1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_H 3 #define _BCACHEFS_H 4 5 /* 6 * SOME HIGH LEVEL CODE DOCUMENTATION: 7 * 8 * Bcache mostly works with cache sets, cache devices, and backing devices. 9 * 10 * Support for multiple cache devices hasn't quite been finished off yet, but 11 * it's about 95% plumbed through. A cache set and its cache devices is sort of 12 * like a md raid array and its component devices. Most of the code doesn't care 13 * about individual cache devices, the main abstraction is the cache set. 14 * 15 * Multiple cache devices is intended to give us the ability to mirror dirty 16 * cached data and metadata, without mirroring clean cached data. 17 * 18 * Backing devices are different, in that they have a lifetime independent of a 19 * cache set. When you register a newly formatted backing device it'll come up 20 * in passthrough mode, and then you can attach and detach a backing device from 21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly 22 * invalidates any cached data for that backing device. 23 * 24 * A cache set can have multiple (many) backing devices attached to it. 25 * 26 * There's also flash only volumes - this is the reason for the distinction 27 * between struct cached_dev and struct bcache_device. A flash only volume 28 * works much like a bcache device that has a backing device, except the 29 * "cached" data is always dirty. The end result is that we get thin 30 * provisioning with very little additional code. 31 * 32 * Flash only volumes work but they're not production ready because the moving 33 * garbage collector needs more work. More on that later. 34 * 35 * BUCKETS/ALLOCATION: 36 * 37 * Bcache is primarily designed for caching, which means that in normal 38 * operation all of our available space will be allocated. Thus, we need an 39 * efficient way of deleting things from the cache so we can write new things to 40 * it. 41 * 42 * To do this, we first divide the cache device up into buckets. A bucket is the 43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ 44 * works efficiently. 45 * 46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with 47 * it. The gens and priorities for all the buckets are stored contiguously and 48 * packed on disk (in a linked list of buckets - aside from the superblock, all 49 * of bcache's metadata is stored in buckets). 50 * 51 * The priority is used to implement an LRU. We reset a bucket's priority when 52 * we allocate it or on cache it, and every so often we decrement the priority 53 * of each bucket. It could be used to implement something more sophisticated, 54 * if anyone ever gets around to it. 55 * 56 * The generation is used for invalidating buckets. Each pointer also has an 8 57 * bit generation embedded in it; for a pointer to be considered valid, its gen 58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all 59 * we have to do is increment its gen (and write its new gen to disk; we batch 60 * this up). 61 * 62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that 63 * contain metadata (including btree nodes). 64 * 65 * THE BTREE: 66 * 67 * Bcache is in large part design around the btree. 68 * 69 * At a high level, the btree is just an index of key -> ptr tuples. 70 * 71 * Keys represent extents, and thus have a size field. Keys also have a variable 72 * number of pointers attached to them (potentially zero, which is handy for 73 * invalidating the cache). 74 * 75 * The key itself is an inode:offset pair. The inode number corresponds to a 76 * backing device or a flash only volume. The offset is the ending offset of the 77 * extent within the inode - not the starting offset; this makes lookups 78 * slightly more convenient. 79 * 80 * Pointers contain the cache device id, the offset on that device, and an 8 bit 81 * generation number. More on the gen later. 82 * 83 * Index lookups are not fully abstracted - cache lookups in particular are 84 * still somewhat mixed in with the btree code, but things are headed in that 85 * direction. 86 * 87 * Updates are fairly well abstracted, though. There are two different ways of 88 * updating the btree; insert and replace. 89 * 90 * BTREE_INSERT will just take a list of keys and insert them into the btree - 91 * overwriting (possibly only partially) any extents they overlap with. This is 92 * used to update the index after a write. 93 * 94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is 95 * overwriting a key that matches another given key. This is used for inserting 96 * data into the cache after a cache miss, and for background writeback, and for 97 * the moving garbage collector. 98 * 99 * There is no "delete" operation; deleting things from the index is 100 * accomplished by either by invalidating pointers (by incrementing a bucket's 101 * gen) or by inserting a key with 0 pointers - which will overwrite anything 102 * previously present at that location in the index. 103 * 104 * This means that there are always stale/invalid keys in the btree. They're 105 * filtered out by the code that iterates through a btree node, and removed when 106 * a btree node is rewritten. 107 * 108 * BTREE NODES: 109 * 110 * Our unit of allocation is a bucket, and we can't arbitrarily allocate and 111 * free smaller than a bucket - so, that's how big our btree nodes are. 112 * 113 * (If buckets are really big we'll only use part of the bucket for a btree node 114 * - no less than 1/4th - but a bucket still contains no more than a single 115 * btree node. I'd actually like to change this, but for now we rely on the 116 * bucket's gen for deleting btree nodes when we rewrite/split a node.) 117 * 118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook 119 * btree implementation. 120 * 121 * The way this is solved is that btree nodes are internally log structured; we 122 * can append new keys to an existing btree node without rewriting it. This 123 * means each set of keys we write is sorted, but the node is not. 124 * 125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would 126 * be expensive, and we have to distinguish between the keys we have written and 127 * the keys we haven't. So to do a lookup in a btree node, we have to search 128 * each sorted set. But we do merge written sets together lazily, so the cost of 129 * these extra searches is quite low (normally most of the keys in a btree node 130 * will be in one big set, and then there'll be one or two sets that are much 131 * smaller). 132 * 133 * This log structure makes bcache's btree more of a hybrid between a 134 * conventional btree and a compacting data structure, with some of the 135 * advantages of both. 136 * 137 * GARBAGE COLLECTION: 138 * 139 * We can't just invalidate any bucket - it might contain dirty data or 140 * metadata. If it once contained dirty data, other writes might overwrite it 141 * later, leaving no valid pointers into that bucket in the index. 142 * 143 * Thus, the primary purpose of garbage collection is to find buckets to reuse. 144 * It also counts how much valid data it each bucket currently contains, so that 145 * allocation can reuse buckets sooner when they've been mostly overwritten. 146 * 147 * It also does some things that are really internal to the btree 148 * implementation. If a btree node contains pointers that are stale by more than 149 * some threshold, it rewrites the btree node to avoid the bucket's generation 150 * wrapping around. It also merges adjacent btree nodes if they're empty enough. 151 * 152 * THE JOURNAL: 153 * 154 * Bcache's journal is not necessary for consistency; we always strictly 155 * order metadata writes so that the btree and everything else is consistent on 156 * disk in the event of an unclean shutdown, and in fact bcache had writeback 157 * caching (with recovery from unclean shutdown) before journalling was 158 * implemented. 159 * 160 * Rather, the journal is purely a performance optimization; we can't complete a 161 * write until we've updated the index on disk, otherwise the cache would be 162 * inconsistent in the event of an unclean shutdown. This means that without the 163 * journal, on random write workloads we constantly have to update all the leaf 164 * nodes in the btree, and those writes will be mostly empty (appending at most 165 * a few keys each) - highly inefficient in terms of amount of metadata writes, 166 * and it puts more strain on the various btree resorting/compacting code. 167 * 168 * The journal is just a log of keys we've inserted; on startup we just reinsert 169 * all the keys in the open journal entries. That means that when we're updating 170 * a node in the btree, we can wait until a 4k block of keys fills up before 171 * writing them out. 172 * 173 * For simplicity, we only journal updates to leaf nodes; updates to parent 174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth 175 * the complexity to deal with journalling them (in particular, journal replay) 176 * - updates to non leaf nodes just happen synchronously (see btree_split()). 177 */ 178 179 #undef pr_fmt 180 #ifdef __KERNEL__ 181 #define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__ 182 #else 183 #define pr_fmt(fmt) "%s() " fmt "\n", __func__ 184 #endif 185 186 #include <linux/backing-dev-defs.h> 187 #include <linux/bug.h> 188 #include <linux/bio.h> 189 #include <linux/closure.h> 190 #include <linux/kobject.h> 191 #include <linux/list.h> 192 #include <linux/math64.h> 193 #include <linux/mutex.h> 194 #include <linux/percpu-refcount.h> 195 #include <linux/percpu-rwsem.h> 196 #include <linux/refcount.h> 197 #include <linux/rhashtable.h> 198 #include <linux/rwsem.h> 199 #include <linux/semaphore.h> 200 #include <linux/seqlock.h> 201 #include <linux/shrinker.h> 202 #include <linux/srcu.h> 203 #include <linux/types.h> 204 #include <linux/workqueue.h> 205 #include <linux/zstd.h> 206 207 #include "bcachefs_format.h" 208 #include "errcode.h" 209 #include "fifo.h" 210 #include "nocow_locking_types.h" 211 #include "opts.h" 212 #include "recovery_passes_types.h" 213 #include "sb-errors_types.h" 214 #include "seqmutex.h" 215 #include "time_stats.h" 216 #include "util.h" 217 218 #ifdef CONFIG_BCACHEFS_DEBUG 219 #define BCH_WRITE_REF_DEBUG 220 #endif 221 222 #ifndef dynamic_fault 223 #define dynamic_fault(...) 0 224 #endif 225 226 #define race_fault(...) dynamic_fault("bcachefs:race") 227 228 #define count_event(_c, _name) this_cpu_inc((_c)->counters[BCH_COUNTER_##_name]) 229 230 #define trace_and_count(_c, _name, ...) \ 231 do { \ 232 count_event(_c, _name); \ 233 trace_##_name(__VA_ARGS__); \ 234 } while (0) 235 236 #define bch2_fs_init_fault(name) \ 237 dynamic_fault("bcachefs:bch_fs_init:" name) 238 #define bch2_meta_read_fault(name) \ 239 dynamic_fault("bcachefs:meta:read:" name) 240 #define bch2_meta_write_fault(name) \ 241 dynamic_fault("bcachefs:meta:write:" name) 242 243 #ifdef __KERNEL__ 244 #define BCACHEFS_LOG_PREFIX 245 #endif 246 247 #ifdef BCACHEFS_LOG_PREFIX 248 249 #define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, ((_c)->name) 250 #define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", ((_ca)->name) 251 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset) 252 #define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum) 253 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ 254 "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset) 255 256 #else 257 258 #define bch2_log_msg(_c, fmt) fmt 259 #define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name) 260 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset) 261 #define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum) 262 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ 263 "inum %llu offset %llu: " fmt "\n", (_inum), (_offset) 264 265 #endif 266 267 #define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n") 268 269 __printf(2, 3) 270 void bch2_print_opts(struct bch_opts *, const char *, ...); 271 272 __printf(2, 3) 273 void __bch2_print(struct bch_fs *c, const char *fmt, ...); 274 275 #define maybe_dev_to_fs(_c) _Generic((_c), \ 276 struct bch_dev *: ((struct bch_dev *) (_c))->fs, \ 277 struct bch_fs *: (_c)) 278 279 #define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__) 280 281 #define bch2_print_ratelimited(_c, ...) \ 282 do { \ 283 static DEFINE_RATELIMIT_STATE(_rs, \ 284 DEFAULT_RATELIMIT_INTERVAL, \ 285 DEFAULT_RATELIMIT_BURST); \ 286 \ 287 if (__ratelimit(&_rs)) \ 288 bch2_print(_c, __VA_ARGS__); \ 289 } while (0) 290 291 #define bch_info(c, fmt, ...) \ 292 bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__) 293 #define bch_notice(c, fmt, ...) \ 294 bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__) 295 #define bch_warn(c, fmt, ...) \ 296 bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) 297 #define bch_warn_ratelimited(c, fmt, ...) \ 298 bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) 299 300 #define bch_err(c, fmt, ...) \ 301 bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) 302 #define bch_err_dev(ca, fmt, ...) \ 303 bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) 304 #define bch_err_dev_offset(ca, _offset, fmt, ...) \ 305 bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) 306 #define bch_err_inum(c, _inum, fmt, ...) \ 307 bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) 308 #define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \ 309 bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) 310 311 #define bch_err_ratelimited(c, fmt, ...) \ 312 bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) 313 #define bch_err_dev_ratelimited(ca, fmt, ...) \ 314 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) 315 #define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \ 316 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) 317 #define bch_err_inum_ratelimited(c, _inum, fmt, ...) \ 318 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) 319 #define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \ 320 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) 321 322 static inline bool should_print_err(int err) 323 { 324 return err && !bch2_err_matches(err, BCH_ERR_transaction_restart); 325 } 326 327 #define bch_err_fn(_c, _ret) \ 328 do { \ 329 if (should_print_err(_ret)) \ 330 bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ 331 } while (0) 332 333 #define bch_err_fn_ratelimited(_c, _ret) \ 334 do { \ 335 if (should_print_err(_ret)) \ 336 bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ 337 } while (0) 338 339 #define bch_err_msg(_c, _ret, _msg, ...) \ 340 do { \ 341 if (should_print_err(_ret)) \ 342 bch_err(_c, "%s(): error " _msg " %s", __func__, \ 343 ##__VA_ARGS__, bch2_err_str(_ret)); \ 344 } while (0) 345 346 #define bch_verbose(c, fmt, ...) \ 347 do { \ 348 if ((c)->opts.verbose) \ 349 bch_info(c, fmt, ##__VA_ARGS__); \ 350 } while (0) 351 352 #define pr_verbose_init(opts, fmt, ...) \ 353 do { \ 354 if (opt_get(opts, verbose)) \ 355 pr_info(fmt, ##__VA_ARGS__); \ 356 } while (0) 357 358 /* Parameters that are useful for debugging, but should always be compiled in: */ 359 #define BCH_DEBUG_PARAMS_ALWAYS() \ 360 BCH_DEBUG_PARAM(key_merging_disabled, \ 361 "Disables merging of extents") \ 362 BCH_DEBUG_PARAM(btree_gc_always_rewrite, \ 363 "Causes mark and sweep to compact and rewrite every " \ 364 "btree node it traverses") \ 365 BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \ 366 "Disables rewriting of btree nodes during mark and sweep")\ 367 BCH_DEBUG_PARAM(btree_shrinker_disabled, \ 368 "Disables the shrinker callback for the btree node cache")\ 369 BCH_DEBUG_PARAM(verify_btree_ondisk, \ 370 "Reread btree nodes at various points to verify the " \ 371 "mergesort in the read path against modifications " \ 372 "done in memory") \ 373 BCH_DEBUG_PARAM(verify_all_btree_replicas, \ 374 "When reading btree nodes, read all replicas and " \ 375 "compare them") \ 376 BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \ 377 "Don't use the write buffer for backpointers, enabling "\ 378 "extra runtime checks") 379 380 /* Parameters that should only be compiled in debug mode: */ 381 #define BCH_DEBUG_PARAMS_DEBUG() \ 382 BCH_DEBUG_PARAM(expensive_debug_checks, \ 383 "Enables various runtime debugging checks that " \ 384 "significantly affect performance") \ 385 BCH_DEBUG_PARAM(debug_check_iterators, \ 386 "Enables extra verification for btree iterators") \ 387 BCH_DEBUG_PARAM(debug_check_btree_accounting, \ 388 "Verify btree accounting for keys within a node") \ 389 BCH_DEBUG_PARAM(journal_seq_verify, \ 390 "Store the journal sequence number in the version " \ 391 "number of every btree key, and verify that btree " \ 392 "update ordering is preserved during recovery") \ 393 BCH_DEBUG_PARAM(inject_invalid_keys, \ 394 "Store the journal sequence number in the version " \ 395 "number of every btree key, and verify that btree " \ 396 "update ordering is preserved during recovery") \ 397 BCH_DEBUG_PARAM(test_alloc_startup, \ 398 "Force allocator startup to use the slowpath where it" \ 399 "can't find enough free buckets without invalidating" \ 400 "cached data") \ 401 BCH_DEBUG_PARAM(force_reconstruct_read, \ 402 "Force reads to use the reconstruct path, when reading" \ 403 "from erasure coded extents") \ 404 BCH_DEBUG_PARAM(test_restart_gc, \ 405 "Test restarting mark and sweep gc when bucket gens change") 406 407 #define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG() 408 409 #ifdef CONFIG_BCACHEFS_DEBUG 410 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL() 411 #else 412 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS() 413 #endif 414 415 #define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name; 416 BCH_DEBUG_PARAMS() 417 #undef BCH_DEBUG_PARAM 418 419 #ifndef CONFIG_BCACHEFS_DEBUG 420 #define BCH_DEBUG_PARAM(name, description) static const __maybe_unused bool bch2_##name; 421 BCH_DEBUG_PARAMS_DEBUG() 422 #undef BCH_DEBUG_PARAM 423 #endif 424 425 #define BCH_TIME_STATS() \ 426 x(btree_node_mem_alloc) \ 427 x(btree_node_split) \ 428 x(btree_node_compact) \ 429 x(btree_node_merge) \ 430 x(btree_node_sort) \ 431 x(btree_node_read) \ 432 x(btree_node_read_done) \ 433 x(btree_interior_update_foreground) \ 434 x(btree_interior_update_total) \ 435 x(btree_gc) \ 436 x(data_write) \ 437 x(data_read) \ 438 x(data_promote) \ 439 x(journal_flush_write) \ 440 x(journal_noflush_write) \ 441 x(journal_flush_seq) \ 442 x(blocked_journal_low_on_space) \ 443 x(blocked_journal_low_on_pin) \ 444 x(blocked_journal_max_in_flight) \ 445 x(blocked_allocate) \ 446 x(blocked_allocate_open_bucket) \ 447 x(blocked_write_buffer_full) \ 448 x(nocow_lock_contended) 449 450 enum bch_time_stats { 451 #define x(name) BCH_TIME_##name, 452 BCH_TIME_STATS() 453 #undef x 454 BCH_TIME_STAT_NR 455 }; 456 457 #include "alloc_types.h" 458 #include "btree_types.h" 459 #include "btree_node_scan_types.h" 460 #include "btree_write_buffer_types.h" 461 #include "buckets_types.h" 462 #include "buckets_waiting_for_journal_types.h" 463 #include "clock_types.h" 464 #include "disk_groups_types.h" 465 #include "ec_types.h" 466 #include "journal_types.h" 467 #include "keylist_types.h" 468 #include "quota_types.h" 469 #include "rebalance_types.h" 470 #include "replicas_types.h" 471 #include "subvolume_types.h" 472 #include "super_types.h" 473 #include "thread_with_file_types.h" 474 475 /* Number of nodes btree coalesce will try to coalesce at once */ 476 #define GC_MERGE_NODES 4U 477 478 /* Maximum number of nodes we might need to allocate atomically: */ 479 #define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1)) 480 481 /* Size of the freelist we allocate btree nodes from: */ 482 #define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4) 483 484 #define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX) 485 486 struct btree; 487 488 enum gc_phase { 489 GC_PHASE_NOT_RUNNING, 490 GC_PHASE_START, 491 GC_PHASE_SB, 492 493 GC_PHASE_BTREE_stripes, 494 GC_PHASE_BTREE_extents, 495 GC_PHASE_BTREE_inodes, 496 GC_PHASE_BTREE_dirents, 497 GC_PHASE_BTREE_xattrs, 498 GC_PHASE_BTREE_alloc, 499 GC_PHASE_BTREE_quotas, 500 GC_PHASE_BTREE_reflink, 501 GC_PHASE_BTREE_subvolumes, 502 GC_PHASE_BTREE_snapshots, 503 GC_PHASE_BTREE_lru, 504 GC_PHASE_BTREE_freespace, 505 GC_PHASE_BTREE_need_discard, 506 GC_PHASE_BTREE_backpointers, 507 GC_PHASE_BTREE_bucket_gens, 508 GC_PHASE_BTREE_snapshot_trees, 509 GC_PHASE_BTREE_deleted_inodes, 510 GC_PHASE_BTREE_logged_ops, 511 GC_PHASE_BTREE_rebalance_work, 512 GC_PHASE_BTREE_subvolume_children, 513 514 GC_PHASE_PENDING_DELETE, 515 }; 516 517 struct gc_pos { 518 enum gc_phase phase; 519 struct bpos pos; 520 unsigned level; 521 }; 522 523 struct reflink_gc { 524 u64 offset; 525 u32 size; 526 u32 refcount; 527 }; 528 529 typedef GENRADIX(struct reflink_gc) reflink_gc_table; 530 531 struct io_count { 532 u64 sectors[2][BCH_DATA_NR]; 533 }; 534 535 struct bch_dev { 536 struct kobject kobj; 537 struct percpu_ref ref; 538 struct completion ref_completion; 539 struct percpu_ref io_ref; 540 struct completion io_ref_completion; 541 542 struct bch_fs *fs; 543 544 u8 dev_idx; 545 /* 546 * Cached version of this device's member info from superblock 547 * Committed by bch2_write_super() -> bch_fs_mi_update() 548 */ 549 struct bch_member_cpu mi; 550 atomic64_t errors[BCH_MEMBER_ERROR_NR]; 551 552 __uuid_t uuid; 553 char name[BDEVNAME_SIZE]; 554 555 struct bch_sb_handle disk_sb; 556 struct bch_sb *sb_read_scratch; 557 int sb_write_error; 558 dev_t dev; 559 atomic_t flush_seq; 560 561 struct bch_devs_mask self; 562 563 /* biosets used in cloned bios for writing multiple replicas */ 564 struct bio_set replica_set; 565 566 /* 567 * Buckets: 568 * Per-bucket arrays are protected by c->mark_lock, bucket_lock and 569 * gc_lock, for device resize - holding any is sufficient for access: 570 * Or rcu_read_lock(), but only for ptr_stale(): 571 */ 572 struct bucket_array __rcu *buckets_gc; 573 struct bucket_gens __rcu *bucket_gens; 574 u8 *oldest_gen; 575 unsigned long *buckets_nouse; 576 struct rw_semaphore bucket_lock; 577 578 struct bch_dev_usage *usage_base; 579 struct bch_dev_usage __percpu *usage[JOURNAL_BUF_NR]; 580 struct bch_dev_usage __percpu *usage_gc; 581 582 /* Allocator: */ 583 u64 new_fs_bucket_idx; 584 u64 alloc_cursor; 585 586 unsigned nr_open_buckets; 587 unsigned nr_btree_reserve; 588 589 size_t inc_gen_needs_gc; 590 size_t inc_gen_really_needs_gc; 591 size_t buckets_waiting_on_journal; 592 593 atomic64_t rebalance_work; 594 595 struct journal_device journal; 596 u64 prev_journal_sector; 597 598 struct work_struct io_error_work; 599 600 /* The rest of this all shows up in sysfs */ 601 atomic64_t cur_latency[2]; 602 struct bch2_time_stats_quantiles io_latency[2]; 603 604 #define CONGESTED_MAX 1024 605 atomic_t congested; 606 u64 congested_last; 607 608 struct io_count __percpu *io_done; 609 }; 610 611 /* 612 * initial_gc_unfixed 613 * error 614 * topology error 615 */ 616 617 #define BCH_FS_FLAGS() \ 618 x(new_fs) \ 619 x(started) \ 620 x(may_go_rw) \ 621 x(rw) \ 622 x(was_rw) \ 623 x(stopping) \ 624 x(emergency_ro) \ 625 x(going_ro) \ 626 x(write_disable_complete) \ 627 x(clean_shutdown) \ 628 x(fsck_running) \ 629 x(initial_gc_unfixed) \ 630 x(need_another_gc) \ 631 x(need_delete_dead_snapshots) \ 632 x(error) \ 633 x(topology_error) \ 634 x(errors_fixed) \ 635 x(errors_not_fixed) 636 637 enum bch_fs_flags { 638 #define x(n) BCH_FS_##n, 639 BCH_FS_FLAGS() 640 #undef x 641 }; 642 643 struct btree_debug { 644 unsigned id; 645 }; 646 647 #define BCH_TRANSACTIONS_NR 128 648 649 struct btree_transaction_stats { 650 struct bch2_time_stats duration; 651 struct bch2_time_stats lock_hold_times; 652 struct mutex lock; 653 unsigned nr_max_paths; 654 unsigned journal_entries_size; 655 unsigned max_mem; 656 char *max_paths_text; 657 }; 658 659 struct bch_fs_pcpu { 660 u64 sectors_available; 661 }; 662 663 struct journal_seq_blacklist_table { 664 size_t nr; 665 struct journal_seq_blacklist_table_entry { 666 u64 start; 667 u64 end; 668 bool dirty; 669 } entries[]; 670 }; 671 672 struct journal_keys { 673 /* must match layout in darray_types.h */ 674 size_t nr, size; 675 struct journal_key { 676 u64 journal_seq; 677 u32 journal_offset; 678 enum btree_id btree_id:8; 679 unsigned level:8; 680 bool allocated; 681 bool overwritten; 682 struct bkey_i *k; 683 } *data; 684 /* 685 * Gap buffer: instead of all the empty space in the array being at the 686 * end of the buffer - from @nr to @size - the empty space is at @gap. 687 * This means that sequential insertions are O(n) instead of O(n^2). 688 */ 689 size_t gap; 690 atomic_t ref; 691 bool initial_ref_held; 692 }; 693 694 struct btree_trans_buf { 695 struct btree_trans *trans; 696 }; 697 698 #define REPLICAS_DELTA_LIST_MAX (1U << 16) 699 700 #define BCACHEFS_ROOT_SUBVOL_INUM \ 701 ((subvol_inum) { BCACHEFS_ROOT_SUBVOL, BCACHEFS_ROOT_INO }) 702 703 #define BCH_WRITE_REFS() \ 704 x(trans) \ 705 x(write) \ 706 x(promote) \ 707 x(node_rewrite) \ 708 x(stripe_create) \ 709 x(stripe_delete) \ 710 x(reflink) \ 711 x(fallocate) \ 712 x(fsync) \ 713 x(dio_write) \ 714 x(discard) \ 715 x(discard_fast) \ 716 x(invalidate) \ 717 x(delete_dead_snapshots) \ 718 x(snapshot_delete_pagecache) \ 719 x(sysfs) \ 720 x(btree_write_buffer) 721 722 enum bch_write_ref { 723 #define x(n) BCH_WRITE_REF_##n, 724 BCH_WRITE_REFS() 725 #undef x 726 BCH_WRITE_REF_NR, 727 }; 728 729 struct bch_fs { 730 struct closure cl; 731 732 struct list_head list; 733 struct kobject kobj; 734 struct kobject counters_kobj; 735 struct kobject internal; 736 struct kobject opts_dir; 737 struct kobject time_stats; 738 unsigned long flags; 739 740 int minor; 741 struct device *chardev; 742 struct super_block *vfs_sb; 743 dev_t dev; 744 char name[40]; 745 struct stdio_redirect *stdio; 746 struct task_struct *stdio_filter; 747 748 /* ro/rw, add/remove/resize devices: */ 749 struct rw_semaphore state_lock; 750 751 /* Counts outstanding writes, for clean transition to read-only */ 752 #ifdef BCH_WRITE_REF_DEBUG 753 atomic_long_t writes[BCH_WRITE_REF_NR]; 754 #else 755 struct percpu_ref writes; 756 #endif 757 /* 758 * Analagous to c->writes, for asynchronous ops that don't necessarily 759 * need fs to be read-write 760 */ 761 refcount_t ro_ref; 762 wait_queue_head_t ro_ref_wait; 763 764 struct work_struct read_only_work; 765 766 struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX]; 767 768 struct bch_replicas_cpu replicas; 769 struct bch_replicas_cpu replicas_gc; 770 struct mutex replicas_gc_lock; 771 mempool_t replicas_delta_pool; 772 773 struct journal_entry_res btree_root_journal_res; 774 struct journal_entry_res replicas_journal_res; 775 struct journal_entry_res clock_journal_res; 776 struct journal_entry_res dev_usage_journal_res; 777 778 struct bch_disk_groups_cpu __rcu *disk_groups; 779 780 struct bch_opts opts; 781 782 /* Updated by bch2_sb_update():*/ 783 struct { 784 __uuid_t uuid; 785 __uuid_t user_uuid; 786 787 u16 version; 788 u16 version_min; 789 u16 version_upgrade_complete; 790 791 u8 nr_devices; 792 u8 clean; 793 794 u8 encryption_type; 795 796 u64 time_base_lo; 797 u32 time_base_hi; 798 unsigned time_units_per_sec; 799 unsigned nsec_per_time_unit; 800 u64 features; 801 u64 compat; 802 unsigned long errors_silent[BITS_TO_LONGS(BCH_SB_ERR_MAX)]; 803 u64 btrees_lost_data; 804 } sb; 805 806 807 struct bch_sb_handle disk_sb; 808 809 unsigned short block_bits; /* ilog2(block_size) */ 810 811 u16 btree_foreground_merge_threshold; 812 813 struct closure sb_write; 814 struct mutex sb_lock; 815 816 /* snapshot.c: */ 817 struct snapshot_table __rcu *snapshots; 818 struct mutex snapshot_table_lock; 819 struct rw_semaphore snapshot_create_lock; 820 821 struct work_struct snapshot_delete_work; 822 struct work_struct snapshot_wait_for_pagecache_and_delete_work; 823 snapshot_id_list snapshots_unlinked; 824 struct mutex snapshots_unlinked_lock; 825 826 /* BTREE CACHE */ 827 struct bio_set btree_bio; 828 struct workqueue_struct *io_complete_wq; 829 830 struct btree_root btree_roots_known[BTREE_ID_NR]; 831 DARRAY(struct btree_root) btree_roots_extra; 832 struct mutex btree_root_lock; 833 834 struct btree_cache btree_cache; 835 836 /* 837 * Cache of allocated btree nodes - if we allocate a btree node and 838 * don't use it, if we free it that space can't be reused until going 839 * _all_ the way through the allocator (which exposes us to a livelock 840 * when allocating btree reserves fail halfway through) - instead, we 841 * can stick them here: 842 */ 843 struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2]; 844 unsigned btree_reserve_cache_nr; 845 struct mutex btree_reserve_cache_lock; 846 847 mempool_t btree_interior_update_pool; 848 struct list_head btree_interior_update_list; 849 struct list_head btree_interior_updates_unwritten; 850 struct mutex btree_interior_update_lock; 851 struct closure_waitlist btree_interior_update_wait; 852 853 struct workqueue_struct *btree_interior_update_worker; 854 struct work_struct btree_interior_update_work; 855 856 struct workqueue_struct *btree_node_rewrite_worker; 857 858 struct list_head pending_node_rewrites; 859 struct mutex pending_node_rewrites_lock; 860 861 /* btree_io.c: */ 862 spinlock_t btree_write_error_lock; 863 struct btree_write_stats { 864 atomic64_t nr; 865 atomic64_t bytes; 866 } btree_write_stats[BTREE_WRITE_TYPE_NR]; 867 868 /* btree_iter.c: */ 869 struct seqmutex btree_trans_lock; 870 struct list_head btree_trans_list; 871 mempool_t btree_trans_pool; 872 mempool_t btree_trans_mem_pool; 873 struct btree_trans_buf __percpu *btree_trans_bufs; 874 875 struct srcu_struct btree_trans_barrier; 876 bool btree_trans_barrier_initialized; 877 878 struct btree_key_cache btree_key_cache; 879 unsigned btree_key_cache_btrees; 880 881 struct btree_write_buffer btree_write_buffer; 882 883 struct workqueue_struct *btree_update_wq; 884 struct workqueue_struct *btree_io_complete_wq; 885 /* copygc needs its own workqueue for index updates.. */ 886 struct workqueue_struct *copygc_wq; 887 /* 888 * Use a dedicated wq for write ref holder tasks. Required to avoid 889 * dependency problems with other wq tasks that can block on ref 890 * draining, such as read-only transition. 891 */ 892 struct workqueue_struct *write_ref_wq; 893 894 /* ALLOCATION */ 895 struct bch_devs_mask rw_devs[BCH_DATA_NR]; 896 897 u64 capacity; /* sectors */ 898 899 /* 900 * When capacity _decreases_ (due to a disk being removed), we 901 * increment capacity_gen - this invalidates outstanding reservations 902 * and forces them to be revalidated 903 */ 904 u32 capacity_gen; 905 unsigned bucket_size_max; 906 907 atomic64_t sectors_available; 908 struct mutex sectors_available_lock; 909 910 struct bch_fs_pcpu __percpu *pcpu; 911 912 struct percpu_rw_semaphore mark_lock; 913 914 seqcount_t usage_lock; 915 struct bch_fs_usage *usage_base; 916 struct bch_fs_usage __percpu *usage[JOURNAL_BUF_NR]; 917 struct bch_fs_usage __percpu *usage_gc; 918 u64 __percpu *online_reserved; 919 920 /* single element mempool: */ 921 struct mutex usage_scratch_lock; 922 struct bch_fs_usage_online *usage_scratch; 923 924 struct io_clock io_clock[2]; 925 926 /* JOURNAL SEQ BLACKLIST */ 927 struct journal_seq_blacklist_table * 928 journal_seq_blacklist_table; 929 struct work_struct journal_seq_blacklist_gc_work; 930 931 /* ALLOCATOR */ 932 spinlock_t freelist_lock; 933 struct closure_waitlist freelist_wait; 934 935 open_bucket_idx_t open_buckets_freelist; 936 open_bucket_idx_t open_buckets_nr_free; 937 struct closure_waitlist open_buckets_wait; 938 struct open_bucket open_buckets[OPEN_BUCKETS_COUNT]; 939 open_bucket_idx_t open_buckets_hash[OPEN_BUCKETS_COUNT]; 940 941 open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT]; 942 open_bucket_idx_t open_buckets_partial_nr; 943 944 struct write_point btree_write_point; 945 struct write_point rebalance_write_point; 946 947 struct write_point write_points[WRITE_POINT_MAX]; 948 struct hlist_head write_points_hash[WRITE_POINT_HASH_NR]; 949 struct mutex write_points_hash_lock; 950 unsigned write_points_nr; 951 952 struct buckets_waiting_for_journal buckets_waiting_for_journal; 953 struct work_struct invalidate_work; 954 struct work_struct discard_work; 955 struct mutex discard_buckets_in_flight_lock; 956 DARRAY(struct bpos) discard_buckets_in_flight; 957 struct work_struct discard_fast_work; 958 959 /* GARBAGE COLLECTION */ 960 struct task_struct *gc_thread; 961 atomic_t kick_gc; 962 unsigned long gc_count; 963 964 enum btree_id gc_gens_btree; 965 struct bpos gc_gens_pos; 966 967 /* 968 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos] 969 * has been marked by GC. 970 * 971 * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.) 972 * 973 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread 974 * can read without a lock. 975 */ 976 seqcount_t gc_pos_lock; 977 struct gc_pos gc_pos; 978 979 /* 980 * The allocation code needs gc_mark in struct bucket to be correct, but 981 * it's not while a gc is in progress. 982 */ 983 struct rw_semaphore gc_lock; 984 struct mutex gc_gens_lock; 985 986 /* IO PATH */ 987 struct semaphore io_in_flight; 988 struct bio_set bio_read; 989 struct bio_set bio_read_split; 990 struct bio_set bio_write; 991 struct mutex bio_bounce_pages_lock; 992 mempool_t bio_bounce_pages; 993 struct bucket_nocow_lock_table 994 nocow_locks; 995 struct rhashtable promote_table; 996 997 mempool_t compression_bounce[2]; 998 mempool_t compress_workspace[BCH_COMPRESSION_TYPE_NR]; 999 mempool_t decompress_workspace; 1000 size_t zstd_workspace_size; 1001 1002 struct crypto_shash *sha256; 1003 struct crypto_sync_skcipher *chacha20; 1004 struct crypto_shash *poly1305; 1005 1006 atomic64_t key_version; 1007 1008 mempool_t large_bkey_pool; 1009 1010 /* MOVE.C */ 1011 struct list_head moving_context_list; 1012 struct mutex moving_context_lock; 1013 1014 /* REBALANCE */ 1015 struct bch_fs_rebalance rebalance; 1016 1017 /* COPYGC */ 1018 struct task_struct *copygc_thread; 1019 struct write_point copygc_write_point; 1020 s64 copygc_wait_at; 1021 s64 copygc_wait; 1022 bool copygc_running; 1023 wait_queue_head_t copygc_running_wq; 1024 1025 /* STRIPES: */ 1026 GENRADIX(struct stripe) stripes; 1027 GENRADIX(struct gc_stripe) gc_stripes; 1028 1029 struct hlist_head ec_stripes_new[32]; 1030 spinlock_t ec_stripes_new_lock; 1031 1032 ec_stripes_heap ec_stripes_heap; 1033 struct mutex ec_stripes_heap_lock; 1034 1035 /* ERASURE CODING */ 1036 struct list_head ec_stripe_head_list; 1037 struct mutex ec_stripe_head_lock; 1038 1039 struct list_head ec_stripe_new_list; 1040 struct mutex ec_stripe_new_lock; 1041 wait_queue_head_t ec_stripe_new_wait; 1042 1043 struct work_struct ec_stripe_create_work; 1044 u64 ec_stripe_hint; 1045 1046 struct work_struct ec_stripe_delete_work; 1047 1048 struct bio_set ec_bioset; 1049 1050 /* REFLINK */ 1051 reflink_gc_table reflink_gc_table; 1052 size_t reflink_gc_nr; 1053 1054 /* fs.c */ 1055 struct list_head vfs_inodes_list; 1056 struct mutex vfs_inodes_lock; 1057 1058 /* VFS IO PATH - fs-io.c */ 1059 struct bio_set writepage_bioset; 1060 struct bio_set dio_write_bioset; 1061 struct bio_set dio_read_bioset; 1062 struct bio_set nocow_flush_bioset; 1063 1064 /* QUOTAS */ 1065 struct bch_memquota_type quotas[QTYP_NR]; 1066 1067 /* RECOVERY */ 1068 u64 journal_replay_seq_start; 1069 u64 journal_replay_seq_end; 1070 /* 1071 * Two different uses: 1072 * "Has this fsck pass?" - i.e. should this type of error be an 1073 * emergency read-only 1074 * And, in certain situations fsck will rewind to an earlier pass: used 1075 * for signaling to the toplevel code which pass we want to run now. 1076 */ 1077 enum bch_recovery_pass curr_recovery_pass; 1078 /* bitmap of explicitly enabled recovery passes: */ 1079 u64 recovery_passes_explicit; 1080 /* bitmask of recovery passes that we actually ran */ 1081 u64 recovery_passes_complete; 1082 /* never rewinds version of curr_recovery_pass */ 1083 enum bch_recovery_pass recovery_pass_done; 1084 struct semaphore online_fsck_mutex; 1085 1086 /* DEBUG JUNK */ 1087 struct dentry *fs_debug_dir; 1088 struct dentry *btree_debug_dir; 1089 struct btree_debug btree_debug[BTREE_ID_NR]; 1090 struct btree *verify_data; 1091 struct btree_node *verify_ondisk; 1092 struct mutex verify_lock; 1093 1094 u64 *unused_inode_hints; 1095 unsigned inode_shard_bits; 1096 1097 /* 1098 * A btree node on disk could have too many bsets for an iterator to fit 1099 * on the stack - have to dynamically allocate them 1100 */ 1101 mempool_t fill_iter; 1102 1103 mempool_t btree_bounce_pool; 1104 1105 struct journal journal; 1106 GENRADIX(struct journal_replay *) journal_entries; 1107 u64 journal_entries_base_seq; 1108 struct journal_keys journal_keys; 1109 struct list_head journal_iters; 1110 1111 struct find_btree_nodes found_btree_nodes; 1112 1113 u64 last_bucket_seq_cleanup; 1114 1115 u64 counters_on_mount[BCH_COUNTER_NR]; 1116 u64 __percpu *counters; 1117 1118 unsigned btree_gc_periodic:1; 1119 unsigned copy_gc_enabled:1; 1120 bool promote_whole_extents; 1121 1122 struct bch2_time_stats times[BCH_TIME_STAT_NR]; 1123 1124 struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR]; 1125 1126 /* ERRORS */ 1127 struct list_head fsck_error_msgs; 1128 struct mutex fsck_error_msgs_lock; 1129 bool fsck_alloc_msgs_err; 1130 1131 bch_sb_errors_cpu fsck_error_counts; 1132 struct mutex fsck_error_counts_lock; 1133 }; 1134 1135 extern struct wait_queue_head bch2_read_only_wait; 1136 1137 static inline void bch2_write_ref_get(struct bch_fs *c, enum bch_write_ref ref) 1138 { 1139 #ifdef BCH_WRITE_REF_DEBUG 1140 atomic_long_inc(&c->writes[ref]); 1141 #else 1142 percpu_ref_get(&c->writes); 1143 #endif 1144 } 1145 1146 static inline bool __bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref) 1147 { 1148 #ifdef BCH_WRITE_REF_DEBUG 1149 return !test_bit(BCH_FS_going_ro, &c->flags) && 1150 atomic_long_inc_not_zero(&c->writes[ref]); 1151 #else 1152 return percpu_ref_tryget(&c->writes); 1153 #endif 1154 } 1155 1156 static inline bool bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref) 1157 { 1158 #ifdef BCH_WRITE_REF_DEBUG 1159 return !test_bit(BCH_FS_going_ro, &c->flags) && 1160 atomic_long_inc_not_zero(&c->writes[ref]); 1161 #else 1162 return percpu_ref_tryget_live(&c->writes); 1163 #endif 1164 } 1165 1166 static inline void bch2_write_ref_put(struct bch_fs *c, enum bch_write_ref ref) 1167 { 1168 #ifdef BCH_WRITE_REF_DEBUG 1169 long v = atomic_long_dec_return(&c->writes[ref]); 1170 1171 BUG_ON(v < 0); 1172 if (v) 1173 return; 1174 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) 1175 if (atomic_long_read(&c->writes[i])) 1176 return; 1177 1178 set_bit(BCH_FS_write_disable_complete, &c->flags); 1179 wake_up(&bch2_read_only_wait); 1180 #else 1181 percpu_ref_put(&c->writes); 1182 #endif 1183 } 1184 1185 static inline bool bch2_ro_ref_tryget(struct bch_fs *c) 1186 { 1187 if (test_bit(BCH_FS_stopping, &c->flags)) 1188 return false; 1189 1190 return refcount_inc_not_zero(&c->ro_ref); 1191 } 1192 1193 static inline void bch2_ro_ref_put(struct bch_fs *c) 1194 { 1195 if (refcount_dec_and_test(&c->ro_ref)) 1196 wake_up(&c->ro_ref_wait); 1197 } 1198 1199 static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages) 1200 { 1201 #ifndef NO_BCACHEFS_FS 1202 if (c->vfs_sb) 1203 c->vfs_sb->s_bdi->ra_pages = ra_pages; 1204 #endif 1205 } 1206 1207 static inline unsigned bucket_bytes(const struct bch_dev *ca) 1208 { 1209 return ca->mi.bucket_size << 9; 1210 } 1211 1212 static inline unsigned block_bytes(const struct bch_fs *c) 1213 { 1214 return c->opts.block_size; 1215 } 1216 1217 static inline unsigned block_sectors(const struct bch_fs *c) 1218 { 1219 return c->opts.block_size >> 9; 1220 } 1221 1222 static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree) 1223 { 1224 return c->btree_key_cache_btrees & (1U << btree); 1225 } 1226 1227 static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time) 1228 { 1229 struct timespec64 t; 1230 s32 rem; 1231 1232 time += c->sb.time_base_lo; 1233 1234 t.tv_sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem); 1235 t.tv_nsec = rem * c->sb.nsec_per_time_unit; 1236 return t; 1237 } 1238 1239 static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts) 1240 { 1241 return (ts.tv_sec * c->sb.time_units_per_sec + 1242 (int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo; 1243 } 1244 1245 static inline s64 bch2_current_time(const struct bch_fs *c) 1246 { 1247 struct timespec64 now; 1248 1249 ktime_get_coarse_real_ts64(&now); 1250 return timespec_to_bch2_time(c, now); 1251 } 1252 1253 static inline bool bch2_dev_exists2(const struct bch_fs *c, unsigned dev) 1254 { 1255 return dev < c->sb.nr_devices && c->devs[dev]; 1256 } 1257 1258 static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c) 1259 { 1260 struct stdio_redirect *stdio = c->stdio; 1261 1262 if (c->stdio_filter && c->stdio_filter != current) 1263 stdio = NULL; 1264 return stdio; 1265 } 1266 1267 static inline unsigned metadata_replicas_required(struct bch_fs *c) 1268 { 1269 return min(c->opts.metadata_replicas, 1270 c->opts.metadata_replicas_required); 1271 } 1272 1273 static inline unsigned data_replicas_required(struct bch_fs *c) 1274 { 1275 return min(c->opts.data_replicas, 1276 c->opts.data_replicas_required); 1277 } 1278 1279 #define BKEY_PADDED_ONSTACK(key, pad) \ 1280 struct { struct bkey_i key; __u64 key ## _pad[pad]; } 1281 1282 #endif /* _BCACHEFS_H */ 1283