xref: /linux/fs/aio.c (revision fea88a0c02822fbb91a0b8301bf9af04377876a3)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/export.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #if DEBUG > 1
43 #define dprintk		printk
44 #else
45 #define dprintk(x...)	do { ; } while (0)
46 #endif
47 
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr;		/* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
53 
54 static struct kmem_cache	*kiocb_cachep;
55 static struct kmem_cache	*kioctx_cachep;
56 
57 static struct workqueue_struct *aio_wq;
58 
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct *);
61 static DECLARE_WORK(fput_work, aio_fput_routine);
62 
63 static DEFINE_SPINLOCK(fput_lock);
64 static LIST_HEAD(fput_head);
65 
66 static void aio_kick_handler(struct work_struct *);
67 static void aio_queue_work(struct kioctx *);
68 
69 /* aio_setup
70  *	Creates the slab caches used by the aio routines, panic on
71  *	failure as this is done early during the boot sequence.
72  */
73 static int __init aio_setup(void)
74 {
75 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
77 
78 	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
79 	BUG_ON(!aio_wq);
80 
81 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 
83 	return 0;
84 }
85 __initcall(aio_setup);
86 
87 static void aio_free_ring(struct kioctx *ctx)
88 {
89 	struct aio_ring_info *info = &ctx->ring_info;
90 	long i;
91 
92 	for (i=0; i<info->nr_pages; i++)
93 		put_page(info->ring_pages[i]);
94 
95 	if (info->mmap_size) {
96 		down_write(&ctx->mm->mmap_sem);
97 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
98 		up_write(&ctx->mm->mmap_sem);
99 	}
100 
101 	if (info->ring_pages && info->ring_pages != info->internal_pages)
102 		kfree(info->ring_pages);
103 	info->ring_pages = NULL;
104 	info->nr = 0;
105 }
106 
107 static int aio_setup_ring(struct kioctx *ctx)
108 {
109 	struct aio_ring *ring;
110 	struct aio_ring_info *info = &ctx->ring_info;
111 	unsigned nr_events = ctx->max_reqs;
112 	unsigned long size;
113 	int nr_pages;
114 
115 	/* Compensate for the ring buffer's head/tail overlap entry */
116 	nr_events += 2;	/* 1 is required, 2 for good luck */
117 
118 	size = sizeof(struct aio_ring);
119 	size += sizeof(struct io_event) * nr_events;
120 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
121 
122 	if (nr_pages < 0)
123 		return -EINVAL;
124 
125 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
126 
127 	info->nr = 0;
128 	info->ring_pages = info->internal_pages;
129 	if (nr_pages > AIO_RING_PAGES) {
130 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
131 		if (!info->ring_pages)
132 			return -ENOMEM;
133 	}
134 
135 	info->mmap_size = nr_pages * PAGE_SIZE;
136 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
137 	down_write(&ctx->mm->mmap_sem);
138 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
139 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
140 				  0);
141 	if (IS_ERR((void *)info->mmap_base)) {
142 		up_write(&ctx->mm->mmap_sem);
143 		info->mmap_size = 0;
144 		aio_free_ring(ctx);
145 		return -EAGAIN;
146 	}
147 
148 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
149 	info->nr_pages = get_user_pages(current, ctx->mm,
150 					info->mmap_base, nr_pages,
151 					1, 0, info->ring_pages, NULL);
152 	up_write(&ctx->mm->mmap_sem);
153 
154 	if (unlikely(info->nr_pages != nr_pages)) {
155 		aio_free_ring(ctx);
156 		return -EAGAIN;
157 	}
158 
159 	ctx->user_id = info->mmap_base;
160 
161 	info->nr = nr_events;		/* trusted copy */
162 
163 	ring = kmap_atomic(info->ring_pages[0]);
164 	ring->nr = nr_events;	/* user copy */
165 	ring->id = ctx->user_id;
166 	ring->head = ring->tail = 0;
167 	ring->magic = AIO_RING_MAGIC;
168 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
169 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
170 	ring->header_length = sizeof(struct aio_ring);
171 	kunmap_atomic(ring);
172 
173 	return 0;
174 }
175 
176 
177 /* aio_ring_event: returns a pointer to the event at the given index from
178  * kmap_atomic().  Release the pointer with put_aio_ring_event();
179  */
180 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
183 
184 #define aio_ring_event(info, nr) ({					\
185 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
186 	struct io_event *__event;					\
187 	__event = kmap_atomic(						\
188 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
189 	__event += pos % AIO_EVENTS_PER_PAGE;				\
190 	__event;							\
191 })
192 
193 #define put_aio_ring_event(event) do {		\
194 	struct io_event *__event = (event);	\
195 	(void)__event;				\
196 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
197 } while(0)
198 
199 static void ctx_rcu_free(struct rcu_head *head)
200 {
201 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
202 	kmem_cache_free(kioctx_cachep, ctx);
203 }
204 
205 /* __put_ioctx
206  *	Called when the last user of an aio context has gone away,
207  *	and the struct needs to be freed.
208  */
209 static void __put_ioctx(struct kioctx *ctx)
210 {
211 	unsigned nr_events = ctx->max_reqs;
212 	BUG_ON(ctx->reqs_active);
213 
214 	cancel_delayed_work_sync(&ctx->wq);
215 	aio_free_ring(ctx);
216 	mmdrop(ctx->mm);
217 	ctx->mm = NULL;
218 	if (nr_events) {
219 		spin_lock(&aio_nr_lock);
220 		BUG_ON(aio_nr - nr_events > aio_nr);
221 		aio_nr -= nr_events;
222 		spin_unlock(&aio_nr_lock);
223 	}
224 	pr_debug("__put_ioctx: freeing %p\n", ctx);
225 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
226 }
227 
228 static inline int try_get_ioctx(struct kioctx *kioctx)
229 {
230 	return atomic_inc_not_zero(&kioctx->users);
231 }
232 
233 static inline void put_ioctx(struct kioctx *kioctx)
234 {
235 	BUG_ON(atomic_read(&kioctx->users) <= 0);
236 	if (unlikely(atomic_dec_and_test(&kioctx->users)))
237 		__put_ioctx(kioctx);
238 }
239 
240 /* ioctx_alloc
241  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
242  */
243 static struct kioctx *ioctx_alloc(unsigned nr_events)
244 {
245 	struct mm_struct *mm;
246 	struct kioctx *ctx;
247 	int err = -ENOMEM;
248 
249 	/* Prevent overflows */
250 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
251 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
252 		pr_debug("ENOMEM: nr_events too high\n");
253 		return ERR_PTR(-EINVAL);
254 	}
255 
256 	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
257 		return ERR_PTR(-EAGAIN);
258 
259 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
260 	if (!ctx)
261 		return ERR_PTR(-ENOMEM);
262 
263 	ctx->max_reqs = nr_events;
264 	mm = ctx->mm = current->mm;
265 	atomic_inc(&mm->mm_count);
266 
267 	atomic_set(&ctx->users, 2);
268 	spin_lock_init(&ctx->ctx_lock);
269 	spin_lock_init(&ctx->ring_info.ring_lock);
270 	init_waitqueue_head(&ctx->wait);
271 
272 	INIT_LIST_HEAD(&ctx->active_reqs);
273 	INIT_LIST_HEAD(&ctx->run_list);
274 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
275 
276 	if (aio_setup_ring(ctx) < 0)
277 		goto out_freectx;
278 
279 	/* limit the number of system wide aios */
280 	spin_lock(&aio_nr_lock);
281 	if (aio_nr + nr_events > aio_max_nr ||
282 	    aio_nr + nr_events < aio_nr) {
283 		spin_unlock(&aio_nr_lock);
284 		goto out_cleanup;
285 	}
286 	aio_nr += ctx->max_reqs;
287 	spin_unlock(&aio_nr_lock);
288 
289 	/* now link into global list. */
290 	spin_lock(&mm->ioctx_lock);
291 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
292 	spin_unlock(&mm->ioctx_lock);
293 
294 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
295 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
296 	return ctx;
297 
298 out_cleanup:
299 	err = -EAGAIN;
300 	aio_free_ring(ctx);
301 out_freectx:
302 	mmdrop(mm);
303 	kmem_cache_free(kioctx_cachep, ctx);
304 	dprintk("aio: error allocating ioctx %d\n", err);
305 	return ERR_PTR(err);
306 }
307 
308 /* kill_ctx
309  *	Cancels all outstanding aio requests on an aio context.  Used
310  *	when the processes owning a context have all exited to encourage
311  *	the rapid destruction of the kioctx.
312  */
313 static void kill_ctx(struct kioctx *ctx)
314 {
315 	int (*cancel)(struct kiocb *, struct io_event *);
316 	struct task_struct *tsk = current;
317 	DECLARE_WAITQUEUE(wait, tsk);
318 	struct io_event res;
319 
320 	spin_lock_irq(&ctx->ctx_lock);
321 	ctx->dead = 1;
322 	while (!list_empty(&ctx->active_reqs)) {
323 		struct list_head *pos = ctx->active_reqs.next;
324 		struct kiocb *iocb = list_kiocb(pos);
325 		list_del_init(&iocb->ki_list);
326 		cancel = iocb->ki_cancel;
327 		kiocbSetCancelled(iocb);
328 		if (cancel) {
329 			iocb->ki_users++;
330 			spin_unlock_irq(&ctx->ctx_lock);
331 			cancel(iocb, &res);
332 			spin_lock_irq(&ctx->ctx_lock);
333 		}
334 	}
335 
336 	if (!ctx->reqs_active)
337 		goto out;
338 
339 	add_wait_queue(&ctx->wait, &wait);
340 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
341 	while (ctx->reqs_active) {
342 		spin_unlock_irq(&ctx->ctx_lock);
343 		io_schedule();
344 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
345 		spin_lock_irq(&ctx->ctx_lock);
346 	}
347 	__set_task_state(tsk, TASK_RUNNING);
348 	remove_wait_queue(&ctx->wait, &wait);
349 
350 out:
351 	spin_unlock_irq(&ctx->ctx_lock);
352 }
353 
354 /* wait_on_sync_kiocb:
355  *	Waits on the given sync kiocb to complete.
356  */
357 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
358 {
359 	while (iocb->ki_users) {
360 		set_current_state(TASK_UNINTERRUPTIBLE);
361 		if (!iocb->ki_users)
362 			break;
363 		io_schedule();
364 	}
365 	__set_current_state(TASK_RUNNING);
366 	return iocb->ki_user_data;
367 }
368 EXPORT_SYMBOL(wait_on_sync_kiocb);
369 
370 /* exit_aio: called when the last user of mm goes away.  At this point,
371  * there is no way for any new requests to be submited or any of the
372  * io_* syscalls to be called on the context.  However, there may be
373  * outstanding requests which hold references to the context; as they
374  * go away, they will call put_ioctx and release any pinned memory
375  * associated with the request (held via struct page * references).
376  */
377 void exit_aio(struct mm_struct *mm)
378 {
379 	struct kioctx *ctx;
380 
381 	while (!hlist_empty(&mm->ioctx_list)) {
382 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
383 		hlist_del_rcu(&ctx->list);
384 
385 		kill_ctx(ctx);
386 
387 		if (1 != atomic_read(&ctx->users))
388 			printk(KERN_DEBUG
389 				"exit_aio:ioctx still alive: %d %d %d\n",
390 				atomic_read(&ctx->users), ctx->dead,
391 				ctx->reqs_active);
392 		put_ioctx(ctx);
393 	}
394 }
395 
396 /* aio_get_req
397  *	Allocate a slot for an aio request.  Increments the users count
398  * of the kioctx so that the kioctx stays around until all requests are
399  * complete.  Returns NULL if no requests are free.
400  *
401  * Returns with kiocb->users set to 2.  The io submit code path holds
402  * an extra reference while submitting the i/o.
403  * This prevents races between the aio code path referencing the
404  * req (after submitting it) and aio_complete() freeing the req.
405  */
406 static struct kiocb *__aio_get_req(struct kioctx *ctx)
407 {
408 	struct kiocb *req = NULL;
409 
410 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
411 	if (unlikely(!req))
412 		return NULL;
413 
414 	req->ki_flags = 0;
415 	req->ki_users = 2;
416 	req->ki_key = 0;
417 	req->ki_ctx = ctx;
418 	req->ki_cancel = NULL;
419 	req->ki_retry = NULL;
420 	req->ki_dtor = NULL;
421 	req->private = NULL;
422 	req->ki_iovec = NULL;
423 	INIT_LIST_HEAD(&req->ki_run_list);
424 	req->ki_eventfd = NULL;
425 
426 	return req;
427 }
428 
429 /*
430  * struct kiocb's are allocated in batches to reduce the number of
431  * times the ctx lock is acquired and released.
432  */
433 #define KIOCB_BATCH_SIZE	32L
434 struct kiocb_batch {
435 	struct list_head head;
436 	long count; /* number of requests left to allocate */
437 };
438 
439 static void kiocb_batch_init(struct kiocb_batch *batch, long total)
440 {
441 	INIT_LIST_HEAD(&batch->head);
442 	batch->count = total;
443 }
444 
445 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
446 {
447 	struct kiocb *req, *n;
448 
449 	if (list_empty(&batch->head))
450 		return;
451 
452 	spin_lock_irq(&ctx->ctx_lock);
453 	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
454 		list_del(&req->ki_batch);
455 		list_del(&req->ki_list);
456 		kmem_cache_free(kiocb_cachep, req);
457 		ctx->reqs_active--;
458 	}
459 	if (unlikely(!ctx->reqs_active && ctx->dead))
460 		wake_up_all(&ctx->wait);
461 	spin_unlock_irq(&ctx->ctx_lock);
462 }
463 
464 /*
465  * Allocate a batch of kiocbs.  This avoids taking and dropping the
466  * context lock a lot during setup.
467  */
468 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
469 {
470 	unsigned short allocated, to_alloc;
471 	long avail;
472 	bool called_fput = false;
473 	struct kiocb *req, *n;
474 	struct aio_ring *ring;
475 
476 	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
477 	for (allocated = 0; allocated < to_alloc; allocated++) {
478 		req = __aio_get_req(ctx);
479 		if (!req)
480 			/* allocation failed, go with what we've got */
481 			break;
482 		list_add(&req->ki_batch, &batch->head);
483 	}
484 
485 	if (allocated == 0)
486 		goto out;
487 
488 retry:
489 	spin_lock_irq(&ctx->ctx_lock);
490 	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
491 
492 	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
493 	BUG_ON(avail < 0);
494 	if (avail == 0 && !called_fput) {
495 		/*
496 		 * Handle a potential starvation case.  It is possible that
497 		 * we hold the last reference on a struct file, causing us
498 		 * to delay the final fput to non-irq context.  In this case,
499 		 * ctx->reqs_active is artificially high.  Calling the fput
500 		 * routine here may free up a slot in the event completion
501 		 * ring, allowing this allocation to succeed.
502 		 */
503 		kunmap_atomic(ring);
504 		spin_unlock_irq(&ctx->ctx_lock);
505 		aio_fput_routine(NULL);
506 		called_fput = true;
507 		goto retry;
508 	}
509 
510 	if (avail < allocated) {
511 		/* Trim back the number of requests. */
512 		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
513 			list_del(&req->ki_batch);
514 			kmem_cache_free(kiocb_cachep, req);
515 			if (--allocated <= avail)
516 				break;
517 		}
518 	}
519 
520 	batch->count -= allocated;
521 	list_for_each_entry(req, &batch->head, ki_batch) {
522 		list_add(&req->ki_list, &ctx->active_reqs);
523 		ctx->reqs_active++;
524 	}
525 
526 	kunmap_atomic(ring);
527 	spin_unlock_irq(&ctx->ctx_lock);
528 
529 out:
530 	return allocated;
531 }
532 
533 static inline struct kiocb *aio_get_req(struct kioctx *ctx,
534 					struct kiocb_batch *batch)
535 {
536 	struct kiocb *req;
537 
538 	if (list_empty(&batch->head))
539 		if (kiocb_batch_refill(ctx, batch) == 0)
540 			return NULL;
541 	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
542 	list_del(&req->ki_batch);
543 	return req;
544 }
545 
546 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
547 {
548 	assert_spin_locked(&ctx->ctx_lock);
549 
550 	if (req->ki_eventfd != NULL)
551 		eventfd_ctx_put(req->ki_eventfd);
552 	if (req->ki_dtor)
553 		req->ki_dtor(req);
554 	if (req->ki_iovec != &req->ki_inline_vec)
555 		kfree(req->ki_iovec);
556 	kmem_cache_free(kiocb_cachep, req);
557 	ctx->reqs_active--;
558 
559 	if (unlikely(!ctx->reqs_active && ctx->dead))
560 		wake_up_all(&ctx->wait);
561 }
562 
563 static void aio_fput_routine(struct work_struct *data)
564 {
565 	spin_lock_irq(&fput_lock);
566 	while (likely(!list_empty(&fput_head))) {
567 		struct kiocb *req = list_kiocb(fput_head.next);
568 		struct kioctx *ctx = req->ki_ctx;
569 
570 		list_del(&req->ki_list);
571 		spin_unlock_irq(&fput_lock);
572 
573 		/* Complete the fput(s) */
574 		if (req->ki_filp != NULL)
575 			fput(req->ki_filp);
576 
577 		/* Link the iocb into the context's free list */
578 		rcu_read_lock();
579 		spin_lock_irq(&ctx->ctx_lock);
580 		really_put_req(ctx, req);
581 		/*
582 		 * at that point ctx might've been killed, but actual
583 		 * freeing is RCU'd
584 		 */
585 		spin_unlock_irq(&ctx->ctx_lock);
586 		rcu_read_unlock();
587 
588 		spin_lock_irq(&fput_lock);
589 	}
590 	spin_unlock_irq(&fput_lock);
591 }
592 
593 /* __aio_put_req
594  *	Returns true if this put was the last user of the request.
595  */
596 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
597 {
598 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
599 		req, atomic_long_read(&req->ki_filp->f_count));
600 
601 	assert_spin_locked(&ctx->ctx_lock);
602 
603 	req->ki_users--;
604 	BUG_ON(req->ki_users < 0);
605 	if (likely(req->ki_users))
606 		return 0;
607 	list_del(&req->ki_list);		/* remove from active_reqs */
608 	req->ki_cancel = NULL;
609 	req->ki_retry = NULL;
610 
611 	/*
612 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
613 	 * schedule work in case it is not final fput() time. In normal cases,
614 	 * we would not be holding the last reference to the file*, so
615 	 * this function will be executed w/out any aio kthread wakeup.
616 	 */
617 	if (unlikely(!fput_atomic(req->ki_filp))) {
618 		spin_lock(&fput_lock);
619 		list_add(&req->ki_list, &fput_head);
620 		spin_unlock(&fput_lock);
621 		schedule_work(&fput_work);
622 	} else {
623 		req->ki_filp = NULL;
624 		really_put_req(ctx, req);
625 	}
626 	return 1;
627 }
628 
629 /* aio_put_req
630  *	Returns true if this put was the last user of the kiocb,
631  *	false if the request is still in use.
632  */
633 int aio_put_req(struct kiocb *req)
634 {
635 	struct kioctx *ctx = req->ki_ctx;
636 	int ret;
637 	spin_lock_irq(&ctx->ctx_lock);
638 	ret = __aio_put_req(ctx, req);
639 	spin_unlock_irq(&ctx->ctx_lock);
640 	return ret;
641 }
642 EXPORT_SYMBOL(aio_put_req);
643 
644 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
645 {
646 	struct mm_struct *mm = current->mm;
647 	struct kioctx *ctx, *ret = NULL;
648 	struct hlist_node *n;
649 
650 	rcu_read_lock();
651 
652 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
653 		/*
654 		 * RCU protects us against accessing freed memory but
655 		 * we have to be careful not to get a reference when the
656 		 * reference count already dropped to 0 (ctx->dead test
657 		 * is unreliable because of races).
658 		 */
659 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
660 			ret = ctx;
661 			break;
662 		}
663 	}
664 
665 	rcu_read_unlock();
666 	return ret;
667 }
668 
669 /*
670  * Queue up a kiocb to be retried. Assumes that the kiocb
671  * has already been marked as kicked, and places it on
672  * the retry run list for the corresponding ioctx, if it
673  * isn't already queued. Returns 1 if it actually queued
674  * the kiocb (to tell the caller to activate the work
675  * queue to process it), or 0, if it found that it was
676  * already queued.
677  */
678 static inline int __queue_kicked_iocb(struct kiocb *iocb)
679 {
680 	struct kioctx *ctx = iocb->ki_ctx;
681 
682 	assert_spin_locked(&ctx->ctx_lock);
683 
684 	if (list_empty(&iocb->ki_run_list)) {
685 		list_add_tail(&iocb->ki_run_list,
686 			&ctx->run_list);
687 		return 1;
688 	}
689 	return 0;
690 }
691 
692 /* aio_run_iocb
693  *	This is the core aio execution routine. It is
694  *	invoked both for initial i/o submission and
695  *	subsequent retries via the aio_kick_handler.
696  *	Expects to be invoked with iocb->ki_ctx->lock
697  *	already held. The lock is released and reacquired
698  *	as needed during processing.
699  *
700  * Calls the iocb retry method (already setup for the
701  * iocb on initial submission) for operation specific
702  * handling, but takes care of most of common retry
703  * execution details for a given iocb. The retry method
704  * needs to be non-blocking as far as possible, to avoid
705  * holding up other iocbs waiting to be serviced by the
706  * retry kernel thread.
707  *
708  * The trickier parts in this code have to do with
709  * ensuring that only one retry instance is in progress
710  * for a given iocb at any time. Providing that guarantee
711  * simplifies the coding of individual aio operations as
712  * it avoids various potential races.
713  */
714 static ssize_t aio_run_iocb(struct kiocb *iocb)
715 {
716 	struct kioctx	*ctx = iocb->ki_ctx;
717 	ssize_t (*retry)(struct kiocb *);
718 	ssize_t ret;
719 
720 	if (!(retry = iocb->ki_retry)) {
721 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
722 		return 0;
723 	}
724 
725 	/*
726 	 * We don't want the next retry iteration for this
727 	 * operation to start until this one has returned and
728 	 * updated the iocb state. However, wait_queue functions
729 	 * can trigger a kick_iocb from interrupt context in the
730 	 * meantime, indicating that data is available for the next
731 	 * iteration. We want to remember that and enable the
732 	 * next retry iteration _after_ we are through with
733 	 * this one.
734 	 *
735 	 * So, in order to be able to register a "kick", but
736 	 * prevent it from being queued now, we clear the kick
737 	 * flag, but make the kick code *think* that the iocb is
738 	 * still on the run list until we are actually done.
739 	 * When we are done with this iteration, we check if
740 	 * the iocb was kicked in the meantime and if so, queue
741 	 * it up afresh.
742 	 */
743 
744 	kiocbClearKicked(iocb);
745 
746 	/*
747 	 * This is so that aio_complete knows it doesn't need to
748 	 * pull the iocb off the run list (We can't just call
749 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
750 	 * queue this on the run list yet)
751 	 */
752 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
753 	spin_unlock_irq(&ctx->ctx_lock);
754 
755 	/* Quit retrying if the i/o has been cancelled */
756 	if (kiocbIsCancelled(iocb)) {
757 		ret = -EINTR;
758 		aio_complete(iocb, ret, 0);
759 		/* must not access the iocb after this */
760 		goto out;
761 	}
762 
763 	/*
764 	 * Now we are all set to call the retry method in async
765 	 * context.
766 	 */
767 	ret = retry(iocb);
768 
769 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
770 		/*
771 		 * There's no easy way to restart the syscall since other AIO's
772 		 * may be already running. Just fail this IO with EINTR.
773 		 */
774 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
775 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
776 			ret = -EINTR;
777 		aio_complete(iocb, ret, 0);
778 	}
779 out:
780 	spin_lock_irq(&ctx->ctx_lock);
781 
782 	if (-EIOCBRETRY == ret) {
783 		/*
784 		 * OK, now that we are done with this iteration
785 		 * and know that there is more left to go,
786 		 * this is where we let go so that a subsequent
787 		 * "kick" can start the next iteration
788 		 */
789 
790 		/* will make __queue_kicked_iocb succeed from here on */
791 		INIT_LIST_HEAD(&iocb->ki_run_list);
792 		/* we must queue the next iteration ourselves, if it
793 		 * has already been kicked */
794 		if (kiocbIsKicked(iocb)) {
795 			__queue_kicked_iocb(iocb);
796 
797 			/*
798 			 * __queue_kicked_iocb will always return 1 here, because
799 			 * iocb->ki_run_list is empty at this point so it should
800 			 * be safe to unconditionally queue the context into the
801 			 * work queue.
802 			 */
803 			aio_queue_work(ctx);
804 		}
805 	}
806 	return ret;
807 }
808 
809 /*
810  * __aio_run_iocbs:
811  * 	Process all pending retries queued on the ioctx
812  * 	run list.
813  * Assumes it is operating within the aio issuer's mm
814  * context.
815  */
816 static int __aio_run_iocbs(struct kioctx *ctx)
817 {
818 	struct kiocb *iocb;
819 	struct list_head run_list;
820 
821 	assert_spin_locked(&ctx->ctx_lock);
822 
823 	list_replace_init(&ctx->run_list, &run_list);
824 	while (!list_empty(&run_list)) {
825 		iocb = list_entry(run_list.next, struct kiocb,
826 			ki_run_list);
827 		list_del(&iocb->ki_run_list);
828 		/*
829 		 * Hold an extra reference while retrying i/o.
830 		 */
831 		iocb->ki_users++;       /* grab extra reference */
832 		aio_run_iocb(iocb);
833 		__aio_put_req(ctx, iocb);
834  	}
835 	if (!list_empty(&ctx->run_list))
836 		return 1;
837 	return 0;
838 }
839 
840 static void aio_queue_work(struct kioctx * ctx)
841 {
842 	unsigned long timeout;
843 	/*
844 	 * if someone is waiting, get the work started right
845 	 * away, otherwise, use a longer delay
846 	 */
847 	smp_mb();
848 	if (waitqueue_active(&ctx->wait))
849 		timeout = 1;
850 	else
851 		timeout = HZ/10;
852 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
853 }
854 
855 /*
856  * aio_run_all_iocbs:
857  *	Process all pending retries queued on the ioctx
858  *	run list, and keep running them until the list
859  *	stays empty.
860  * Assumes it is operating within the aio issuer's mm context.
861  */
862 static inline void aio_run_all_iocbs(struct kioctx *ctx)
863 {
864 	spin_lock_irq(&ctx->ctx_lock);
865 	while (__aio_run_iocbs(ctx))
866 		;
867 	spin_unlock_irq(&ctx->ctx_lock);
868 }
869 
870 /*
871  * aio_kick_handler:
872  * 	Work queue handler triggered to process pending
873  * 	retries on an ioctx. Takes on the aio issuer's
874  *	mm context before running the iocbs, so that
875  *	copy_xxx_user operates on the issuer's address
876  *      space.
877  * Run on aiod's context.
878  */
879 static void aio_kick_handler(struct work_struct *work)
880 {
881 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
882 	mm_segment_t oldfs = get_fs();
883 	struct mm_struct *mm;
884 	int requeue;
885 
886 	set_fs(USER_DS);
887 	use_mm(ctx->mm);
888 	spin_lock_irq(&ctx->ctx_lock);
889 	requeue =__aio_run_iocbs(ctx);
890 	mm = ctx->mm;
891 	spin_unlock_irq(&ctx->ctx_lock);
892  	unuse_mm(mm);
893 	set_fs(oldfs);
894 	/*
895 	 * we're in a worker thread already; no point using non-zero delay
896 	 */
897 	if (requeue)
898 		queue_delayed_work(aio_wq, &ctx->wq, 0);
899 }
900 
901 
902 /*
903  * Called by kick_iocb to queue the kiocb for retry
904  * and if required activate the aio work queue to process
905  * it
906  */
907 static void try_queue_kicked_iocb(struct kiocb *iocb)
908 {
909  	struct kioctx	*ctx = iocb->ki_ctx;
910 	unsigned long flags;
911 	int run = 0;
912 
913 	spin_lock_irqsave(&ctx->ctx_lock, flags);
914 	/* set this inside the lock so that we can't race with aio_run_iocb()
915 	 * testing it and putting the iocb on the run list under the lock */
916 	if (!kiocbTryKick(iocb))
917 		run = __queue_kicked_iocb(iocb);
918 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
919 	if (run)
920 		aio_queue_work(ctx);
921 }
922 
923 /*
924  * kick_iocb:
925  *      Called typically from a wait queue callback context
926  *      to trigger a retry of the iocb.
927  *      The retry is usually executed by aio workqueue
928  *      threads (See aio_kick_handler).
929  */
930 void kick_iocb(struct kiocb *iocb)
931 {
932 	/* sync iocbs are easy: they can only ever be executing from a
933 	 * single context. */
934 	if (is_sync_kiocb(iocb)) {
935 		kiocbSetKicked(iocb);
936 	        wake_up_process(iocb->ki_obj.tsk);
937 		return;
938 	}
939 
940 	try_queue_kicked_iocb(iocb);
941 }
942 EXPORT_SYMBOL(kick_iocb);
943 
944 /* aio_complete
945  *	Called when the io request on the given iocb is complete.
946  *	Returns true if this is the last user of the request.  The
947  *	only other user of the request can be the cancellation code.
948  */
949 int aio_complete(struct kiocb *iocb, long res, long res2)
950 {
951 	struct kioctx	*ctx = iocb->ki_ctx;
952 	struct aio_ring_info	*info;
953 	struct aio_ring	*ring;
954 	struct io_event	*event;
955 	unsigned long	flags;
956 	unsigned long	tail;
957 	int		ret;
958 
959 	/*
960 	 * Special case handling for sync iocbs:
961 	 *  - events go directly into the iocb for fast handling
962 	 *  - the sync task with the iocb in its stack holds the single iocb
963 	 *    ref, no other paths have a way to get another ref
964 	 *  - the sync task helpfully left a reference to itself in the iocb
965 	 */
966 	if (is_sync_kiocb(iocb)) {
967 		BUG_ON(iocb->ki_users != 1);
968 		iocb->ki_user_data = res;
969 		iocb->ki_users = 0;
970 		wake_up_process(iocb->ki_obj.tsk);
971 		return 1;
972 	}
973 
974 	info = &ctx->ring_info;
975 
976 	/* add a completion event to the ring buffer.
977 	 * must be done holding ctx->ctx_lock to prevent
978 	 * other code from messing with the tail
979 	 * pointer since we might be called from irq
980 	 * context.
981 	 */
982 	spin_lock_irqsave(&ctx->ctx_lock, flags);
983 
984 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
985 		list_del_init(&iocb->ki_run_list);
986 
987 	/*
988 	 * cancelled requests don't get events, userland was given one
989 	 * when the event got cancelled.
990 	 */
991 	if (kiocbIsCancelled(iocb))
992 		goto put_rq;
993 
994 	ring = kmap_atomic(info->ring_pages[0]);
995 
996 	tail = info->tail;
997 	event = aio_ring_event(info, tail);
998 	if (++tail >= info->nr)
999 		tail = 0;
1000 
1001 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1002 	event->data = iocb->ki_user_data;
1003 	event->res = res;
1004 	event->res2 = res2;
1005 
1006 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1007 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1008 		res, res2);
1009 
1010 	/* after flagging the request as done, we
1011 	 * must never even look at it again
1012 	 */
1013 	smp_wmb();	/* make event visible before updating tail */
1014 
1015 	info->tail = tail;
1016 	ring->tail = tail;
1017 
1018 	put_aio_ring_event(event);
1019 	kunmap_atomic(ring);
1020 
1021 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1022 
1023 	/*
1024 	 * Check if the user asked us to deliver the result through an
1025 	 * eventfd. The eventfd_signal() function is safe to be called
1026 	 * from IRQ context.
1027 	 */
1028 	if (iocb->ki_eventfd != NULL)
1029 		eventfd_signal(iocb->ki_eventfd, 1);
1030 
1031 put_rq:
1032 	/* everything turned out well, dispose of the aiocb. */
1033 	ret = __aio_put_req(ctx, iocb);
1034 
1035 	/*
1036 	 * We have to order our ring_info tail store above and test
1037 	 * of the wait list below outside the wait lock.  This is
1038 	 * like in wake_up_bit() where clearing a bit has to be
1039 	 * ordered with the unlocked test.
1040 	 */
1041 	smp_mb();
1042 
1043 	if (waitqueue_active(&ctx->wait))
1044 		wake_up(&ctx->wait);
1045 
1046 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1047 	return ret;
1048 }
1049 EXPORT_SYMBOL(aio_complete);
1050 
1051 /* aio_read_evt
1052  *	Pull an event off of the ioctx's event ring.  Returns the number of
1053  *	events fetched (0 or 1 ;-)
1054  *	FIXME: make this use cmpxchg.
1055  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1056  */
1057 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1058 {
1059 	struct aio_ring_info *info = &ioctx->ring_info;
1060 	struct aio_ring *ring;
1061 	unsigned long head;
1062 	int ret = 0;
1063 
1064 	ring = kmap_atomic(info->ring_pages[0]);
1065 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1066 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1067 		 (unsigned long)ring->nr);
1068 
1069 	if (ring->head == ring->tail)
1070 		goto out;
1071 
1072 	spin_lock(&info->ring_lock);
1073 
1074 	head = ring->head % info->nr;
1075 	if (head != ring->tail) {
1076 		struct io_event *evp = aio_ring_event(info, head);
1077 		*ent = *evp;
1078 		head = (head + 1) % info->nr;
1079 		smp_mb(); /* finish reading the event before updatng the head */
1080 		ring->head = head;
1081 		ret = 1;
1082 		put_aio_ring_event(evp);
1083 	}
1084 	spin_unlock(&info->ring_lock);
1085 
1086 out:
1087 	kunmap_atomic(ring);
1088 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1089 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1090 	return ret;
1091 }
1092 
1093 struct aio_timeout {
1094 	struct timer_list	timer;
1095 	int			timed_out;
1096 	struct task_struct	*p;
1097 };
1098 
1099 static void timeout_func(unsigned long data)
1100 {
1101 	struct aio_timeout *to = (struct aio_timeout *)data;
1102 
1103 	to->timed_out = 1;
1104 	wake_up_process(to->p);
1105 }
1106 
1107 static inline void init_timeout(struct aio_timeout *to)
1108 {
1109 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1110 	to->timed_out = 0;
1111 	to->p = current;
1112 }
1113 
1114 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1115 			       const struct timespec *ts)
1116 {
1117 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1118 	if (time_after(to->timer.expires, jiffies))
1119 		add_timer(&to->timer);
1120 	else
1121 		to->timed_out = 1;
1122 }
1123 
1124 static inline void clear_timeout(struct aio_timeout *to)
1125 {
1126 	del_singleshot_timer_sync(&to->timer);
1127 }
1128 
1129 static int read_events(struct kioctx *ctx,
1130 			long min_nr, long nr,
1131 			struct io_event __user *event,
1132 			struct timespec __user *timeout)
1133 {
1134 	long			start_jiffies = jiffies;
1135 	struct task_struct	*tsk = current;
1136 	DECLARE_WAITQUEUE(wait, tsk);
1137 	int			ret;
1138 	int			i = 0;
1139 	struct io_event		ent;
1140 	struct aio_timeout	to;
1141 	int			retry = 0;
1142 
1143 	/* needed to zero any padding within an entry (there shouldn't be
1144 	 * any, but C is fun!
1145 	 */
1146 	memset(&ent, 0, sizeof(ent));
1147 retry:
1148 	ret = 0;
1149 	while (likely(i < nr)) {
1150 		ret = aio_read_evt(ctx, &ent);
1151 		if (unlikely(ret <= 0))
1152 			break;
1153 
1154 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1155 			ent.data, ent.obj, ent.res, ent.res2);
1156 
1157 		/* Could we split the check in two? */
1158 		ret = -EFAULT;
1159 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1160 			dprintk("aio: lost an event due to EFAULT.\n");
1161 			break;
1162 		}
1163 		ret = 0;
1164 
1165 		/* Good, event copied to userland, update counts. */
1166 		event ++;
1167 		i ++;
1168 	}
1169 
1170 	if (min_nr <= i)
1171 		return i;
1172 	if (ret)
1173 		return ret;
1174 
1175 	/* End fast path */
1176 
1177 	/* racey check, but it gets redone */
1178 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1179 		retry = 1;
1180 		aio_run_all_iocbs(ctx);
1181 		goto retry;
1182 	}
1183 
1184 	init_timeout(&to);
1185 	if (timeout) {
1186 		struct timespec	ts;
1187 		ret = -EFAULT;
1188 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1189 			goto out;
1190 
1191 		set_timeout(start_jiffies, &to, &ts);
1192 	}
1193 
1194 	while (likely(i < nr)) {
1195 		add_wait_queue_exclusive(&ctx->wait, &wait);
1196 		do {
1197 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1198 			ret = aio_read_evt(ctx, &ent);
1199 			if (ret)
1200 				break;
1201 			if (min_nr <= i)
1202 				break;
1203 			if (unlikely(ctx->dead)) {
1204 				ret = -EINVAL;
1205 				break;
1206 			}
1207 			if (to.timed_out)	/* Only check after read evt */
1208 				break;
1209 			/* Try to only show up in io wait if there are ops
1210 			 *  in flight */
1211 			if (ctx->reqs_active)
1212 				io_schedule();
1213 			else
1214 				schedule();
1215 			if (signal_pending(tsk)) {
1216 				ret = -EINTR;
1217 				break;
1218 			}
1219 			/*ret = aio_read_evt(ctx, &ent);*/
1220 		} while (1) ;
1221 
1222 		set_task_state(tsk, TASK_RUNNING);
1223 		remove_wait_queue(&ctx->wait, &wait);
1224 
1225 		if (unlikely(ret <= 0))
1226 			break;
1227 
1228 		ret = -EFAULT;
1229 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1230 			dprintk("aio: lost an event due to EFAULT.\n");
1231 			break;
1232 		}
1233 
1234 		/* Good, event copied to userland, update counts. */
1235 		event ++;
1236 		i ++;
1237 	}
1238 
1239 	if (timeout)
1240 		clear_timeout(&to);
1241 out:
1242 	destroy_timer_on_stack(&to.timer);
1243 	return i ? i : ret;
1244 }
1245 
1246 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1247  * against races with itself via ->dead.
1248  */
1249 static void io_destroy(struct kioctx *ioctx)
1250 {
1251 	struct mm_struct *mm = current->mm;
1252 	int was_dead;
1253 
1254 	/* delete the entry from the list is someone else hasn't already */
1255 	spin_lock(&mm->ioctx_lock);
1256 	was_dead = ioctx->dead;
1257 	ioctx->dead = 1;
1258 	hlist_del_rcu(&ioctx->list);
1259 	spin_unlock(&mm->ioctx_lock);
1260 
1261 	dprintk("aio_release(%p)\n", ioctx);
1262 	if (likely(!was_dead))
1263 		put_ioctx(ioctx);	/* twice for the list */
1264 
1265 	kill_ctx(ioctx);
1266 
1267 	/*
1268 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1269 	 * by other CPUs at this point.  Right now, we rely on the
1270 	 * locking done by the above calls to ensure this consistency.
1271 	 */
1272 	wake_up_all(&ioctx->wait);
1273 }
1274 
1275 /* sys_io_setup:
1276  *	Create an aio_context capable of receiving at least nr_events.
1277  *	ctxp must not point to an aio_context that already exists, and
1278  *	must be initialized to 0 prior to the call.  On successful
1279  *	creation of the aio_context, *ctxp is filled in with the resulting
1280  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1281  *	if the specified nr_events exceeds internal limits.  May fail
1282  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1283  *	of available events.  May fail with -ENOMEM if insufficient kernel
1284  *	resources are available.  May fail with -EFAULT if an invalid
1285  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1286  *	implemented.
1287  */
1288 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1289 {
1290 	struct kioctx *ioctx = NULL;
1291 	unsigned long ctx;
1292 	long ret;
1293 
1294 	ret = get_user(ctx, ctxp);
1295 	if (unlikely(ret))
1296 		goto out;
1297 
1298 	ret = -EINVAL;
1299 	if (unlikely(ctx || nr_events == 0)) {
1300 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1301 		         ctx, nr_events);
1302 		goto out;
1303 	}
1304 
1305 	ioctx = ioctx_alloc(nr_events);
1306 	ret = PTR_ERR(ioctx);
1307 	if (!IS_ERR(ioctx)) {
1308 		ret = put_user(ioctx->user_id, ctxp);
1309 		if (ret)
1310 			io_destroy(ioctx);
1311 		put_ioctx(ioctx);
1312 	}
1313 
1314 out:
1315 	return ret;
1316 }
1317 
1318 /* sys_io_destroy:
1319  *	Destroy the aio_context specified.  May cancel any outstanding
1320  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1321  *	implemented.  May fail with -EINVAL if the context pointed to
1322  *	is invalid.
1323  */
1324 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1325 {
1326 	struct kioctx *ioctx = lookup_ioctx(ctx);
1327 	if (likely(NULL != ioctx)) {
1328 		io_destroy(ioctx);
1329 		put_ioctx(ioctx);
1330 		return 0;
1331 	}
1332 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1333 	return -EINVAL;
1334 }
1335 
1336 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1337 {
1338 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1339 
1340 	BUG_ON(ret <= 0);
1341 
1342 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1343 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1344 		iov->iov_base += this;
1345 		iov->iov_len -= this;
1346 		iocb->ki_left -= this;
1347 		ret -= this;
1348 		if (iov->iov_len == 0) {
1349 			iocb->ki_cur_seg++;
1350 			iov++;
1351 		}
1352 	}
1353 
1354 	/* the caller should not have done more io than what fit in
1355 	 * the remaining iovecs */
1356 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1357 }
1358 
1359 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1360 {
1361 	struct file *file = iocb->ki_filp;
1362 	struct address_space *mapping = file->f_mapping;
1363 	struct inode *inode = mapping->host;
1364 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1365 			 unsigned long, loff_t);
1366 	ssize_t ret = 0;
1367 	unsigned short opcode;
1368 
1369 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1370 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1371 		rw_op = file->f_op->aio_read;
1372 		opcode = IOCB_CMD_PREADV;
1373 	} else {
1374 		rw_op = file->f_op->aio_write;
1375 		opcode = IOCB_CMD_PWRITEV;
1376 	}
1377 
1378 	/* This matches the pread()/pwrite() logic */
1379 	if (iocb->ki_pos < 0)
1380 		return -EINVAL;
1381 
1382 	do {
1383 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1384 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1385 			    iocb->ki_pos);
1386 		if (ret > 0)
1387 			aio_advance_iovec(iocb, ret);
1388 
1389 	/* retry all partial writes.  retry partial reads as long as its a
1390 	 * regular file. */
1391 	} while (ret > 0 && iocb->ki_left > 0 &&
1392 		 (opcode == IOCB_CMD_PWRITEV ||
1393 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1394 
1395 	/* This means we must have transferred all that we could */
1396 	/* No need to retry anymore */
1397 	if ((ret == 0) || (iocb->ki_left == 0))
1398 		ret = iocb->ki_nbytes - iocb->ki_left;
1399 
1400 	/* If we managed to write some out we return that, rather than
1401 	 * the eventual error. */
1402 	if (opcode == IOCB_CMD_PWRITEV
1403 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1404 	    && iocb->ki_nbytes - iocb->ki_left)
1405 		ret = iocb->ki_nbytes - iocb->ki_left;
1406 
1407 	return ret;
1408 }
1409 
1410 static ssize_t aio_fdsync(struct kiocb *iocb)
1411 {
1412 	struct file *file = iocb->ki_filp;
1413 	ssize_t ret = -EINVAL;
1414 
1415 	if (file->f_op->aio_fsync)
1416 		ret = file->f_op->aio_fsync(iocb, 1);
1417 	return ret;
1418 }
1419 
1420 static ssize_t aio_fsync(struct kiocb *iocb)
1421 {
1422 	struct file *file = iocb->ki_filp;
1423 	ssize_t ret = -EINVAL;
1424 
1425 	if (file->f_op->aio_fsync)
1426 		ret = file->f_op->aio_fsync(iocb, 0);
1427 	return ret;
1428 }
1429 
1430 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1431 {
1432 	ssize_t ret;
1433 
1434 #ifdef CONFIG_COMPAT
1435 	if (compat)
1436 		ret = compat_rw_copy_check_uvector(type,
1437 				(struct compat_iovec __user *)kiocb->ki_buf,
1438 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1439 				&kiocb->ki_iovec, 1);
1440 	else
1441 #endif
1442 		ret = rw_copy_check_uvector(type,
1443 				(struct iovec __user *)kiocb->ki_buf,
1444 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1445 				&kiocb->ki_iovec, 1);
1446 	if (ret < 0)
1447 		goto out;
1448 
1449 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1450 	kiocb->ki_cur_seg = 0;
1451 	/* ki_nbytes/left now reflect bytes instead of segs */
1452 	kiocb->ki_nbytes = ret;
1453 	kiocb->ki_left = ret;
1454 
1455 	ret = 0;
1456 out:
1457 	return ret;
1458 }
1459 
1460 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1461 {
1462 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1463 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1464 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1465 	kiocb->ki_nr_segs = 1;
1466 	kiocb->ki_cur_seg = 0;
1467 	return 0;
1468 }
1469 
1470 /*
1471  * aio_setup_iocb:
1472  *	Performs the initial checks and aio retry method
1473  *	setup for the kiocb at the time of io submission.
1474  */
1475 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1476 {
1477 	struct file *file = kiocb->ki_filp;
1478 	ssize_t ret = 0;
1479 
1480 	switch (kiocb->ki_opcode) {
1481 	case IOCB_CMD_PREAD:
1482 		ret = -EBADF;
1483 		if (unlikely(!(file->f_mode & FMODE_READ)))
1484 			break;
1485 		ret = -EFAULT;
1486 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1487 			kiocb->ki_left)))
1488 			break;
1489 		ret = security_file_permission(file, MAY_READ);
1490 		if (unlikely(ret))
1491 			break;
1492 		ret = aio_setup_single_vector(kiocb);
1493 		if (ret)
1494 			break;
1495 		ret = -EINVAL;
1496 		if (file->f_op->aio_read)
1497 			kiocb->ki_retry = aio_rw_vect_retry;
1498 		break;
1499 	case IOCB_CMD_PWRITE:
1500 		ret = -EBADF;
1501 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1502 			break;
1503 		ret = -EFAULT;
1504 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1505 			kiocb->ki_left)))
1506 			break;
1507 		ret = security_file_permission(file, MAY_WRITE);
1508 		if (unlikely(ret))
1509 			break;
1510 		ret = aio_setup_single_vector(kiocb);
1511 		if (ret)
1512 			break;
1513 		ret = -EINVAL;
1514 		if (file->f_op->aio_write)
1515 			kiocb->ki_retry = aio_rw_vect_retry;
1516 		break;
1517 	case IOCB_CMD_PREADV:
1518 		ret = -EBADF;
1519 		if (unlikely(!(file->f_mode & FMODE_READ)))
1520 			break;
1521 		ret = security_file_permission(file, MAY_READ);
1522 		if (unlikely(ret))
1523 			break;
1524 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1525 		if (ret)
1526 			break;
1527 		ret = -EINVAL;
1528 		if (file->f_op->aio_read)
1529 			kiocb->ki_retry = aio_rw_vect_retry;
1530 		break;
1531 	case IOCB_CMD_PWRITEV:
1532 		ret = -EBADF;
1533 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1534 			break;
1535 		ret = security_file_permission(file, MAY_WRITE);
1536 		if (unlikely(ret))
1537 			break;
1538 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1539 		if (ret)
1540 			break;
1541 		ret = -EINVAL;
1542 		if (file->f_op->aio_write)
1543 			kiocb->ki_retry = aio_rw_vect_retry;
1544 		break;
1545 	case IOCB_CMD_FDSYNC:
1546 		ret = -EINVAL;
1547 		if (file->f_op->aio_fsync)
1548 			kiocb->ki_retry = aio_fdsync;
1549 		break;
1550 	case IOCB_CMD_FSYNC:
1551 		ret = -EINVAL;
1552 		if (file->f_op->aio_fsync)
1553 			kiocb->ki_retry = aio_fsync;
1554 		break;
1555 	default:
1556 		dprintk("EINVAL: io_submit: no operation provided\n");
1557 		ret = -EINVAL;
1558 	}
1559 
1560 	if (!kiocb->ki_retry)
1561 		return ret;
1562 
1563 	return 0;
1564 }
1565 
1566 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1567 			 struct iocb *iocb, struct kiocb_batch *batch,
1568 			 bool compat)
1569 {
1570 	struct kiocb *req;
1571 	struct file *file;
1572 	ssize_t ret;
1573 
1574 	/* enforce forwards compatibility on users */
1575 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1576 		pr_debug("EINVAL: io_submit: reserve field set\n");
1577 		return -EINVAL;
1578 	}
1579 
1580 	/* prevent overflows */
1581 	if (unlikely(
1582 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1583 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1584 	    ((ssize_t)iocb->aio_nbytes < 0)
1585 	   )) {
1586 		pr_debug("EINVAL: io_submit: overflow check\n");
1587 		return -EINVAL;
1588 	}
1589 
1590 	file = fget(iocb->aio_fildes);
1591 	if (unlikely(!file))
1592 		return -EBADF;
1593 
1594 	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1595 	if (unlikely(!req)) {
1596 		fput(file);
1597 		return -EAGAIN;
1598 	}
1599 	req->ki_filp = file;
1600 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1601 		/*
1602 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1603 		 * instance of the file* now. The file descriptor must be
1604 		 * an eventfd() fd, and will be signaled for each completed
1605 		 * event using the eventfd_signal() function.
1606 		 */
1607 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1608 		if (IS_ERR(req->ki_eventfd)) {
1609 			ret = PTR_ERR(req->ki_eventfd);
1610 			req->ki_eventfd = NULL;
1611 			goto out_put_req;
1612 		}
1613 	}
1614 
1615 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1616 	if (unlikely(ret)) {
1617 		dprintk("EFAULT: aio_key\n");
1618 		goto out_put_req;
1619 	}
1620 
1621 	req->ki_obj.user = user_iocb;
1622 	req->ki_user_data = iocb->aio_data;
1623 	req->ki_pos = iocb->aio_offset;
1624 
1625 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1626 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1627 	req->ki_opcode = iocb->aio_lio_opcode;
1628 
1629 	ret = aio_setup_iocb(req, compat);
1630 
1631 	if (ret)
1632 		goto out_put_req;
1633 
1634 	spin_lock_irq(&ctx->ctx_lock);
1635 	/*
1636 	 * We could have raced with io_destroy() and are currently holding a
1637 	 * reference to ctx which should be destroyed. We cannot submit IO
1638 	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1639 	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1640 	 * for outstanding IO and the barrier between these two is realized by
1641 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1642 	 * increment ctx->reqs_active before checking for ctx->dead and the
1643 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1644 	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1645 	 * finish.
1646 	 */
1647 	if (ctx->dead) {
1648 		spin_unlock_irq(&ctx->ctx_lock);
1649 		ret = -EINVAL;
1650 		goto out_put_req;
1651 	}
1652 	aio_run_iocb(req);
1653 	if (!list_empty(&ctx->run_list)) {
1654 		/* drain the run list */
1655 		while (__aio_run_iocbs(ctx))
1656 			;
1657 	}
1658 	spin_unlock_irq(&ctx->ctx_lock);
1659 
1660 	aio_put_req(req);	/* drop extra ref to req */
1661 	return 0;
1662 
1663 out_put_req:
1664 	aio_put_req(req);	/* drop extra ref to req */
1665 	aio_put_req(req);	/* drop i/o ref to req */
1666 	return ret;
1667 }
1668 
1669 long do_io_submit(aio_context_t ctx_id, long nr,
1670 		  struct iocb __user *__user *iocbpp, bool compat)
1671 {
1672 	struct kioctx *ctx;
1673 	long ret = 0;
1674 	int i = 0;
1675 	struct blk_plug plug;
1676 	struct kiocb_batch batch;
1677 
1678 	if (unlikely(nr < 0))
1679 		return -EINVAL;
1680 
1681 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1682 		nr = LONG_MAX/sizeof(*iocbpp);
1683 
1684 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1685 		return -EFAULT;
1686 
1687 	ctx = lookup_ioctx(ctx_id);
1688 	if (unlikely(!ctx)) {
1689 		pr_debug("EINVAL: io_submit: invalid context id\n");
1690 		return -EINVAL;
1691 	}
1692 
1693 	kiocb_batch_init(&batch, nr);
1694 
1695 	blk_start_plug(&plug);
1696 
1697 	/*
1698 	 * AKPM: should this return a partial result if some of the IOs were
1699 	 * successfully submitted?
1700 	 */
1701 	for (i=0; i<nr; i++) {
1702 		struct iocb __user *user_iocb;
1703 		struct iocb tmp;
1704 
1705 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1706 			ret = -EFAULT;
1707 			break;
1708 		}
1709 
1710 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1711 			ret = -EFAULT;
1712 			break;
1713 		}
1714 
1715 		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1716 		if (ret)
1717 			break;
1718 	}
1719 	blk_finish_plug(&plug);
1720 
1721 	kiocb_batch_free(ctx, &batch);
1722 	put_ioctx(ctx);
1723 	return i ? i : ret;
1724 }
1725 
1726 /* sys_io_submit:
1727  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1728  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1729  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1730  *	*iocbpp[0] is not properly initialized, if the operation specified
1731  *	is invalid for the file descriptor in the iocb.  May fail with
1732  *	-EFAULT if any of the data structures point to invalid data.  May
1733  *	fail with -EBADF if the file descriptor specified in the first
1734  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1735  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1736  *	fail with -ENOSYS if not implemented.
1737  */
1738 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1739 		struct iocb __user * __user *, iocbpp)
1740 {
1741 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1742 }
1743 
1744 /* lookup_kiocb
1745  *	Finds a given iocb for cancellation.
1746  */
1747 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1748 				  u32 key)
1749 {
1750 	struct list_head *pos;
1751 
1752 	assert_spin_locked(&ctx->ctx_lock);
1753 
1754 	/* TODO: use a hash or array, this sucks. */
1755 	list_for_each(pos, &ctx->active_reqs) {
1756 		struct kiocb *kiocb = list_kiocb(pos);
1757 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1758 			return kiocb;
1759 	}
1760 	return NULL;
1761 }
1762 
1763 /* sys_io_cancel:
1764  *	Attempts to cancel an iocb previously passed to io_submit.  If
1765  *	the operation is successfully cancelled, the resulting event is
1766  *	copied into the memory pointed to by result without being placed
1767  *	into the completion queue and 0 is returned.  May fail with
1768  *	-EFAULT if any of the data structures pointed to are invalid.
1769  *	May fail with -EINVAL if aio_context specified by ctx_id is
1770  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1771  *	cancelled.  Will fail with -ENOSYS if not implemented.
1772  */
1773 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1774 		struct io_event __user *, result)
1775 {
1776 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1777 	struct kioctx *ctx;
1778 	struct kiocb *kiocb;
1779 	u32 key;
1780 	int ret;
1781 
1782 	ret = get_user(key, &iocb->aio_key);
1783 	if (unlikely(ret))
1784 		return -EFAULT;
1785 
1786 	ctx = lookup_ioctx(ctx_id);
1787 	if (unlikely(!ctx))
1788 		return -EINVAL;
1789 
1790 	spin_lock_irq(&ctx->ctx_lock);
1791 	ret = -EAGAIN;
1792 	kiocb = lookup_kiocb(ctx, iocb, key);
1793 	if (kiocb && kiocb->ki_cancel) {
1794 		cancel = kiocb->ki_cancel;
1795 		kiocb->ki_users ++;
1796 		kiocbSetCancelled(kiocb);
1797 	} else
1798 		cancel = NULL;
1799 	spin_unlock_irq(&ctx->ctx_lock);
1800 
1801 	if (NULL != cancel) {
1802 		struct io_event tmp;
1803 		pr_debug("calling cancel\n");
1804 		memset(&tmp, 0, sizeof(tmp));
1805 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1806 		tmp.data = kiocb->ki_user_data;
1807 		ret = cancel(kiocb, &tmp);
1808 		if (!ret) {
1809 			/* Cancellation succeeded -- copy the result
1810 			 * into the user's buffer.
1811 			 */
1812 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1813 				ret = -EFAULT;
1814 		}
1815 	} else
1816 		ret = -EINVAL;
1817 
1818 	put_ioctx(ctx);
1819 
1820 	return ret;
1821 }
1822 
1823 /* io_getevents:
1824  *	Attempts to read at least min_nr events and up to nr events from
1825  *	the completion queue for the aio_context specified by ctx_id. If
1826  *	it succeeds, the number of read events is returned. May fail with
1827  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1828  *	out of range, if timeout is out of range.  May fail with -EFAULT
1829  *	if any of the memory specified is invalid.  May return 0 or
1830  *	< min_nr if the timeout specified by timeout has elapsed
1831  *	before sufficient events are available, where timeout == NULL
1832  *	specifies an infinite timeout. Note that the timeout pointed to by
1833  *	timeout is relative and will be updated if not NULL and the
1834  *	operation blocks. Will fail with -ENOSYS if not implemented.
1835  */
1836 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1837 		long, min_nr,
1838 		long, nr,
1839 		struct io_event __user *, events,
1840 		struct timespec __user *, timeout)
1841 {
1842 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1843 	long ret = -EINVAL;
1844 
1845 	if (likely(ioctx)) {
1846 		if (likely(min_nr <= nr && min_nr >= 0))
1847 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1848 		put_ioctx(ioctx);
1849 	}
1850 
1851 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1852 	return ret;
1853 }
1854