1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_FORMAT_H 3 #define _BCACHEFS_FORMAT_H 4 5 /* 6 * bcachefs on disk data structures 7 * 8 * OVERVIEW: 9 * 10 * There are three main types of on disk data structures in bcachefs (this is 11 * reduced from 5 in bcache) 12 * 13 * - superblock 14 * - journal 15 * - btree 16 * 17 * The btree is the primary structure; most metadata exists as keys in the 18 * various btrees. There are only a small number of btrees, they're not 19 * sharded - we have one btree for extents, another for inodes, et cetera. 20 * 21 * SUPERBLOCK: 22 * 23 * The superblock contains the location of the journal, the list of devices in 24 * the filesystem, and in general any metadata we need in order to decide 25 * whether we can start a filesystem or prior to reading the journal/btree 26 * roots. 27 * 28 * The superblock is extensible, and most of the contents of the superblock are 29 * in variable length, type tagged fields; see struct bch_sb_field. 30 * 31 * Backup superblocks do not reside in a fixed location; also, superblocks do 32 * not have a fixed size. To locate backup superblocks we have struct 33 * bch_sb_layout; we store a copy of this inside every superblock, and also 34 * before the first superblock. 35 * 36 * JOURNAL: 37 * 38 * The journal primarily records btree updates in the order they occurred; 39 * journal replay consists of just iterating over all the keys in the open 40 * journal entries and re-inserting them into the btrees. 41 * 42 * The journal also contains entry types for the btree roots, and blacklisted 43 * journal sequence numbers (see journal_seq_blacklist.c). 44 * 45 * BTREE: 46 * 47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically 48 * 128k-256k) and log structured. We use struct btree_node for writing the first 49 * entry in a given node (offset 0), and struct btree_node_entry for all 50 * subsequent writes. 51 * 52 * After the header, btree node entries contain a list of keys in sorted order. 53 * Values are stored inline with the keys; since values are variable length (and 54 * keys effectively are variable length too, due to packing) we can't do random 55 * access without building up additional in memory tables in the btree node read 56 * path. 57 * 58 * BTREE KEYS (struct bkey): 59 * 60 * The various btrees share a common format for the key - so as to avoid 61 * switching in fastpath lookup/comparison code - but define their own 62 * structures for the key values. 63 * 64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max 65 * size is just under 2k. The common part also contains a type tag for the 66 * value, and a format field indicating whether the key is packed or not (and 67 * also meant to allow adding new key fields in the future, if desired). 68 * 69 * bkeys, when stored within a btree node, may also be packed. In that case, the 70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can 71 * be generous with field sizes in the common part of the key format (64 bit 72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. 73 */ 74 75 #include <asm/types.h> 76 #include <asm/byteorder.h> 77 #include <linux/kernel.h> 78 #include <linux/uuid.h> 79 #include "vstructs.h" 80 81 #ifdef __KERNEL__ 82 typedef uuid_t __uuid_t; 83 #endif 84 85 #define BITMASK(name, type, field, offset, end) \ 86 static const __maybe_unused unsigned name##_OFFSET = offset; \ 87 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 88 \ 89 static inline __u64 name(const type *k) \ 90 { \ 91 return (k->field >> offset) & ~(~0ULL << (end - offset)); \ 92 } \ 93 \ 94 static inline void SET_##name(type *k, __u64 v) \ 95 { \ 96 k->field &= ~(~(~0ULL << (end - offset)) << offset); \ 97 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ 98 } 99 100 #define LE_BITMASK(_bits, name, type, field, offset, end) \ 101 static const __maybe_unused unsigned name##_OFFSET = offset; \ 102 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 103 static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ 104 \ 105 static inline __u64 name(const type *k) \ 106 { \ 107 return (__le##_bits##_to_cpu(k->field) >> offset) & \ 108 ~(~0ULL << (end - offset)); \ 109 } \ 110 \ 111 static inline void SET_##name(type *k, __u64 v) \ 112 { \ 113 __u##_bits new = __le##_bits##_to_cpu(k->field); \ 114 \ 115 new &= ~(~(~0ULL << (end - offset)) << offset); \ 116 new |= (v & ~(~0ULL << (end - offset))) << offset; \ 117 k->field = __cpu_to_le##_bits(new); \ 118 } 119 120 #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) 121 #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) 122 #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) 123 124 struct bkey_format { 125 __u8 key_u64s; 126 __u8 nr_fields; 127 /* One unused slot for now: */ 128 __u8 bits_per_field[6]; 129 __le64 field_offset[6]; 130 }; 131 132 /* Btree keys - all units are in sectors */ 133 134 struct bpos { 135 /* 136 * Word order matches machine byte order - btree code treats a bpos as a 137 * single large integer, for search/comparison purposes 138 * 139 * Note that wherever a bpos is embedded in another on disk data 140 * structure, it has to be byte swabbed when reading in metadata that 141 * wasn't written in native endian order: 142 */ 143 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 144 __u32 snapshot; 145 __u64 offset; 146 __u64 inode; 147 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 148 __u64 inode; 149 __u64 offset; /* Points to end of extent - sectors */ 150 __u32 snapshot; 151 #else 152 #error edit for your odd byteorder. 153 #endif 154 } __packed 155 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 156 __aligned(4) 157 #endif 158 ; 159 160 #define KEY_INODE_MAX ((__u64)~0ULL) 161 #define KEY_OFFSET_MAX ((__u64)~0ULL) 162 #define KEY_SNAPSHOT_MAX ((__u32)~0U) 163 #define KEY_SIZE_MAX ((__u32)~0U) 164 165 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) 166 { 167 return (struct bpos) { 168 .inode = inode, 169 .offset = offset, 170 .snapshot = snapshot, 171 }; 172 } 173 174 #define POS_MIN SPOS(0, 0, 0) 175 #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) 176 #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) 177 #define POS(_inode, _offset) SPOS(_inode, _offset, 0) 178 179 /* Empty placeholder struct, for container_of() */ 180 struct bch_val { 181 __u64 __nothing[0]; 182 }; 183 184 struct bversion { 185 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 186 __u64 lo; 187 __u32 hi; 188 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 189 __u32 hi; 190 __u64 lo; 191 #endif 192 } __packed 193 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 194 __aligned(4) 195 #endif 196 ; 197 198 struct bkey { 199 /* Size of combined key and value, in u64s */ 200 __u8 u64s; 201 202 /* Format of key (0 for format local to btree node) */ 203 #if defined(__LITTLE_ENDIAN_BITFIELD) 204 __u8 format:7, 205 needs_whiteout:1; 206 #elif defined (__BIG_ENDIAN_BITFIELD) 207 __u8 needs_whiteout:1, 208 format:7; 209 #else 210 #error edit for your odd byteorder. 211 #endif 212 213 /* Type of the value */ 214 __u8 type; 215 216 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 217 __u8 pad[1]; 218 219 struct bversion version; 220 __u32 size; /* extent size, in sectors */ 221 struct bpos p; 222 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 223 struct bpos p; 224 __u32 size; /* extent size, in sectors */ 225 struct bversion version; 226 227 __u8 pad[1]; 228 #endif 229 } __packed 230 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 231 /* 232 * The big-endian version of bkey can't be compiled by rustc with the "aligned" 233 * attr since it doesn't allow types to have both "packed" and "aligned" attrs. 234 * So for Rust compatibility, don't include this. It can be included in the LE 235 * version because the "packed" attr is redundant in that case. 236 * 237 * History: (quoting Kent) 238 * 239 * Specifically, when i was designing bkey, I wanted the header to be no 240 * bigger than necessary so that bkey_packed could use the rest. That means that 241 * decently offten extent keys will fit into only 8 bytes, instead of spilling over 242 * to 16. 243 * 244 * But packed_bkey treats the part after the header - the packed section - 245 * as a single multi word, variable length integer. And bkey, the unpacked 246 * version, is just a special case version of a bkey_packed; all the packed 247 * bkey code will work on keys in any packed format, the in-memory 248 * representation of an unpacked key also is just one type of packed key... 249 * 250 * So that constrains the key part of a bkig endian bkey to start right 251 * after the header. 252 * 253 * If we ever do a bkey_v2 and need to expand the hedaer by another byte for 254 * some reason - that will clean up this wart. 255 */ 256 __aligned(8) 257 #endif 258 ; 259 260 struct bkey_packed { 261 __u64 _data[0]; 262 263 /* Size of combined key and value, in u64s */ 264 __u8 u64s; 265 266 /* Format of key (0 for format local to btree node) */ 267 268 /* 269 * XXX: next incompat on disk format change, switch format and 270 * needs_whiteout - bkey_packed() will be cheaper if format is the high 271 * bits of the bitfield 272 */ 273 #if defined(__LITTLE_ENDIAN_BITFIELD) 274 __u8 format:7, 275 needs_whiteout:1; 276 #elif defined (__BIG_ENDIAN_BITFIELD) 277 __u8 needs_whiteout:1, 278 format:7; 279 #endif 280 281 /* Type of the value */ 282 __u8 type; 283 __u8 key_start[0]; 284 285 /* 286 * We copy bkeys with struct assignment in various places, and while 287 * that shouldn't be done with packed bkeys we can't disallow it in C, 288 * and it's legal to cast a bkey to a bkey_packed - so padding it out 289 * to the same size as struct bkey should hopefully be safest. 290 */ 291 __u8 pad[sizeof(struct bkey) - 3]; 292 } __packed __aligned(8); 293 294 typedef struct { 295 __le64 lo; 296 __le64 hi; 297 } bch_le128; 298 299 #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) 300 #define BKEY_U64s_MAX U8_MAX 301 #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) 302 303 #define KEY_PACKED_BITS_START 24 304 305 #define KEY_FORMAT_LOCAL_BTREE 0 306 #define KEY_FORMAT_CURRENT 1 307 308 enum bch_bkey_fields { 309 BKEY_FIELD_INODE, 310 BKEY_FIELD_OFFSET, 311 BKEY_FIELD_SNAPSHOT, 312 BKEY_FIELD_SIZE, 313 BKEY_FIELD_VERSION_HI, 314 BKEY_FIELD_VERSION_LO, 315 BKEY_NR_FIELDS, 316 }; 317 318 #define bkey_format_field(name, field) \ 319 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) 320 321 #define BKEY_FORMAT_CURRENT \ 322 ((struct bkey_format) { \ 323 .key_u64s = BKEY_U64s, \ 324 .nr_fields = BKEY_NR_FIELDS, \ 325 .bits_per_field = { \ 326 bkey_format_field(INODE, p.inode), \ 327 bkey_format_field(OFFSET, p.offset), \ 328 bkey_format_field(SNAPSHOT, p.snapshot), \ 329 bkey_format_field(SIZE, size), \ 330 bkey_format_field(VERSION_HI, version.hi), \ 331 bkey_format_field(VERSION_LO, version.lo), \ 332 }, \ 333 }) 334 335 /* bkey with inline value */ 336 struct bkey_i { 337 __u64 _data[0]; 338 339 struct bkey k; 340 struct bch_val v; 341 }; 342 343 #define POS_KEY(_pos) \ 344 ((struct bkey) { \ 345 .u64s = BKEY_U64s, \ 346 .format = KEY_FORMAT_CURRENT, \ 347 .p = _pos, \ 348 }) 349 350 #define KEY(_inode, _offset, _size) \ 351 ((struct bkey) { \ 352 .u64s = BKEY_U64s, \ 353 .format = KEY_FORMAT_CURRENT, \ 354 .p = POS(_inode, _offset), \ 355 .size = _size, \ 356 }) 357 358 static inline void bkey_init(struct bkey *k) 359 { 360 *k = KEY(0, 0, 0); 361 } 362 363 #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) 364 365 #define __BKEY_PADDED(key, pad) \ 366 struct bkey_i key; __u64 key ## _pad[pad] 367 368 /* 369 * - DELETED keys are used internally to mark keys that should be ignored but 370 * override keys in composition order. Their version number is ignored. 371 * 372 * - DISCARDED keys indicate that the data is all 0s because it has been 373 * discarded. DISCARDs may have a version; if the version is nonzero the key 374 * will be persistent, otherwise the key will be dropped whenever the btree 375 * node is rewritten (like DELETED keys). 376 * 377 * - ERROR: any read of the data returns a read error, as the data was lost due 378 * to a failing device. Like DISCARDED keys, they can be removed (overridden) 379 * by new writes or cluster-wide GC. Node repair can also overwrite them with 380 * the same or a more recent version number, but not with an older version 381 * number. 382 * 383 * - WHITEOUT: for hash table btrees 384 */ 385 #define BCH_BKEY_TYPES() \ 386 x(deleted, 0) \ 387 x(whiteout, 1) \ 388 x(error, 2) \ 389 x(cookie, 3) \ 390 x(hash_whiteout, 4) \ 391 x(btree_ptr, 5) \ 392 x(extent, 6) \ 393 x(reservation, 7) \ 394 x(inode, 8) \ 395 x(inode_generation, 9) \ 396 x(dirent, 10) \ 397 x(xattr, 11) \ 398 x(alloc, 12) \ 399 x(quota, 13) \ 400 x(stripe, 14) \ 401 x(reflink_p, 15) \ 402 x(reflink_v, 16) \ 403 x(inline_data, 17) \ 404 x(btree_ptr_v2, 18) \ 405 x(indirect_inline_data, 19) \ 406 x(alloc_v2, 20) \ 407 x(subvolume, 21) \ 408 x(snapshot, 22) \ 409 x(inode_v2, 23) \ 410 x(alloc_v3, 24) \ 411 x(set, 25) \ 412 x(lru, 26) \ 413 x(alloc_v4, 27) \ 414 x(backpointer, 28) \ 415 x(inode_v3, 29) \ 416 x(bucket_gens, 30) \ 417 x(snapshot_tree, 31) \ 418 x(logged_op_truncate, 32) \ 419 x(logged_op_finsert, 33) 420 421 enum bch_bkey_type { 422 #define x(name, nr) KEY_TYPE_##name = nr, 423 BCH_BKEY_TYPES() 424 #undef x 425 KEY_TYPE_MAX, 426 }; 427 428 struct bch_deleted { 429 struct bch_val v; 430 }; 431 432 struct bch_whiteout { 433 struct bch_val v; 434 }; 435 436 struct bch_error { 437 struct bch_val v; 438 }; 439 440 struct bch_cookie { 441 struct bch_val v; 442 __le64 cookie; 443 }; 444 445 struct bch_hash_whiteout { 446 struct bch_val v; 447 }; 448 449 struct bch_set { 450 struct bch_val v; 451 }; 452 453 /* 128 bits, sufficient for cryptographic MACs: */ 454 struct bch_csum { 455 __le64 lo; 456 __le64 hi; 457 } __packed __aligned(8); 458 459 struct bch_backpointer { 460 struct bch_val v; 461 __u8 btree_id; 462 __u8 level; 463 __u8 data_type; 464 __u64 bucket_offset:40; 465 __u32 bucket_len; 466 struct bpos pos; 467 } __packed __aligned(8); 468 469 /* LRU btree: */ 470 471 struct bch_lru { 472 struct bch_val v; 473 __le64 idx; 474 } __packed __aligned(8); 475 476 #define LRU_ID_STRIPES (1U << 16) 477 478 /* Optional/variable size superblock sections: */ 479 480 struct bch_sb_field { 481 __u64 _data[0]; 482 __le32 u64s; 483 __le32 type; 484 }; 485 486 #define BCH_SB_FIELDS() \ 487 x(journal, 0) \ 488 x(members_v1, 1) \ 489 x(crypt, 2) \ 490 x(replicas_v0, 3) \ 491 x(quota, 4) \ 492 x(disk_groups, 5) \ 493 x(clean, 6) \ 494 x(replicas, 7) \ 495 x(journal_seq_blacklist, 8) \ 496 x(journal_v2, 9) \ 497 x(counters, 10) \ 498 x(members_v2, 11) \ 499 x(errors, 12) \ 500 x(ext, 13) \ 501 x(downgrade, 14) 502 503 #include "alloc_background_format.h" 504 #include "extents_format.h" 505 #include "reflink_format.h" 506 #include "ec_format.h" 507 #include "inode_format.h" 508 #include "dirent_format.h" 509 #include "xattr_format.h" 510 #include "quota_format.h" 511 #include "logged_ops_format.h" 512 #include "snapshot_format.h" 513 #include "subvolume_format.h" 514 #include "sb-counters_format.h" 515 516 enum bch_sb_field_type { 517 #define x(f, nr) BCH_SB_FIELD_##f = nr, 518 BCH_SB_FIELDS() 519 #undef x 520 BCH_SB_FIELD_NR 521 }; 522 523 /* 524 * Most superblock fields are replicated in all device's superblocks - a few are 525 * not: 526 */ 527 #define BCH_SINGLE_DEVICE_SB_FIELDS \ 528 ((1U << BCH_SB_FIELD_journal)| \ 529 (1U << BCH_SB_FIELD_journal_v2)) 530 531 /* BCH_SB_FIELD_journal: */ 532 533 struct bch_sb_field_journal { 534 struct bch_sb_field field; 535 __le64 buckets[]; 536 }; 537 538 struct bch_sb_field_journal_v2 { 539 struct bch_sb_field field; 540 541 struct bch_sb_field_journal_v2_entry { 542 __le64 start; 543 __le64 nr; 544 } d[]; 545 }; 546 547 /* BCH_SB_FIELD_members_v1: */ 548 549 #define BCH_MIN_NR_NBUCKETS (1 << 6) 550 551 #define BCH_IOPS_MEASUREMENTS() \ 552 x(seqread, 0) \ 553 x(seqwrite, 1) \ 554 x(randread, 2) \ 555 x(randwrite, 3) 556 557 enum bch_iops_measurement { 558 #define x(t, n) BCH_IOPS_##t = n, 559 BCH_IOPS_MEASUREMENTS() 560 #undef x 561 BCH_IOPS_NR 562 }; 563 564 #define BCH_MEMBER_ERROR_TYPES() \ 565 x(read, 0) \ 566 x(write, 1) \ 567 x(checksum, 2) 568 569 enum bch_member_error_type { 570 #define x(t, n) BCH_MEMBER_ERROR_##t = n, 571 BCH_MEMBER_ERROR_TYPES() 572 #undef x 573 BCH_MEMBER_ERROR_NR 574 }; 575 576 struct bch_member { 577 __uuid_t uuid; 578 __le64 nbuckets; /* device size */ 579 __le16 first_bucket; /* index of first bucket used */ 580 __le16 bucket_size; /* sectors */ 581 __le32 pad; 582 __le64 last_mount; /* time_t */ 583 584 __le64 flags; 585 __le32 iops[4]; 586 __le64 errors[BCH_MEMBER_ERROR_NR]; 587 __le64 errors_at_reset[BCH_MEMBER_ERROR_NR]; 588 __le64 errors_reset_time; 589 __le64 seq; 590 }; 591 592 #define BCH_MEMBER_V1_BYTES 56 593 594 LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4) 595 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */ 596 LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15) 597 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20) 598 LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28) 599 LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30) 600 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED, 601 struct bch_member, flags, 30, 31) 602 603 #if 0 604 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); 605 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); 606 #endif 607 608 #define BCH_MEMBER_STATES() \ 609 x(rw, 0) \ 610 x(ro, 1) \ 611 x(failed, 2) \ 612 x(spare, 3) 613 614 enum bch_member_state { 615 #define x(t, n) BCH_MEMBER_STATE_##t = n, 616 BCH_MEMBER_STATES() 617 #undef x 618 BCH_MEMBER_STATE_NR 619 }; 620 621 struct bch_sb_field_members_v1 { 622 struct bch_sb_field field; 623 struct bch_member _members[]; //Members are now variable size 624 }; 625 626 struct bch_sb_field_members_v2 { 627 struct bch_sb_field field; 628 __le16 member_bytes; //size of single member entry 629 u8 pad[6]; 630 struct bch_member _members[]; 631 }; 632 633 /* BCH_SB_FIELD_crypt: */ 634 635 struct nonce { 636 __le32 d[4]; 637 }; 638 639 struct bch_key { 640 __le64 key[4]; 641 }; 642 643 #define BCH_KEY_MAGIC \ 644 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ 645 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ 646 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ 647 ((__u64) 'e' << 48)|((__u64) 'y' << 56)) 648 649 struct bch_encrypted_key { 650 __le64 magic; 651 struct bch_key key; 652 }; 653 654 /* 655 * If this field is present in the superblock, it stores an encryption key which 656 * is used encrypt all other data/metadata. The key will normally be encrypted 657 * with the key userspace provides, but if encryption has been turned off we'll 658 * just store the master key unencrypted in the superblock so we can access the 659 * previously encrypted data. 660 */ 661 struct bch_sb_field_crypt { 662 struct bch_sb_field field; 663 664 __le64 flags; 665 __le64 kdf_flags; 666 struct bch_encrypted_key key; 667 }; 668 669 LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); 670 671 enum bch_kdf_types { 672 BCH_KDF_SCRYPT = 0, 673 BCH_KDF_NR = 1, 674 }; 675 676 /* stored as base 2 log of scrypt params: */ 677 LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); 678 LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); 679 LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); 680 681 /* BCH_SB_FIELD_replicas: */ 682 683 #define BCH_DATA_TYPES() \ 684 x(free, 0) \ 685 x(sb, 1) \ 686 x(journal, 2) \ 687 x(btree, 3) \ 688 x(user, 4) \ 689 x(cached, 5) \ 690 x(parity, 6) \ 691 x(stripe, 7) \ 692 x(need_gc_gens, 8) \ 693 x(need_discard, 9) 694 695 enum bch_data_type { 696 #define x(t, n) BCH_DATA_##t, 697 BCH_DATA_TYPES() 698 #undef x 699 BCH_DATA_NR 700 }; 701 702 static inline bool data_type_is_empty(enum bch_data_type type) 703 { 704 switch (type) { 705 case BCH_DATA_free: 706 case BCH_DATA_need_gc_gens: 707 case BCH_DATA_need_discard: 708 return true; 709 default: 710 return false; 711 } 712 } 713 714 static inline bool data_type_is_hidden(enum bch_data_type type) 715 { 716 switch (type) { 717 case BCH_DATA_sb: 718 case BCH_DATA_journal: 719 return true; 720 default: 721 return false; 722 } 723 } 724 725 struct bch_replicas_entry_v0 { 726 __u8 data_type; 727 __u8 nr_devs; 728 __u8 devs[]; 729 } __packed; 730 731 struct bch_sb_field_replicas_v0 { 732 struct bch_sb_field field; 733 struct bch_replicas_entry_v0 entries[]; 734 } __packed __aligned(8); 735 736 struct bch_replicas_entry_v1 { 737 __u8 data_type; 738 __u8 nr_devs; 739 __u8 nr_required; 740 __u8 devs[]; 741 } __packed; 742 743 #define replicas_entry_bytes(_i) \ 744 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) 745 746 struct bch_sb_field_replicas { 747 struct bch_sb_field field; 748 struct bch_replicas_entry_v1 entries[]; 749 } __packed __aligned(8); 750 751 /* BCH_SB_FIELD_disk_groups: */ 752 753 #define BCH_SB_LABEL_SIZE 32 754 755 struct bch_disk_group { 756 __u8 label[BCH_SB_LABEL_SIZE]; 757 __le64 flags[2]; 758 } __packed __aligned(8); 759 760 LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) 761 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) 762 LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) 763 764 struct bch_sb_field_disk_groups { 765 struct bch_sb_field field; 766 struct bch_disk_group entries[]; 767 } __packed __aligned(8); 768 769 /* 770 * On clean shutdown, store btree roots and current journal sequence number in 771 * the superblock: 772 */ 773 struct jset_entry { 774 __le16 u64s; 775 __u8 btree_id; 776 __u8 level; 777 __u8 type; /* designates what this jset holds */ 778 __u8 pad[3]; 779 780 struct bkey_i start[0]; 781 __u64 _data[]; 782 }; 783 784 struct bch_sb_field_clean { 785 struct bch_sb_field field; 786 787 __le32 flags; 788 __le16 _read_clock; /* no longer used */ 789 __le16 _write_clock; 790 __le64 journal_seq; 791 792 struct jset_entry start[0]; 793 __u64 _data[]; 794 }; 795 796 struct journal_seq_blacklist_entry { 797 __le64 start; 798 __le64 end; 799 }; 800 801 struct bch_sb_field_journal_seq_blacklist { 802 struct bch_sb_field field; 803 struct journal_seq_blacklist_entry start[]; 804 }; 805 806 struct bch_sb_field_errors { 807 struct bch_sb_field field; 808 struct bch_sb_field_error_entry { 809 __le64 v; 810 __le64 last_error_time; 811 } entries[]; 812 }; 813 814 LE64_BITMASK(BCH_SB_ERROR_ENTRY_ID, struct bch_sb_field_error_entry, v, 0, 16); 815 LE64_BITMASK(BCH_SB_ERROR_ENTRY_NR, struct bch_sb_field_error_entry, v, 16, 64); 816 817 struct bch_sb_field_ext { 818 struct bch_sb_field field; 819 __le64 recovery_passes_required[2]; 820 __le64 errors_silent[8]; 821 __le64 btrees_lost_data; 822 }; 823 824 struct bch_sb_field_downgrade_entry { 825 __le16 version; 826 __le64 recovery_passes[2]; 827 __le16 nr_errors; 828 __le16 errors[] __counted_by(nr_errors); 829 } __packed __aligned(2); 830 831 struct bch_sb_field_downgrade { 832 struct bch_sb_field field; 833 struct bch_sb_field_downgrade_entry entries[]; 834 }; 835 836 /* Superblock: */ 837 838 /* 839 * New versioning scheme: 840 * One common version number for all on disk data structures - superblock, btree 841 * nodes, journal entries 842 */ 843 #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) 844 #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) 845 #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) 846 847 /* 848 * field 1: version name 849 * field 2: BCH_VERSION(major, minor) 850 * field 3: recovery passess required on upgrade 851 */ 852 #define BCH_METADATA_VERSIONS() \ 853 x(bkey_renumber, BCH_VERSION(0, 10)) \ 854 x(inode_btree_change, BCH_VERSION(0, 11)) \ 855 x(snapshot, BCH_VERSION(0, 12)) \ 856 x(inode_backpointers, BCH_VERSION(0, 13)) \ 857 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \ 858 x(snapshot_2, BCH_VERSION(0, 15)) \ 859 x(reflink_p_fix, BCH_VERSION(0, 16)) \ 860 x(subvol_dirent, BCH_VERSION(0, 17)) \ 861 x(inode_v2, BCH_VERSION(0, 18)) \ 862 x(freespace, BCH_VERSION(0, 19)) \ 863 x(alloc_v4, BCH_VERSION(0, 20)) \ 864 x(new_data_types, BCH_VERSION(0, 21)) \ 865 x(backpointers, BCH_VERSION(0, 22)) \ 866 x(inode_v3, BCH_VERSION(0, 23)) \ 867 x(unwritten_extents, BCH_VERSION(0, 24)) \ 868 x(bucket_gens, BCH_VERSION(0, 25)) \ 869 x(lru_v2, BCH_VERSION(0, 26)) \ 870 x(fragmentation_lru, BCH_VERSION(0, 27)) \ 871 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \ 872 x(snapshot_trees, BCH_VERSION(0, 29)) \ 873 x(major_minor, BCH_VERSION(1, 0)) \ 874 x(snapshot_skiplists, BCH_VERSION(1, 1)) \ 875 x(deleted_inodes, BCH_VERSION(1, 2)) \ 876 x(rebalance_work, BCH_VERSION(1, 3)) \ 877 x(member_seq, BCH_VERSION(1, 4)) \ 878 x(subvolume_fs_parent, BCH_VERSION(1, 5)) \ 879 x(btree_subvolume_children, BCH_VERSION(1, 6)) 880 881 enum bcachefs_metadata_version { 882 bcachefs_metadata_version_min = 9, 883 #define x(t, n) bcachefs_metadata_version_##t = n, 884 BCH_METADATA_VERSIONS() 885 #undef x 886 bcachefs_metadata_version_max 887 }; 888 889 static const __maybe_unused 890 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work; 891 892 #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) 893 894 #define BCH_SB_SECTOR 8 895 #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ 896 897 struct bch_sb_layout { 898 __uuid_t magic; /* bcachefs superblock UUID */ 899 __u8 layout_type; 900 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ 901 __u8 nr_superblocks; 902 __u8 pad[5]; 903 __le64 sb_offset[61]; 904 } __packed __aligned(8); 905 906 #define BCH_SB_LAYOUT_SECTOR 7 907 908 /* 909 * @offset - sector where this sb was written 910 * @version - on disk format version 911 * @version_min - Oldest metadata version this filesystem contains; so we can 912 * safely drop compatibility code and refuse to mount filesystems 913 * we'd need it for 914 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) 915 * @seq - incremented each time superblock is written 916 * @uuid - used for generating various magic numbers and identifying 917 * member devices, never changes 918 * @user_uuid - user visible UUID, may be changed 919 * @label - filesystem label 920 * @seq - identifies most recent superblock, incremented each time 921 * superblock is written 922 * @features - enabled incompatible features 923 */ 924 struct bch_sb { 925 struct bch_csum csum; 926 __le16 version; 927 __le16 version_min; 928 __le16 pad[2]; 929 __uuid_t magic; 930 __uuid_t uuid; 931 __uuid_t user_uuid; 932 __u8 label[BCH_SB_LABEL_SIZE]; 933 __le64 offset; 934 __le64 seq; 935 936 __le16 block_size; 937 __u8 dev_idx; 938 __u8 nr_devices; 939 __le32 u64s; 940 941 __le64 time_base_lo; 942 __le32 time_base_hi; 943 __le32 time_precision; 944 945 __le64 flags[7]; 946 __le64 write_time; 947 __le64 features[2]; 948 __le64 compat[2]; 949 950 struct bch_sb_layout layout; 951 952 struct bch_sb_field start[0]; 953 __le64 _data[]; 954 } __packed __aligned(8); 955 956 /* 957 * Flags: 958 * BCH_SB_INITALIZED - set on first mount 959 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect 960 * behaviour of mount/recovery path: 961 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits 962 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 963 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides 964 * DATA/META_CSUM_TYPE. Also indicates encryption 965 * algorithm in use, if/when we get more than one 966 */ 967 968 LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); 969 970 LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); 971 LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); 972 LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); 973 LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); 974 975 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); 976 977 LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); 978 LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); 979 980 LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); 981 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); 982 983 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); 984 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); 985 986 LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); 987 LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); 988 LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); 989 LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); 990 991 LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); 992 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); 993 994 LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); 995 996 LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); 997 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); 998 LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); 999 1000 LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); 1001 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); 1002 1003 /* 1004 * Max size of an extent that may require bouncing to read or write 1005 * (checksummed, compressed): 64k 1006 */ 1007 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, 1008 struct bch_sb, flags[1], 14, 20); 1009 1010 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); 1011 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); 1012 1013 LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); 1014 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); 1015 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); 1016 1017 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, 1018 struct bch_sb, flags[2], 0, 4); 1019 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); 1020 1021 LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); 1022 LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); 1023 LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); 1024 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); 1025 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); 1026 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); 1027 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); 1028 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); 1029 LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); 1030 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); 1031 LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); 1032 1033 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); 1034 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, 1035 struct bch_sb, flags[4], 60, 64); 1036 1037 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, 1038 struct bch_sb, flags[5], 0, 16); 1039 1040 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) 1041 { 1042 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); 1043 } 1044 1045 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1046 { 1047 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); 1048 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); 1049 } 1050 1051 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) 1052 { 1053 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | 1054 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); 1055 } 1056 1057 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1058 { 1059 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); 1060 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); 1061 } 1062 1063 /* 1064 * Features: 1065 * 1066 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist 1067 * reflink: gates KEY_TYPE_reflink 1068 * inline_data: gates KEY_TYPE_inline_data 1069 * new_siphash: gates BCH_STR_HASH_siphash 1070 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE 1071 */ 1072 #define BCH_SB_FEATURES() \ 1073 x(lz4, 0) \ 1074 x(gzip, 1) \ 1075 x(zstd, 2) \ 1076 x(atomic_nlink, 3) \ 1077 x(ec, 4) \ 1078 x(journal_seq_blacklist_v3, 5) \ 1079 x(reflink, 6) \ 1080 x(new_siphash, 7) \ 1081 x(inline_data, 8) \ 1082 x(new_extent_overwrite, 9) \ 1083 x(incompressible, 10) \ 1084 x(btree_ptr_v2, 11) \ 1085 x(extents_above_btree_updates, 12) \ 1086 x(btree_updates_journalled, 13) \ 1087 x(reflink_inline_data, 14) \ 1088 x(new_varint, 15) \ 1089 x(journal_no_flush, 16) \ 1090 x(alloc_v2, 17) \ 1091 x(extents_across_btree_nodes, 18) 1092 1093 #define BCH_SB_FEATURES_ALWAYS \ 1094 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \ 1095 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ 1096 (1ULL << BCH_FEATURE_btree_updates_journalled)|\ 1097 (1ULL << BCH_FEATURE_alloc_v2)|\ 1098 (1ULL << BCH_FEATURE_extents_across_btree_nodes)) 1099 1100 #define BCH_SB_FEATURES_ALL \ 1101 (BCH_SB_FEATURES_ALWAYS| \ 1102 (1ULL << BCH_FEATURE_new_siphash)| \ 1103 (1ULL << BCH_FEATURE_btree_ptr_v2)| \ 1104 (1ULL << BCH_FEATURE_new_varint)| \ 1105 (1ULL << BCH_FEATURE_journal_no_flush)) 1106 1107 enum bch_sb_feature { 1108 #define x(f, n) BCH_FEATURE_##f, 1109 BCH_SB_FEATURES() 1110 #undef x 1111 BCH_FEATURE_NR, 1112 }; 1113 1114 #define BCH_SB_COMPAT() \ 1115 x(alloc_info, 0) \ 1116 x(alloc_metadata, 1) \ 1117 x(extents_above_btree_updates_done, 2) \ 1118 x(bformat_overflow_done, 3) 1119 1120 enum bch_sb_compat { 1121 #define x(f, n) BCH_COMPAT_##f, 1122 BCH_SB_COMPAT() 1123 #undef x 1124 BCH_COMPAT_NR, 1125 }; 1126 1127 /* options: */ 1128 1129 #define BCH_VERSION_UPGRADE_OPTS() \ 1130 x(compatible, 0) \ 1131 x(incompatible, 1) \ 1132 x(none, 2) 1133 1134 enum bch_version_upgrade_opts { 1135 #define x(t, n) BCH_VERSION_UPGRADE_##t = n, 1136 BCH_VERSION_UPGRADE_OPTS() 1137 #undef x 1138 }; 1139 1140 #define BCH_REPLICAS_MAX 4U 1141 1142 #define BCH_BKEY_PTRS_MAX 16U 1143 1144 #define BCH_ERROR_ACTIONS() \ 1145 x(continue, 0) \ 1146 x(ro, 1) \ 1147 x(panic, 2) 1148 1149 enum bch_error_actions { 1150 #define x(t, n) BCH_ON_ERROR_##t = n, 1151 BCH_ERROR_ACTIONS() 1152 #undef x 1153 BCH_ON_ERROR_NR 1154 }; 1155 1156 #define BCH_STR_HASH_TYPES() \ 1157 x(crc32c, 0) \ 1158 x(crc64, 1) \ 1159 x(siphash_old, 2) \ 1160 x(siphash, 3) 1161 1162 enum bch_str_hash_type { 1163 #define x(t, n) BCH_STR_HASH_##t = n, 1164 BCH_STR_HASH_TYPES() 1165 #undef x 1166 BCH_STR_HASH_NR 1167 }; 1168 1169 #define BCH_STR_HASH_OPTS() \ 1170 x(crc32c, 0) \ 1171 x(crc64, 1) \ 1172 x(siphash, 2) 1173 1174 enum bch_str_hash_opts { 1175 #define x(t, n) BCH_STR_HASH_OPT_##t = n, 1176 BCH_STR_HASH_OPTS() 1177 #undef x 1178 BCH_STR_HASH_OPT_NR 1179 }; 1180 1181 #define BCH_CSUM_TYPES() \ 1182 x(none, 0) \ 1183 x(crc32c_nonzero, 1) \ 1184 x(crc64_nonzero, 2) \ 1185 x(chacha20_poly1305_80, 3) \ 1186 x(chacha20_poly1305_128, 4) \ 1187 x(crc32c, 5) \ 1188 x(crc64, 6) \ 1189 x(xxhash, 7) 1190 1191 enum bch_csum_type { 1192 #define x(t, n) BCH_CSUM_##t = n, 1193 BCH_CSUM_TYPES() 1194 #undef x 1195 BCH_CSUM_NR 1196 }; 1197 1198 static const __maybe_unused unsigned bch_crc_bytes[] = { 1199 [BCH_CSUM_none] = 0, 1200 [BCH_CSUM_crc32c_nonzero] = 4, 1201 [BCH_CSUM_crc32c] = 4, 1202 [BCH_CSUM_crc64_nonzero] = 8, 1203 [BCH_CSUM_crc64] = 8, 1204 [BCH_CSUM_xxhash] = 8, 1205 [BCH_CSUM_chacha20_poly1305_80] = 10, 1206 [BCH_CSUM_chacha20_poly1305_128] = 16, 1207 }; 1208 1209 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) 1210 { 1211 switch (type) { 1212 case BCH_CSUM_chacha20_poly1305_80: 1213 case BCH_CSUM_chacha20_poly1305_128: 1214 return true; 1215 default: 1216 return false; 1217 } 1218 } 1219 1220 #define BCH_CSUM_OPTS() \ 1221 x(none, 0) \ 1222 x(crc32c, 1) \ 1223 x(crc64, 2) \ 1224 x(xxhash, 3) 1225 1226 enum bch_csum_opts { 1227 #define x(t, n) BCH_CSUM_OPT_##t = n, 1228 BCH_CSUM_OPTS() 1229 #undef x 1230 BCH_CSUM_OPT_NR 1231 }; 1232 1233 #define BCH_COMPRESSION_TYPES() \ 1234 x(none, 0) \ 1235 x(lz4_old, 1) \ 1236 x(gzip, 2) \ 1237 x(lz4, 3) \ 1238 x(zstd, 4) \ 1239 x(incompressible, 5) 1240 1241 enum bch_compression_type { 1242 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n, 1243 BCH_COMPRESSION_TYPES() 1244 #undef x 1245 BCH_COMPRESSION_TYPE_NR 1246 }; 1247 1248 #define BCH_COMPRESSION_OPTS() \ 1249 x(none, 0) \ 1250 x(lz4, 1) \ 1251 x(gzip, 2) \ 1252 x(zstd, 3) 1253 1254 enum bch_compression_opts { 1255 #define x(t, n) BCH_COMPRESSION_OPT_##t = n, 1256 BCH_COMPRESSION_OPTS() 1257 #undef x 1258 BCH_COMPRESSION_OPT_NR 1259 }; 1260 1261 /* 1262 * Magic numbers 1263 * 1264 * The various other data structures have their own magic numbers, which are 1265 * xored with the first part of the cache set's UUID 1266 */ 1267 1268 #define BCACHE_MAGIC \ 1269 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ 1270 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) 1271 #define BCHFS_MAGIC \ 1272 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ 1273 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) 1274 1275 #define BCACHEFS_STATFS_MAGIC 0xca451a4e 1276 1277 #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) 1278 #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) 1279 1280 static inline __le64 __bch2_sb_magic(struct bch_sb *sb) 1281 { 1282 __le64 ret; 1283 1284 memcpy(&ret, &sb->uuid, sizeof(ret)); 1285 return ret; 1286 } 1287 1288 static inline __u64 __jset_magic(struct bch_sb *sb) 1289 { 1290 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); 1291 } 1292 1293 static inline __u64 __bset_magic(struct bch_sb *sb) 1294 { 1295 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); 1296 } 1297 1298 /* Journal */ 1299 1300 #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) 1301 1302 #define BCH_JSET_ENTRY_TYPES() \ 1303 x(btree_keys, 0) \ 1304 x(btree_root, 1) \ 1305 x(prio_ptrs, 2) \ 1306 x(blacklist, 3) \ 1307 x(blacklist_v2, 4) \ 1308 x(usage, 5) \ 1309 x(data_usage, 6) \ 1310 x(clock, 7) \ 1311 x(dev_usage, 8) \ 1312 x(log, 9) \ 1313 x(overwrite, 10) \ 1314 x(write_buffer_keys, 11) \ 1315 x(datetime, 12) 1316 1317 enum { 1318 #define x(f, nr) BCH_JSET_ENTRY_##f = nr, 1319 BCH_JSET_ENTRY_TYPES() 1320 #undef x 1321 BCH_JSET_ENTRY_NR 1322 }; 1323 1324 static inline bool jset_entry_is_key(struct jset_entry *e) 1325 { 1326 switch (e->type) { 1327 case BCH_JSET_ENTRY_btree_keys: 1328 case BCH_JSET_ENTRY_btree_root: 1329 case BCH_JSET_ENTRY_overwrite: 1330 case BCH_JSET_ENTRY_write_buffer_keys: 1331 return true; 1332 } 1333 1334 return false; 1335 } 1336 1337 /* 1338 * Journal sequence numbers can be blacklisted: bsets record the max sequence 1339 * number of all the journal entries they contain updates for, so that on 1340 * recovery we can ignore those bsets that contain index updates newer that what 1341 * made it into the journal. 1342 * 1343 * This means that we can't reuse that journal_seq - we have to skip it, and 1344 * then record that we skipped it so that the next time we crash and recover we 1345 * don't think there was a missing journal entry. 1346 */ 1347 struct jset_entry_blacklist { 1348 struct jset_entry entry; 1349 __le64 seq; 1350 }; 1351 1352 struct jset_entry_blacklist_v2 { 1353 struct jset_entry entry; 1354 __le64 start; 1355 __le64 end; 1356 }; 1357 1358 #define BCH_FS_USAGE_TYPES() \ 1359 x(reserved, 0) \ 1360 x(inodes, 1) \ 1361 x(key_version, 2) 1362 1363 enum { 1364 #define x(f, nr) BCH_FS_USAGE_##f = nr, 1365 BCH_FS_USAGE_TYPES() 1366 #undef x 1367 BCH_FS_USAGE_NR 1368 }; 1369 1370 struct jset_entry_usage { 1371 struct jset_entry entry; 1372 __le64 v; 1373 } __packed; 1374 1375 struct jset_entry_data_usage { 1376 struct jset_entry entry; 1377 __le64 v; 1378 struct bch_replicas_entry_v1 r; 1379 } __packed; 1380 1381 struct jset_entry_clock { 1382 struct jset_entry entry; 1383 __u8 rw; 1384 __u8 pad[7]; 1385 __le64 time; 1386 } __packed; 1387 1388 struct jset_entry_dev_usage_type { 1389 __le64 buckets; 1390 __le64 sectors; 1391 __le64 fragmented; 1392 } __packed; 1393 1394 struct jset_entry_dev_usage { 1395 struct jset_entry entry; 1396 __le32 dev; 1397 __u32 pad; 1398 1399 __le64 _buckets_ec; /* No longer used */ 1400 __le64 _buckets_unavailable; /* No longer used */ 1401 1402 struct jset_entry_dev_usage_type d[]; 1403 }; 1404 1405 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) 1406 { 1407 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / 1408 sizeof(struct jset_entry_dev_usage_type); 1409 } 1410 1411 struct jset_entry_log { 1412 struct jset_entry entry; 1413 u8 d[]; 1414 } __packed __aligned(8); 1415 1416 struct jset_entry_datetime { 1417 struct jset_entry entry; 1418 __le64 seconds; 1419 } __packed __aligned(8); 1420 1421 /* 1422 * On disk format for a journal entry: 1423 * seq is monotonically increasing; every journal entry has its own unique 1424 * sequence number. 1425 * 1426 * last_seq is the oldest journal entry that still has keys the btree hasn't 1427 * flushed to disk yet. 1428 * 1429 * version is for on disk format changes. 1430 */ 1431 struct jset { 1432 struct bch_csum csum; 1433 1434 __le64 magic; 1435 __le64 seq; 1436 __le32 version; 1437 __le32 flags; 1438 1439 __le32 u64s; /* size of d[] in u64s */ 1440 1441 __u8 encrypted_start[0]; 1442 1443 __le16 _read_clock; /* no longer used */ 1444 __le16 _write_clock; 1445 1446 /* Sequence number of oldest dirty journal entry */ 1447 __le64 last_seq; 1448 1449 1450 struct jset_entry start[0]; 1451 __u64 _data[]; 1452 } __packed __aligned(8); 1453 1454 LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); 1455 LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); 1456 LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); 1457 1458 #define BCH_JOURNAL_BUCKETS_MIN 8 1459 1460 /* Btree: */ 1461 1462 enum btree_id_flags { 1463 BTREE_ID_EXTENTS = BIT(0), 1464 BTREE_ID_SNAPSHOTS = BIT(1), 1465 BTREE_ID_SNAPSHOT_FIELD = BIT(2), 1466 BTREE_ID_DATA = BIT(3), 1467 }; 1468 1469 #define BCH_BTREE_IDS() \ 1470 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\ 1471 BIT_ULL(KEY_TYPE_whiteout)| \ 1472 BIT_ULL(KEY_TYPE_error)| \ 1473 BIT_ULL(KEY_TYPE_cookie)| \ 1474 BIT_ULL(KEY_TYPE_extent)| \ 1475 BIT_ULL(KEY_TYPE_reservation)| \ 1476 BIT_ULL(KEY_TYPE_reflink_p)| \ 1477 BIT_ULL(KEY_TYPE_inline_data)) \ 1478 x(inodes, 1, BTREE_ID_SNAPSHOTS, \ 1479 BIT_ULL(KEY_TYPE_whiteout)| \ 1480 BIT_ULL(KEY_TYPE_inode)| \ 1481 BIT_ULL(KEY_TYPE_inode_v2)| \ 1482 BIT_ULL(KEY_TYPE_inode_v3)| \ 1483 BIT_ULL(KEY_TYPE_inode_generation)) \ 1484 x(dirents, 2, BTREE_ID_SNAPSHOTS, \ 1485 BIT_ULL(KEY_TYPE_whiteout)| \ 1486 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1487 BIT_ULL(KEY_TYPE_dirent)) \ 1488 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \ 1489 BIT_ULL(KEY_TYPE_whiteout)| \ 1490 BIT_ULL(KEY_TYPE_cookie)| \ 1491 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1492 BIT_ULL(KEY_TYPE_xattr)) \ 1493 x(alloc, 4, 0, \ 1494 BIT_ULL(KEY_TYPE_alloc)| \ 1495 BIT_ULL(KEY_TYPE_alloc_v2)| \ 1496 BIT_ULL(KEY_TYPE_alloc_v3)| \ 1497 BIT_ULL(KEY_TYPE_alloc_v4)) \ 1498 x(quotas, 5, 0, \ 1499 BIT_ULL(KEY_TYPE_quota)) \ 1500 x(stripes, 6, 0, \ 1501 BIT_ULL(KEY_TYPE_stripe)) \ 1502 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \ 1503 BIT_ULL(KEY_TYPE_reflink_v)| \ 1504 BIT_ULL(KEY_TYPE_indirect_inline_data)) \ 1505 x(subvolumes, 8, 0, \ 1506 BIT_ULL(KEY_TYPE_subvolume)) \ 1507 x(snapshots, 9, 0, \ 1508 BIT_ULL(KEY_TYPE_snapshot)) \ 1509 x(lru, 10, 0, \ 1510 BIT_ULL(KEY_TYPE_set)) \ 1511 x(freespace, 11, BTREE_ID_EXTENTS, \ 1512 BIT_ULL(KEY_TYPE_set)) \ 1513 x(need_discard, 12, 0, \ 1514 BIT_ULL(KEY_TYPE_set)) \ 1515 x(backpointers, 13, 0, \ 1516 BIT_ULL(KEY_TYPE_backpointer)) \ 1517 x(bucket_gens, 14, 0, \ 1518 BIT_ULL(KEY_TYPE_bucket_gens)) \ 1519 x(snapshot_trees, 15, 0, \ 1520 BIT_ULL(KEY_TYPE_snapshot_tree)) \ 1521 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \ 1522 BIT_ULL(KEY_TYPE_set)) \ 1523 x(logged_ops, 17, 0, \ 1524 BIT_ULL(KEY_TYPE_logged_op_truncate)| \ 1525 BIT_ULL(KEY_TYPE_logged_op_finsert)) \ 1526 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \ 1527 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \ 1528 x(subvolume_children, 19, 0, \ 1529 BIT_ULL(KEY_TYPE_set)) 1530 1531 enum btree_id { 1532 #define x(name, nr, ...) BTREE_ID_##name = nr, 1533 BCH_BTREE_IDS() 1534 #undef x 1535 BTREE_ID_NR 1536 }; 1537 1538 static inline bool btree_id_is_alloc(enum btree_id id) 1539 { 1540 switch (id) { 1541 case BTREE_ID_alloc: 1542 case BTREE_ID_backpointers: 1543 case BTREE_ID_need_discard: 1544 case BTREE_ID_freespace: 1545 case BTREE_ID_bucket_gens: 1546 return true; 1547 default: 1548 return false; 1549 } 1550 } 1551 1552 #define BTREE_MAX_DEPTH 4U 1553 1554 /* Btree nodes */ 1555 1556 /* 1557 * Btree nodes 1558 * 1559 * On disk a btree node is a list/log of these; within each set the keys are 1560 * sorted 1561 */ 1562 struct bset { 1563 __le64 seq; 1564 1565 /* 1566 * Highest journal entry this bset contains keys for. 1567 * If on recovery we don't see that journal entry, this bset is ignored: 1568 * this allows us to preserve the order of all index updates after a 1569 * crash, since the journal records a total order of all index updates 1570 * and anything that didn't make it to the journal doesn't get used. 1571 */ 1572 __le64 journal_seq; 1573 1574 __le32 flags; 1575 __le16 version; 1576 __le16 u64s; /* count of d[] in u64s */ 1577 1578 struct bkey_packed start[0]; 1579 __u64 _data[]; 1580 } __packed __aligned(8); 1581 1582 LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); 1583 1584 LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); 1585 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, 1586 struct bset, flags, 5, 6); 1587 1588 /* Sector offset within the btree node: */ 1589 LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); 1590 1591 struct btree_node { 1592 struct bch_csum csum; 1593 __le64 magic; 1594 1595 /* this flags field is encrypted, unlike bset->flags: */ 1596 __le64 flags; 1597 1598 /* Closed interval: */ 1599 struct bpos min_key; 1600 struct bpos max_key; 1601 struct bch_extent_ptr _ptr; /* not used anymore */ 1602 struct bkey_format format; 1603 1604 union { 1605 struct bset keys; 1606 struct { 1607 __u8 pad[22]; 1608 __le16 u64s; 1609 __u64 _data[0]; 1610 1611 }; 1612 }; 1613 } __packed __aligned(8); 1614 1615 LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); 1616 LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); 1617 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, 1618 struct btree_node, flags, 8, 9); 1619 LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); 1620 /* 25-32 unused */ 1621 LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); 1622 1623 static inline __u64 BTREE_NODE_ID(struct btree_node *n) 1624 { 1625 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); 1626 } 1627 1628 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) 1629 { 1630 SET_BTREE_NODE_ID_LO(n, v); 1631 SET_BTREE_NODE_ID_HI(n, v >> 4); 1632 } 1633 1634 struct btree_node_entry { 1635 struct bch_csum csum; 1636 1637 union { 1638 struct bset keys; 1639 struct { 1640 __u8 pad[22]; 1641 __le16 u64s; 1642 __u64 _data[0]; 1643 }; 1644 }; 1645 } __packed __aligned(8); 1646 1647 #endif /* _BCACHEFS_FORMAT_H */ 1648