1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_FORMAT_H 3 #define _BCACHEFS_FORMAT_H 4 5 /* 6 * bcachefs on disk data structures 7 * 8 * OVERVIEW: 9 * 10 * There are three main types of on disk data structures in bcachefs (this is 11 * reduced from 5 in bcache) 12 * 13 * - superblock 14 * - journal 15 * - btree 16 * 17 * The btree is the primary structure; most metadata exists as keys in the 18 * various btrees. There are only a small number of btrees, they're not 19 * sharded - we have one btree for extents, another for inodes, et cetera. 20 * 21 * SUPERBLOCK: 22 * 23 * The superblock contains the location of the journal, the list of devices in 24 * the filesystem, and in general any metadata we need in order to decide 25 * whether we can start a filesystem or prior to reading the journal/btree 26 * roots. 27 * 28 * The superblock is extensible, and most of the contents of the superblock are 29 * in variable length, type tagged fields; see struct bch_sb_field. 30 * 31 * Backup superblocks do not reside in a fixed location; also, superblocks do 32 * not have a fixed size. To locate backup superblocks we have struct 33 * bch_sb_layout; we store a copy of this inside every superblock, and also 34 * before the first superblock. 35 * 36 * JOURNAL: 37 * 38 * The journal primarily records btree updates in the order they occurred; 39 * journal replay consists of just iterating over all the keys in the open 40 * journal entries and re-inserting them into the btrees. 41 * 42 * The journal also contains entry types for the btree roots, and blacklisted 43 * journal sequence numbers (see journal_seq_blacklist.c). 44 * 45 * BTREE: 46 * 47 * bcachefs btrees are copy on write b+ trees, where nodes are big (typically 48 * 128k-256k) and log structured. We use struct btree_node for writing the first 49 * entry in a given node (offset 0), and struct btree_node_entry for all 50 * subsequent writes. 51 * 52 * After the header, btree node entries contain a list of keys in sorted order. 53 * Values are stored inline with the keys; since values are variable length (and 54 * keys effectively are variable length too, due to packing) we can't do random 55 * access without building up additional in memory tables in the btree node read 56 * path. 57 * 58 * BTREE KEYS (struct bkey): 59 * 60 * The various btrees share a common format for the key - so as to avoid 61 * switching in fastpath lookup/comparison code - but define their own 62 * structures for the key values. 63 * 64 * The size of a key/value pair is stored as a u8 in units of u64s, so the max 65 * size is just under 2k. The common part also contains a type tag for the 66 * value, and a format field indicating whether the key is packed or not (and 67 * also meant to allow adding new key fields in the future, if desired). 68 * 69 * bkeys, when stored within a btree node, may also be packed. In that case, the 70 * bkey_format in that node is used to unpack it. Packed bkeys mean that we can 71 * be generous with field sizes in the common part of the key format (64 bit 72 * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. 73 */ 74 75 #include <asm/types.h> 76 #include <asm/byteorder.h> 77 #include <linux/kernel.h> 78 #include <linux/uuid.h> 79 #include <uapi/linux/magic.h> 80 #include "vstructs.h" 81 82 #ifdef __KERNEL__ 83 typedef uuid_t __uuid_t; 84 #endif 85 86 #define BITMASK(name, type, field, offset, end) \ 87 static const __maybe_unused unsigned name##_OFFSET = offset; \ 88 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 89 \ 90 static inline __u64 name(const type *k) \ 91 { \ 92 return (k->field >> offset) & ~(~0ULL << (end - offset)); \ 93 } \ 94 \ 95 static inline void SET_##name(type *k, __u64 v) \ 96 { \ 97 k->field &= ~(~(~0ULL << (end - offset)) << offset); \ 98 k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ 99 } 100 101 #define LE_BITMASK(_bits, name, type, field, offset, end) \ 102 static const __maybe_unused unsigned name##_OFFSET = offset; \ 103 static const __maybe_unused unsigned name##_BITS = (end - offset); \ 104 static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ 105 \ 106 static inline __u64 name(const type *k) \ 107 { \ 108 return (__le##_bits##_to_cpu(k->field) >> offset) & \ 109 ~(~0ULL << (end - offset)); \ 110 } \ 111 \ 112 static inline void SET_##name(type *k, __u64 v) \ 113 { \ 114 __u##_bits new = __le##_bits##_to_cpu(k->field); \ 115 \ 116 new &= ~(~(~0ULL << (end - offset)) << offset); \ 117 new |= (v & ~(~0ULL << (end - offset))) << offset; \ 118 k->field = __cpu_to_le##_bits(new); \ 119 } 120 121 #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) 122 #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) 123 #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) 124 125 struct bkey_format { 126 __u8 key_u64s; 127 __u8 nr_fields; 128 /* One unused slot for now: */ 129 __u8 bits_per_field[6]; 130 __le64 field_offset[6]; 131 }; 132 133 /* Btree keys - all units are in sectors */ 134 135 struct bpos { 136 /* 137 * Word order matches machine byte order - btree code treats a bpos as a 138 * single large integer, for search/comparison purposes 139 * 140 * Note that wherever a bpos is embedded in another on disk data 141 * structure, it has to be byte swabbed when reading in metadata that 142 * wasn't written in native endian order: 143 */ 144 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 145 __u32 snapshot; 146 __u64 offset; 147 __u64 inode; 148 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 149 __u64 inode; 150 __u64 offset; /* Points to end of extent - sectors */ 151 __u32 snapshot; 152 #else 153 #error edit for your odd byteorder. 154 #endif 155 } __packed 156 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 157 __aligned(4) 158 #endif 159 ; 160 161 #define KEY_INODE_MAX ((__u64)~0ULL) 162 #define KEY_OFFSET_MAX ((__u64)~0ULL) 163 #define KEY_SNAPSHOT_MAX ((__u32)~0U) 164 #define KEY_SIZE_MAX ((__u32)~0U) 165 166 static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) 167 { 168 return (struct bpos) { 169 .inode = inode, 170 .offset = offset, 171 .snapshot = snapshot, 172 }; 173 } 174 175 #define POS_MIN SPOS(0, 0, 0) 176 #define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) 177 #define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) 178 #define POS(_inode, _offset) SPOS(_inode, _offset, 0) 179 180 /* Empty placeholder struct, for container_of() */ 181 struct bch_val { 182 __u64 __nothing[0]; 183 }; 184 185 struct bversion { 186 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 187 __u64 lo; 188 __u32 hi; 189 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 190 __u32 hi; 191 __u64 lo; 192 #endif 193 } __packed 194 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 195 __aligned(4) 196 #endif 197 ; 198 199 struct bkey { 200 /* Size of combined key and value, in u64s */ 201 __u8 u64s; 202 203 /* Format of key (0 for format local to btree node) */ 204 #if defined(__LITTLE_ENDIAN_BITFIELD) 205 __u8 format:7, 206 needs_whiteout:1; 207 #elif defined (__BIG_ENDIAN_BITFIELD) 208 __u8 needs_whiteout:1, 209 format:7; 210 #else 211 #error edit for your odd byteorder. 212 #endif 213 214 /* Type of the value */ 215 __u8 type; 216 217 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 218 __u8 pad[1]; 219 220 struct bversion version; 221 __u32 size; /* extent size, in sectors */ 222 struct bpos p; 223 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 224 struct bpos p; 225 __u32 size; /* extent size, in sectors */ 226 struct bversion version; 227 228 __u8 pad[1]; 229 #endif 230 } __packed 231 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 232 /* 233 * The big-endian version of bkey can't be compiled by rustc with the "aligned" 234 * attr since it doesn't allow types to have both "packed" and "aligned" attrs. 235 * So for Rust compatibility, don't include this. It can be included in the LE 236 * version because the "packed" attr is redundant in that case. 237 * 238 * History: (quoting Kent) 239 * 240 * Specifically, when i was designing bkey, I wanted the header to be no 241 * bigger than necessary so that bkey_packed could use the rest. That means that 242 * decently offten extent keys will fit into only 8 bytes, instead of spilling over 243 * to 16. 244 * 245 * But packed_bkey treats the part after the header - the packed section - 246 * as a single multi word, variable length integer. And bkey, the unpacked 247 * version, is just a special case version of a bkey_packed; all the packed 248 * bkey code will work on keys in any packed format, the in-memory 249 * representation of an unpacked key also is just one type of packed key... 250 * 251 * So that constrains the key part of a bkig endian bkey to start right 252 * after the header. 253 * 254 * If we ever do a bkey_v2 and need to expand the hedaer by another byte for 255 * some reason - that will clean up this wart. 256 */ 257 __aligned(8) 258 #endif 259 ; 260 261 struct bkey_packed { 262 __u64 _data[0]; 263 264 /* Size of combined key and value, in u64s */ 265 __u8 u64s; 266 267 /* Format of key (0 for format local to btree node) */ 268 269 /* 270 * XXX: next incompat on disk format change, switch format and 271 * needs_whiteout - bkey_packed() will be cheaper if format is the high 272 * bits of the bitfield 273 */ 274 #if defined(__LITTLE_ENDIAN_BITFIELD) 275 __u8 format:7, 276 needs_whiteout:1; 277 #elif defined (__BIG_ENDIAN_BITFIELD) 278 __u8 needs_whiteout:1, 279 format:7; 280 #endif 281 282 /* Type of the value */ 283 __u8 type; 284 __u8 key_start[0]; 285 286 /* 287 * We copy bkeys with struct assignment in various places, and while 288 * that shouldn't be done with packed bkeys we can't disallow it in C, 289 * and it's legal to cast a bkey to a bkey_packed - so padding it out 290 * to the same size as struct bkey should hopefully be safest. 291 */ 292 __u8 pad[sizeof(struct bkey) - 3]; 293 } __packed __aligned(8); 294 295 typedef struct { 296 __le64 lo; 297 __le64 hi; 298 } bch_le128; 299 300 #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) 301 #define BKEY_U64s_MAX U8_MAX 302 #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) 303 304 #define KEY_PACKED_BITS_START 24 305 306 #define KEY_FORMAT_LOCAL_BTREE 0 307 #define KEY_FORMAT_CURRENT 1 308 309 enum bch_bkey_fields { 310 BKEY_FIELD_INODE, 311 BKEY_FIELD_OFFSET, 312 BKEY_FIELD_SNAPSHOT, 313 BKEY_FIELD_SIZE, 314 BKEY_FIELD_VERSION_HI, 315 BKEY_FIELD_VERSION_LO, 316 BKEY_NR_FIELDS, 317 }; 318 319 #define bkey_format_field(name, field) \ 320 [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) 321 322 #define BKEY_FORMAT_CURRENT \ 323 ((struct bkey_format) { \ 324 .key_u64s = BKEY_U64s, \ 325 .nr_fields = BKEY_NR_FIELDS, \ 326 .bits_per_field = { \ 327 bkey_format_field(INODE, p.inode), \ 328 bkey_format_field(OFFSET, p.offset), \ 329 bkey_format_field(SNAPSHOT, p.snapshot), \ 330 bkey_format_field(SIZE, size), \ 331 bkey_format_field(VERSION_HI, version.hi), \ 332 bkey_format_field(VERSION_LO, version.lo), \ 333 }, \ 334 }) 335 336 /* bkey with inline value */ 337 struct bkey_i { 338 __u64 _data[0]; 339 340 struct bkey k; 341 struct bch_val v; 342 }; 343 344 #define POS_KEY(_pos) \ 345 ((struct bkey) { \ 346 .u64s = BKEY_U64s, \ 347 .format = KEY_FORMAT_CURRENT, \ 348 .p = _pos, \ 349 }) 350 351 #define KEY(_inode, _offset, _size) \ 352 ((struct bkey) { \ 353 .u64s = BKEY_U64s, \ 354 .format = KEY_FORMAT_CURRENT, \ 355 .p = POS(_inode, _offset), \ 356 .size = _size, \ 357 }) 358 359 static inline void bkey_init(struct bkey *k) 360 { 361 *k = KEY(0, 0, 0); 362 } 363 364 #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) 365 366 #define __BKEY_PADDED(key, pad) \ 367 struct bkey_i key; __u64 key ## _pad[pad] 368 369 /* 370 * - DELETED keys are used internally to mark keys that should be ignored but 371 * override keys in composition order. Their version number is ignored. 372 * 373 * - DISCARDED keys indicate that the data is all 0s because it has been 374 * discarded. DISCARDs may have a version; if the version is nonzero the key 375 * will be persistent, otherwise the key will be dropped whenever the btree 376 * node is rewritten (like DELETED keys). 377 * 378 * - ERROR: any read of the data returns a read error, as the data was lost due 379 * to a failing device. Like DISCARDED keys, they can be removed (overridden) 380 * by new writes or cluster-wide GC. Node repair can also overwrite them with 381 * the same or a more recent version number, but not with an older version 382 * number. 383 * 384 * - WHITEOUT: for hash table btrees 385 */ 386 #define BCH_BKEY_TYPES() \ 387 x(deleted, 0) \ 388 x(whiteout, 1) \ 389 x(error, 2) \ 390 x(cookie, 3) \ 391 x(hash_whiteout, 4) \ 392 x(btree_ptr, 5) \ 393 x(extent, 6) \ 394 x(reservation, 7) \ 395 x(inode, 8) \ 396 x(inode_generation, 9) \ 397 x(dirent, 10) \ 398 x(xattr, 11) \ 399 x(alloc, 12) \ 400 x(quota, 13) \ 401 x(stripe, 14) \ 402 x(reflink_p, 15) \ 403 x(reflink_v, 16) \ 404 x(inline_data, 17) \ 405 x(btree_ptr_v2, 18) \ 406 x(indirect_inline_data, 19) \ 407 x(alloc_v2, 20) \ 408 x(subvolume, 21) \ 409 x(snapshot, 22) \ 410 x(inode_v2, 23) \ 411 x(alloc_v3, 24) \ 412 x(set, 25) \ 413 x(lru, 26) \ 414 x(alloc_v4, 27) \ 415 x(backpointer, 28) \ 416 x(inode_v3, 29) \ 417 x(bucket_gens, 30) \ 418 x(snapshot_tree, 31) \ 419 x(logged_op_truncate, 32) \ 420 x(logged_op_finsert, 33) 421 422 enum bch_bkey_type { 423 #define x(name, nr) KEY_TYPE_##name = nr, 424 BCH_BKEY_TYPES() 425 #undef x 426 KEY_TYPE_MAX, 427 }; 428 429 struct bch_deleted { 430 struct bch_val v; 431 }; 432 433 struct bch_whiteout { 434 struct bch_val v; 435 }; 436 437 struct bch_error { 438 struct bch_val v; 439 }; 440 441 struct bch_cookie { 442 struct bch_val v; 443 __le64 cookie; 444 }; 445 446 struct bch_hash_whiteout { 447 struct bch_val v; 448 }; 449 450 struct bch_set { 451 struct bch_val v; 452 }; 453 454 /* 128 bits, sufficient for cryptographic MACs: */ 455 struct bch_csum { 456 __le64 lo; 457 __le64 hi; 458 } __packed __aligned(8); 459 460 struct bch_backpointer { 461 struct bch_val v; 462 __u8 btree_id; 463 __u8 level; 464 __u8 data_type; 465 __u64 bucket_offset:40; 466 __u32 bucket_len; 467 struct bpos pos; 468 } __packed __aligned(8); 469 470 /* LRU btree: */ 471 472 struct bch_lru { 473 struct bch_val v; 474 __le64 idx; 475 } __packed __aligned(8); 476 477 #define LRU_ID_STRIPES (1U << 16) 478 479 /* Optional/variable size superblock sections: */ 480 481 struct bch_sb_field { 482 __u64 _data[0]; 483 __le32 u64s; 484 __le32 type; 485 }; 486 487 #define BCH_SB_FIELDS() \ 488 x(journal, 0) \ 489 x(members_v1, 1) \ 490 x(crypt, 2) \ 491 x(replicas_v0, 3) \ 492 x(quota, 4) \ 493 x(disk_groups, 5) \ 494 x(clean, 6) \ 495 x(replicas, 7) \ 496 x(journal_seq_blacklist, 8) \ 497 x(journal_v2, 9) \ 498 x(counters, 10) \ 499 x(members_v2, 11) \ 500 x(errors, 12) \ 501 x(ext, 13) \ 502 x(downgrade, 14) 503 504 #include "alloc_background_format.h" 505 #include "extents_format.h" 506 #include "reflink_format.h" 507 #include "ec_format.h" 508 #include "inode_format.h" 509 #include "dirent_format.h" 510 #include "xattr_format.h" 511 #include "quota_format.h" 512 #include "logged_ops_format.h" 513 #include "snapshot_format.h" 514 #include "subvolume_format.h" 515 #include "sb-counters_format.h" 516 517 enum bch_sb_field_type { 518 #define x(f, nr) BCH_SB_FIELD_##f = nr, 519 BCH_SB_FIELDS() 520 #undef x 521 BCH_SB_FIELD_NR 522 }; 523 524 /* 525 * Most superblock fields are replicated in all device's superblocks - a few are 526 * not: 527 */ 528 #define BCH_SINGLE_DEVICE_SB_FIELDS \ 529 ((1U << BCH_SB_FIELD_journal)| \ 530 (1U << BCH_SB_FIELD_journal_v2)) 531 532 /* BCH_SB_FIELD_journal: */ 533 534 struct bch_sb_field_journal { 535 struct bch_sb_field field; 536 __le64 buckets[]; 537 }; 538 539 struct bch_sb_field_journal_v2 { 540 struct bch_sb_field field; 541 542 struct bch_sb_field_journal_v2_entry { 543 __le64 start; 544 __le64 nr; 545 } d[]; 546 }; 547 548 /* BCH_SB_FIELD_members_v1: */ 549 550 #define BCH_MIN_NR_NBUCKETS (1 << 6) 551 552 #define BCH_IOPS_MEASUREMENTS() \ 553 x(seqread, 0) \ 554 x(seqwrite, 1) \ 555 x(randread, 2) \ 556 x(randwrite, 3) 557 558 enum bch_iops_measurement { 559 #define x(t, n) BCH_IOPS_##t = n, 560 BCH_IOPS_MEASUREMENTS() 561 #undef x 562 BCH_IOPS_NR 563 }; 564 565 #define BCH_MEMBER_ERROR_TYPES() \ 566 x(read, 0) \ 567 x(write, 1) \ 568 x(checksum, 2) 569 570 enum bch_member_error_type { 571 #define x(t, n) BCH_MEMBER_ERROR_##t = n, 572 BCH_MEMBER_ERROR_TYPES() 573 #undef x 574 BCH_MEMBER_ERROR_NR 575 }; 576 577 struct bch_member { 578 __uuid_t uuid; 579 __le64 nbuckets; /* device size */ 580 __le16 first_bucket; /* index of first bucket used */ 581 __le16 bucket_size; /* sectors */ 582 __u8 btree_bitmap_shift; 583 __u8 pad[3]; 584 __le64 last_mount; /* time_t */ 585 586 __le64 flags; 587 __le32 iops[4]; 588 __le64 errors[BCH_MEMBER_ERROR_NR]; 589 __le64 errors_at_reset[BCH_MEMBER_ERROR_NR]; 590 __le64 errors_reset_time; 591 __le64 seq; 592 __le64 btree_allocated_bitmap; 593 /* 594 * On recovery from a clean shutdown we don't normally read the journal, 595 * but we still want to resume writing from where we left off so we 596 * don't overwrite more than is necessary, for list journal debugging: 597 */ 598 __le32 last_journal_bucket; 599 __le32 last_journal_bucket_offset; 600 }; 601 602 /* 603 * This limit comes from the bucket_gens array - it's a single allocation, and 604 * kernel allocation are limited to INT_MAX 605 */ 606 #define BCH_MEMBER_NBUCKETS_MAX (INT_MAX - 64) 607 608 #define BCH_MEMBER_V1_BYTES 56 609 610 LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4) 611 /* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */ 612 LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15) 613 LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20) 614 LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28) 615 LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30) 616 LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED, 617 struct bch_member, flags, 30, 31) 618 619 #if 0 620 LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); 621 LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); 622 #endif 623 624 #define BCH_MEMBER_STATES() \ 625 x(rw, 0) \ 626 x(ro, 1) \ 627 x(failed, 2) \ 628 x(spare, 3) 629 630 enum bch_member_state { 631 #define x(t, n) BCH_MEMBER_STATE_##t = n, 632 BCH_MEMBER_STATES() 633 #undef x 634 BCH_MEMBER_STATE_NR 635 }; 636 637 struct bch_sb_field_members_v1 { 638 struct bch_sb_field field; 639 struct bch_member _members[]; //Members are now variable size 640 }; 641 642 struct bch_sb_field_members_v2 { 643 struct bch_sb_field field; 644 __le16 member_bytes; //size of single member entry 645 u8 pad[6]; 646 struct bch_member _members[]; 647 }; 648 649 /* BCH_SB_FIELD_crypt: */ 650 651 struct nonce { 652 __le32 d[4]; 653 }; 654 655 struct bch_key { 656 __le64 key[4]; 657 }; 658 659 #define BCH_KEY_MAGIC \ 660 (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ 661 ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ 662 ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ 663 ((__u64) 'e' << 48)|((__u64) 'y' << 56)) 664 665 struct bch_encrypted_key { 666 __le64 magic; 667 struct bch_key key; 668 }; 669 670 /* 671 * If this field is present in the superblock, it stores an encryption key which 672 * is used encrypt all other data/metadata. The key will normally be encrypted 673 * with the key userspace provides, but if encryption has been turned off we'll 674 * just store the master key unencrypted in the superblock so we can access the 675 * previously encrypted data. 676 */ 677 struct bch_sb_field_crypt { 678 struct bch_sb_field field; 679 680 __le64 flags; 681 __le64 kdf_flags; 682 struct bch_encrypted_key key; 683 }; 684 685 LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); 686 687 enum bch_kdf_types { 688 BCH_KDF_SCRYPT = 0, 689 BCH_KDF_NR = 1, 690 }; 691 692 /* stored as base 2 log of scrypt params: */ 693 LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); 694 LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); 695 LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); 696 697 /* BCH_SB_FIELD_replicas: */ 698 699 #define BCH_DATA_TYPES() \ 700 x(free, 0) \ 701 x(sb, 1) \ 702 x(journal, 2) \ 703 x(btree, 3) \ 704 x(user, 4) \ 705 x(cached, 5) \ 706 x(parity, 6) \ 707 x(stripe, 7) \ 708 x(need_gc_gens, 8) \ 709 x(need_discard, 9) 710 711 enum bch_data_type { 712 #define x(t, n) BCH_DATA_##t, 713 BCH_DATA_TYPES() 714 #undef x 715 BCH_DATA_NR 716 }; 717 718 static inline bool data_type_is_empty(enum bch_data_type type) 719 { 720 switch (type) { 721 case BCH_DATA_free: 722 case BCH_DATA_need_gc_gens: 723 case BCH_DATA_need_discard: 724 return true; 725 default: 726 return false; 727 } 728 } 729 730 static inline bool data_type_is_hidden(enum bch_data_type type) 731 { 732 switch (type) { 733 case BCH_DATA_sb: 734 case BCH_DATA_journal: 735 return true; 736 default: 737 return false; 738 } 739 } 740 741 struct bch_replicas_entry_v0 { 742 __u8 data_type; 743 __u8 nr_devs; 744 __u8 devs[]; 745 } __packed; 746 747 struct bch_sb_field_replicas_v0 { 748 struct bch_sb_field field; 749 struct bch_replicas_entry_v0 entries[]; 750 } __packed __aligned(8); 751 752 struct bch_replicas_entry_v1 { 753 __u8 data_type; 754 __u8 nr_devs; 755 __u8 nr_required; 756 __u8 devs[]; 757 } __packed; 758 759 #define replicas_entry_bytes(_i) \ 760 (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) 761 762 struct bch_sb_field_replicas { 763 struct bch_sb_field field; 764 struct bch_replicas_entry_v1 entries[]; 765 } __packed __aligned(8); 766 767 /* BCH_SB_FIELD_disk_groups: */ 768 769 #define BCH_SB_LABEL_SIZE 32 770 771 struct bch_disk_group { 772 __u8 label[BCH_SB_LABEL_SIZE]; 773 __le64 flags[2]; 774 } __packed __aligned(8); 775 776 LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) 777 LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) 778 LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) 779 780 struct bch_sb_field_disk_groups { 781 struct bch_sb_field field; 782 struct bch_disk_group entries[]; 783 } __packed __aligned(8); 784 785 /* 786 * On clean shutdown, store btree roots and current journal sequence number in 787 * the superblock: 788 */ 789 struct jset_entry { 790 __le16 u64s; 791 __u8 btree_id; 792 __u8 level; 793 __u8 type; /* designates what this jset holds */ 794 __u8 pad[3]; 795 796 struct bkey_i start[0]; 797 __u64 _data[]; 798 }; 799 800 struct bch_sb_field_clean { 801 struct bch_sb_field field; 802 803 __le32 flags; 804 __le16 _read_clock; /* no longer used */ 805 __le16 _write_clock; 806 __le64 journal_seq; 807 808 struct jset_entry start[0]; 809 __u64 _data[]; 810 }; 811 812 struct journal_seq_blacklist_entry { 813 __le64 start; 814 __le64 end; 815 }; 816 817 struct bch_sb_field_journal_seq_blacklist { 818 struct bch_sb_field field; 819 struct journal_seq_blacklist_entry start[]; 820 }; 821 822 struct bch_sb_field_errors { 823 struct bch_sb_field field; 824 struct bch_sb_field_error_entry { 825 __le64 v; 826 __le64 last_error_time; 827 } entries[]; 828 }; 829 830 LE64_BITMASK(BCH_SB_ERROR_ENTRY_ID, struct bch_sb_field_error_entry, v, 0, 16); 831 LE64_BITMASK(BCH_SB_ERROR_ENTRY_NR, struct bch_sb_field_error_entry, v, 16, 64); 832 833 struct bch_sb_field_ext { 834 struct bch_sb_field field; 835 __le64 recovery_passes_required[2]; 836 __le64 errors_silent[8]; 837 __le64 btrees_lost_data; 838 }; 839 840 struct bch_sb_field_downgrade_entry { 841 __le16 version; 842 __le64 recovery_passes[2]; 843 __le16 nr_errors; 844 __le16 errors[] __counted_by(nr_errors); 845 } __packed __aligned(2); 846 847 struct bch_sb_field_downgrade { 848 struct bch_sb_field field; 849 struct bch_sb_field_downgrade_entry entries[]; 850 }; 851 852 /* Superblock: */ 853 854 /* 855 * New versioning scheme: 856 * One common version number for all on disk data structures - superblock, btree 857 * nodes, journal entries 858 */ 859 #define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) 860 #define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) 861 #define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) 862 863 /* 864 * field 1: version name 865 * field 2: BCH_VERSION(major, minor) 866 * field 3: recovery passess required on upgrade 867 */ 868 #define BCH_METADATA_VERSIONS() \ 869 x(bkey_renumber, BCH_VERSION(0, 10)) \ 870 x(inode_btree_change, BCH_VERSION(0, 11)) \ 871 x(snapshot, BCH_VERSION(0, 12)) \ 872 x(inode_backpointers, BCH_VERSION(0, 13)) \ 873 x(btree_ptr_sectors_written, BCH_VERSION(0, 14)) \ 874 x(snapshot_2, BCH_VERSION(0, 15)) \ 875 x(reflink_p_fix, BCH_VERSION(0, 16)) \ 876 x(subvol_dirent, BCH_VERSION(0, 17)) \ 877 x(inode_v2, BCH_VERSION(0, 18)) \ 878 x(freespace, BCH_VERSION(0, 19)) \ 879 x(alloc_v4, BCH_VERSION(0, 20)) \ 880 x(new_data_types, BCH_VERSION(0, 21)) \ 881 x(backpointers, BCH_VERSION(0, 22)) \ 882 x(inode_v3, BCH_VERSION(0, 23)) \ 883 x(unwritten_extents, BCH_VERSION(0, 24)) \ 884 x(bucket_gens, BCH_VERSION(0, 25)) \ 885 x(lru_v2, BCH_VERSION(0, 26)) \ 886 x(fragmentation_lru, BCH_VERSION(0, 27)) \ 887 x(no_bps_in_alloc_keys, BCH_VERSION(0, 28)) \ 888 x(snapshot_trees, BCH_VERSION(0, 29)) \ 889 x(major_minor, BCH_VERSION(1, 0)) \ 890 x(snapshot_skiplists, BCH_VERSION(1, 1)) \ 891 x(deleted_inodes, BCH_VERSION(1, 2)) \ 892 x(rebalance_work, BCH_VERSION(1, 3)) \ 893 x(member_seq, BCH_VERSION(1, 4)) \ 894 x(subvolume_fs_parent, BCH_VERSION(1, 5)) \ 895 x(btree_subvolume_children, BCH_VERSION(1, 6)) \ 896 x(mi_btree_bitmap, BCH_VERSION(1, 7)) 897 898 enum bcachefs_metadata_version { 899 bcachefs_metadata_version_min = 9, 900 #define x(t, n) bcachefs_metadata_version_##t = n, 901 BCH_METADATA_VERSIONS() 902 #undef x 903 bcachefs_metadata_version_max 904 }; 905 906 static const __maybe_unused 907 unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_rebalance_work; 908 909 #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) 910 911 #define BCH_SB_SECTOR 8 912 #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ 913 914 #define BCH_SB_LAYOUT_SIZE_BITS_MAX 16 /* 32 MB */ 915 916 struct bch_sb_layout { 917 __uuid_t magic; /* bcachefs superblock UUID */ 918 __u8 layout_type; 919 __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ 920 __u8 nr_superblocks; 921 __u8 pad[5]; 922 __le64 sb_offset[61]; 923 } __packed __aligned(8); 924 925 #define BCH_SB_LAYOUT_SECTOR 7 926 927 /* 928 * @offset - sector where this sb was written 929 * @version - on disk format version 930 * @version_min - Oldest metadata version this filesystem contains; so we can 931 * safely drop compatibility code and refuse to mount filesystems 932 * we'd need it for 933 * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) 934 * @seq - incremented each time superblock is written 935 * @uuid - used for generating various magic numbers and identifying 936 * member devices, never changes 937 * @user_uuid - user visible UUID, may be changed 938 * @label - filesystem label 939 * @seq - identifies most recent superblock, incremented each time 940 * superblock is written 941 * @features - enabled incompatible features 942 */ 943 struct bch_sb { 944 struct bch_csum csum; 945 __le16 version; 946 __le16 version_min; 947 __le16 pad[2]; 948 __uuid_t magic; 949 __uuid_t uuid; 950 __uuid_t user_uuid; 951 __u8 label[BCH_SB_LABEL_SIZE]; 952 __le64 offset; 953 __le64 seq; 954 955 __le16 block_size; 956 __u8 dev_idx; 957 __u8 nr_devices; 958 __le32 u64s; 959 960 __le64 time_base_lo; 961 __le32 time_base_hi; 962 __le32 time_precision; 963 964 __le64 flags[7]; 965 __le64 write_time; 966 __le64 features[2]; 967 __le64 compat[2]; 968 969 struct bch_sb_layout layout; 970 971 struct bch_sb_field start[0]; 972 __le64 _data[]; 973 } __packed __aligned(8); 974 975 /* 976 * Flags: 977 * BCH_SB_INITALIZED - set on first mount 978 * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect 979 * behaviour of mount/recovery path: 980 * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits 981 * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 982 * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides 983 * DATA/META_CSUM_TYPE. Also indicates encryption 984 * algorithm in use, if/when we get more than one 985 */ 986 987 LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); 988 989 LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); 990 LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); 991 LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); 992 LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); 993 994 LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); 995 996 LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); 997 LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); 998 999 LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); 1000 LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); 1001 1002 LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); 1003 LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); 1004 1005 LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); 1006 LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); 1007 LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); 1008 LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); 1009 1010 LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); 1011 LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); 1012 1013 LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); 1014 1015 LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); 1016 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); 1017 LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); 1018 1019 LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); 1020 LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); 1021 1022 /* 1023 * Max size of an extent that may require bouncing to read or write 1024 * (checksummed, compressed): 64k 1025 */ 1026 LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, 1027 struct bch_sb, flags[1], 14, 20); 1028 1029 LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); 1030 LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); 1031 1032 LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); 1033 LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); 1034 LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); 1035 1036 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, 1037 struct bch_sb, flags[2], 0, 4); 1038 LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); 1039 1040 LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); 1041 LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); 1042 LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); 1043 LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); 1044 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); 1045 LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); 1046 LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); 1047 LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); 1048 LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); 1049 LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); 1050 LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); 1051 1052 LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); 1053 LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, 1054 struct bch_sb, flags[4], 60, 64); 1055 1056 LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, 1057 struct bch_sb, flags[5], 0, 16); 1058 1059 static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) 1060 { 1061 return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); 1062 } 1063 1064 static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1065 { 1066 SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); 1067 SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); 1068 } 1069 1070 static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) 1071 { 1072 return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | 1073 (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); 1074 } 1075 1076 static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) 1077 { 1078 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); 1079 SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); 1080 } 1081 1082 /* 1083 * Features: 1084 * 1085 * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist 1086 * reflink: gates KEY_TYPE_reflink 1087 * inline_data: gates KEY_TYPE_inline_data 1088 * new_siphash: gates BCH_STR_HASH_siphash 1089 * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE 1090 */ 1091 #define BCH_SB_FEATURES() \ 1092 x(lz4, 0) \ 1093 x(gzip, 1) \ 1094 x(zstd, 2) \ 1095 x(atomic_nlink, 3) \ 1096 x(ec, 4) \ 1097 x(journal_seq_blacklist_v3, 5) \ 1098 x(reflink, 6) \ 1099 x(new_siphash, 7) \ 1100 x(inline_data, 8) \ 1101 x(new_extent_overwrite, 9) \ 1102 x(incompressible, 10) \ 1103 x(btree_ptr_v2, 11) \ 1104 x(extents_above_btree_updates, 12) \ 1105 x(btree_updates_journalled, 13) \ 1106 x(reflink_inline_data, 14) \ 1107 x(new_varint, 15) \ 1108 x(journal_no_flush, 16) \ 1109 x(alloc_v2, 17) \ 1110 x(extents_across_btree_nodes, 18) 1111 1112 #define BCH_SB_FEATURES_ALWAYS \ 1113 ((1ULL << BCH_FEATURE_new_extent_overwrite)| \ 1114 (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ 1115 (1ULL << BCH_FEATURE_btree_updates_journalled)|\ 1116 (1ULL << BCH_FEATURE_alloc_v2)|\ 1117 (1ULL << BCH_FEATURE_extents_across_btree_nodes)) 1118 1119 #define BCH_SB_FEATURES_ALL \ 1120 (BCH_SB_FEATURES_ALWAYS| \ 1121 (1ULL << BCH_FEATURE_new_siphash)| \ 1122 (1ULL << BCH_FEATURE_btree_ptr_v2)| \ 1123 (1ULL << BCH_FEATURE_new_varint)| \ 1124 (1ULL << BCH_FEATURE_journal_no_flush)) 1125 1126 enum bch_sb_feature { 1127 #define x(f, n) BCH_FEATURE_##f, 1128 BCH_SB_FEATURES() 1129 #undef x 1130 BCH_FEATURE_NR, 1131 }; 1132 1133 #define BCH_SB_COMPAT() \ 1134 x(alloc_info, 0) \ 1135 x(alloc_metadata, 1) \ 1136 x(extents_above_btree_updates_done, 2) \ 1137 x(bformat_overflow_done, 3) 1138 1139 enum bch_sb_compat { 1140 #define x(f, n) BCH_COMPAT_##f, 1141 BCH_SB_COMPAT() 1142 #undef x 1143 BCH_COMPAT_NR, 1144 }; 1145 1146 /* options: */ 1147 1148 #define BCH_VERSION_UPGRADE_OPTS() \ 1149 x(compatible, 0) \ 1150 x(incompatible, 1) \ 1151 x(none, 2) 1152 1153 enum bch_version_upgrade_opts { 1154 #define x(t, n) BCH_VERSION_UPGRADE_##t = n, 1155 BCH_VERSION_UPGRADE_OPTS() 1156 #undef x 1157 }; 1158 1159 #define BCH_REPLICAS_MAX 4U 1160 1161 #define BCH_BKEY_PTRS_MAX 16U 1162 1163 #define BCH_ERROR_ACTIONS() \ 1164 x(continue, 0) \ 1165 x(ro, 1) \ 1166 x(panic, 2) 1167 1168 enum bch_error_actions { 1169 #define x(t, n) BCH_ON_ERROR_##t = n, 1170 BCH_ERROR_ACTIONS() 1171 #undef x 1172 BCH_ON_ERROR_NR 1173 }; 1174 1175 #define BCH_STR_HASH_TYPES() \ 1176 x(crc32c, 0) \ 1177 x(crc64, 1) \ 1178 x(siphash_old, 2) \ 1179 x(siphash, 3) 1180 1181 enum bch_str_hash_type { 1182 #define x(t, n) BCH_STR_HASH_##t = n, 1183 BCH_STR_HASH_TYPES() 1184 #undef x 1185 BCH_STR_HASH_NR 1186 }; 1187 1188 #define BCH_STR_HASH_OPTS() \ 1189 x(crc32c, 0) \ 1190 x(crc64, 1) \ 1191 x(siphash, 2) 1192 1193 enum bch_str_hash_opts { 1194 #define x(t, n) BCH_STR_HASH_OPT_##t = n, 1195 BCH_STR_HASH_OPTS() 1196 #undef x 1197 BCH_STR_HASH_OPT_NR 1198 }; 1199 1200 #define BCH_CSUM_TYPES() \ 1201 x(none, 0) \ 1202 x(crc32c_nonzero, 1) \ 1203 x(crc64_nonzero, 2) \ 1204 x(chacha20_poly1305_80, 3) \ 1205 x(chacha20_poly1305_128, 4) \ 1206 x(crc32c, 5) \ 1207 x(crc64, 6) \ 1208 x(xxhash, 7) 1209 1210 enum bch_csum_type { 1211 #define x(t, n) BCH_CSUM_##t = n, 1212 BCH_CSUM_TYPES() 1213 #undef x 1214 BCH_CSUM_NR 1215 }; 1216 1217 static const __maybe_unused unsigned bch_crc_bytes[] = { 1218 [BCH_CSUM_none] = 0, 1219 [BCH_CSUM_crc32c_nonzero] = 4, 1220 [BCH_CSUM_crc32c] = 4, 1221 [BCH_CSUM_crc64_nonzero] = 8, 1222 [BCH_CSUM_crc64] = 8, 1223 [BCH_CSUM_xxhash] = 8, 1224 [BCH_CSUM_chacha20_poly1305_80] = 10, 1225 [BCH_CSUM_chacha20_poly1305_128] = 16, 1226 }; 1227 1228 static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) 1229 { 1230 switch (type) { 1231 case BCH_CSUM_chacha20_poly1305_80: 1232 case BCH_CSUM_chacha20_poly1305_128: 1233 return true; 1234 default: 1235 return false; 1236 } 1237 } 1238 1239 #define BCH_CSUM_OPTS() \ 1240 x(none, 0) \ 1241 x(crc32c, 1) \ 1242 x(crc64, 2) \ 1243 x(xxhash, 3) 1244 1245 enum bch_csum_opts { 1246 #define x(t, n) BCH_CSUM_OPT_##t = n, 1247 BCH_CSUM_OPTS() 1248 #undef x 1249 BCH_CSUM_OPT_NR 1250 }; 1251 1252 #define BCH_COMPRESSION_TYPES() \ 1253 x(none, 0) \ 1254 x(lz4_old, 1) \ 1255 x(gzip, 2) \ 1256 x(lz4, 3) \ 1257 x(zstd, 4) \ 1258 x(incompressible, 5) 1259 1260 enum bch_compression_type { 1261 #define x(t, n) BCH_COMPRESSION_TYPE_##t = n, 1262 BCH_COMPRESSION_TYPES() 1263 #undef x 1264 BCH_COMPRESSION_TYPE_NR 1265 }; 1266 1267 #define BCH_COMPRESSION_OPTS() \ 1268 x(none, 0) \ 1269 x(lz4, 1) \ 1270 x(gzip, 2) \ 1271 x(zstd, 3) 1272 1273 enum bch_compression_opts { 1274 #define x(t, n) BCH_COMPRESSION_OPT_##t = n, 1275 BCH_COMPRESSION_OPTS() 1276 #undef x 1277 BCH_COMPRESSION_OPT_NR 1278 }; 1279 1280 /* 1281 * Magic numbers 1282 * 1283 * The various other data structures have their own magic numbers, which are 1284 * xored with the first part of the cache set's UUID 1285 */ 1286 1287 #define BCACHE_MAGIC \ 1288 UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ 1289 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) 1290 #define BCHFS_MAGIC \ 1291 UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ 1292 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) 1293 1294 #define BCACHEFS_STATFS_MAGIC BCACHEFS_SUPER_MAGIC 1295 1296 #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) 1297 #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) 1298 1299 static inline __le64 __bch2_sb_magic(struct bch_sb *sb) 1300 { 1301 __le64 ret; 1302 1303 memcpy(&ret, &sb->uuid, sizeof(ret)); 1304 return ret; 1305 } 1306 1307 static inline __u64 __jset_magic(struct bch_sb *sb) 1308 { 1309 return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); 1310 } 1311 1312 static inline __u64 __bset_magic(struct bch_sb *sb) 1313 { 1314 return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); 1315 } 1316 1317 /* Journal */ 1318 1319 #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) 1320 1321 #define BCH_JSET_ENTRY_TYPES() \ 1322 x(btree_keys, 0) \ 1323 x(btree_root, 1) \ 1324 x(prio_ptrs, 2) \ 1325 x(blacklist, 3) \ 1326 x(blacklist_v2, 4) \ 1327 x(usage, 5) \ 1328 x(data_usage, 6) \ 1329 x(clock, 7) \ 1330 x(dev_usage, 8) \ 1331 x(log, 9) \ 1332 x(overwrite, 10) \ 1333 x(write_buffer_keys, 11) \ 1334 x(datetime, 12) 1335 1336 enum bch_jset_entry_type { 1337 #define x(f, nr) BCH_JSET_ENTRY_##f = nr, 1338 BCH_JSET_ENTRY_TYPES() 1339 #undef x 1340 BCH_JSET_ENTRY_NR 1341 }; 1342 1343 static inline bool jset_entry_is_key(struct jset_entry *e) 1344 { 1345 switch (e->type) { 1346 case BCH_JSET_ENTRY_btree_keys: 1347 case BCH_JSET_ENTRY_btree_root: 1348 case BCH_JSET_ENTRY_overwrite: 1349 case BCH_JSET_ENTRY_write_buffer_keys: 1350 return true; 1351 } 1352 1353 return false; 1354 } 1355 1356 /* 1357 * Journal sequence numbers can be blacklisted: bsets record the max sequence 1358 * number of all the journal entries they contain updates for, so that on 1359 * recovery we can ignore those bsets that contain index updates newer that what 1360 * made it into the journal. 1361 * 1362 * This means that we can't reuse that journal_seq - we have to skip it, and 1363 * then record that we skipped it so that the next time we crash and recover we 1364 * don't think there was a missing journal entry. 1365 */ 1366 struct jset_entry_blacklist { 1367 struct jset_entry entry; 1368 __le64 seq; 1369 }; 1370 1371 struct jset_entry_blacklist_v2 { 1372 struct jset_entry entry; 1373 __le64 start; 1374 __le64 end; 1375 }; 1376 1377 #define BCH_FS_USAGE_TYPES() \ 1378 x(reserved, 0) \ 1379 x(inodes, 1) \ 1380 x(key_version, 2) 1381 1382 enum bch_fs_usage_type { 1383 #define x(f, nr) BCH_FS_USAGE_##f = nr, 1384 BCH_FS_USAGE_TYPES() 1385 #undef x 1386 BCH_FS_USAGE_NR 1387 }; 1388 1389 struct jset_entry_usage { 1390 struct jset_entry entry; 1391 __le64 v; 1392 } __packed; 1393 1394 struct jset_entry_data_usage { 1395 struct jset_entry entry; 1396 __le64 v; 1397 struct bch_replicas_entry_v1 r; 1398 } __packed; 1399 1400 struct jset_entry_clock { 1401 struct jset_entry entry; 1402 __u8 rw; 1403 __u8 pad[7]; 1404 __le64 time; 1405 } __packed; 1406 1407 struct jset_entry_dev_usage_type { 1408 __le64 buckets; 1409 __le64 sectors; 1410 __le64 fragmented; 1411 } __packed; 1412 1413 struct jset_entry_dev_usage { 1414 struct jset_entry entry; 1415 __le32 dev; 1416 __u32 pad; 1417 1418 __le64 _buckets_ec; /* No longer used */ 1419 __le64 _buckets_unavailable; /* No longer used */ 1420 1421 struct jset_entry_dev_usage_type d[]; 1422 }; 1423 1424 static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) 1425 { 1426 return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / 1427 sizeof(struct jset_entry_dev_usage_type); 1428 } 1429 1430 struct jset_entry_log { 1431 struct jset_entry entry; 1432 u8 d[]; 1433 } __packed __aligned(8); 1434 1435 struct jset_entry_datetime { 1436 struct jset_entry entry; 1437 __le64 seconds; 1438 } __packed __aligned(8); 1439 1440 /* 1441 * On disk format for a journal entry: 1442 * seq is monotonically increasing; every journal entry has its own unique 1443 * sequence number. 1444 * 1445 * last_seq is the oldest journal entry that still has keys the btree hasn't 1446 * flushed to disk yet. 1447 * 1448 * version is for on disk format changes. 1449 */ 1450 struct jset { 1451 struct bch_csum csum; 1452 1453 __le64 magic; 1454 __le64 seq; 1455 __le32 version; 1456 __le32 flags; 1457 1458 __le32 u64s; /* size of d[] in u64s */ 1459 1460 __u8 encrypted_start[0]; 1461 1462 __le16 _read_clock; /* no longer used */ 1463 __le16 _write_clock; 1464 1465 /* Sequence number of oldest dirty journal entry */ 1466 __le64 last_seq; 1467 1468 1469 struct jset_entry start[0]; 1470 __u64 _data[]; 1471 } __packed __aligned(8); 1472 1473 LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); 1474 LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); 1475 LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); 1476 1477 #define BCH_JOURNAL_BUCKETS_MIN 8 1478 1479 /* Btree: */ 1480 1481 enum btree_id_flags { 1482 BTREE_ID_EXTENTS = BIT(0), 1483 BTREE_ID_SNAPSHOTS = BIT(1), 1484 BTREE_ID_SNAPSHOT_FIELD = BIT(2), 1485 BTREE_ID_DATA = BIT(3), 1486 }; 1487 1488 #define BCH_BTREE_IDS() \ 1489 x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\ 1490 BIT_ULL(KEY_TYPE_whiteout)| \ 1491 BIT_ULL(KEY_TYPE_error)| \ 1492 BIT_ULL(KEY_TYPE_cookie)| \ 1493 BIT_ULL(KEY_TYPE_extent)| \ 1494 BIT_ULL(KEY_TYPE_reservation)| \ 1495 BIT_ULL(KEY_TYPE_reflink_p)| \ 1496 BIT_ULL(KEY_TYPE_inline_data)) \ 1497 x(inodes, 1, BTREE_ID_SNAPSHOTS, \ 1498 BIT_ULL(KEY_TYPE_whiteout)| \ 1499 BIT_ULL(KEY_TYPE_inode)| \ 1500 BIT_ULL(KEY_TYPE_inode_v2)| \ 1501 BIT_ULL(KEY_TYPE_inode_v3)| \ 1502 BIT_ULL(KEY_TYPE_inode_generation)) \ 1503 x(dirents, 2, BTREE_ID_SNAPSHOTS, \ 1504 BIT_ULL(KEY_TYPE_whiteout)| \ 1505 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1506 BIT_ULL(KEY_TYPE_dirent)) \ 1507 x(xattrs, 3, BTREE_ID_SNAPSHOTS, \ 1508 BIT_ULL(KEY_TYPE_whiteout)| \ 1509 BIT_ULL(KEY_TYPE_cookie)| \ 1510 BIT_ULL(KEY_TYPE_hash_whiteout)| \ 1511 BIT_ULL(KEY_TYPE_xattr)) \ 1512 x(alloc, 4, 0, \ 1513 BIT_ULL(KEY_TYPE_alloc)| \ 1514 BIT_ULL(KEY_TYPE_alloc_v2)| \ 1515 BIT_ULL(KEY_TYPE_alloc_v3)| \ 1516 BIT_ULL(KEY_TYPE_alloc_v4)) \ 1517 x(quotas, 5, 0, \ 1518 BIT_ULL(KEY_TYPE_quota)) \ 1519 x(stripes, 6, 0, \ 1520 BIT_ULL(KEY_TYPE_stripe)) \ 1521 x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \ 1522 BIT_ULL(KEY_TYPE_reflink_v)| \ 1523 BIT_ULL(KEY_TYPE_indirect_inline_data)| \ 1524 BIT_ULL(KEY_TYPE_error)) \ 1525 x(subvolumes, 8, 0, \ 1526 BIT_ULL(KEY_TYPE_subvolume)) \ 1527 x(snapshots, 9, 0, \ 1528 BIT_ULL(KEY_TYPE_snapshot)) \ 1529 x(lru, 10, 0, \ 1530 BIT_ULL(KEY_TYPE_set)) \ 1531 x(freespace, 11, BTREE_ID_EXTENTS, \ 1532 BIT_ULL(KEY_TYPE_set)) \ 1533 x(need_discard, 12, 0, \ 1534 BIT_ULL(KEY_TYPE_set)) \ 1535 x(backpointers, 13, 0, \ 1536 BIT_ULL(KEY_TYPE_backpointer)) \ 1537 x(bucket_gens, 14, 0, \ 1538 BIT_ULL(KEY_TYPE_bucket_gens)) \ 1539 x(snapshot_trees, 15, 0, \ 1540 BIT_ULL(KEY_TYPE_snapshot_tree)) \ 1541 x(deleted_inodes, 16, BTREE_ID_SNAPSHOT_FIELD, \ 1542 BIT_ULL(KEY_TYPE_set)) \ 1543 x(logged_ops, 17, 0, \ 1544 BIT_ULL(KEY_TYPE_logged_op_truncate)| \ 1545 BIT_ULL(KEY_TYPE_logged_op_finsert)) \ 1546 x(rebalance_work, 18, BTREE_ID_SNAPSHOT_FIELD, \ 1547 BIT_ULL(KEY_TYPE_set)|BIT_ULL(KEY_TYPE_cookie)) \ 1548 x(subvolume_children, 19, 0, \ 1549 BIT_ULL(KEY_TYPE_set)) 1550 1551 enum btree_id { 1552 #define x(name, nr, ...) BTREE_ID_##name = nr, 1553 BCH_BTREE_IDS() 1554 #undef x 1555 BTREE_ID_NR 1556 }; 1557 1558 static inline bool btree_id_is_alloc(enum btree_id id) 1559 { 1560 switch (id) { 1561 case BTREE_ID_alloc: 1562 case BTREE_ID_backpointers: 1563 case BTREE_ID_need_discard: 1564 case BTREE_ID_freespace: 1565 case BTREE_ID_bucket_gens: 1566 return true; 1567 default: 1568 return false; 1569 } 1570 } 1571 1572 #define BTREE_MAX_DEPTH 4U 1573 1574 /* Btree nodes */ 1575 1576 /* 1577 * Btree nodes 1578 * 1579 * On disk a btree node is a list/log of these; within each set the keys are 1580 * sorted 1581 */ 1582 struct bset { 1583 __le64 seq; 1584 1585 /* 1586 * Highest journal entry this bset contains keys for. 1587 * If on recovery we don't see that journal entry, this bset is ignored: 1588 * this allows us to preserve the order of all index updates after a 1589 * crash, since the journal records a total order of all index updates 1590 * and anything that didn't make it to the journal doesn't get used. 1591 */ 1592 __le64 journal_seq; 1593 1594 __le32 flags; 1595 __le16 version; 1596 __le16 u64s; /* count of d[] in u64s */ 1597 1598 struct bkey_packed start[0]; 1599 __u64 _data[]; 1600 } __packed __aligned(8); 1601 1602 LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); 1603 1604 LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); 1605 LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, 1606 struct bset, flags, 5, 6); 1607 1608 /* Sector offset within the btree node: */ 1609 LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); 1610 1611 struct btree_node { 1612 struct bch_csum csum; 1613 __le64 magic; 1614 1615 /* this flags field is encrypted, unlike bset->flags: */ 1616 __le64 flags; 1617 1618 /* Closed interval: */ 1619 struct bpos min_key; 1620 struct bpos max_key; 1621 struct bch_extent_ptr _ptr; /* not used anymore */ 1622 struct bkey_format format; 1623 1624 union { 1625 struct bset keys; 1626 struct { 1627 __u8 pad[22]; 1628 __le16 u64s; 1629 __u64 _data[0]; 1630 1631 }; 1632 }; 1633 } __packed __aligned(8); 1634 1635 LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); 1636 LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); 1637 LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, 1638 struct btree_node, flags, 8, 9); 1639 LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); 1640 /* 25-32 unused */ 1641 LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); 1642 1643 static inline __u64 BTREE_NODE_ID(struct btree_node *n) 1644 { 1645 return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); 1646 } 1647 1648 static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) 1649 { 1650 SET_BTREE_NODE_ID_LO(n, v); 1651 SET_BTREE_NODE_ID_HI(n, v >> 4); 1652 } 1653 1654 struct btree_node_entry { 1655 struct bch_csum csum; 1656 1657 union { 1658 struct bset keys; 1659 struct { 1660 __u8 pad[22]; 1661 __le16 u64s; 1662 __u64 _data[0]; 1663 }; 1664 }; 1665 } __packed __aligned(8); 1666 1667 #endif /* _BCACHEFS_FORMAT_H */ 1668