __u8 encrypted_start[0]; 1287 1288 __le16 _read_clock; /* no longer used */ 1289 __le16 _write_clock; 1290 1291 /* Sequence number of oldest dirty journal entry */ 1292 __le64 last_seq; 1293 1294 1295 struct jset_entry start[0]; 1296 __u64 _data[]; 1297 } __packed __aligned(8); 1298 1299 LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); 1300 LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); 1301 LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); 1302 1303 #define BCH_JOURNAL_BUCKETS_MIN 8 1304 1305 /* Btree: */ 1306 1307 enum btree_id_flags { 1308 BTREE_IS_extents = BIT(0), 1309 BTREE_IS_snapshots = BIT(1), 1310 BTREE_IS_snapshot_field = BIT(2), 1311 BTREE_IS_data = BIT(3), 1312 BTREE_IS_write_buffer = BIT(4), 1313 }; 1314 1315 #define BCH_BTREE_IDS() \ 1316 x(extents, 0, \ 1317 BTREE_IS_extents| \ 1318 BTREE_IS_snapshots| \ 1319 BTREE_IS_data, \ 1320 BIT_ULL(KEY_TYPE_whiteout)| \ 1321 BIT_ULL(KEY_TYPE_error)| \ 1322 BIT_ULL(KEY_TYPE_cookie)| \ 1323 BIT_ULL(KEY_TYPE_extent)| \ 1324 BIT_ULL(KEY_TYPE_reservation)| \ 1325 BIT_ULL(KEY_TYPE_reflink_p)| \ 1326 BIT_ULL(KEY_TYPE_inline_data)) \ 1327 x(inodes, 1, \ 1328 BTREE_IS_snapshots, \ 1329 BIT_ULL(KEY_TYPE_whiteout)| \ 1330 BIT_ULL(KEY_TYPE_inode)| \ 1331 BIT_ULL(KEY_TYPE_inode_v2)| \ 1332 BIT_ULL(KEY_TYPE_inode_v3)| \ 1333 BIT_ULL(KEY_TYPE_inode_generation)) \ 1334 x(dirents, 2, \ 1335 BTREE_IS_snapshots, \ 1336 BIT_ULL(KEY_TYPE_whiteout)| \ 1337 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1338 BIT_ULL(KEY_TYPE_dirent)) \ 1339 x(xattrs, 3, \ 1340 BTREE_IS_snapshots, \ 1341 BIT_ULL(KEY_TYPE_whiteout)| \ 1342 BIT_ULL(KEY_TYPE_cookie)| \ 1343 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1344 BIT_ULL(KEY_TYPE_xattr)) \ 1345 x(alloc, 4, 0, \ 1346 BIT_ULL(KEY_TYPE_alloc)| \ 1347 BIT_ULL(KEY_TYPE_alloc_v2)| \ 1348 BIT_ULL(KEY_TYPE_alloc_v3)| \ 1349 BIT_ULL(KEY_TYPE_alloc_v4)) \ 1350 x(quotas, 5, 0, \ 1351 BIT_ULL(KEY_TYPE_quota)) \ 1352 x(stripes, 6, 0, \ 1353 BIT_ULL(KEY_TYPE_stripe)) \ 1354 x(reflink, 7, \ 1355 BTREE_IS_extents| \ 1356 BTREE_IS_data, \ 1357 BIT_ULL(KEY_TYPE_reflink_v)| \ 1358 BIT_ULL(KEY_TYPE_indirect_inline_data)| \ 1359 BIT_ULL(KEY_TYPE_error)) \ 1360 x(subvolumes, 8, 0, \ 1361 BIT_ULL(KEY_TYPE_subvolume)) \ 1362 x(snapshots, 9, 0, \ 1363 BIT_ULL(KEY_TYPE_snapshot)) \ 1364 x(lru, 10, \ 1365 BTREE_IS_write_buffer, \ 1366 BIT_ULL(KEY_TYPE_set)) \ 1367 x(freespace, 11, \ 1368 BTREE_IS_extents, \ 1369 BIT_ULL(KEY_TYPE_set)) \ 1370 x(need_discard, 12, 0, \ 1371 BIT_ULL(KEY_TYPE_set)) \ 1372 x(backpointers, 13, \ 1373 BTREE_IS_write_buffer, \ 1374 BIT_ULL(KEY_TYPE_backpointer)) \ 1375 x(bucket_gens, 14, 0, \ 1376 BIT_ULL(KEY_TYPE_bucket_gens)) \ 1377 x(snapshot_trees, 15, 0, \ 1378 BIT_ULL(KEY_TYPE_snapshot_tree)) \ 1379 x(deleted_inodes, 16, \ 1380 BTREE_IS_snapshot_field| \ 1381 BTREE_IS_write_buffer, \ 1382 BIT_ULL(KEY_TYPE_set)) \ 1383 x(logged_ops, 17, 0, \ 1384 BIT_ULL(KEY_TYPE_logged_op_truncate)| \ 1385 BIT_ULL(KEY_TYPE_logged_op_finsert)| \ 1386 BIT_ULL(KEY_TYPE_inode_alloc_cursor)) \ 1387 x(rebalance_work, 18, \ 1388 BTREE_IS_snapshot_field| \ 1389 BTREE_IS_write_buffer, \ 1390 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \ 1391 x(subvolume_children, 19, 0, \ 1392 BIT_ULL(KEY_TYPE_set)) \ 1393 x(accounting, 20, \ 1394 BTREE_IS_snapshot_field| \ 1395 BTREE_IS_write_buffer, \ 1396 BIT_ULL(KEY_TYPE_accounting)) \ 1397 1398 enum btree_id { 1399 #define x(name, nr, ...) BTREE_ID_##name = nr, 1400 BCH_BTREE_IDS() 1401 #undef x 1402 BTREE_ID_NR 1403 }; 1404 1405 /* 1406 * Maximum number of btrees that we will _ever_ have under the current scheme, 1407 * where we refer to them with 64 bit bitfields - and we also need a bit for 1408 * the interior btree node type: 1409 */ 1410 #define BTREE_ID_NR_MAX 63 1411 1412 static inline bool btree_id_is_alloc(enum btree_id id) 1413 { 1414 switch (id) { 1415 case BTREE_ID_alloc: 1416 case BTREE_ID_backpointers: 1417 case BTREE_ID_need_discard: 1418 case BTREE_ID_freespace: 1419 case BTREE_ID_bucket_gens: 1420 case BTREE_ID_lru: 1421 case BTREE_ID_accounting: 1422 return true; 1423 default: 1424 return false; 1425 } 1426 } 1427 1428 #define BTREE_MAX_DEPTH 4U 1429 1430 /* Btree nodes */ 1431 1432 /* 1433 * Btree nodes 1434 * 1435 * On disk a btree node is a list/log of these; within each set the keys are 1436 * sorted 1437 */ 1438 struct bset { 1439 __le64 seq; 1440 1441 /* 1442 * Highest journal entry this bset contains keys for. 1443 * If on recovery we don't see that journal entry, this bset is ignored: 1444 * this allows us to preserve the order of all index updates after a 1445 * crash, since the journal records a total order of all index updates 1446 * and anything that didn't make it to the journal doesn't get used. 1447 */ 1448 __le64 journal_seq; 1449 1450 __le32 flags; 1451 __le16 version; 1452 __le16 u64s; /* count of d[] in u64s */ 1453 1454 struct bkey_packed start[0]; 1455 __u64 _data[]; 1456 } __packed __aligned(8); 1457 1458 LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); 1459 1460 LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); 1461 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, 1462 struct bset, flags, 5, 6); 1463 1464 /* Sector offset within the btree node: */ 1465 LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); 1466 1467 struct btree_node { 1468 struct bch_csum csum; 1469 __le64 magic; 1470 1471 /* this flags field is encrypted, unlike bset->flags: */ 1472 __le64 flags; 1473 1474 /* Closed interval: */ 1475 struct bpos min_key; 1476 struct bpos max_key; 1477 struct bch_extent_ptr _ptr; /* not used anymore */ 1478 struct bkey_format format; 1479 1480 union { 1481 struct bset keys; 1482 struct { 1483 __u8 pad[22]; 1484 __le16 u64s; 1485 __u64 _data[0]; 1486 1487 }; 1488 }; 1489 } __packed __aligned(8); 1490 1491 LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); 1492 LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); 1493 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, 1494 struct btree_node, flags, 8, 9); 1495 LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); 1496 /* 25-32 unused */ 1497 LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); 1498 1499 static inline __u64 BTREE_NODE_ID(struct btree_node *n) 1500 { 1501 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); 1502 } 1503 1504 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) 1505 { 1506 SET_BTREE_NODE_ID_LO(n, v); 1507 SET_BTREE_NODE_ID_HI(n, v >> 4); 1508 } 1509 1510 struct btree_node_entry { 1511 struct bch_csum csum; 1512 1513 union { 1514 struct bset keys; 1515 struct { 1516 __u8 pad[22]; 1517 __le16 u64s; 1518 __u64 _data[0]; 1519 }; 1520 }; 1521 } __packed __aligned(8); 1522 1523 #endif /* _BCACHEFS_FORMAT_H */ 1524