1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _BCACHEFS_H 3 #define _BCACHEFS_H 4 5 /* 6 * SOME HIGH LEVEL CODE DOCUMENTATION: 7 * 8 * Bcache mostly works with cache sets, cache devices, and backing devices. 9 * 10 * Support for multiple cache devices hasn't quite been finished off yet, but 11 * it's about 95% plumbed through. A cache set and its cache devices is sort of 12 * like a md raid array and its component devices. Most of the code doesn't care 13 * about individual cache devices, the main abstraction is the cache set. 14 * 15 * Multiple cache devices is intended to give us the ability to mirror dirty 16 * cached data and metadata, without mirroring clean cached data. 17 * 18 * Backing devices are different, in that they have a lifetime independent of a 19 * cache set. When you register a newly formatted backing device it'll come up 20 * in passthrough mode, and then you can attach and detach a backing device from 21 * a cache set at runtime - while it's mounted and in use. Detaching implicitly 22 * invalidates any cached data for that backing device. 23 * 24 * A cache set can have multiple (many) backing devices attached to it. 25 * 26 * There's also flash only volumes - this is the reason for the distinction 27 * between struct cached_dev and struct bcache_device. A flash only volume 28 * works much like a bcache device that has a backing device, except the 29 * "cached" data is always dirty. The end result is that we get thin 30 * provisioning with very little additional code. 31 * 32 * Flash only volumes work but they're not production ready because the moving 33 * garbage collector needs more work. More on that later. 34 * 35 * BUCKETS/ALLOCATION: 36 * 37 * Bcache is primarily designed for caching, which means that in normal 38 * operation all of our available space will be allocated. Thus, we need an 39 * efficient way of deleting things from the cache so we can write new things to 40 * it. 41 * 42 * To do this, we first divide the cache device up into buckets. A bucket is the 43 * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ 44 * works efficiently. 45 * 46 * Each bucket has a 16 bit priority, and an 8 bit generation associated with 47 * it. The gens and priorities for all the buckets are stored contiguously and 48 * packed on disk (in a linked list of buckets - aside from the superblock, all 49 * of bcache's metadata is stored in buckets). 50 * 51 * The priority is used to implement an LRU. We reset a bucket's priority when 52 * we allocate it or on cache it, and every so often we decrement the priority 53 * of each bucket. It could be used to implement something more sophisticated, 54 * if anyone ever gets around to it. 55 * 56 * The generation is used for invalidating buckets. Each pointer also has an 8 57 * bit generation embedded in it; for a pointer to be considered valid, its gen 58 * must match the gen of the bucket it points into. Thus, to reuse a bucket all 59 * we have to do is increment its gen (and write its new gen to disk; we batch 60 * this up). 61 * 62 * Bcache is entirely COW - we never write twice to a bucket, even buckets that 63 * contain metadata (including btree nodes). 64 * 65 * THE BTREE: 66 * 67 * Bcache is in large part design around the btree. 68 * 69 * At a high level, the btree is just an index of key -> ptr tuples. 70 * 71 * Keys represent extents, and thus have a size field. Keys also have a variable 72 * number of pointers attached to them (potentially zero, which is handy for 73 * invalidating the cache). 74 * 75 * The key itself is an inode:offset pair. The inode number corresponds to a 76 * backing device or a flash only volume. The offset is the ending offset of the 77 * extent within the inode - not the starting offset; this makes lookups 78 * slightly more convenient. 79 * 80 * Pointers contain the cache device id, the offset on that device, and an 8 bit 81 * generation number. More on the gen later. 82 * 83 * Index lookups are not fully abstracted - cache lookups in particular are 84 * still somewhat mixed in with the btree code, but things are headed in that 85 * direction. 86 * 87 * Updates are fairly well abstracted, though. There are two different ways of 88 * updating the btree; insert and replace. 89 * 90 * BTREE_INSERT will just take a list of keys and insert them into the btree - 91 * overwriting (possibly only partially) any extents they overlap with. This is 92 * used to update the index after a write. 93 * 94 * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is 95 * overwriting a key that matches another given key. This is used for inserting 96 * data into the cache after a cache miss, and for background writeback, and for 97 * the moving garbage collector. 98 * 99 * There is no "delete" operation; deleting things from the index is 100 * accomplished by either by invalidating pointers (by incrementing a bucket's 101 * gen) or by inserting a key with 0 pointers - which will overwrite anything 102 * previously present at that location in the index. 103 * 104 * This means that there are always stale/invalid keys in the btree. They're 105 * filtered out by the code that iterates through a btree node, and removed when 106 * a btree node is rewritten. 107 * 108 * BTREE NODES: 109 * 110 * Our unit of allocation is a bucket, and we can't arbitrarily allocate and 111 * free smaller than a bucket - so, that's how big our btree nodes are. 112 * 113 * (If buckets are really big we'll only use part of the bucket for a btree node 114 * - no less than 1/4th - but a bucket still contains no more than a single 115 * btree node. I'd actually like to change this, but for now we rely on the 116 * bucket's gen for deleting btree nodes when we rewrite/split a node.) 117 * 118 * Anyways, btree nodes are big - big enough to be inefficient with a textbook 119 * btree implementation. 120 * 121 * The way this is solved is that btree nodes are internally log structured; we 122 * can append new keys to an existing btree node without rewriting it. This 123 * means each set of keys we write is sorted, but the node is not. 124 * 125 * We maintain this log structure in memory - keeping 1Mb of keys sorted would 126 * be expensive, and we have to distinguish between the keys we have written and 127 * the keys we haven't. So to do a lookup in a btree node, we have to search 128 * each sorted set. But we do merge written sets together lazily, so the cost of 129 * these extra searches is quite low (normally most of the keys in a btree node 130 * will be in one big set, and then there'll be one or two sets that are much 131 * smaller). 132 * 133 * This log structure makes bcache's btree more of a hybrid between a 134 * conventional btree and a compacting data structure, with some of the 135 * advantages of both. 136 * 137 * GARBAGE COLLECTION: 138 * 139 * We can't just invalidate any bucket - it might contain dirty data or 140 * metadata. If it once contained dirty data, other writes might overwrite it 141 * later, leaving no valid pointers into that bucket in the index. 142 * 143 * Thus, the primary purpose of garbage collection is to find buckets to reuse. 144 * It also counts how much valid data it each bucket currently contains, so that 145 * allocation can reuse buckets sooner when they've been mostly overwritten. 146 * 147 * It also does some things that are really internal to the btree 148 * implementation. If a btree node contains pointers that are stale by more than 149 * some threshold, it rewrites the btree node to avoid the bucket's generation 150 * wrapping around. It also merges adjacent btree nodes if they're empty enough. 151 * 152 * THE JOURNAL: 153 * 154 * Bcache's journal is not necessary for consistency; we always strictly 155 * order metadata writes so that the btree and everything else is consistent on 156 * disk in the event of an unclean shutdown, and in fact bcache had writeback 157 * caching (with recovery from unclean shutdown) before journalling was 158 * implemented. 159 * 160 * Rather, the journal is purely a performance optimization; we can't complete a 161 * write until we've updated the index on disk, otherwise the cache would be 162 * inconsistent in the event of an unclean shutdown. This means that without the 163 * journal, on random write workloads we constantly have to update all the leaf 164 * nodes in the btree, and those writes will be mostly empty (appending at most 165 * a few keys each) - highly inefficient in terms of amount of metadata writes, 166 * and it puts more strain on the various btree resorting/compacting code. 167 * 168 * The journal is just a log of keys we've inserted; on startup we just reinsert 169 * all the keys in the open journal entries. That means that when we're updating 170 * a node in the btree, we can wait until a 4k block of keys fills up before 171 * writing them out. 172 * 173 * For simplicity, we only journal updates to leaf nodes; updates to parent 174 * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth 175 * the complexity to deal with journalling them (in particular, journal replay) 176 * - updates to non leaf nodes just happen synchronously (see btree_split()). 177 */ 178 179 #undef pr_fmt 180 #ifdef __KERNEL__ 181 #define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__ 182 #else 183 #define pr_fmt(fmt) "%s() " fmt "\n", __func__ 184 #endif 185 186 #ifdef CONFIG_BCACHEFS_DEBUG 187 #define ENUMERATED_REF_DEBUG 188 #endif 189 190 #ifndef dynamic_fault 191 #define dynamic_fault(...) 0 192 #endif 193 194 #define race_fault(...) dynamic_fault("bcachefs:race") 195 196 #include <linux/backing-dev-defs.h> 197 #include <linux/bug.h> 198 #include <linux/bio.h> 199 #include <linux/closure.h> 200 #include <linux/kobject.h> 201 #include <linux/list.h> 202 #include <linux/math64.h> 203 #include <linux/mutex.h> 204 #include <linux/percpu-refcount.h> 205 #include <linux/percpu-rwsem.h> 206 #include <linux/refcount.h> 207 #include <linux/rhashtable.h> 208 #include <linux/rwsem.h> 209 #include <linux/semaphore.h> 210 #include <linux/seqlock.h> 211 #include <linux/shrinker.h> 212 #include <linux/srcu.h> 213 #include <linux/types.h> 214 #include <linux/workqueue.h> 215 #include <linux/zstd.h> 216 #include <linux/unicode.h> 217 218 #include "bcachefs_format.h" 219 #include "btree_journal_iter_types.h" 220 #include "disk_accounting_types.h" 221 #include "errcode.h" 222 #include "fast_list.h" 223 #include "fifo.h" 224 #include "nocow_locking_types.h" 225 #include "opts.h" 226 #include "sb-errors_types.h" 227 #include "seqmutex.h" 228 #include "snapshot_types.h" 229 #include "time_stats.h" 230 #include "util.h" 231 232 #include "alloc_types.h" 233 #include "async_objs_types.h" 234 #include "btree_gc_types.h" 235 #include "btree_types.h" 236 #include "btree_node_scan_types.h" 237 #include "btree_write_buffer_types.h" 238 #include "buckets_types.h" 239 #include "buckets_waiting_for_journal_types.h" 240 #include "clock_types.h" 241 #include "disk_groups_types.h" 242 #include "ec_types.h" 243 #include "enumerated_ref_types.h" 244 #include "journal_types.h" 245 #include "keylist_types.h" 246 #include "quota_types.h" 247 #include "rebalance_types.h" 248 #include "recovery_passes_types.h" 249 #include "replicas_types.h" 250 #include "sb-members_types.h" 251 #include "subvolume_types.h" 252 #include "super_types.h" 253 #include "thread_with_file_types.h" 254 255 #include "trace.h" 256 257 #define count_event(_c, _name) this_cpu_inc((_c)->counters[BCH_COUNTER_##_name]) 258 259 #define trace_and_count(_c, _name, ...) \ 260 do { \ 261 count_event(_c, _name); \ 262 trace_##_name(__VA_ARGS__); \ 263 } while (0) 264 265 #define bch2_fs_init_fault(name) \ 266 dynamic_fault("bcachefs:bch_fs_init:" name) 267 #define bch2_meta_read_fault(name) \ 268 dynamic_fault("bcachefs:meta:read:" name) 269 #define bch2_meta_write_fault(name) \ 270 dynamic_fault("bcachefs:meta:write:" name) 271 272 #ifdef __KERNEL__ 273 #define BCACHEFS_LOG_PREFIX 274 #endif 275 276 #ifdef BCACHEFS_LOG_PREFIX 277 278 #define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, ((_c)->name) 279 #define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", ((_ca)->name) 280 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset) 281 #define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum) 282 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ 283 "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset) 284 285 #else 286 287 #define bch2_log_msg(_c, fmt) fmt 288 #define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name) 289 #define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset) 290 #define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum) 291 #define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ 292 "inum %llu offset %llu: " fmt "\n", (_inum), (_offset) 293 294 #endif 295 296 #define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n") 297 298 void bch2_print_str(struct bch_fs *, const char *, const char *); 299 300 __printf(2, 3) 301 void bch2_print_opts(struct bch_opts *, const char *, ...); 302 303 __printf(2, 3) 304 void __bch2_print(struct bch_fs *c, const char *fmt, ...); 305 306 #define maybe_dev_to_fs(_c) _Generic((_c), \ 307 struct bch_dev *: ((struct bch_dev *) (_c))->fs, \ 308 struct bch_fs *: (_c)) 309 310 #define bch2_print(_c, ...) __bch2_print(maybe_dev_to_fs(_c), __VA_ARGS__) 311 312 #define bch2_print_ratelimited(_c, ...) \ 313 do { \ 314 static DEFINE_RATELIMIT_STATE(_rs, \ 315 DEFAULT_RATELIMIT_INTERVAL, \ 316 DEFAULT_RATELIMIT_BURST); \ 317 \ 318 if (__ratelimit(&_rs)) \ 319 bch2_print(_c, __VA_ARGS__); \ 320 } while (0) 321 322 #define bch2_print_str_ratelimited(_c, ...) \ 323 do { \ 324 static DEFINE_RATELIMIT_STATE(_rs, \ 325 DEFAULT_RATELIMIT_INTERVAL, \ 326 DEFAULT_RATELIMIT_BURST); \ 327 \ 328 if (__ratelimit(&_rs)) \ 329 bch2_print_str(_c, __VA_ARGS__); \ 330 } while (0) 331 332 #define bch_info(c, fmt, ...) \ 333 bch2_print(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__) 334 #define bch_info_ratelimited(c, fmt, ...) \ 335 bch2_print_ratelimited(c, KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__) 336 #define bch_notice(c, fmt, ...) \ 337 bch2_print(c, KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__) 338 #define bch_warn(c, fmt, ...) \ 339 bch2_print(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) 340 #define bch_warn_ratelimited(c, fmt, ...) \ 341 bch2_print_ratelimited(c, KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) 342 343 #define bch_err(c, fmt, ...) \ 344 bch2_print(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) 345 #define bch_err_dev(ca, fmt, ...) \ 346 bch2_print(c, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) 347 #define bch_err_dev_offset(ca, _offset, fmt, ...) \ 348 bch2_print(c, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) 349 #define bch_err_inum(c, _inum, fmt, ...) \ 350 bch2_print(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) 351 #define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \ 352 bch2_print(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) 353 354 #define bch_err_ratelimited(c, fmt, ...) \ 355 bch2_print_ratelimited(c, KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) 356 #define bch_err_dev_ratelimited(ca, fmt, ...) \ 357 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) 358 #define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \ 359 bch2_print_ratelimited(ca, KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) 360 #define bch_err_inum_ratelimited(c, _inum, fmt, ...) \ 361 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) 362 #define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \ 363 bch2_print_ratelimited(c, KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) 364 365 static inline bool should_print_err(int err) 366 { 367 return err && !bch2_err_matches(err, BCH_ERR_transaction_restart); 368 } 369 370 #define bch_err_fn(_c, _ret) \ 371 do { \ 372 if (should_print_err(_ret)) \ 373 bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ 374 } while (0) 375 376 #define bch_err_fn_ratelimited(_c, _ret) \ 377 do { \ 378 if (should_print_err(_ret)) \ 379 bch_err_ratelimited(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ 380 } while (0) 381 382 #define bch_err_msg(_c, _ret, _msg, ...) \ 383 do { \ 384 if (should_print_err(_ret)) \ 385 bch_err(_c, "%s(): error " _msg " %s", __func__, \ 386 ##__VA_ARGS__, bch2_err_str(_ret)); \ 387 } while (0) 388 389 #define bch_verbose(c, fmt, ...) \ 390 do { \ 391 if ((c)->opts.verbose) \ 392 bch_info(c, fmt, ##__VA_ARGS__); \ 393 } while (0) 394 395 #define bch_verbose_ratelimited(c, fmt, ...) \ 396 do { \ 397 if ((c)->opts.verbose) \ 398 bch_info_ratelimited(c, fmt, ##__VA_ARGS__); \ 399 } while (0) 400 401 #define pr_verbose_init(opts, fmt, ...) \ 402 do { \ 403 if (opt_get(opts, verbose)) \ 404 pr_info(fmt, ##__VA_ARGS__); \ 405 } while (0) 406 407 static inline int __bch2_err_trace(struct bch_fs *c, int err) 408 { 409 trace_error_throw(c, err, _THIS_IP_); 410 return err; 411 } 412 413 #define bch_err_throw(_c, _err) __bch2_err_trace(_c, -BCH_ERR_##_err) 414 415 /* Parameters that are useful for debugging, but should always be compiled in: */ 416 #define BCH_DEBUG_PARAMS_ALWAYS() \ 417 BCH_DEBUG_PARAM(key_merging_disabled, \ 418 "Disables merging of extents") \ 419 BCH_DEBUG_PARAM(btree_node_merging_disabled, \ 420 "Disables merging of btree nodes") \ 421 BCH_DEBUG_PARAM(btree_gc_always_rewrite, \ 422 "Causes mark and sweep to compact and rewrite every " \ 423 "btree node it traverses") \ 424 BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \ 425 "Disables rewriting of btree nodes during mark and sweep")\ 426 BCH_DEBUG_PARAM(btree_shrinker_disabled, \ 427 "Disables the shrinker callback for the btree node cache")\ 428 BCH_DEBUG_PARAM(verify_btree_ondisk, \ 429 "Reread btree nodes at various points to verify the " \ 430 "mergesort in the read path against modifications " \ 431 "done in memory") \ 432 BCH_DEBUG_PARAM(verify_all_btree_replicas, \ 433 "When reading btree nodes, read all replicas and " \ 434 "compare them") \ 435 BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \ 436 "Don't use the write buffer for backpointers, enabling "\ 437 "extra runtime checks") \ 438 BCH_DEBUG_PARAM(debug_check_btree_locking, \ 439 "Enable additional asserts for btree locking") \ 440 BCH_DEBUG_PARAM(debug_check_iterators, \ 441 "Enables extra verification for btree iterators") \ 442 BCH_DEBUG_PARAM(debug_check_bset_lookups, \ 443 "Enables extra verification for bset lookups") \ 444 BCH_DEBUG_PARAM(debug_check_btree_accounting, \ 445 "Verify btree accounting for keys within a node") \ 446 BCH_DEBUG_PARAM(debug_check_bkey_unpack, \ 447 "Enables extra verification for bkey unpack") 448 449 /* Parameters that should only be compiled in debug mode: */ 450 #define BCH_DEBUG_PARAMS_DEBUG() \ 451 BCH_DEBUG_PARAM(journal_seq_verify, \ 452 "Store the journal sequence number in the version " \ 453 "number of every btree key, and verify that btree " \ 454 "update ordering is preserved during recovery") \ 455 BCH_DEBUG_PARAM(inject_invalid_keys, \ 456 "Store the journal sequence number in the version " \ 457 "number of every btree key, and verify that btree " \ 458 "update ordering is preserved during recovery") \ 459 BCH_DEBUG_PARAM(test_alloc_startup, \ 460 "Force allocator startup to use the slowpath where it" \ 461 "can't find enough free buckets without invalidating" \ 462 "cached data") \ 463 BCH_DEBUG_PARAM(force_reconstruct_read, \ 464 "Force reads to use the reconstruct path, when reading" \ 465 "from erasure coded extents") \ 466 BCH_DEBUG_PARAM(test_restart_gc, \ 467 "Test restarting mark and sweep gc when bucket gens change") 468 469 #define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG() 470 471 #ifdef CONFIG_BCACHEFS_DEBUG 472 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL() 473 #else 474 #define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS() 475 #endif 476 477 #define BCH_DEBUG_PARAM(name, description) extern struct static_key_false bch2_##name; 478 BCH_DEBUG_PARAMS_ALL() 479 #undef BCH_DEBUG_PARAM 480 481 #define BCH_TIME_STATS() \ 482 x(btree_node_mem_alloc) \ 483 x(btree_node_split) \ 484 x(btree_node_compact) \ 485 x(btree_node_merge) \ 486 x(btree_node_sort) \ 487 x(btree_node_get) \ 488 x(btree_node_read) \ 489 x(btree_node_read_done) \ 490 x(btree_node_write) \ 491 x(btree_interior_update_foreground) \ 492 x(btree_interior_update_total) \ 493 x(btree_gc) \ 494 x(data_write) \ 495 x(data_write_to_submit) \ 496 x(data_write_to_queue) \ 497 x(data_write_to_btree_update) \ 498 x(data_write_btree_update) \ 499 x(data_read) \ 500 x(data_promote) \ 501 x(journal_flush_write) \ 502 x(journal_noflush_write) \ 503 x(journal_flush_seq) \ 504 x(blocked_journal_low_on_space) \ 505 x(blocked_journal_low_on_pin) \ 506 x(blocked_journal_max_in_flight) \ 507 x(blocked_journal_max_open) \ 508 x(blocked_key_cache_flush) \ 509 x(blocked_allocate) \ 510 x(blocked_allocate_open_bucket) \ 511 x(blocked_write_buffer_full) \ 512 x(nocow_lock_contended) 513 514 enum bch_time_stats { 515 #define x(name) BCH_TIME_##name, 516 BCH_TIME_STATS() 517 #undef x 518 BCH_TIME_STAT_NR 519 }; 520 521 /* Number of nodes btree coalesce will try to coalesce at once */ 522 #define GC_MERGE_NODES 4U 523 524 /* Maximum number of nodes we might need to allocate atomically: */ 525 #define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1)) 526 527 /* Size of the freelist we allocate btree nodes from: */ 528 #define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4) 529 530 #define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX) 531 532 struct btree; 533 534 struct io_count { 535 u64 sectors[2][BCH_DATA_NR]; 536 }; 537 538 struct discard_in_flight { 539 bool in_progress:1; 540 u64 bucket:63; 541 }; 542 543 #define BCH_DEV_READ_REFS() \ 544 x(bch2_online_devs) \ 545 x(trans_mark_dev_sbs) \ 546 x(read_fua_test) \ 547 x(sb_field_resize) \ 548 x(write_super) \ 549 x(journal_read) \ 550 x(fs_journal_alloc) \ 551 x(fs_resize_on_mount) \ 552 x(btree_node_read) \ 553 x(btree_node_read_all_replicas) \ 554 x(btree_node_scrub) \ 555 x(btree_node_write) \ 556 x(btree_node_scan) \ 557 x(btree_verify_replicas) \ 558 x(btree_node_ondisk_to_text) \ 559 x(io_read) \ 560 x(check_extent_checksums) \ 561 x(ec_block) 562 563 enum bch_dev_read_ref { 564 #define x(n) BCH_DEV_READ_REF_##n, 565 BCH_DEV_READ_REFS() 566 #undef x 567 BCH_DEV_READ_REF_NR, 568 }; 569 570 #define BCH_DEV_WRITE_REFS() \ 571 x(journal_write) \ 572 x(journal_do_discards) \ 573 x(dev_do_discards) \ 574 x(discard_one_bucket_fast) \ 575 x(do_invalidates) \ 576 x(nocow_flush) \ 577 x(io_write) \ 578 x(ec_block) \ 579 x(ec_bucket_zero) 580 581 enum bch_dev_write_ref { 582 #define x(n) BCH_DEV_WRITE_REF_##n, 583 BCH_DEV_WRITE_REFS() 584 #undef x 585 BCH_DEV_WRITE_REF_NR, 586 }; 587 588 struct bucket_bitmap { 589 unsigned long *buckets; 590 u64 nr; 591 struct mutex lock; 592 }; 593 594 struct bch_dev { 595 struct kobject kobj; 596 #ifdef CONFIG_BCACHEFS_DEBUG 597 atomic_long_t ref; 598 bool dying; 599 unsigned long last_put; 600 #else 601 struct percpu_ref ref; 602 #endif 603 struct completion ref_completion; 604 struct enumerated_ref io_ref[2]; 605 606 struct bch_fs *fs; 607 608 u8 dev_idx; 609 /* 610 * Cached version of this device's member info from superblock 611 * Committed by bch2_write_super() -> bch_fs_mi_update() 612 */ 613 struct bch_member_cpu mi; 614 atomic64_t errors[BCH_MEMBER_ERROR_NR]; 615 unsigned long write_errors_start; 616 617 __uuid_t uuid; 618 char name[BDEVNAME_SIZE]; 619 620 struct bch_sb_handle disk_sb; 621 struct bch_sb *sb_read_scratch; 622 int sb_write_error; 623 dev_t dev; 624 atomic_t flush_seq; 625 626 struct bch_devs_mask self; 627 628 /* 629 * Buckets: 630 * Per-bucket arrays are protected by either rcu_read_lock or 631 * state_lock, for device resize. 632 */ 633 GENRADIX(struct bucket) buckets_gc; 634 struct bucket_gens __rcu *bucket_gens; 635 u8 *oldest_gen; 636 unsigned long *buckets_nouse; 637 638 struct bucket_bitmap bucket_backpointer_mismatch; 639 struct bucket_bitmap bucket_backpointer_empty; 640 641 struct bch_dev_usage_full __percpu 642 *usage; 643 644 /* Allocator: */ 645 u64 alloc_cursor[3]; 646 647 unsigned nr_open_buckets; 648 unsigned nr_partial_buckets; 649 unsigned nr_btree_reserve; 650 651 struct work_struct invalidate_work; 652 struct work_struct discard_work; 653 struct mutex discard_buckets_in_flight_lock; 654 DARRAY(struct discard_in_flight) discard_buckets_in_flight; 655 struct work_struct discard_fast_work; 656 657 atomic64_t rebalance_work; 658 659 struct journal_device journal; 660 u64 prev_journal_sector; 661 662 struct work_struct io_error_work; 663 664 /* The rest of this all shows up in sysfs */ 665 atomic64_t cur_latency[2]; 666 struct bch2_time_stats_quantiles io_latency[2]; 667 668 #define CONGESTED_MAX 1024 669 atomic_t congested; 670 u64 congested_last; 671 672 struct io_count __percpu *io_done; 673 }; 674 675 /* 676 * initial_gc_unfixed 677 * error 678 * topology error 679 */ 680 681 #define BCH_FS_FLAGS() \ 682 x(new_fs) \ 683 x(started) \ 684 x(clean_recovery) \ 685 x(btree_running) \ 686 x(accounting_replay_done) \ 687 x(may_go_rw) \ 688 x(rw) \ 689 x(rw_init_done) \ 690 x(was_rw) \ 691 x(stopping) \ 692 x(emergency_ro) \ 693 x(going_ro) \ 694 x(write_disable_complete) \ 695 x(clean_shutdown) \ 696 x(in_recovery) \ 697 x(in_fsck) \ 698 x(initial_gc_unfixed) \ 699 x(need_delete_dead_snapshots) \ 700 x(error) \ 701 x(topology_error) \ 702 x(errors_fixed) \ 703 x(errors_not_fixed) \ 704 x(no_invalid_checks) \ 705 x(discard_mount_opt_set) \ 706 707 enum bch_fs_flags { 708 #define x(n) BCH_FS_##n, 709 BCH_FS_FLAGS() 710 #undef x 711 }; 712 713 struct btree_debug { 714 unsigned id; 715 }; 716 717 #define BCH_TRANSACTIONS_NR 128 718 719 struct btree_transaction_stats { 720 struct bch2_time_stats duration; 721 struct bch2_time_stats lock_hold_times; 722 struct mutex lock; 723 unsigned nr_max_paths; 724 unsigned max_mem; 725 #ifdef CONFIG_BCACHEFS_TRANS_KMALLOC_TRACE 726 darray_trans_kmalloc_trace trans_kmalloc_trace; 727 #endif 728 char *max_paths_text; 729 }; 730 731 struct bch_fs_pcpu { 732 u64 sectors_available; 733 }; 734 735 struct journal_seq_blacklist_table { 736 size_t nr; 737 struct journal_seq_blacklist_table_entry { 738 u64 start; 739 u64 end; 740 bool dirty; 741 } entries[]; 742 }; 743 744 struct btree_trans_buf { 745 struct btree_trans *trans; 746 }; 747 748 #define BCH_WRITE_REFS() \ 749 x(journal) \ 750 x(trans) \ 751 x(write) \ 752 x(promote) \ 753 x(node_rewrite) \ 754 x(stripe_create) \ 755 x(stripe_delete) \ 756 x(reflink) \ 757 x(fallocate) \ 758 x(fsync) \ 759 x(dio_write) \ 760 x(discard) \ 761 x(discard_fast) \ 762 x(check_discard_freespace_key) \ 763 x(invalidate) \ 764 x(delete_dead_snapshots) \ 765 x(gc_gens) \ 766 x(snapshot_delete_pagecache) \ 767 x(sysfs) \ 768 x(btree_write_buffer) \ 769 x(btree_node_scrub) \ 770 x(async_recovery_passes) \ 771 x(ioctl_data) 772 773 enum bch_write_ref { 774 #define x(n) BCH_WRITE_REF_##n, 775 BCH_WRITE_REFS() 776 #undef x 777 BCH_WRITE_REF_NR, 778 }; 779 780 #define BCH_FS_DEFAULT_UTF8_ENCODING UNICODE_AGE(12, 1, 0) 781 782 struct bch_fs { 783 struct closure cl; 784 785 struct list_head list; 786 struct kobject kobj; 787 struct kobject counters_kobj; 788 struct kobject internal; 789 struct kobject opts_dir; 790 struct kobject time_stats; 791 unsigned long flags; 792 793 int minor; 794 struct device *chardev; 795 struct super_block *vfs_sb; 796 dev_t dev; 797 char name[40]; 798 struct stdio_redirect *stdio; 799 struct task_struct *stdio_filter; 800 801 /* ro/rw, add/remove/resize devices: */ 802 struct rw_semaphore state_lock; 803 804 /* Counts outstanding writes, for clean transition to read-only */ 805 struct enumerated_ref writes; 806 /* 807 * Certain operations are only allowed in single threaded mode, during 808 * recovery, and we want to assert that this is the case: 809 */ 810 struct task_struct *recovery_task; 811 812 /* 813 * Analagous to c->writes, for asynchronous ops that don't necessarily 814 * need fs to be read-write 815 */ 816 refcount_t ro_ref; 817 wait_queue_head_t ro_ref_wait; 818 819 struct work_struct read_only_work; 820 821 struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX]; 822 823 struct bch_accounting_mem accounting; 824 825 struct bch_replicas_cpu replicas; 826 struct bch_replicas_cpu replicas_gc; 827 struct mutex replicas_gc_lock; 828 829 struct journal_entry_res btree_root_journal_res; 830 struct journal_entry_res clock_journal_res; 831 832 struct bch_disk_groups_cpu __rcu *disk_groups; 833 834 struct bch_opts opts; 835 836 /* Updated by bch2_sb_update():*/ 837 struct { 838 __uuid_t uuid; 839 __uuid_t user_uuid; 840 841 u16 version; 842 u16 version_incompat; 843 u16 version_incompat_allowed; 844 u16 version_min; 845 u16 version_upgrade_complete; 846 847 u8 nr_devices; 848 u8 clean; 849 bool multi_device; /* true if we've ever had more than one device */ 850 851 u8 encryption_type; 852 853 u64 time_base_lo; 854 u32 time_base_hi; 855 unsigned time_units_per_sec; 856 unsigned nsec_per_time_unit; 857 u64 features; 858 u64 compat; 859 u64 recovery_passes_required; 860 unsigned long errors_silent[BITS_TO_LONGS(BCH_FSCK_ERR_MAX)]; 861 u64 btrees_lost_data; 862 } sb; 863 DARRAY(enum bcachefs_metadata_version) 864 incompat_versions_requested; 865 866 #ifdef CONFIG_UNICODE 867 struct unicode_map *cf_encoding; 868 #endif 869 870 struct bch_sb_handle disk_sb; 871 872 unsigned short block_bits; /* ilog2(block_size) */ 873 874 u16 btree_foreground_merge_threshold; 875 876 struct closure sb_write; 877 struct mutex sb_lock; 878 879 /* snapshot.c: */ 880 struct snapshot_table __rcu *snapshots; 881 struct mutex snapshot_table_lock; 882 struct rw_semaphore snapshot_create_lock; 883 884 struct snapshot_delete snapshot_delete; 885 struct work_struct snapshot_wait_for_pagecache_and_delete_work; 886 snapshot_id_list snapshots_unlinked; 887 struct mutex snapshots_unlinked_lock; 888 889 /* BTREE CACHE */ 890 struct bio_set btree_bio; 891 struct workqueue_struct *btree_read_complete_wq; 892 struct workqueue_struct *btree_write_submit_wq; 893 894 struct btree_root btree_roots_known[BTREE_ID_NR]; 895 DARRAY(struct btree_root) btree_roots_extra; 896 struct mutex btree_root_lock; 897 898 struct btree_cache btree_cache; 899 900 /* 901 * Cache of allocated btree nodes - if we allocate a btree node and 902 * don't use it, if we free it that space can't be reused until going 903 * _all_ the way through the allocator (which exposes us to a livelock 904 * when allocating btree reserves fail halfway through) - instead, we 905 * can stick them here: 906 */ 907 struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2]; 908 unsigned btree_reserve_cache_nr; 909 struct mutex btree_reserve_cache_lock; 910 911 mempool_t btree_interior_update_pool; 912 struct list_head btree_interior_update_list; 913 struct list_head btree_interior_updates_unwritten; 914 struct mutex btree_interior_update_lock; 915 struct closure_waitlist btree_interior_update_wait; 916 917 struct workqueue_struct *btree_interior_update_worker; 918 struct work_struct btree_interior_update_work; 919 920 struct workqueue_struct *btree_node_rewrite_worker; 921 struct list_head btree_node_rewrites; 922 struct list_head btree_node_rewrites_pending; 923 spinlock_t btree_node_rewrites_lock; 924 struct closure_waitlist btree_node_rewrites_wait; 925 926 /* btree_io.c: */ 927 spinlock_t btree_write_error_lock; 928 struct btree_write_stats { 929 atomic64_t nr; 930 atomic64_t bytes; 931 } btree_write_stats[BTREE_WRITE_TYPE_NR]; 932 933 /* btree_iter.c: */ 934 struct seqmutex btree_trans_lock; 935 struct list_head btree_trans_list; 936 mempool_t btree_trans_pool; 937 mempool_t btree_trans_mem_pool; 938 struct btree_trans_buf __percpu *btree_trans_bufs; 939 940 struct srcu_struct btree_trans_barrier; 941 bool btree_trans_barrier_initialized; 942 943 struct btree_key_cache btree_key_cache; 944 unsigned btree_key_cache_btrees; 945 946 struct btree_write_buffer btree_write_buffer; 947 948 struct workqueue_struct *btree_update_wq; 949 struct workqueue_struct *btree_write_complete_wq; 950 /* copygc needs its own workqueue for index updates.. */ 951 struct workqueue_struct *copygc_wq; 952 /* 953 * Use a dedicated wq for write ref holder tasks. Required to avoid 954 * dependency problems with other wq tasks that can block on ref 955 * draining, such as read-only transition. 956 */ 957 struct workqueue_struct *write_ref_wq; 958 959 /* ALLOCATION */ 960 struct bch_devs_mask online_devs; 961 struct bch_devs_mask rw_devs[BCH_DATA_NR]; 962 unsigned long rw_devs_change_count; 963 964 u64 capacity; /* sectors */ 965 u64 reserved; /* sectors */ 966 967 /* 968 * When capacity _decreases_ (due to a disk being removed), we 969 * increment capacity_gen - this invalidates outstanding reservations 970 * and forces them to be revalidated 971 */ 972 u32 capacity_gen; 973 unsigned bucket_size_max; 974 975 atomic64_t sectors_available; 976 struct mutex sectors_available_lock; 977 978 struct bch_fs_pcpu __percpu *pcpu; 979 980 struct percpu_rw_semaphore mark_lock; 981 982 seqcount_t usage_lock; 983 struct bch_fs_usage_base __percpu *usage; 984 u64 __percpu *online_reserved; 985 986 unsigned long allocator_last_stuck; 987 988 struct io_clock io_clock[2]; 989 990 /* JOURNAL SEQ BLACKLIST */ 991 struct journal_seq_blacklist_table * 992 journal_seq_blacklist_table; 993 994 /* ALLOCATOR */ 995 spinlock_t freelist_lock; 996 struct closure_waitlist freelist_wait; 997 998 open_bucket_idx_t open_buckets_freelist; 999 open_bucket_idx_t open_buckets_nr_free; 1000 struct closure_waitlist open_buckets_wait; 1001 struct open_bucket open_buckets[OPEN_BUCKETS_COUNT]; 1002 open_bucket_idx_t open_buckets_hash[OPEN_BUCKETS_COUNT]; 1003 1004 open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT]; 1005 open_bucket_idx_t open_buckets_partial_nr; 1006 1007 struct write_point btree_write_point; 1008 struct write_point rebalance_write_point; 1009 1010 struct write_point write_points[WRITE_POINT_MAX]; 1011 struct hlist_head write_points_hash[WRITE_POINT_HASH_NR]; 1012 struct mutex write_points_hash_lock; 1013 unsigned write_points_nr; 1014 1015 struct buckets_waiting_for_journal buckets_waiting_for_journal; 1016 1017 /* GARBAGE COLLECTION */ 1018 struct work_struct gc_gens_work; 1019 unsigned long gc_count; 1020 1021 enum btree_id gc_gens_btree; 1022 struct bpos gc_gens_pos; 1023 1024 /* 1025 * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos] 1026 * has been marked by GC. 1027 * 1028 * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.) 1029 * 1030 * Protected by gc_pos_lock. Only written to by GC thread, so GC thread 1031 * can read without a lock. 1032 */ 1033 seqcount_t gc_pos_lock; 1034 struct gc_pos gc_pos; 1035 1036 /* 1037 * The allocation code needs gc_mark in struct bucket to be correct, but 1038 * it's not while a gc is in progress. 1039 */ 1040 struct rw_semaphore gc_lock; 1041 struct mutex gc_gens_lock; 1042 1043 /* IO PATH */ 1044 struct semaphore io_in_flight; 1045 struct bio_set bio_read; 1046 struct bio_set bio_read_split; 1047 struct bio_set bio_write; 1048 struct bio_set replica_set; 1049 struct mutex bio_bounce_pages_lock; 1050 mempool_t bio_bounce_pages; 1051 struct bucket_nocow_lock_table 1052 nocow_locks; 1053 struct rhashtable promote_table; 1054 1055 #ifdef CONFIG_BCACHEFS_ASYNC_OBJECT_LISTS 1056 struct async_obj_list async_objs[BCH_ASYNC_OBJ_NR]; 1057 #endif 1058 1059 mempool_t compression_bounce[2]; 1060 mempool_t compress_workspace[BCH_COMPRESSION_OPT_NR]; 1061 size_t zstd_workspace_size; 1062 1063 struct bch_key chacha20_key; 1064 bool chacha20_key_set; 1065 1066 atomic64_t key_version; 1067 1068 mempool_t large_bkey_pool; 1069 1070 /* MOVE.C */ 1071 struct list_head moving_context_list; 1072 struct mutex moving_context_lock; 1073 1074 /* REBALANCE */ 1075 struct bch_fs_rebalance rebalance; 1076 1077 /* COPYGC */ 1078 struct task_struct *copygc_thread; 1079 struct write_point copygc_write_point; 1080 s64 copygc_wait_at; 1081 s64 copygc_wait; 1082 bool copygc_running; 1083 wait_queue_head_t copygc_running_wq; 1084 1085 /* STRIPES: */ 1086 GENRADIX(struct gc_stripe) gc_stripes; 1087 1088 struct hlist_head ec_stripes_new[32]; 1089 spinlock_t ec_stripes_new_lock; 1090 1091 /* ERASURE CODING */ 1092 struct list_head ec_stripe_head_list; 1093 struct mutex ec_stripe_head_lock; 1094 1095 struct list_head ec_stripe_new_list; 1096 struct mutex ec_stripe_new_lock; 1097 wait_queue_head_t ec_stripe_new_wait; 1098 1099 struct work_struct ec_stripe_create_work; 1100 u64 ec_stripe_hint; 1101 1102 struct work_struct ec_stripe_delete_work; 1103 1104 struct bio_set ec_bioset; 1105 1106 /* REFLINK */ 1107 reflink_gc_table reflink_gc_table; 1108 size_t reflink_gc_nr; 1109 1110 /* fs.c */ 1111 struct list_head vfs_inodes_list; 1112 struct mutex vfs_inodes_lock; 1113 struct rhashtable vfs_inodes_table; 1114 struct rhltable vfs_inodes_by_inum_table; 1115 1116 /* VFS IO PATH - fs-io.c */ 1117 struct bio_set writepage_bioset; 1118 struct bio_set dio_write_bioset; 1119 struct bio_set dio_read_bioset; 1120 struct bio_set nocow_flush_bioset; 1121 1122 /* QUOTAS */ 1123 struct bch_memquota_type quotas[QTYP_NR]; 1124 1125 /* RECOVERY */ 1126 u64 journal_replay_seq_start; 1127 u64 journal_replay_seq_end; 1128 struct bch_fs_recovery recovery; 1129 1130 /* DEBUG JUNK */ 1131 struct dentry *fs_debug_dir; 1132 struct dentry *btree_debug_dir; 1133 struct dentry *async_obj_dir; 1134 struct btree_debug btree_debug[BTREE_ID_NR]; 1135 struct btree *verify_data; 1136 struct btree_node *verify_ondisk; 1137 struct mutex verify_lock; 1138 1139 /* 1140 * A btree node on disk could have too many bsets for an iterator to fit 1141 * on the stack - have to dynamically allocate them 1142 */ 1143 mempool_t fill_iter; 1144 1145 mempool_t btree_bounce_pool; 1146 1147 struct journal journal; 1148 GENRADIX(struct journal_replay *) journal_entries; 1149 u64 journal_entries_base_seq; 1150 struct journal_keys journal_keys; 1151 struct list_head journal_iters; 1152 1153 struct find_btree_nodes found_btree_nodes; 1154 1155 u64 last_bucket_seq_cleanup; 1156 1157 u64 counters_on_mount[BCH_COUNTER_NR]; 1158 u64 __percpu *counters; 1159 1160 struct bch2_time_stats times[BCH_TIME_STAT_NR]; 1161 1162 struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR]; 1163 1164 /* ERRORS */ 1165 struct list_head fsck_error_msgs; 1166 struct mutex fsck_error_msgs_lock; 1167 bool fsck_alloc_msgs_err; 1168 1169 bch_sb_errors_cpu fsck_error_counts; 1170 struct mutex fsck_error_counts_lock; 1171 }; 1172 1173 extern struct wait_queue_head bch2_read_only_wait; 1174 1175 static inline bool bch2_ro_ref_tryget(struct bch_fs *c) 1176 { 1177 if (test_bit(BCH_FS_stopping, &c->flags)) 1178 return false; 1179 1180 return refcount_inc_not_zero(&c->ro_ref); 1181 } 1182 1183 static inline void bch2_ro_ref_put(struct bch_fs *c) 1184 { 1185 if (refcount_dec_and_test(&c->ro_ref)) 1186 wake_up(&c->ro_ref_wait); 1187 } 1188 1189 static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages) 1190 { 1191 #ifndef NO_BCACHEFS_FS 1192 if (c->vfs_sb) 1193 c->vfs_sb->s_bdi->ra_pages = ra_pages; 1194 #endif 1195 } 1196 1197 static inline unsigned bucket_bytes(const struct bch_dev *ca) 1198 { 1199 return ca->mi.bucket_size << 9; 1200 } 1201 1202 static inline unsigned block_bytes(const struct bch_fs *c) 1203 { 1204 return c->opts.block_size; 1205 } 1206 1207 static inline unsigned block_sectors(const struct bch_fs *c) 1208 { 1209 return c->opts.block_size >> 9; 1210 } 1211 1212 static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree) 1213 { 1214 return c->btree_key_cache_btrees & (1U << btree); 1215 } 1216 1217 static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time) 1218 { 1219 struct timespec64 t; 1220 s64 sec; 1221 s32 rem; 1222 1223 time += c->sb.time_base_lo; 1224 1225 sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem); 1226 1227 set_normalized_timespec64(&t, sec, rem * (s64)c->sb.nsec_per_time_unit); 1228 1229 return t; 1230 } 1231 1232 static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts) 1233 { 1234 return (ts.tv_sec * c->sb.time_units_per_sec + 1235 (int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo; 1236 } 1237 1238 static inline s64 bch2_current_time(const struct bch_fs *c) 1239 { 1240 struct timespec64 now; 1241 1242 ktime_get_coarse_real_ts64(&now); 1243 return timespec_to_bch2_time(c, now); 1244 } 1245 1246 static inline u64 bch2_current_io_time(const struct bch_fs *c, int rw) 1247 { 1248 return max(1ULL, (u64) atomic64_read(&c->io_clock[rw].now) & LRU_TIME_MAX); 1249 } 1250 1251 static inline struct stdio_redirect *bch2_fs_stdio_redirect(struct bch_fs *c) 1252 { 1253 struct stdio_redirect *stdio = c->stdio; 1254 1255 if (c->stdio_filter && c->stdio_filter != current) 1256 stdio = NULL; 1257 return stdio; 1258 } 1259 1260 static inline unsigned metadata_replicas_required(struct bch_fs *c) 1261 { 1262 return min(c->opts.metadata_replicas, 1263 c->opts.metadata_replicas_required); 1264 } 1265 1266 static inline unsigned data_replicas_required(struct bch_fs *c) 1267 { 1268 return min(c->opts.data_replicas, 1269 c->opts.data_replicas_required); 1270 } 1271 1272 #define BKEY_PADDED_ONSTACK(key, pad) \ 1273 struct { struct bkey_i key; __u64 key ## _pad[pad]; } 1274 1275 /* 1276 * This is needed because discard is both a filesystem option and a device 1277 * option, and mount options are supposed to apply to that mount and not be 1278 * persisted, i.e. if it's set as a mount option we can't propagate it to the 1279 * device. 1280 */ 1281 static inline bool bch2_discard_opt_enabled(struct bch_fs *c, struct bch_dev *ca) 1282 { 1283 return test_bit(BCH_FS_discard_mount_opt_set, &c->flags) 1284 ? c->opts.discard 1285 : ca->mi.discard; 1286 } 1287 1288 #endif /* _BCACHEFS_H */ 1289