xref: /linux/fs/aio.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #define AIO_RING_MAGIC			0xa10a10a1
43 #define AIO_RING_COMPAT_FEATURES	1
44 #define AIO_RING_INCOMPAT_FEATURES	0
45 struct aio_ring {
46 	unsigned	id;	/* kernel internal index number */
47 	unsigned	nr;	/* number of io_events */
48 	unsigned	head;
49 	unsigned	tail;
50 
51 	unsigned	magic;
52 	unsigned	compat_features;
53 	unsigned	incompat_features;
54 	unsigned	header_length;	/* size of aio_ring */
55 
56 
57 	struct io_event		io_events[0];
58 }; /* 128 bytes + ring size */
59 
60 #define AIO_RING_PAGES	8
61 
62 struct kioctx {
63 	atomic_t		users;
64 	atomic_t		dead;
65 
66 	/* This needs improving */
67 	unsigned long		user_id;
68 	struct hlist_node	list;
69 
70 	/*
71 	 * This is what userspace passed to io_setup(), it's not used for
72 	 * anything but counting against the global max_reqs quota.
73 	 *
74 	 * The real limit is nr_events - 1, which will be larger (see
75 	 * aio_setup_ring())
76 	 */
77 	unsigned		max_reqs;
78 
79 	/* Size of ringbuffer, in units of struct io_event */
80 	unsigned		nr_events;
81 
82 	unsigned long		mmap_base;
83 	unsigned long		mmap_size;
84 
85 	struct page		**ring_pages;
86 	long			nr_pages;
87 
88 	struct rcu_head		rcu_head;
89 	struct work_struct	rcu_work;
90 
91 	struct {
92 		atomic_t	reqs_active;
93 	} ____cacheline_aligned_in_smp;
94 
95 	struct {
96 		spinlock_t	ctx_lock;
97 		struct list_head active_reqs;	/* used for cancellation */
98 	} ____cacheline_aligned_in_smp;
99 
100 	struct {
101 		struct mutex	ring_lock;
102 		wait_queue_head_t wait;
103 	} ____cacheline_aligned_in_smp;
104 
105 	struct {
106 		unsigned	tail;
107 		spinlock_t	completion_lock;
108 	} ____cacheline_aligned_in_smp;
109 
110 	struct page		*internal_pages[AIO_RING_PAGES];
111 };
112 
113 /*------ sysctl variables----*/
114 static DEFINE_SPINLOCK(aio_nr_lock);
115 unsigned long aio_nr;		/* current system wide number of aio requests */
116 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
117 /*----end sysctl variables---*/
118 
119 static struct kmem_cache	*kiocb_cachep;
120 static struct kmem_cache	*kioctx_cachep;
121 
122 /* aio_setup
123  *	Creates the slab caches used by the aio routines, panic on
124  *	failure as this is done early during the boot sequence.
125  */
126 static int __init aio_setup(void)
127 {
128 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
129 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
130 
131 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
132 
133 	return 0;
134 }
135 __initcall(aio_setup);
136 
137 static void aio_free_ring(struct kioctx *ctx)
138 {
139 	long i;
140 
141 	for (i = 0; i < ctx->nr_pages; i++)
142 		put_page(ctx->ring_pages[i]);
143 
144 	if (ctx->mmap_size)
145 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
146 
147 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
148 		kfree(ctx->ring_pages);
149 }
150 
151 static int aio_setup_ring(struct kioctx *ctx)
152 {
153 	struct aio_ring *ring;
154 	unsigned nr_events = ctx->max_reqs;
155 	struct mm_struct *mm = current->mm;
156 	unsigned long size, populate;
157 	int nr_pages;
158 
159 	/* Compensate for the ring buffer's head/tail overlap entry */
160 	nr_events += 2;	/* 1 is required, 2 for good luck */
161 
162 	size = sizeof(struct aio_ring);
163 	size += sizeof(struct io_event) * nr_events;
164 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
165 
166 	if (nr_pages < 0)
167 		return -EINVAL;
168 
169 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
170 
171 	ctx->nr_events = 0;
172 	ctx->ring_pages = ctx->internal_pages;
173 	if (nr_pages > AIO_RING_PAGES) {
174 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
175 					  GFP_KERNEL);
176 		if (!ctx->ring_pages)
177 			return -ENOMEM;
178 	}
179 
180 	ctx->mmap_size = nr_pages * PAGE_SIZE;
181 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
182 	down_write(&mm->mmap_sem);
183 	ctx->mmap_base = do_mmap_pgoff(NULL, 0, ctx->mmap_size,
184 				       PROT_READ|PROT_WRITE,
185 				       MAP_ANONYMOUS|MAP_PRIVATE, 0, &populate);
186 	if (IS_ERR((void *)ctx->mmap_base)) {
187 		up_write(&mm->mmap_sem);
188 		ctx->mmap_size = 0;
189 		aio_free_ring(ctx);
190 		return -EAGAIN;
191 	}
192 
193 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
194 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
195 				       1, 0, ctx->ring_pages, NULL);
196 	up_write(&mm->mmap_sem);
197 
198 	if (unlikely(ctx->nr_pages != nr_pages)) {
199 		aio_free_ring(ctx);
200 		return -EAGAIN;
201 	}
202 	if (populate)
203 		mm_populate(ctx->mmap_base, populate);
204 
205 	ctx->user_id = ctx->mmap_base;
206 	ctx->nr_events = nr_events; /* trusted copy */
207 
208 	ring = kmap_atomic(ctx->ring_pages[0]);
209 	ring->nr = nr_events;	/* user copy */
210 	ring->id = ctx->user_id;
211 	ring->head = ring->tail = 0;
212 	ring->magic = AIO_RING_MAGIC;
213 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
214 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
215 	ring->header_length = sizeof(struct aio_ring);
216 	kunmap_atomic(ring);
217 	flush_dcache_page(ctx->ring_pages[0]);
218 
219 	return 0;
220 }
221 
222 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
223 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
224 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
225 
226 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
227 {
228 	struct kioctx *ctx = req->ki_ctx;
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&ctx->ctx_lock, flags);
232 
233 	if (!req->ki_list.next)
234 		list_add(&req->ki_list, &ctx->active_reqs);
235 
236 	req->ki_cancel = cancel;
237 
238 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
239 }
240 EXPORT_SYMBOL(kiocb_set_cancel_fn);
241 
242 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb,
243 			struct io_event *res)
244 {
245 	kiocb_cancel_fn *old, *cancel;
246 	int ret = -EINVAL;
247 
248 	/*
249 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
250 	 * actually has a cancel function, hence the cmpxchg()
251 	 */
252 
253 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
254 	do {
255 		if (!cancel || cancel == KIOCB_CANCELLED)
256 			return ret;
257 
258 		old = cancel;
259 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
260 	} while (cancel != old);
261 
262 	atomic_inc(&kiocb->ki_users);
263 	spin_unlock_irq(&ctx->ctx_lock);
264 
265 	memset(res, 0, sizeof(*res));
266 	res->obj = (u64)(unsigned long)kiocb->ki_obj.user;
267 	res->data = kiocb->ki_user_data;
268 	ret = cancel(kiocb, res);
269 
270 	spin_lock_irq(&ctx->ctx_lock);
271 
272 	return ret;
273 }
274 
275 static void free_ioctx_rcu(struct rcu_head *head)
276 {
277 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
278 	kmem_cache_free(kioctx_cachep, ctx);
279 }
280 
281 /*
282  * When this function runs, the kioctx has been removed from the "hash table"
283  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
284  * now it's safe to cancel any that need to be.
285  */
286 static void free_ioctx(struct kioctx *ctx)
287 {
288 	struct aio_ring *ring;
289 	struct io_event res;
290 	struct kiocb *req;
291 	unsigned head, avail;
292 
293 	spin_lock_irq(&ctx->ctx_lock);
294 
295 	while (!list_empty(&ctx->active_reqs)) {
296 		req = list_first_entry(&ctx->active_reqs,
297 				       struct kiocb, ki_list);
298 
299 		list_del_init(&req->ki_list);
300 		kiocb_cancel(ctx, req, &res);
301 	}
302 
303 	spin_unlock_irq(&ctx->ctx_lock);
304 
305 	ring = kmap_atomic(ctx->ring_pages[0]);
306 	head = ring->head;
307 	kunmap_atomic(ring);
308 
309 	while (atomic_read(&ctx->reqs_active) > 0) {
310 		wait_event(ctx->wait,
311 				head != ctx->tail ||
312 				atomic_read(&ctx->reqs_active) <= 0);
313 
314 		avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
315 
316 		atomic_sub(avail, &ctx->reqs_active);
317 		head += avail;
318 		head %= ctx->nr_events;
319 	}
320 
321 	WARN_ON(atomic_read(&ctx->reqs_active) < 0);
322 
323 	aio_free_ring(ctx);
324 
325 	spin_lock(&aio_nr_lock);
326 	BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
327 	aio_nr -= ctx->max_reqs;
328 	spin_unlock(&aio_nr_lock);
329 
330 	pr_debug("freeing %p\n", ctx);
331 
332 	/*
333 	 * Here the call_rcu() is between the wait_event() for reqs_active to
334 	 * hit 0, and freeing the ioctx.
335 	 *
336 	 * aio_complete() decrements reqs_active, but it has to touch the ioctx
337 	 * after to issue a wakeup so we use rcu.
338 	 */
339 	call_rcu(&ctx->rcu_head, free_ioctx_rcu);
340 }
341 
342 static void put_ioctx(struct kioctx *ctx)
343 {
344 	if (unlikely(atomic_dec_and_test(&ctx->users)))
345 		free_ioctx(ctx);
346 }
347 
348 /* ioctx_alloc
349  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
350  */
351 static struct kioctx *ioctx_alloc(unsigned nr_events)
352 {
353 	struct mm_struct *mm = current->mm;
354 	struct kioctx *ctx;
355 	int err = -ENOMEM;
356 
357 	/* Prevent overflows */
358 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
359 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
360 		pr_debug("ENOMEM: nr_events too high\n");
361 		return ERR_PTR(-EINVAL);
362 	}
363 
364 	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
365 		return ERR_PTR(-EAGAIN);
366 
367 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
368 	if (!ctx)
369 		return ERR_PTR(-ENOMEM);
370 
371 	ctx->max_reqs = nr_events;
372 
373 	atomic_set(&ctx->users, 2);
374 	atomic_set(&ctx->dead, 0);
375 	spin_lock_init(&ctx->ctx_lock);
376 	spin_lock_init(&ctx->completion_lock);
377 	mutex_init(&ctx->ring_lock);
378 	init_waitqueue_head(&ctx->wait);
379 
380 	INIT_LIST_HEAD(&ctx->active_reqs);
381 
382 	if (aio_setup_ring(ctx) < 0)
383 		goto out_freectx;
384 
385 	/* limit the number of system wide aios */
386 	spin_lock(&aio_nr_lock);
387 	if (aio_nr + nr_events > aio_max_nr ||
388 	    aio_nr + nr_events < aio_nr) {
389 		spin_unlock(&aio_nr_lock);
390 		goto out_cleanup;
391 	}
392 	aio_nr += ctx->max_reqs;
393 	spin_unlock(&aio_nr_lock);
394 
395 	/* now link into global list. */
396 	spin_lock(&mm->ioctx_lock);
397 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
398 	spin_unlock(&mm->ioctx_lock);
399 
400 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
401 		 ctx, ctx->user_id, mm, ctx->nr_events);
402 	return ctx;
403 
404 out_cleanup:
405 	err = -EAGAIN;
406 	aio_free_ring(ctx);
407 out_freectx:
408 	kmem_cache_free(kioctx_cachep, ctx);
409 	pr_debug("error allocating ioctx %d\n", err);
410 	return ERR_PTR(err);
411 }
412 
413 static void kill_ioctx_work(struct work_struct *work)
414 {
415 	struct kioctx *ctx = container_of(work, struct kioctx, rcu_work);
416 
417 	wake_up_all(&ctx->wait);
418 	put_ioctx(ctx);
419 }
420 
421 static void kill_ioctx_rcu(struct rcu_head *head)
422 {
423 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
424 
425 	INIT_WORK(&ctx->rcu_work, kill_ioctx_work);
426 	schedule_work(&ctx->rcu_work);
427 }
428 
429 /* kill_ioctx
430  *	Cancels all outstanding aio requests on an aio context.  Used
431  *	when the processes owning a context have all exited to encourage
432  *	the rapid destruction of the kioctx.
433  */
434 static void kill_ioctx(struct kioctx *ctx)
435 {
436 	if (!atomic_xchg(&ctx->dead, 1)) {
437 		hlist_del_rcu(&ctx->list);
438 		/* Between hlist_del_rcu() and dropping the initial ref */
439 		synchronize_rcu();
440 
441 		/*
442 		 * We can't punt to workqueue here because put_ioctx() ->
443 		 * free_ioctx() will unmap the ringbuffer, and that has to be
444 		 * done in the original process's context. kill_ioctx_rcu/work()
445 		 * exist for exit_aio(), as in that path free_ioctx() won't do
446 		 * the unmap.
447 		 */
448 		kill_ioctx_work(&ctx->rcu_work);
449 	}
450 }
451 
452 /* wait_on_sync_kiocb:
453  *	Waits on the given sync kiocb to complete.
454  */
455 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
456 {
457 	while (atomic_read(&iocb->ki_users)) {
458 		set_current_state(TASK_UNINTERRUPTIBLE);
459 		if (!atomic_read(&iocb->ki_users))
460 			break;
461 		io_schedule();
462 	}
463 	__set_current_state(TASK_RUNNING);
464 	return iocb->ki_user_data;
465 }
466 EXPORT_SYMBOL(wait_on_sync_kiocb);
467 
468 /*
469  * exit_aio: called when the last user of mm goes away.  At this point, there is
470  * no way for any new requests to be submited or any of the io_* syscalls to be
471  * called on the context.
472  *
473  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
474  * them.
475  */
476 void exit_aio(struct mm_struct *mm)
477 {
478 	struct kioctx *ctx;
479 	struct hlist_node *n;
480 
481 	hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
482 		if (1 != atomic_read(&ctx->users))
483 			printk(KERN_DEBUG
484 				"exit_aio:ioctx still alive: %d %d %d\n",
485 				atomic_read(&ctx->users),
486 				atomic_read(&ctx->dead),
487 				atomic_read(&ctx->reqs_active));
488 		/*
489 		 * We don't need to bother with munmap() here -
490 		 * exit_mmap(mm) is coming and it'll unmap everything.
491 		 * Since aio_free_ring() uses non-zero ->mmap_size
492 		 * as indicator that it needs to unmap the area,
493 		 * just set it to 0; aio_free_ring() is the only
494 		 * place that uses ->mmap_size, so it's safe.
495 		 */
496 		ctx->mmap_size = 0;
497 
498 		if (!atomic_xchg(&ctx->dead, 1)) {
499 			hlist_del_rcu(&ctx->list);
500 			call_rcu(&ctx->rcu_head, kill_ioctx_rcu);
501 		}
502 	}
503 }
504 
505 /* aio_get_req
506  *	Allocate a slot for an aio request.  Increments the ki_users count
507  * of the kioctx so that the kioctx stays around until all requests are
508  * complete.  Returns NULL if no requests are free.
509  *
510  * Returns with kiocb->ki_users set to 2.  The io submit code path holds
511  * an extra reference while submitting the i/o.
512  * This prevents races between the aio code path referencing the
513  * req (after submitting it) and aio_complete() freeing the req.
514  */
515 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
516 {
517 	struct kiocb *req;
518 
519 	if (atomic_read(&ctx->reqs_active) >= ctx->nr_events)
520 		return NULL;
521 
522 	if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1)
523 		goto out_put;
524 
525 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
526 	if (unlikely(!req))
527 		goto out_put;
528 
529 	atomic_set(&req->ki_users, 2);
530 	req->ki_ctx = ctx;
531 
532 	return req;
533 out_put:
534 	atomic_dec(&ctx->reqs_active);
535 	return NULL;
536 }
537 
538 static void kiocb_free(struct kiocb *req)
539 {
540 	if (req->ki_filp)
541 		fput(req->ki_filp);
542 	if (req->ki_eventfd != NULL)
543 		eventfd_ctx_put(req->ki_eventfd);
544 	if (req->ki_dtor)
545 		req->ki_dtor(req);
546 	if (req->ki_iovec != &req->ki_inline_vec)
547 		kfree(req->ki_iovec);
548 	kmem_cache_free(kiocb_cachep, req);
549 }
550 
551 void aio_put_req(struct kiocb *req)
552 {
553 	if (atomic_dec_and_test(&req->ki_users))
554 		kiocb_free(req);
555 }
556 EXPORT_SYMBOL(aio_put_req);
557 
558 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
559 {
560 	struct mm_struct *mm = current->mm;
561 	struct kioctx *ctx, *ret = NULL;
562 
563 	rcu_read_lock();
564 
565 	hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
566 		if (ctx->user_id == ctx_id) {
567 			atomic_inc(&ctx->users);
568 			ret = ctx;
569 			break;
570 		}
571 	}
572 
573 	rcu_read_unlock();
574 	return ret;
575 }
576 
577 /* aio_complete
578  *	Called when the io request on the given iocb is complete.
579  */
580 void aio_complete(struct kiocb *iocb, long res, long res2)
581 {
582 	struct kioctx	*ctx = iocb->ki_ctx;
583 	struct aio_ring	*ring;
584 	struct io_event	*ev_page, *event;
585 	unsigned long	flags;
586 	unsigned tail, pos;
587 
588 	/*
589 	 * Special case handling for sync iocbs:
590 	 *  - events go directly into the iocb for fast handling
591 	 *  - the sync task with the iocb in its stack holds the single iocb
592 	 *    ref, no other paths have a way to get another ref
593 	 *  - the sync task helpfully left a reference to itself in the iocb
594 	 */
595 	if (is_sync_kiocb(iocb)) {
596 		BUG_ON(atomic_read(&iocb->ki_users) != 1);
597 		iocb->ki_user_data = res;
598 		atomic_set(&iocb->ki_users, 0);
599 		wake_up_process(iocb->ki_obj.tsk);
600 		return;
601 	}
602 
603 	/*
604 	 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
605 	 * need to issue a wakeup after decrementing reqs_active.
606 	 */
607 	rcu_read_lock();
608 
609 	if (iocb->ki_list.next) {
610 		unsigned long flags;
611 
612 		spin_lock_irqsave(&ctx->ctx_lock, flags);
613 		list_del(&iocb->ki_list);
614 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
615 	}
616 
617 	/*
618 	 * cancelled requests don't get events, userland was given one
619 	 * when the event got cancelled.
620 	 */
621 	if (unlikely(xchg(&iocb->ki_cancel,
622 			  KIOCB_CANCELLED) == KIOCB_CANCELLED)) {
623 		atomic_dec(&ctx->reqs_active);
624 		/* Still need the wake_up in case free_ioctx is waiting */
625 		goto put_rq;
626 	}
627 
628 	/*
629 	 * Add a completion event to the ring buffer. Must be done holding
630 	 * ctx->ctx_lock to prevent other code from messing with the tail
631 	 * pointer since we might be called from irq context.
632 	 */
633 	spin_lock_irqsave(&ctx->completion_lock, flags);
634 
635 	tail = ctx->tail;
636 	pos = tail + AIO_EVENTS_OFFSET;
637 
638 	if (++tail >= ctx->nr_events)
639 		tail = 0;
640 
641 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
642 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
643 
644 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
645 	event->data = iocb->ki_user_data;
646 	event->res = res;
647 	event->res2 = res2;
648 
649 	kunmap_atomic(ev_page);
650 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
651 
652 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
653 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
654 		 res, res2);
655 
656 	/* after flagging the request as done, we
657 	 * must never even look at it again
658 	 */
659 	smp_wmb();	/* make event visible before updating tail */
660 
661 	ctx->tail = tail;
662 
663 	ring = kmap_atomic(ctx->ring_pages[0]);
664 	ring->tail = tail;
665 	kunmap_atomic(ring);
666 	flush_dcache_page(ctx->ring_pages[0]);
667 
668 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
669 
670 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
671 
672 	/*
673 	 * Check if the user asked us to deliver the result through an
674 	 * eventfd. The eventfd_signal() function is safe to be called
675 	 * from IRQ context.
676 	 */
677 	if (iocb->ki_eventfd != NULL)
678 		eventfd_signal(iocb->ki_eventfd, 1);
679 
680 put_rq:
681 	/* everything turned out well, dispose of the aiocb. */
682 	aio_put_req(iocb);
683 
684 	/*
685 	 * We have to order our ring_info tail store above and test
686 	 * of the wait list below outside the wait lock.  This is
687 	 * like in wake_up_bit() where clearing a bit has to be
688 	 * ordered with the unlocked test.
689 	 */
690 	smp_mb();
691 
692 	if (waitqueue_active(&ctx->wait))
693 		wake_up(&ctx->wait);
694 
695 	rcu_read_unlock();
696 }
697 EXPORT_SYMBOL(aio_complete);
698 
699 /* aio_read_events
700  *	Pull an event off of the ioctx's event ring.  Returns the number of
701  *	events fetched
702  */
703 static long aio_read_events_ring(struct kioctx *ctx,
704 				 struct io_event __user *event, long nr)
705 {
706 	struct aio_ring *ring;
707 	unsigned head, pos;
708 	long ret = 0;
709 	int copy_ret;
710 
711 	mutex_lock(&ctx->ring_lock);
712 
713 	ring = kmap_atomic(ctx->ring_pages[0]);
714 	head = ring->head;
715 	kunmap_atomic(ring);
716 
717 	pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events);
718 
719 	if (head == ctx->tail)
720 		goto out;
721 
722 	while (ret < nr) {
723 		long avail;
724 		struct io_event *ev;
725 		struct page *page;
726 
727 		avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
728 		if (head == ctx->tail)
729 			break;
730 
731 		avail = min(avail, nr - ret);
732 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
733 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
734 
735 		pos = head + AIO_EVENTS_OFFSET;
736 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
737 		pos %= AIO_EVENTS_PER_PAGE;
738 
739 		ev = kmap(page);
740 		copy_ret = copy_to_user(event + ret, ev + pos,
741 					sizeof(*ev) * avail);
742 		kunmap(page);
743 
744 		if (unlikely(copy_ret)) {
745 			ret = -EFAULT;
746 			goto out;
747 		}
748 
749 		ret += avail;
750 		head += avail;
751 		head %= ctx->nr_events;
752 	}
753 
754 	ring = kmap_atomic(ctx->ring_pages[0]);
755 	ring->head = head;
756 	kunmap_atomic(ring);
757 	flush_dcache_page(ctx->ring_pages[0]);
758 
759 	pr_debug("%li  h%u t%u\n", ret, head, ctx->tail);
760 
761 	atomic_sub(ret, &ctx->reqs_active);
762 out:
763 	mutex_unlock(&ctx->ring_lock);
764 
765 	return ret;
766 }
767 
768 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
769 			    struct io_event __user *event, long *i)
770 {
771 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
772 
773 	if (ret > 0)
774 		*i += ret;
775 
776 	if (unlikely(atomic_read(&ctx->dead)))
777 		ret = -EINVAL;
778 
779 	if (!*i)
780 		*i = ret;
781 
782 	return ret < 0 || *i >= min_nr;
783 }
784 
785 static long read_events(struct kioctx *ctx, long min_nr, long nr,
786 			struct io_event __user *event,
787 			struct timespec __user *timeout)
788 {
789 	ktime_t until = { .tv64 = KTIME_MAX };
790 	long ret = 0;
791 
792 	if (timeout) {
793 		struct timespec	ts;
794 
795 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
796 			return -EFAULT;
797 
798 		until = timespec_to_ktime(ts);
799 	}
800 
801 	/*
802 	 * Note that aio_read_events() is being called as the conditional - i.e.
803 	 * we're calling it after prepare_to_wait() has set task state to
804 	 * TASK_INTERRUPTIBLE.
805 	 *
806 	 * But aio_read_events() can block, and if it blocks it's going to flip
807 	 * the task state back to TASK_RUNNING.
808 	 *
809 	 * This should be ok, provided it doesn't flip the state back to
810 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
811 	 * will only happen if the mutex_lock() call blocks, and we then find
812 	 * the ringbuffer empty. So in practice we should be ok, but it's
813 	 * something to be aware of when touching this code.
814 	 */
815 	wait_event_interruptible_hrtimeout(ctx->wait,
816 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
817 
818 	if (!ret && signal_pending(current))
819 		ret = -EINTR;
820 
821 	return ret;
822 }
823 
824 /* sys_io_setup:
825  *	Create an aio_context capable of receiving at least nr_events.
826  *	ctxp must not point to an aio_context that already exists, and
827  *	must be initialized to 0 prior to the call.  On successful
828  *	creation of the aio_context, *ctxp is filled in with the resulting
829  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
830  *	if the specified nr_events exceeds internal limits.  May fail
831  *	with -EAGAIN if the specified nr_events exceeds the user's limit
832  *	of available events.  May fail with -ENOMEM if insufficient kernel
833  *	resources are available.  May fail with -EFAULT if an invalid
834  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
835  *	implemented.
836  */
837 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
838 {
839 	struct kioctx *ioctx = NULL;
840 	unsigned long ctx;
841 	long ret;
842 
843 	ret = get_user(ctx, ctxp);
844 	if (unlikely(ret))
845 		goto out;
846 
847 	ret = -EINVAL;
848 	if (unlikely(ctx || nr_events == 0)) {
849 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
850 		         ctx, nr_events);
851 		goto out;
852 	}
853 
854 	ioctx = ioctx_alloc(nr_events);
855 	ret = PTR_ERR(ioctx);
856 	if (!IS_ERR(ioctx)) {
857 		ret = put_user(ioctx->user_id, ctxp);
858 		if (ret)
859 			kill_ioctx(ioctx);
860 		put_ioctx(ioctx);
861 	}
862 
863 out:
864 	return ret;
865 }
866 
867 /* sys_io_destroy:
868  *	Destroy the aio_context specified.  May cancel any outstanding
869  *	AIOs and block on completion.  Will fail with -ENOSYS if not
870  *	implemented.  May fail with -EINVAL if the context pointed to
871  *	is invalid.
872  */
873 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
874 {
875 	struct kioctx *ioctx = lookup_ioctx(ctx);
876 	if (likely(NULL != ioctx)) {
877 		kill_ioctx(ioctx);
878 		put_ioctx(ioctx);
879 		return 0;
880 	}
881 	pr_debug("EINVAL: io_destroy: invalid context id\n");
882 	return -EINVAL;
883 }
884 
885 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
886 {
887 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
888 
889 	BUG_ON(ret <= 0);
890 
891 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
892 		ssize_t this = min((ssize_t)iov->iov_len, ret);
893 		iov->iov_base += this;
894 		iov->iov_len -= this;
895 		iocb->ki_left -= this;
896 		ret -= this;
897 		if (iov->iov_len == 0) {
898 			iocb->ki_cur_seg++;
899 			iov++;
900 		}
901 	}
902 
903 	/* the caller should not have done more io than what fit in
904 	 * the remaining iovecs */
905 	BUG_ON(ret > 0 && iocb->ki_left == 0);
906 }
907 
908 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
909 			    unsigned long, loff_t);
910 
911 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op)
912 {
913 	struct file *file = iocb->ki_filp;
914 	struct address_space *mapping = file->f_mapping;
915 	struct inode *inode = mapping->host;
916 	ssize_t ret = 0;
917 
918 	/* This matches the pread()/pwrite() logic */
919 	if (iocb->ki_pos < 0)
920 		return -EINVAL;
921 
922 	if (rw == WRITE)
923 		file_start_write(file);
924 	do {
925 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
926 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
927 			    iocb->ki_pos);
928 		if (ret > 0)
929 			aio_advance_iovec(iocb, ret);
930 
931 	/* retry all partial writes.  retry partial reads as long as its a
932 	 * regular file. */
933 	} while (ret > 0 && iocb->ki_left > 0 &&
934 		 (rw == WRITE ||
935 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
936 	if (rw == WRITE)
937 		file_end_write(file);
938 
939 	/* This means we must have transferred all that we could */
940 	/* No need to retry anymore */
941 	if ((ret == 0) || (iocb->ki_left == 0))
942 		ret = iocb->ki_nbytes - iocb->ki_left;
943 
944 	/* If we managed to write some out we return that, rather than
945 	 * the eventual error. */
946 	if (rw == WRITE
947 	    && ret < 0 && ret != -EIOCBQUEUED
948 	    && iocb->ki_nbytes - iocb->ki_left)
949 		ret = iocb->ki_nbytes - iocb->ki_left;
950 
951 	return ret;
952 }
953 
954 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat)
955 {
956 	ssize_t ret;
957 
958 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
959 
960 #ifdef CONFIG_COMPAT
961 	if (compat)
962 		ret = compat_rw_copy_check_uvector(rw,
963 				(struct compat_iovec __user *)kiocb->ki_buf,
964 				kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
965 				&kiocb->ki_iovec);
966 	else
967 #endif
968 		ret = rw_copy_check_uvector(rw,
969 				(struct iovec __user *)kiocb->ki_buf,
970 				kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
971 				&kiocb->ki_iovec);
972 	if (ret < 0)
973 		return ret;
974 
975 	/* ki_nbytes now reflect bytes instead of segs */
976 	kiocb->ki_nbytes = ret;
977 	return 0;
978 }
979 
980 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb)
981 {
982 	if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes)))
983 		return -EFAULT;
984 
985 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
986 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
987 	kiocb->ki_iovec->iov_len = kiocb->ki_nbytes;
988 	kiocb->ki_nr_segs = 1;
989 	return 0;
990 }
991 
992 /*
993  * aio_setup_iocb:
994  *	Performs the initial checks and aio retry method
995  *	setup for the kiocb at the time of io submission.
996  */
997 static ssize_t aio_run_iocb(struct kiocb *req, bool compat)
998 {
999 	struct file *file = req->ki_filp;
1000 	ssize_t ret;
1001 	int rw;
1002 	fmode_t mode;
1003 	aio_rw_op *rw_op;
1004 
1005 	switch (req->ki_opcode) {
1006 	case IOCB_CMD_PREAD:
1007 	case IOCB_CMD_PREADV:
1008 		mode	= FMODE_READ;
1009 		rw	= READ;
1010 		rw_op	= file->f_op->aio_read;
1011 		goto rw_common;
1012 
1013 	case IOCB_CMD_PWRITE:
1014 	case IOCB_CMD_PWRITEV:
1015 		mode	= FMODE_WRITE;
1016 		rw	= WRITE;
1017 		rw_op	= file->f_op->aio_write;
1018 		goto rw_common;
1019 rw_common:
1020 		if (unlikely(!(file->f_mode & mode)))
1021 			return -EBADF;
1022 
1023 		if (!rw_op)
1024 			return -EINVAL;
1025 
1026 		ret = (req->ki_opcode == IOCB_CMD_PREADV ||
1027 		       req->ki_opcode == IOCB_CMD_PWRITEV)
1028 			? aio_setup_vectored_rw(rw, req, compat)
1029 			: aio_setup_single_vector(rw, req);
1030 		if (ret)
1031 			return ret;
1032 
1033 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1034 		if (ret < 0)
1035 			return ret;
1036 
1037 		req->ki_nbytes = ret;
1038 		req->ki_left = ret;
1039 
1040 		ret = aio_rw_vect_retry(req, rw, rw_op);
1041 		break;
1042 
1043 	case IOCB_CMD_FDSYNC:
1044 		if (!file->f_op->aio_fsync)
1045 			return -EINVAL;
1046 
1047 		ret = file->f_op->aio_fsync(req, 1);
1048 		break;
1049 
1050 	case IOCB_CMD_FSYNC:
1051 		if (!file->f_op->aio_fsync)
1052 			return -EINVAL;
1053 
1054 		ret = file->f_op->aio_fsync(req, 0);
1055 		break;
1056 
1057 	default:
1058 		pr_debug("EINVAL: no operation provided\n");
1059 		return -EINVAL;
1060 	}
1061 
1062 	if (ret != -EIOCBQUEUED) {
1063 		/*
1064 		 * There's no easy way to restart the syscall since other AIO's
1065 		 * may be already running. Just fail this IO with EINTR.
1066 		 */
1067 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1068 			     ret == -ERESTARTNOHAND ||
1069 			     ret == -ERESTART_RESTARTBLOCK))
1070 			ret = -EINTR;
1071 		aio_complete(req, ret, 0);
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1078 			 struct iocb *iocb, bool compat)
1079 {
1080 	struct kiocb *req;
1081 	ssize_t ret;
1082 
1083 	/* enforce forwards compatibility on users */
1084 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1085 		pr_debug("EINVAL: reserve field set\n");
1086 		return -EINVAL;
1087 	}
1088 
1089 	/* prevent overflows */
1090 	if (unlikely(
1091 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1092 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1093 	    ((ssize_t)iocb->aio_nbytes < 0)
1094 	   )) {
1095 		pr_debug("EINVAL: io_submit: overflow check\n");
1096 		return -EINVAL;
1097 	}
1098 
1099 	req = aio_get_req(ctx);
1100 	if (unlikely(!req))
1101 		return -EAGAIN;
1102 
1103 	req->ki_filp = fget(iocb->aio_fildes);
1104 	if (unlikely(!req->ki_filp)) {
1105 		ret = -EBADF;
1106 		goto out_put_req;
1107 	}
1108 
1109 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1110 		/*
1111 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1112 		 * instance of the file* now. The file descriptor must be
1113 		 * an eventfd() fd, and will be signaled for each completed
1114 		 * event using the eventfd_signal() function.
1115 		 */
1116 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1117 		if (IS_ERR(req->ki_eventfd)) {
1118 			ret = PTR_ERR(req->ki_eventfd);
1119 			req->ki_eventfd = NULL;
1120 			goto out_put_req;
1121 		}
1122 	}
1123 
1124 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1125 	if (unlikely(ret)) {
1126 		pr_debug("EFAULT: aio_key\n");
1127 		goto out_put_req;
1128 	}
1129 
1130 	req->ki_obj.user = user_iocb;
1131 	req->ki_user_data = iocb->aio_data;
1132 	req->ki_pos = iocb->aio_offset;
1133 
1134 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1135 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1136 	req->ki_opcode = iocb->aio_lio_opcode;
1137 
1138 	ret = aio_run_iocb(req, compat);
1139 	if (ret)
1140 		goto out_put_req;
1141 
1142 	aio_put_req(req);	/* drop extra ref to req */
1143 	return 0;
1144 out_put_req:
1145 	atomic_dec(&ctx->reqs_active);
1146 	aio_put_req(req);	/* drop extra ref to req */
1147 	aio_put_req(req);	/* drop i/o ref to req */
1148 	return ret;
1149 }
1150 
1151 long do_io_submit(aio_context_t ctx_id, long nr,
1152 		  struct iocb __user *__user *iocbpp, bool compat)
1153 {
1154 	struct kioctx *ctx;
1155 	long ret = 0;
1156 	int i = 0;
1157 	struct blk_plug plug;
1158 
1159 	if (unlikely(nr < 0))
1160 		return -EINVAL;
1161 
1162 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1163 		nr = LONG_MAX/sizeof(*iocbpp);
1164 
1165 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1166 		return -EFAULT;
1167 
1168 	ctx = lookup_ioctx(ctx_id);
1169 	if (unlikely(!ctx)) {
1170 		pr_debug("EINVAL: invalid context id\n");
1171 		return -EINVAL;
1172 	}
1173 
1174 	blk_start_plug(&plug);
1175 
1176 	/*
1177 	 * AKPM: should this return a partial result if some of the IOs were
1178 	 * successfully submitted?
1179 	 */
1180 	for (i=0; i<nr; i++) {
1181 		struct iocb __user *user_iocb;
1182 		struct iocb tmp;
1183 
1184 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1185 			ret = -EFAULT;
1186 			break;
1187 		}
1188 
1189 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1190 			ret = -EFAULT;
1191 			break;
1192 		}
1193 
1194 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1195 		if (ret)
1196 			break;
1197 	}
1198 	blk_finish_plug(&plug);
1199 
1200 	put_ioctx(ctx);
1201 	return i ? i : ret;
1202 }
1203 
1204 /* sys_io_submit:
1205  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1206  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1207  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1208  *	*iocbpp[0] is not properly initialized, if the operation specified
1209  *	is invalid for the file descriptor in the iocb.  May fail with
1210  *	-EFAULT if any of the data structures point to invalid data.  May
1211  *	fail with -EBADF if the file descriptor specified in the first
1212  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1213  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1214  *	fail with -ENOSYS if not implemented.
1215  */
1216 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1217 		struct iocb __user * __user *, iocbpp)
1218 {
1219 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1220 }
1221 
1222 /* lookup_kiocb
1223  *	Finds a given iocb for cancellation.
1224  */
1225 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1226 				  u32 key)
1227 {
1228 	struct list_head *pos;
1229 
1230 	assert_spin_locked(&ctx->ctx_lock);
1231 
1232 	if (key != KIOCB_KEY)
1233 		return NULL;
1234 
1235 	/* TODO: use a hash or array, this sucks. */
1236 	list_for_each(pos, &ctx->active_reqs) {
1237 		struct kiocb *kiocb = list_kiocb(pos);
1238 		if (kiocb->ki_obj.user == iocb)
1239 			return kiocb;
1240 	}
1241 	return NULL;
1242 }
1243 
1244 /* sys_io_cancel:
1245  *	Attempts to cancel an iocb previously passed to io_submit.  If
1246  *	the operation is successfully cancelled, the resulting event is
1247  *	copied into the memory pointed to by result without being placed
1248  *	into the completion queue and 0 is returned.  May fail with
1249  *	-EFAULT if any of the data structures pointed to are invalid.
1250  *	May fail with -EINVAL if aio_context specified by ctx_id is
1251  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1252  *	cancelled.  Will fail with -ENOSYS if not implemented.
1253  */
1254 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1255 		struct io_event __user *, result)
1256 {
1257 	struct io_event res;
1258 	struct kioctx *ctx;
1259 	struct kiocb *kiocb;
1260 	u32 key;
1261 	int ret;
1262 
1263 	ret = get_user(key, &iocb->aio_key);
1264 	if (unlikely(ret))
1265 		return -EFAULT;
1266 
1267 	ctx = lookup_ioctx(ctx_id);
1268 	if (unlikely(!ctx))
1269 		return -EINVAL;
1270 
1271 	spin_lock_irq(&ctx->ctx_lock);
1272 
1273 	kiocb = lookup_kiocb(ctx, iocb, key);
1274 	if (kiocb)
1275 		ret = kiocb_cancel(ctx, kiocb, &res);
1276 	else
1277 		ret = -EINVAL;
1278 
1279 	spin_unlock_irq(&ctx->ctx_lock);
1280 
1281 	if (!ret) {
1282 		/* Cancellation succeeded -- copy the result
1283 		 * into the user's buffer.
1284 		 */
1285 		if (copy_to_user(result, &res, sizeof(res)))
1286 			ret = -EFAULT;
1287 	}
1288 
1289 	put_ioctx(ctx);
1290 
1291 	return ret;
1292 }
1293 
1294 /* io_getevents:
1295  *	Attempts to read at least min_nr events and up to nr events from
1296  *	the completion queue for the aio_context specified by ctx_id. If
1297  *	it succeeds, the number of read events is returned. May fail with
1298  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1299  *	out of range, if timeout is out of range.  May fail with -EFAULT
1300  *	if any of the memory specified is invalid.  May return 0 or
1301  *	< min_nr if the timeout specified by timeout has elapsed
1302  *	before sufficient events are available, where timeout == NULL
1303  *	specifies an infinite timeout. Note that the timeout pointed to by
1304  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1305  */
1306 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1307 		long, min_nr,
1308 		long, nr,
1309 		struct io_event __user *, events,
1310 		struct timespec __user *, timeout)
1311 {
1312 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1313 	long ret = -EINVAL;
1314 
1315 	if (likely(ioctx)) {
1316 		if (likely(min_nr <= nr && min_nr >= 0))
1317 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1318 		put_ioctx(ioctx);
1319 	}
1320 	return ret;
1321 }
1322