xref: /linux/fs/aio.c (revision fd7a253311412b3fc7c85586552c90eca61e7d23)
1  /*
2   *	An async IO implementation for Linux
3   *	Written by Benjamin LaHaise <bcrl@kvack.org>
4   *
5   *	Implements an efficient asynchronous io interface.
6   *
7   *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8   *
9   *	See ../COPYING for licensing terms.
10   */
11  #include <linux/kernel.h>
12  #include <linux/init.h>
13  #include <linux/errno.h>
14  #include <linux/time.h>
15  #include <linux/aio_abi.h>
16  #include <linux/module.h>
17  #include <linux/syscalls.h>
18  #include <linux/uio.h>
19  
20  #define DEBUG 0
21  
22  #include <linux/sched.h>
23  #include <linux/fs.h>
24  #include <linux/file.h>
25  #include <linux/mm.h>
26  #include <linux/mman.h>
27  #include <linux/slab.h>
28  #include <linux/timer.h>
29  #include <linux/aio.h>
30  #include <linux/highmem.h>
31  #include <linux/workqueue.h>
32  #include <linux/security.h>
33  #include <linux/eventfd.h>
34  
35  #include <asm/kmap_types.h>
36  #include <asm/uaccess.h>
37  #include <asm/mmu_context.h>
38  
39  #if DEBUG > 1
40  #define dprintk		printk
41  #else
42  #define dprintk(x...)	do { ; } while (0)
43  #endif
44  
45  /*------ sysctl variables----*/
46  static DEFINE_SPINLOCK(aio_nr_lock);
47  unsigned long aio_nr;		/* current system wide number of aio requests */
48  unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49  /*----end sysctl variables---*/
50  
51  static struct kmem_cache	*kiocb_cachep;
52  static struct kmem_cache	*kioctx_cachep;
53  
54  static struct workqueue_struct *aio_wq;
55  
56  /* Used for rare fput completion. */
57  static void aio_fput_routine(struct work_struct *);
58  static DECLARE_WORK(fput_work, aio_fput_routine);
59  
60  static DEFINE_SPINLOCK(fput_lock);
61  static LIST_HEAD(fput_head);
62  
63  static void aio_kick_handler(struct work_struct *);
64  static void aio_queue_work(struct kioctx *);
65  
66  /* aio_setup
67   *	Creates the slab caches used by the aio routines, panic on
68   *	failure as this is done early during the boot sequence.
69   */
70  static int __init aio_setup(void)
71  {
72  	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73  	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74  
75  	aio_wq = create_workqueue("aio");
76  
77  	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78  
79  	return 0;
80  }
81  
82  static void aio_free_ring(struct kioctx *ctx)
83  {
84  	struct aio_ring_info *info = &ctx->ring_info;
85  	long i;
86  
87  	for (i=0; i<info->nr_pages; i++)
88  		put_page(info->ring_pages[i]);
89  
90  	if (info->mmap_size) {
91  		down_write(&ctx->mm->mmap_sem);
92  		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93  		up_write(&ctx->mm->mmap_sem);
94  	}
95  
96  	if (info->ring_pages && info->ring_pages != info->internal_pages)
97  		kfree(info->ring_pages);
98  	info->ring_pages = NULL;
99  	info->nr = 0;
100  }
101  
102  static int aio_setup_ring(struct kioctx *ctx)
103  {
104  	struct aio_ring *ring;
105  	struct aio_ring_info *info = &ctx->ring_info;
106  	unsigned nr_events = ctx->max_reqs;
107  	unsigned long size;
108  	int nr_pages;
109  
110  	/* Compensate for the ring buffer's head/tail overlap entry */
111  	nr_events += 2;	/* 1 is required, 2 for good luck */
112  
113  	size = sizeof(struct aio_ring);
114  	size += sizeof(struct io_event) * nr_events;
115  	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116  
117  	if (nr_pages < 0)
118  		return -EINVAL;
119  
120  	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121  
122  	info->nr = 0;
123  	info->ring_pages = info->internal_pages;
124  	if (nr_pages > AIO_RING_PAGES) {
125  		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126  		if (!info->ring_pages)
127  			return -ENOMEM;
128  	}
129  
130  	info->mmap_size = nr_pages * PAGE_SIZE;
131  	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132  	down_write(&ctx->mm->mmap_sem);
133  	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134  				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135  				  0);
136  	if (IS_ERR((void *)info->mmap_base)) {
137  		up_write(&ctx->mm->mmap_sem);
138  		info->mmap_size = 0;
139  		aio_free_ring(ctx);
140  		return -EAGAIN;
141  	}
142  
143  	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144  	info->nr_pages = get_user_pages(current, ctx->mm,
145  					info->mmap_base, nr_pages,
146  					1, 0, info->ring_pages, NULL);
147  	up_write(&ctx->mm->mmap_sem);
148  
149  	if (unlikely(info->nr_pages != nr_pages)) {
150  		aio_free_ring(ctx);
151  		return -EAGAIN;
152  	}
153  
154  	ctx->user_id = info->mmap_base;
155  
156  	info->nr = nr_events;		/* trusted copy */
157  
158  	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159  	ring->nr = nr_events;	/* user copy */
160  	ring->id = ctx->user_id;
161  	ring->head = ring->tail = 0;
162  	ring->magic = AIO_RING_MAGIC;
163  	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164  	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165  	ring->header_length = sizeof(struct aio_ring);
166  	kunmap_atomic(ring, KM_USER0);
167  
168  	return 0;
169  }
170  
171  
172  /* aio_ring_event: returns a pointer to the event at the given index from
173   * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174   */
175  #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176  #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177  #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178  
179  #define aio_ring_event(info, nr, km) ({					\
180  	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181  	struct io_event *__event;					\
182  	__event = kmap_atomic(						\
183  			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184  	__event += pos % AIO_EVENTS_PER_PAGE;				\
185  	__event;							\
186  })
187  
188  #define put_aio_ring_event(event, km) do {	\
189  	struct io_event *__event = (event);	\
190  	(void)__event;				\
191  	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192  } while(0)
193  
194  static void ctx_rcu_free(struct rcu_head *head)
195  {
196  	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
197  	unsigned nr_events = ctx->max_reqs;
198  
199  	kmem_cache_free(kioctx_cachep, ctx);
200  
201  	if (nr_events) {
202  		spin_lock(&aio_nr_lock);
203  		BUG_ON(aio_nr - nr_events > aio_nr);
204  		aio_nr -= nr_events;
205  		spin_unlock(&aio_nr_lock);
206  	}
207  }
208  
209  /* __put_ioctx
210   *	Called when the last user of an aio context has gone away,
211   *	and the struct needs to be freed.
212   */
213  static void __put_ioctx(struct kioctx *ctx)
214  {
215  	BUG_ON(ctx->reqs_active);
216  
217  	cancel_delayed_work(&ctx->wq);
218  	cancel_work_sync(&ctx->wq.work);
219  	aio_free_ring(ctx);
220  	mmdrop(ctx->mm);
221  	ctx->mm = NULL;
222  	pr_debug("__put_ioctx: freeing %p\n", ctx);
223  	call_rcu(&ctx->rcu_head, ctx_rcu_free);
224  }
225  
226  #define get_ioctx(kioctx) do {						\
227  	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
228  	atomic_inc(&(kioctx)->users);					\
229  } while (0)
230  #define put_ioctx(kioctx) do {						\
231  	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
232  	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
233  		__put_ioctx(kioctx);					\
234  } while (0)
235  
236  /* ioctx_alloc
237   *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
238   */
239  static struct kioctx *ioctx_alloc(unsigned nr_events)
240  {
241  	struct mm_struct *mm;
242  	struct kioctx *ctx;
243  	int did_sync = 0;
244  
245  	/* Prevent overflows */
246  	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
247  	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
248  		pr_debug("ENOMEM: nr_events too high\n");
249  		return ERR_PTR(-EINVAL);
250  	}
251  
252  	if ((unsigned long)nr_events > aio_max_nr)
253  		return ERR_PTR(-EAGAIN);
254  
255  	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
256  	if (!ctx)
257  		return ERR_PTR(-ENOMEM);
258  
259  	ctx->max_reqs = nr_events;
260  	mm = ctx->mm = current->mm;
261  	atomic_inc(&mm->mm_count);
262  
263  	atomic_set(&ctx->users, 1);
264  	spin_lock_init(&ctx->ctx_lock);
265  	spin_lock_init(&ctx->ring_info.ring_lock);
266  	init_waitqueue_head(&ctx->wait);
267  
268  	INIT_LIST_HEAD(&ctx->active_reqs);
269  	INIT_LIST_HEAD(&ctx->run_list);
270  	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
271  
272  	if (aio_setup_ring(ctx) < 0)
273  		goto out_freectx;
274  
275  	/* limit the number of system wide aios */
276  	do {
277  		spin_lock_bh(&aio_nr_lock);
278  		if (aio_nr + nr_events > aio_max_nr ||
279  		    aio_nr + nr_events < aio_nr)
280  			ctx->max_reqs = 0;
281  		else
282  			aio_nr += ctx->max_reqs;
283  		spin_unlock_bh(&aio_nr_lock);
284  		if (ctx->max_reqs || did_sync)
285  			break;
286  
287  		/* wait for rcu callbacks to have completed before giving up */
288  		synchronize_rcu();
289  		did_sync = 1;
290  		ctx->max_reqs = nr_events;
291  	} while (1);
292  
293  	if (ctx->max_reqs == 0)
294  		goto out_cleanup;
295  
296  	/* now link into global list. */
297  	spin_lock(&mm->ioctx_lock);
298  	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
299  	spin_unlock(&mm->ioctx_lock);
300  
301  	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302  		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
303  	return ctx;
304  
305  out_cleanup:
306  	__put_ioctx(ctx);
307  	return ERR_PTR(-EAGAIN);
308  
309  out_freectx:
310  	mmdrop(mm);
311  	kmem_cache_free(kioctx_cachep, ctx);
312  	ctx = ERR_PTR(-ENOMEM);
313  
314  	dprintk("aio: error allocating ioctx %p\n", ctx);
315  	return ctx;
316  }
317  
318  /* aio_cancel_all
319   *	Cancels all outstanding aio requests on an aio context.  Used
320   *	when the processes owning a context have all exited to encourage
321   *	the rapid destruction of the kioctx.
322   */
323  static void aio_cancel_all(struct kioctx *ctx)
324  {
325  	int (*cancel)(struct kiocb *, struct io_event *);
326  	struct io_event res;
327  	spin_lock_irq(&ctx->ctx_lock);
328  	ctx->dead = 1;
329  	while (!list_empty(&ctx->active_reqs)) {
330  		struct list_head *pos = ctx->active_reqs.next;
331  		struct kiocb *iocb = list_kiocb(pos);
332  		list_del_init(&iocb->ki_list);
333  		cancel = iocb->ki_cancel;
334  		kiocbSetCancelled(iocb);
335  		if (cancel) {
336  			iocb->ki_users++;
337  			spin_unlock_irq(&ctx->ctx_lock);
338  			cancel(iocb, &res);
339  			spin_lock_irq(&ctx->ctx_lock);
340  		}
341  	}
342  	spin_unlock_irq(&ctx->ctx_lock);
343  }
344  
345  static void wait_for_all_aios(struct kioctx *ctx)
346  {
347  	struct task_struct *tsk = current;
348  	DECLARE_WAITQUEUE(wait, tsk);
349  
350  	spin_lock_irq(&ctx->ctx_lock);
351  	if (!ctx->reqs_active)
352  		goto out;
353  
354  	add_wait_queue(&ctx->wait, &wait);
355  	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
356  	while (ctx->reqs_active) {
357  		spin_unlock_irq(&ctx->ctx_lock);
358  		io_schedule();
359  		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
360  		spin_lock_irq(&ctx->ctx_lock);
361  	}
362  	__set_task_state(tsk, TASK_RUNNING);
363  	remove_wait_queue(&ctx->wait, &wait);
364  
365  out:
366  	spin_unlock_irq(&ctx->ctx_lock);
367  }
368  
369  /* wait_on_sync_kiocb:
370   *	Waits on the given sync kiocb to complete.
371   */
372  ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
373  {
374  	while (iocb->ki_users) {
375  		set_current_state(TASK_UNINTERRUPTIBLE);
376  		if (!iocb->ki_users)
377  			break;
378  		io_schedule();
379  	}
380  	__set_current_state(TASK_RUNNING);
381  	return iocb->ki_user_data;
382  }
383  
384  /* exit_aio: called when the last user of mm goes away.  At this point,
385   * there is no way for any new requests to be submited or any of the
386   * io_* syscalls to be called on the context.  However, there may be
387   * outstanding requests which hold references to the context; as they
388   * go away, they will call put_ioctx and release any pinned memory
389   * associated with the request (held via struct page * references).
390   */
391  void exit_aio(struct mm_struct *mm)
392  {
393  	struct kioctx *ctx;
394  
395  	while (!hlist_empty(&mm->ioctx_list)) {
396  		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
397  		hlist_del_rcu(&ctx->list);
398  
399  		aio_cancel_all(ctx);
400  
401  		wait_for_all_aios(ctx);
402  		/*
403  		 * Ensure we don't leave the ctx on the aio_wq
404  		 */
405  		cancel_work_sync(&ctx->wq.work);
406  
407  		if (1 != atomic_read(&ctx->users))
408  			printk(KERN_DEBUG
409  				"exit_aio:ioctx still alive: %d %d %d\n",
410  				atomic_read(&ctx->users), ctx->dead,
411  				ctx->reqs_active);
412  		put_ioctx(ctx);
413  	}
414  }
415  
416  /* aio_get_req
417   *	Allocate a slot for an aio request.  Increments the users count
418   * of the kioctx so that the kioctx stays around until all requests are
419   * complete.  Returns NULL if no requests are free.
420   *
421   * Returns with kiocb->users set to 2.  The io submit code path holds
422   * an extra reference while submitting the i/o.
423   * This prevents races between the aio code path referencing the
424   * req (after submitting it) and aio_complete() freeing the req.
425   */
426  static struct kiocb *__aio_get_req(struct kioctx *ctx)
427  {
428  	struct kiocb *req = NULL;
429  	struct aio_ring *ring;
430  	int okay = 0;
431  
432  	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
433  	if (unlikely(!req))
434  		return NULL;
435  
436  	req->ki_flags = 0;
437  	req->ki_users = 2;
438  	req->ki_key = 0;
439  	req->ki_ctx = ctx;
440  	req->ki_cancel = NULL;
441  	req->ki_retry = NULL;
442  	req->ki_dtor = NULL;
443  	req->private = NULL;
444  	req->ki_iovec = NULL;
445  	INIT_LIST_HEAD(&req->ki_run_list);
446  	req->ki_eventfd = ERR_PTR(-EINVAL);
447  
448  	/* Check if the completion queue has enough free space to
449  	 * accept an event from this io.
450  	 */
451  	spin_lock_irq(&ctx->ctx_lock);
452  	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
453  	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
454  		list_add(&req->ki_list, &ctx->active_reqs);
455  		ctx->reqs_active++;
456  		okay = 1;
457  	}
458  	kunmap_atomic(ring, KM_USER0);
459  	spin_unlock_irq(&ctx->ctx_lock);
460  
461  	if (!okay) {
462  		kmem_cache_free(kiocb_cachep, req);
463  		req = NULL;
464  	}
465  
466  	return req;
467  }
468  
469  static inline struct kiocb *aio_get_req(struct kioctx *ctx)
470  {
471  	struct kiocb *req;
472  	/* Handle a potential starvation case -- should be exceedingly rare as
473  	 * requests will be stuck on fput_head only if the aio_fput_routine is
474  	 * delayed and the requests were the last user of the struct file.
475  	 */
476  	req = __aio_get_req(ctx);
477  	if (unlikely(NULL == req)) {
478  		aio_fput_routine(NULL);
479  		req = __aio_get_req(ctx);
480  	}
481  	return req;
482  }
483  
484  static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
485  {
486  	assert_spin_locked(&ctx->ctx_lock);
487  
488  	if (!IS_ERR(req->ki_eventfd))
489  		fput(req->ki_eventfd);
490  	if (req->ki_dtor)
491  		req->ki_dtor(req);
492  	if (req->ki_iovec != &req->ki_inline_vec)
493  		kfree(req->ki_iovec);
494  	kmem_cache_free(kiocb_cachep, req);
495  	ctx->reqs_active--;
496  
497  	if (unlikely(!ctx->reqs_active && ctx->dead))
498  		wake_up(&ctx->wait);
499  }
500  
501  static void aio_fput_routine(struct work_struct *data)
502  {
503  	spin_lock_irq(&fput_lock);
504  	while (likely(!list_empty(&fput_head))) {
505  		struct kiocb *req = list_kiocb(fput_head.next);
506  		struct kioctx *ctx = req->ki_ctx;
507  
508  		list_del(&req->ki_list);
509  		spin_unlock_irq(&fput_lock);
510  
511  		/* Complete the fput */
512  		__fput(req->ki_filp);
513  
514  		/* Link the iocb into the context's free list */
515  		spin_lock_irq(&ctx->ctx_lock);
516  		really_put_req(ctx, req);
517  		spin_unlock_irq(&ctx->ctx_lock);
518  
519  		put_ioctx(ctx);
520  		spin_lock_irq(&fput_lock);
521  	}
522  	spin_unlock_irq(&fput_lock);
523  }
524  
525  /* __aio_put_req
526   *	Returns true if this put was the last user of the request.
527   */
528  static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
529  {
530  	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
531  		req, atomic_long_read(&req->ki_filp->f_count));
532  
533  	assert_spin_locked(&ctx->ctx_lock);
534  
535  	req->ki_users --;
536  	BUG_ON(req->ki_users < 0);
537  	if (likely(req->ki_users))
538  		return 0;
539  	list_del(&req->ki_list);		/* remove from active_reqs */
540  	req->ki_cancel = NULL;
541  	req->ki_retry = NULL;
542  
543  	/* Must be done under the lock to serialise against cancellation.
544  	 * Call this aio_fput as it duplicates fput via the fput_work.
545  	 */
546  	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
547  		get_ioctx(ctx);
548  		spin_lock(&fput_lock);
549  		list_add(&req->ki_list, &fput_head);
550  		spin_unlock(&fput_lock);
551  		queue_work(aio_wq, &fput_work);
552  	} else
553  		really_put_req(ctx, req);
554  	return 1;
555  }
556  
557  /* aio_put_req
558   *	Returns true if this put was the last user of the kiocb,
559   *	false if the request is still in use.
560   */
561  int aio_put_req(struct kiocb *req)
562  {
563  	struct kioctx *ctx = req->ki_ctx;
564  	int ret;
565  	spin_lock_irq(&ctx->ctx_lock);
566  	ret = __aio_put_req(ctx, req);
567  	spin_unlock_irq(&ctx->ctx_lock);
568  	return ret;
569  }
570  
571  static struct kioctx *lookup_ioctx(unsigned long ctx_id)
572  {
573  	struct mm_struct *mm = current->mm;
574  	struct kioctx *ctx = NULL;
575  	struct hlist_node *n;
576  
577  	rcu_read_lock();
578  
579  	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
580  		if (ctx->user_id == ctx_id && !ctx->dead) {
581  			get_ioctx(ctx);
582  			break;
583  		}
584  	}
585  
586  	rcu_read_unlock();
587  	return ctx;
588  }
589  
590  /*
591   * use_mm
592   *	Makes the calling kernel thread take on the specified
593   *	mm context.
594   *	Called by the retry thread execute retries within the
595   *	iocb issuer's mm context, so that copy_from/to_user
596   *	operations work seamlessly for aio.
597   *	(Note: this routine is intended to be called only
598   *	from a kernel thread context)
599   */
600  static void use_mm(struct mm_struct *mm)
601  {
602  	struct mm_struct *active_mm;
603  	struct task_struct *tsk = current;
604  
605  	task_lock(tsk);
606  	active_mm = tsk->active_mm;
607  	atomic_inc(&mm->mm_count);
608  	tsk->mm = mm;
609  	tsk->active_mm = mm;
610  	switch_mm(active_mm, mm, tsk);
611  	task_unlock(tsk);
612  
613  	mmdrop(active_mm);
614  }
615  
616  /*
617   * unuse_mm
618   *	Reverses the effect of use_mm, i.e. releases the
619   *	specified mm context which was earlier taken on
620   *	by the calling kernel thread
621   *	(Note: this routine is intended to be called only
622   *	from a kernel thread context)
623   */
624  static void unuse_mm(struct mm_struct *mm)
625  {
626  	struct task_struct *tsk = current;
627  
628  	task_lock(tsk);
629  	tsk->mm = NULL;
630  	/* active_mm is still 'mm' */
631  	enter_lazy_tlb(mm, tsk);
632  	task_unlock(tsk);
633  }
634  
635  /*
636   * Queue up a kiocb to be retried. Assumes that the kiocb
637   * has already been marked as kicked, and places it on
638   * the retry run list for the corresponding ioctx, if it
639   * isn't already queued. Returns 1 if it actually queued
640   * the kiocb (to tell the caller to activate the work
641   * queue to process it), or 0, if it found that it was
642   * already queued.
643   */
644  static inline int __queue_kicked_iocb(struct kiocb *iocb)
645  {
646  	struct kioctx *ctx = iocb->ki_ctx;
647  
648  	assert_spin_locked(&ctx->ctx_lock);
649  
650  	if (list_empty(&iocb->ki_run_list)) {
651  		list_add_tail(&iocb->ki_run_list,
652  			&ctx->run_list);
653  		return 1;
654  	}
655  	return 0;
656  }
657  
658  /* aio_run_iocb
659   *	This is the core aio execution routine. It is
660   *	invoked both for initial i/o submission and
661   *	subsequent retries via the aio_kick_handler.
662   *	Expects to be invoked with iocb->ki_ctx->lock
663   *	already held. The lock is released and reacquired
664   *	as needed during processing.
665   *
666   * Calls the iocb retry method (already setup for the
667   * iocb on initial submission) for operation specific
668   * handling, but takes care of most of common retry
669   * execution details for a given iocb. The retry method
670   * needs to be non-blocking as far as possible, to avoid
671   * holding up other iocbs waiting to be serviced by the
672   * retry kernel thread.
673   *
674   * The trickier parts in this code have to do with
675   * ensuring that only one retry instance is in progress
676   * for a given iocb at any time. Providing that guarantee
677   * simplifies the coding of individual aio operations as
678   * it avoids various potential races.
679   */
680  static ssize_t aio_run_iocb(struct kiocb *iocb)
681  {
682  	struct kioctx	*ctx = iocb->ki_ctx;
683  	ssize_t (*retry)(struct kiocb *);
684  	ssize_t ret;
685  
686  	if (!(retry = iocb->ki_retry)) {
687  		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
688  		return 0;
689  	}
690  
691  	/*
692  	 * We don't want the next retry iteration for this
693  	 * operation to start until this one has returned and
694  	 * updated the iocb state. However, wait_queue functions
695  	 * can trigger a kick_iocb from interrupt context in the
696  	 * meantime, indicating that data is available for the next
697  	 * iteration. We want to remember that and enable the
698  	 * next retry iteration _after_ we are through with
699  	 * this one.
700  	 *
701  	 * So, in order to be able to register a "kick", but
702  	 * prevent it from being queued now, we clear the kick
703  	 * flag, but make the kick code *think* that the iocb is
704  	 * still on the run list until we are actually done.
705  	 * When we are done with this iteration, we check if
706  	 * the iocb was kicked in the meantime and if so, queue
707  	 * it up afresh.
708  	 */
709  
710  	kiocbClearKicked(iocb);
711  
712  	/*
713  	 * This is so that aio_complete knows it doesn't need to
714  	 * pull the iocb off the run list (We can't just call
715  	 * INIT_LIST_HEAD because we don't want a kick_iocb to
716  	 * queue this on the run list yet)
717  	 */
718  	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
719  	spin_unlock_irq(&ctx->ctx_lock);
720  
721  	/* Quit retrying if the i/o has been cancelled */
722  	if (kiocbIsCancelled(iocb)) {
723  		ret = -EINTR;
724  		aio_complete(iocb, ret, 0);
725  		/* must not access the iocb after this */
726  		goto out;
727  	}
728  
729  	/*
730  	 * Now we are all set to call the retry method in async
731  	 * context.
732  	 */
733  	ret = retry(iocb);
734  
735  	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
736  		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
737  		aio_complete(iocb, ret, 0);
738  	}
739  out:
740  	spin_lock_irq(&ctx->ctx_lock);
741  
742  	if (-EIOCBRETRY == ret) {
743  		/*
744  		 * OK, now that we are done with this iteration
745  		 * and know that there is more left to go,
746  		 * this is where we let go so that a subsequent
747  		 * "kick" can start the next iteration
748  		 */
749  
750  		/* will make __queue_kicked_iocb succeed from here on */
751  		INIT_LIST_HEAD(&iocb->ki_run_list);
752  		/* we must queue the next iteration ourselves, if it
753  		 * has already been kicked */
754  		if (kiocbIsKicked(iocb)) {
755  			__queue_kicked_iocb(iocb);
756  
757  			/*
758  			 * __queue_kicked_iocb will always return 1 here, because
759  			 * iocb->ki_run_list is empty at this point so it should
760  			 * be safe to unconditionally queue the context into the
761  			 * work queue.
762  			 */
763  			aio_queue_work(ctx);
764  		}
765  	}
766  	return ret;
767  }
768  
769  /*
770   * __aio_run_iocbs:
771   * 	Process all pending retries queued on the ioctx
772   * 	run list.
773   * Assumes it is operating within the aio issuer's mm
774   * context.
775   */
776  static int __aio_run_iocbs(struct kioctx *ctx)
777  {
778  	struct kiocb *iocb;
779  	struct list_head run_list;
780  
781  	assert_spin_locked(&ctx->ctx_lock);
782  
783  	list_replace_init(&ctx->run_list, &run_list);
784  	while (!list_empty(&run_list)) {
785  		iocb = list_entry(run_list.next, struct kiocb,
786  			ki_run_list);
787  		list_del(&iocb->ki_run_list);
788  		/*
789  		 * Hold an extra reference while retrying i/o.
790  		 */
791  		iocb->ki_users++;       /* grab extra reference */
792  		aio_run_iocb(iocb);
793  		__aio_put_req(ctx, iocb);
794   	}
795  	if (!list_empty(&ctx->run_list))
796  		return 1;
797  	return 0;
798  }
799  
800  static void aio_queue_work(struct kioctx * ctx)
801  {
802  	unsigned long timeout;
803  	/*
804  	 * if someone is waiting, get the work started right
805  	 * away, otherwise, use a longer delay
806  	 */
807  	smp_mb();
808  	if (waitqueue_active(&ctx->wait))
809  		timeout = 1;
810  	else
811  		timeout = HZ/10;
812  	queue_delayed_work(aio_wq, &ctx->wq, timeout);
813  }
814  
815  
816  /*
817   * aio_run_iocbs:
818   * 	Process all pending retries queued on the ioctx
819   * 	run list.
820   * Assumes it is operating within the aio issuer's mm
821   * context.
822   */
823  static inline void aio_run_iocbs(struct kioctx *ctx)
824  {
825  	int requeue;
826  
827  	spin_lock_irq(&ctx->ctx_lock);
828  
829  	requeue = __aio_run_iocbs(ctx);
830  	spin_unlock_irq(&ctx->ctx_lock);
831  	if (requeue)
832  		aio_queue_work(ctx);
833  }
834  
835  /*
836   * just like aio_run_iocbs, but keeps running them until
837   * the list stays empty
838   */
839  static inline void aio_run_all_iocbs(struct kioctx *ctx)
840  {
841  	spin_lock_irq(&ctx->ctx_lock);
842  	while (__aio_run_iocbs(ctx))
843  		;
844  	spin_unlock_irq(&ctx->ctx_lock);
845  }
846  
847  /*
848   * aio_kick_handler:
849   * 	Work queue handler triggered to process pending
850   * 	retries on an ioctx. Takes on the aio issuer's
851   *	mm context before running the iocbs, so that
852   *	copy_xxx_user operates on the issuer's address
853   *      space.
854   * Run on aiod's context.
855   */
856  static void aio_kick_handler(struct work_struct *work)
857  {
858  	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
859  	mm_segment_t oldfs = get_fs();
860  	struct mm_struct *mm;
861  	int requeue;
862  
863  	set_fs(USER_DS);
864  	use_mm(ctx->mm);
865  	spin_lock_irq(&ctx->ctx_lock);
866  	requeue =__aio_run_iocbs(ctx);
867  	mm = ctx->mm;
868  	spin_unlock_irq(&ctx->ctx_lock);
869   	unuse_mm(mm);
870  	set_fs(oldfs);
871  	/*
872  	 * we're in a worker thread already, don't use queue_delayed_work,
873  	 */
874  	if (requeue)
875  		queue_delayed_work(aio_wq, &ctx->wq, 0);
876  }
877  
878  
879  /*
880   * Called by kick_iocb to queue the kiocb for retry
881   * and if required activate the aio work queue to process
882   * it
883   */
884  static void try_queue_kicked_iocb(struct kiocb *iocb)
885  {
886   	struct kioctx	*ctx = iocb->ki_ctx;
887  	unsigned long flags;
888  	int run = 0;
889  
890  	/* We're supposed to be the only path putting the iocb back on the run
891  	 * list.  If we find that the iocb is *back* on a wait queue already
892  	 * than retry has happened before we could queue the iocb.  This also
893  	 * means that the retry could have completed and freed our iocb, no
894  	 * good. */
895  	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
896  
897  	spin_lock_irqsave(&ctx->ctx_lock, flags);
898  	/* set this inside the lock so that we can't race with aio_run_iocb()
899  	 * testing it and putting the iocb on the run list under the lock */
900  	if (!kiocbTryKick(iocb))
901  		run = __queue_kicked_iocb(iocb);
902  	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
903  	if (run)
904  		aio_queue_work(ctx);
905  }
906  
907  /*
908   * kick_iocb:
909   *      Called typically from a wait queue callback context
910   *      (aio_wake_function) to trigger a retry of the iocb.
911   *      The retry is usually executed by aio workqueue
912   *      threads (See aio_kick_handler).
913   */
914  void kick_iocb(struct kiocb *iocb)
915  {
916  	/* sync iocbs are easy: they can only ever be executing from a
917  	 * single context. */
918  	if (is_sync_kiocb(iocb)) {
919  		kiocbSetKicked(iocb);
920  	        wake_up_process(iocb->ki_obj.tsk);
921  		return;
922  	}
923  
924  	try_queue_kicked_iocb(iocb);
925  }
926  EXPORT_SYMBOL(kick_iocb);
927  
928  /* aio_complete
929   *	Called when the io request on the given iocb is complete.
930   *	Returns true if this is the last user of the request.  The
931   *	only other user of the request can be the cancellation code.
932   */
933  int aio_complete(struct kiocb *iocb, long res, long res2)
934  {
935  	struct kioctx	*ctx = iocb->ki_ctx;
936  	struct aio_ring_info	*info;
937  	struct aio_ring	*ring;
938  	struct io_event	*event;
939  	unsigned long	flags;
940  	unsigned long	tail;
941  	int		ret;
942  
943  	/*
944  	 * Special case handling for sync iocbs:
945  	 *  - events go directly into the iocb for fast handling
946  	 *  - the sync task with the iocb in its stack holds the single iocb
947  	 *    ref, no other paths have a way to get another ref
948  	 *  - the sync task helpfully left a reference to itself in the iocb
949  	 */
950  	if (is_sync_kiocb(iocb)) {
951  		BUG_ON(iocb->ki_users != 1);
952  		iocb->ki_user_data = res;
953  		iocb->ki_users = 0;
954  		wake_up_process(iocb->ki_obj.tsk);
955  		return 1;
956  	}
957  
958  	info = &ctx->ring_info;
959  
960  	/* add a completion event to the ring buffer.
961  	 * must be done holding ctx->ctx_lock to prevent
962  	 * other code from messing with the tail
963  	 * pointer since we might be called from irq
964  	 * context.
965  	 */
966  	spin_lock_irqsave(&ctx->ctx_lock, flags);
967  
968  	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
969  		list_del_init(&iocb->ki_run_list);
970  
971  	/*
972  	 * cancelled requests don't get events, userland was given one
973  	 * when the event got cancelled.
974  	 */
975  	if (kiocbIsCancelled(iocb))
976  		goto put_rq;
977  
978  	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
979  
980  	tail = info->tail;
981  	event = aio_ring_event(info, tail, KM_IRQ0);
982  	if (++tail >= info->nr)
983  		tail = 0;
984  
985  	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
986  	event->data = iocb->ki_user_data;
987  	event->res = res;
988  	event->res2 = res2;
989  
990  	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
991  		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
992  		res, res2);
993  
994  	/* after flagging the request as done, we
995  	 * must never even look at it again
996  	 */
997  	smp_wmb();	/* make event visible before updating tail */
998  
999  	info->tail = tail;
1000  	ring->tail = tail;
1001  
1002  	put_aio_ring_event(event, KM_IRQ0);
1003  	kunmap_atomic(ring, KM_IRQ1);
1004  
1005  	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1006  
1007  	/*
1008  	 * Check if the user asked us to deliver the result through an
1009  	 * eventfd. The eventfd_signal() function is safe to be called
1010  	 * from IRQ context.
1011  	 */
1012  	if (!IS_ERR(iocb->ki_eventfd))
1013  		eventfd_signal(iocb->ki_eventfd, 1);
1014  
1015  put_rq:
1016  	/* everything turned out well, dispose of the aiocb. */
1017  	ret = __aio_put_req(ctx, iocb);
1018  
1019  	/*
1020  	 * We have to order our ring_info tail store above and test
1021  	 * of the wait list below outside the wait lock.  This is
1022  	 * like in wake_up_bit() where clearing a bit has to be
1023  	 * ordered with the unlocked test.
1024  	 */
1025  	smp_mb();
1026  
1027  	if (waitqueue_active(&ctx->wait))
1028  		wake_up(&ctx->wait);
1029  
1030  	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1031  	return ret;
1032  }
1033  
1034  /* aio_read_evt
1035   *	Pull an event off of the ioctx's event ring.  Returns the number of
1036   *	events fetched (0 or 1 ;-)
1037   *	FIXME: make this use cmpxchg.
1038   *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1039   */
1040  static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1041  {
1042  	struct aio_ring_info *info = &ioctx->ring_info;
1043  	struct aio_ring *ring;
1044  	unsigned long head;
1045  	int ret = 0;
1046  
1047  	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1048  	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1049  		 (unsigned long)ring->head, (unsigned long)ring->tail,
1050  		 (unsigned long)ring->nr);
1051  
1052  	if (ring->head == ring->tail)
1053  		goto out;
1054  
1055  	spin_lock(&info->ring_lock);
1056  
1057  	head = ring->head % info->nr;
1058  	if (head != ring->tail) {
1059  		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1060  		*ent = *evp;
1061  		head = (head + 1) % info->nr;
1062  		smp_mb(); /* finish reading the event before updatng the head */
1063  		ring->head = head;
1064  		ret = 1;
1065  		put_aio_ring_event(evp, KM_USER1);
1066  	}
1067  	spin_unlock(&info->ring_lock);
1068  
1069  out:
1070  	kunmap_atomic(ring, KM_USER0);
1071  	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1072  		 (unsigned long)ring->head, (unsigned long)ring->tail);
1073  	return ret;
1074  }
1075  
1076  struct aio_timeout {
1077  	struct timer_list	timer;
1078  	int			timed_out;
1079  	struct task_struct	*p;
1080  };
1081  
1082  static void timeout_func(unsigned long data)
1083  {
1084  	struct aio_timeout *to = (struct aio_timeout *)data;
1085  
1086  	to->timed_out = 1;
1087  	wake_up_process(to->p);
1088  }
1089  
1090  static inline void init_timeout(struct aio_timeout *to)
1091  {
1092  	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1093  	to->timed_out = 0;
1094  	to->p = current;
1095  }
1096  
1097  static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1098  			       const struct timespec *ts)
1099  {
1100  	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1101  	if (time_after(to->timer.expires, jiffies))
1102  		add_timer(&to->timer);
1103  	else
1104  		to->timed_out = 1;
1105  }
1106  
1107  static inline void clear_timeout(struct aio_timeout *to)
1108  {
1109  	del_singleshot_timer_sync(&to->timer);
1110  }
1111  
1112  static int read_events(struct kioctx *ctx,
1113  			long min_nr, long nr,
1114  			struct io_event __user *event,
1115  			struct timespec __user *timeout)
1116  {
1117  	long			start_jiffies = jiffies;
1118  	struct task_struct	*tsk = current;
1119  	DECLARE_WAITQUEUE(wait, tsk);
1120  	int			ret;
1121  	int			i = 0;
1122  	struct io_event		ent;
1123  	struct aio_timeout	to;
1124  	int			retry = 0;
1125  
1126  	/* needed to zero any padding within an entry (there shouldn't be
1127  	 * any, but C is fun!
1128  	 */
1129  	memset(&ent, 0, sizeof(ent));
1130  retry:
1131  	ret = 0;
1132  	while (likely(i < nr)) {
1133  		ret = aio_read_evt(ctx, &ent);
1134  		if (unlikely(ret <= 0))
1135  			break;
1136  
1137  		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1138  			ent.data, ent.obj, ent.res, ent.res2);
1139  
1140  		/* Could we split the check in two? */
1141  		ret = -EFAULT;
1142  		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1143  			dprintk("aio: lost an event due to EFAULT.\n");
1144  			break;
1145  		}
1146  		ret = 0;
1147  
1148  		/* Good, event copied to userland, update counts. */
1149  		event ++;
1150  		i ++;
1151  	}
1152  
1153  	if (min_nr <= i)
1154  		return i;
1155  	if (ret)
1156  		return ret;
1157  
1158  	/* End fast path */
1159  
1160  	/* racey check, but it gets redone */
1161  	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1162  		retry = 1;
1163  		aio_run_all_iocbs(ctx);
1164  		goto retry;
1165  	}
1166  
1167  	init_timeout(&to);
1168  	if (timeout) {
1169  		struct timespec	ts;
1170  		ret = -EFAULT;
1171  		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1172  			goto out;
1173  
1174  		set_timeout(start_jiffies, &to, &ts);
1175  	}
1176  
1177  	while (likely(i < nr)) {
1178  		add_wait_queue_exclusive(&ctx->wait, &wait);
1179  		do {
1180  			set_task_state(tsk, TASK_INTERRUPTIBLE);
1181  			ret = aio_read_evt(ctx, &ent);
1182  			if (ret)
1183  				break;
1184  			if (min_nr <= i)
1185  				break;
1186  			if (unlikely(ctx->dead)) {
1187  				ret = -EINVAL;
1188  				break;
1189  			}
1190  			if (to.timed_out)	/* Only check after read evt */
1191  				break;
1192  			/* Try to only show up in io wait if there are ops
1193  			 *  in flight */
1194  			if (ctx->reqs_active)
1195  				io_schedule();
1196  			else
1197  				schedule();
1198  			if (signal_pending(tsk)) {
1199  				ret = -EINTR;
1200  				break;
1201  			}
1202  			/*ret = aio_read_evt(ctx, &ent);*/
1203  		} while (1) ;
1204  
1205  		set_task_state(tsk, TASK_RUNNING);
1206  		remove_wait_queue(&ctx->wait, &wait);
1207  
1208  		if (unlikely(ret <= 0))
1209  			break;
1210  
1211  		ret = -EFAULT;
1212  		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1213  			dprintk("aio: lost an event due to EFAULT.\n");
1214  			break;
1215  		}
1216  
1217  		/* Good, event copied to userland, update counts. */
1218  		event ++;
1219  		i ++;
1220  	}
1221  
1222  	if (timeout)
1223  		clear_timeout(&to);
1224  out:
1225  	destroy_timer_on_stack(&to.timer);
1226  	return i ? i : ret;
1227  }
1228  
1229  /* Take an ioctx and remove it from the list of ioctx's.  Protects
1230   * against races with itself via ->dead.
1231   */
1232  static void io_destroy(struct kioctx *ioctx)
1233  {
1234  	struct mm_struct *mm = current->mm;
1235  	int was_dead;
1236  
1237  	/* delete the entry from the list is someone else hasn't already */
1238  	spin_lock(&mm->ioctx_lock);
1239  	was_dead = ioctx->dead;
1240  	ioctx->dead = 1;
1241  	hlist_del_rcu(&ioctx->list);
1242  	spin_unlock(&mm->ioctx_lock);
1243  
1244  	dprintk("aio_release(%p)\n", ioctx);
1245  	if (likely(!was_dead))
1246  		put_ioctx(ioctx);	/* twice for the list */
1247  
1248  	aio_cancel_all(ioctx);
1249  	wait_for_all_aios(ioctx);
1250  
1251  	/*
1252  	 * Wake up any waiters.  The setting of ctx->dead must be seen
1253  	 * by other CPUs at this point.  Right now, we rely on the
1254  	 * locking done by the above calls to ensure this consistency.
1255  	 */
1256  	wake_up(&ioctx->wait);
1257  	put_ioctx(ioctx);	/* once for the lookup */
1258  }
1259  
1260  /* sys_io_setup:
1261   *	Create an aio_context capable of receiving at least nr_events.
1262   *	ctxp must not point to an aio_context that already exists, and
1263   *	must be initialized to 0 prior to the call.  On successful
1264   *	creation of the aio_context, *ctxp is filled in with the resulting
1265   *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1266   *	if the specified nr_events exceeds internal limits.  May fail
1267   *	with -EAGAIN if the specified nr_events exceeds the user's limit
1268   *	of available events.  May fail with -ENOMEM if insufficient kernel
1269   *	resources are available.  May fail with -EFAULT if an invalid
1270   *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1271   *	implemented.
1272   */
1273  asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1274  {
1275  	struct kioctx *ioctx = NULL;
1276  	unsigned long ctx;
1277  	long ret;
1278  
1279  	ret = get_user(ctx, ctxp);
1280  	if (unlikely(ret))
1281  		goto out;
1282  
1283  	ret = -EINVAL;
1284  	if (unlikely(ctx || nr_events == 0)) {
1285  		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1286  		         ctx, nr_events);
1287  		goto out;
1288  	}
1289  
1290  	ioctx = ioctx_alloc(nr_events);
1291  	ret = PTR_ERR(ioctx);
1292  	if (!IS_ERR(ioctx)) {
1293  		ret = put_user(ioctx->user_id, ctxp);
1294  		if (!ret)
1295  			return 0;
1296  
1297  		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1298  		io_destroy(ioctx);
1299  	}
1300  
1301  out:
1302  	return ret;
1303  }
1304  
1305  /* sys_io_destroy:
1306   *	Destroy the aio_context specified.  May cancel any outstanding
1307   *	AIOs and block on completion.  Will fail with -ENOSYS if not
1308   *	implemented.  May fail with -EFAULT if the context pointed to
1309   *	is invalid.
1310   */
1311  asmlinkage long sys_io_destroy(aio_context_t ctx)
1312  {
1313  	struct kioctx *ioctx = lookup_ioctx(ctx);
1314  	if (likely(NULL != ioctx)) {
1315  		io_destroy(ioctx);
1316  		return 0;
1317  	}
1318  	pr_debug("EINVAL: io_destroy: invalid context id\n");
1319  	return -EINVAL;
1320  }
1321  
1322  static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1323  {
1324  	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1325  
1326  	BUG_ON(ret <= 0);
1327  
1328  	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1329  		ssize_t this = min((ssize_t)iov->iov_len, ret);
1330  		iov->iov_base += this;
1331  		iov->iov_len -= this;
1332  		iocb->ki_left -= this;
1333  		ret -= this;
1334  		if (iov->iov_len == 0) {
1335  			iocb->ki_cur_seg++;
1336  			iov++;
1337  		}
1338  	}
1339  
1340  	/* the caller should not have done more io than what fit in
1341  	 * the remaining iovecs */
1342  	BUG_ON(ret > 0 && iocb->ki_left == 0);
1343  }
1344  
1345  static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1346  {
1347  	struct file *file = iocb->ki_filp;
1348  	struct address_space *mapping = file->f_mapping;
1349  	struct inode *inode = mapping->host;
1350  	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1351  			 unsigned long, loff_t);
1352  	ssize_t ret = 0;
1353  	unsigned short opcode;
1354  
1355  	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1356  		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1357  		rw_op = file->f_op->aio_read;
1358  		opcode = IOCB_CMD_PREADV;
1359  	} else {
1360  		rw_op = file->f_op->aio_write;
1361  		opcode = IOCB_CMD_PWRITEV;
1362  	}
1363  
1364  	/* This matches the pread()/pwrite() logic */
1365  	if (iocb->ki_pos < 0)
1366  		return -EINVAL;
1367  
1368  	do {
1369  		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1370  			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1371  			    iocb->ki_pos);
1372  		if (ret > 0)
1373  			aio_advance_iovec(iocb, ret);
1374  
1375  	/* retry all partial writes.  retry partial reads as long as its a
1376  	 * regular file. */
1377  	} while (ret > 0 && iocb->ki_left > 0 &&
1378  		 (opcode == IOCB_CMD_PWRITEV ||
1379  		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1380  
1381  	/* This means we must have transferred all that we could */
1382  	/* No need to retry anymore */
1383  	if ((ret == 0) || (iocb->ki_left == 0))
1384  		ret = iocb->ki_nbytes - iocb->ki_left;
1385  
1386  	/* If we managed to write some out we return that, rather than
1387  	 * the eventual error. */
1388  	if (opcode == IOCB_CMD_PWRITEV
1389  	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1390  	    && iocb->ki_nbytes - iocb->ki_left)
1391  		ret = iocb->ki_nbytes - iocb->ki_left;
1392  
1393  	return ret;
1394  }
1395  
1396  static ssize_t aio_fdsync(struct kiocb *iocb)
1397  {
1398  	struct file *file = iocb->ki_filp;
1399  	ssize_t ret = -EINVAL;
1400  
1401  	if (file->f_op->aio_fsync)
1402  		ret = file->f_op->aio_fsync(iocb, 1);
1403  	return ret;
1404  }
1405  
1406  static ssize_t aio_fsync(struct kiocb *iocb)
1407  {
1408  	struct file *file = iocb->ki_filp;
1409  	ssize_t ret = -EINVAL;
1410  
1411  	if (file->f_op->aio_fsync)
1412  		ret = file->f_op->aio_fsync(iocb, 0);
1413  	return ret;
1414  }
1415  
1416  static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1417  {
1418  	ssize_t ret;
1419  
1420  	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1421  				    kiocb->ki_nbytes, 1,
1422  				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1423  	if (ret < 0)
1424  		goto out;
1425  
1426  	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1427  	kiocb->ki_cur_seg = 0;
1428  	/* ki_nbytes/left now reflect bytes instead of segs */
1429  	kiocb->ki_nbytes = ret;
1430  	kiocb->ki_left = ret;
1431  
1432  	ret = 0;
1433  out:
1434  	return ret;
1435  }
1436  
1437  static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1438  {
1439  	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1440  	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1441  	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1442  	kiocb->ki_nr_segs = 1;
1443  	kiocb->ki_cur_seg = 0;
1444  	return 0;
1445  }
1446  
1447  /*
1448   * aio_setup_iocb:
1449   *	Performs the initial checks and aio retry method
1450   *	setup for the kiocb at the time of io submission.
1451   */
1452  static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1453  {
1454  	struct file *file = kiocb->ki_filp;
1455  	ssize_t ret = 0;
1456  
1457  	switch (kiocb->ki_opcode) {
1458  	case IOCB_CMD_PREAD:
1459  		ret = -EBADF;
1460  		if (unlikely(!(file->f_mode & FMODE_READ)))
1461  			break;
1462  		ret = -EFAULT;
1463  		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1464  			kiocb->ki_left)))
1465  			break;
1466  		ret = security_file_permission(file, MAY_READ);
1467  		if (unlikely(ret))
1468  			break;
1469  		ret = aio_setup_single_vector(kiocb);
1470  		if (ret)
1471  			break;
1472  		ret = -EINVAL;
1473  		if (file->f_op->aio_read)
1474  			kiocb->ki_retry = aio_rw_vect_retry;
1475  		break;
1476  	case IOCB_CMD_PWRITE:
1477  		ret = -EBADF;
1478  		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1479  			break;
1480  		ret = -EFAULT;
1481  		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1482  			kiocb->ki_left)))
1483  			break;
1484  		ret = security_file_permission(file, MAY_WRITE);
1485  		if (unlikely(ret))
1486  			break;
1487  		ret = aio_setup_single_vector(kiocb);
1488  		if (ret)
1489  			break;
1490  		ret = -EINVAL;
1491  		if (file->f_op->aio_write)
1492  			kiocb->ki_retry = aio_rw_vect_retry;
1493  		break;
1494  	case IOCB_CMD_PREADV:
1495  		ret = -EBADF;
1496  		if (unlikely(!(file->f_mode & FMODE_READ)))
1497  			break;
1498  		ret = security_file_permission(file, MAY_READ);
1499  		if (unlikely(ret))
1500  			break;
1501  		ret = aio_setup_vectored_rw(READ, kiocb);
1502  		if (ret)
1503  			break;
1504  		ret = -EINVAL;
1505  		if (file->f_op->aio_read)
1506  			kiocb->ki_retry = aio_rw_vect_retry;
1507  		break;
1508  	case IOCB_CMD_PWRITEV:
1509  		ret = -EBADF;
1510  		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1511  			break;
1512  		ret = security_file_permission(file, MAY_WRITE);
1513  		if (unlikely(ret))
1514  			break;
1515  		ret = aio_setup_vectored_rw(WRITE, kiocb);
1516  		if (ret)
1517  			break;
1518  		ret = -EINVAL;
1519  		if (file->f_op->aio_write)
1520  			kiocb->ki_retry = aio_rw_vect_retry;
1521  		break;
1522  	case IOCB_CMD_FDSYNC:
1523  		ret = -EINVAL;
1524  		if (file->f_op->aio_fsync)
1525  			kiocb->ki_retry = aio_fdsync;
1526  		break;
1527  	case IOCB_CMD_FSYNC:
1528  		ret = -EINVAL;
1529  		if (file->f_op->aio_fsync)
1530  			kiocb->ki_retry = aio_fsync;
1531  		break;
1532  	default:
1533  		dprintk("EINVAL: io_submit: no operation provided\n");
1534  		ret = -EINVAL;
1535  	}
1536  
1537  	if (!kiocb->ki_retry)
1538  		return ret;
1539  
1540  	return 0;
1541  }
1542  
1543  /*
1544   * aio_wake_function:
1545   * 	wait queue callback function for aio notification,
1546   * 	Simply triggers a retry of the operation via kick_iocb.
1547   *
1548   * 	This callback is specified in the wait queue entry in
1549   *	a kiocb.
1550   *
1551   * Note:
1552   * This routine is executed with the wait queue lock held.
1553   * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1554   * the ioctx lock inside the wait queue lock. This is safe
1555   * because this callback isn't used for wait queues which
1556   * are nested inside ioctx lock (i.e. ctx->wait)
1557   */
1558  static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1559  			     int sync, void *key)
1560  {
1561  	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1562  
1563  	list_del_init(&wait->task_list);
1564  	kick_iocb(iocb);
1565  	return 1;
1566  }
1567  
1568  static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1569  			 struct iocb *iocb)
1570  {
1571  	struct kiocb *req;
1572  	struct file *file;
1573  	ssize_t ret;
1574  
1575  	/* enforce forwards compatibility on users */
1576  	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1577  		pr_debug("EINVAL: io_submit: reserve field set\n");
1578  		return -EINVAL;
1579  	}
1580  
1581  	/* prevent overflows */
1582  	if (unlikely(
1583  	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1584  	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1585  	    ((ssize_t)iocb->aio_nbytes < 0)
1586  	   )) {
1587  		pr_debug("EINVAL: io_submit: overflow check\n");
1588  		return -EINVAL;
1589  	}
1590  
1591  	file = fget(iocb->aio_fildes);
1592  	if (unlikely(!file))
1593  		return -EBADF;
1594  
1595  	req = aio_get_req(ctx);		/* returns with 2 references to req */
1596  	if (unlikely(!req)) {
1597  		fput(file);
1598  		return -EAGAIN;
1599  	}
1600  	req->ki_filp = file;
1601  	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1602  		/*
1603  		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1604  		 * instance of the file* now. The file descriptor must be
1605  		 * an eventfd() fd, and will be signaled for each completed
1606  		 * event using the eventfd_signal() function.
1607  		 */
1608  		req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1609  		if (IS_ERR(req->ki_eventfd)) {
1610  			ret = PTR_ERR(req->ki_eventfd);
1611  			goto out_put_req;
1612  		}
1613  	}
1614  
1615  	ret = put_user(req->ki_key, &user_iocb->aio_key);
1616  	if (unlikely(ret)) {
1617  		dprintk("EFAULT: aio_key\n");
1618  		goto out_put_req;
1619  	}
1620  
1621  	req->ki_obj.user = user_iocb;
1622  	req->ki_user_data = iocb->aio_data;
1623  	req->ki_pos = iocb->aio_offset;
1624  
1625  	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1626  	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1627  	req->ki_opcode = iocb->aio_lio_opcode;
1628  	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1629  	INIT_LIST_HEAD(&req->ki_wait.task_list);
1630  
1631  	ret = aio_setup_iocb(req);
1632  
1633  	if (ret)
1634  		goto out_put_req;
1635  
1636  	spin_lock_irq(&ctx->ctx_lock);
1637  	aio_run_iocb(req);
1638  	if (!list_empty(&ctx->run_list)) {
1639  		/* drain the run list */
1640  		while (__aio_run_iocbs(ctx))
1641  			;
1642  	}
1643  	spin_unlock_irq(&ctx->ctx_lock);
1644  	aio_put_req(req);	/* drop extra ref to req */
1645  	return 0;
1646  
1647  out_put_req:
1648  	aio_put_req(req);	/* drop extra ref to req */
1649  	aio_put_req(req);	/* drop i/o ref to req */
1650  	return ret;
1651  }
1652  
1653  /* sys_io_submit:
1654   *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1655   *	the number of iocbs queued.  May return -EINVAL if the aio_context
1656   *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1657   *	*iocbpp[0] is not properly initialized, if the operation specified
1658   *	is invalid for the file descriptor in the iocb.  May fail with
1659   *	-EFAULT if any of the data structures point to invalid data.  May
1660   *	fail with -EBADF if the file descriptor specified in the first
1661   *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1662   *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1663   *	fail with -ENOSYS if not implemented.
1664   */
1665  asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1666  			      struct iocb __user * __user *iocbpp)
1667  {
1668  	struct kioctx *ctx;
1669  	long ret = 0;
1670  	int i;
1671  
1672  	if (unlikely(nr < 0))
1673  		return -EINVAL;
1674  
1675  	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1676  		return -EFAULT;
1677  
1678  	ctx = lookup_ioctx(ctx_id);
1679  	if (unlikely(!ctx)) {
1680  		pr_debug("EINVAL: io_submit: invalid context id\n");
1681  		return -EINVAL;
1682  	}
1683  
1684  	/*
1685  	 * AKPM: should this return a partial result if some of the IOs were
1686  	 * successfully submitted?
1687  	 */
1688  	for (i=0; i<nr; i++) {
1689  		struct iocb __user *user_iocb;
1690  		struct iocb tmp;
1691  
1692  		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1693  			ret = -EFAULT;
1694  			break;
1695  		}
1696  
1697  		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1698  			ret = -EFAULT;
1699  			break;
1700  		}
1701  
1702  		ret = io_submit_one(ctx, user_iocb, &tmp);
1703  		if (ret)
1704  			break;
1705  	}
1706  
1707  	put_ioctx(ctx);
1708  	return i ? i : ret;
1709  }
1710  
1711  /* lookup_kiocb
1712   *	Finds a given iocb for cancellation.
1713   */
1714  static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1715  				  u32 key)
1716  {
1717  	struct list_head *pos;
1718  
1719  	assert_spin_locked(&ctx->ctx_lock);
1720  
1721  	/* TODO: use a hash or array, this sucks. */
1722  	list_for_each(pos, &ctx->active_reqs) {
1723  		struct kiocb *kiocb = list_kiocb(pos);
1724  		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1725  			return kiocb;
1726  	}
1727  	return NULL;
1728  }
1729  
1730  /* sys_io_cancel:
1731   *	Attempts to cancel an iocb previously passed to io_submit.  If
1732   *	the operation is successfully cancelled, the resulting event is
1733   *	copied into the memory pointed to by result without being placed
1734   *	into the completion queue and 0 is returned.  May fail with
1735   *	-EFAULT if any of the data structures pointed to are invalid.
1736   *	May fail with -EINVAL if aio_context specified by ctx_id is
1737   *	invalid.  May fail with -EAGAIN if the iocb specified was not
1738   *	cancelled.  Will fail with -ENOSYS if not implemented.
1739   */
1740  asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1741  			      struct io_event __user *result)
1742  {
1743  	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1744  	struct kioctx *ctx;
1745  	struct kiocb *kiocb;
1746  	u32 key;
1747  	int ret;
1748  
1749  	ret = get_user(key, &iocb->aio_key);
1750  	if (unlikely(ret))
1751  		return -EFAULT;
1752  
1753  	ctx = lookup_ioctx(ctx_id);
1754  	if (unlikely(!ctx))
1755  		return -EINVAL;
1756  
1757  	spin_lock_irq(&ctx->ctx_lock);
1758  	ret = -EAGAIN;
1759  	kiocb = lookup_kiocb(ctx, iocb, key);
1760  	if (kiocb && kiocb->ki_cancel) {
1761  		cancel = kiocb->ki_cancel;
1762  		kiocb->ki_users ++;
1763  		kiocbSetCancelled(kiocb);
1764  	} else
1765  		cancel = NULL;
1766  	spin_unlock_irq(&ctx->ctx_lock);
1767  
1768  	if (NULL != cancel) {
1769  		struct io_event tmp;
1770  		pr_debug("calling cancel\n");
1771  		memset(&tmp, 0, sizeof(tmp));
1772  		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1773  		tmp.data = kiocb->ki_user_data;
1774  		ret = cancel(kiocb, &tmp);
1775  		if (!ret) {
1776  			/* Cancellation succeeded -- copy the result
1777  			 * into the user's buffer.
1778  			 */
1779  			if (copy_to_user(result, &tmp, sizeof(tmp)))
1780  				ret = -EFAULT;
1781  		}
1782  	} else
1783  		ret = -EINVAL;
1784  
1785  	put_ioctx(ctx);
1786  
1787  	return ret;
1788  }
1789  
1790  /* io_getevents:
1791   *	Attempts to read at least min_nr events and up to nr events from
1792   *	the completion queue for the aio_context specified by ctx_id.  May
1793   *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1794   *	if nr is out of range, if when is out of range.  May fail with
1795   *	-EFAULT if any of the memory specified to is invalid.  May return
1796   *	0 or < min_nr if no events are available and the timeout specified
1797   *	by when	has elapsed, where when == NULL specifies an infinite
1798   *	timeout.  Note that the timeout pointed to by when is relative and
1799   *	will be updated if not NULL and the operation blocks.  Will fail
1800   *	with -ENOSYS if not implemented.
1801   */
1802  asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1803  				 long min_nr,
1804  				 long nr,
1805  				 struct io_event __user *events,
1806  				 struct timespec __user *timeout)
1807  {
1808  	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1809  	long ret = -EINVAL;
1810  
1811  	if (likely(ioctx)) {
1812  		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1813  			ret = read_events(ioctx, min_nr, nr, events, timeout);
1814  		put_ioctx(ioctx);
1815  	}
1816  
1817  	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1818  	return ret;
1819  }
1820  
1821  __initcall(aio_setup);
1822  
1823  EXPORT_SYMBOL(aio_complete);
1824  EXPORT_SYMBOL(aio_put_req);
1825  EXPORT_SYMBOL(wait_on_sync_kiocb);
1826