1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #define AIO_RING_MAGIC 0xa10a10a1 43 #define AIO_RING_COMPAT_FEATURES 1 44 #define AIO_RING_INCOMPAT_FEATURES 0 45 struct aio_ring { 46 unsigned id; /* kernel internal index number */ 47 unsigned nr; /* number of io_events */ 48 unsigned head; 49 unsigned tail; 50 51 unsigned magic; 52 unsigned compat_features; 53 unsigned incompat_features; 54 unsigned header_length; /* size of aio_ring */ 55 56 57 struct io_event io_events[0]; 58 }; /* 128 bytes + ring size */ 59 60 #define AIO_RING_PAGES 8 61 62 struct kioctx { 63 atomic_t users; 64 atomic_t dead; 65 66 /* This needs improving */ 67 unsigned long user_id; 68 struct hlist_node list; 69 70 /* 71 * This is what userspace passed to io_setup(), it's not used for 72 * anything but counting against the global max_reqs quota. 73 * 74 * The real limit is nr_events - 1, which will be larger (see 75 * aio_setup_ring()) 76 */ 77 unsigned max_reqs; 78 79 /* Size of ringbuffer, in units of struct io_event */ 80 unsigned nr_events; 81 82 unsigned long mmap_base; 83 unsigned long mmap_size; 84 85 struct page **ring_pages; 86 long nr_pages; 87 88 struct rcu_head rcu_head; 89 struct work_struct rcu_work; 90 91 struct { 92 atomic_t reqs_active; 93 } ____cacheline_aligned_in_smp; 94 95 struct { 96 spinlock_t ctx_lock; 97 struct list_head active_reqs; /* used for cancellation */ 98 } ____cacheline_aligned_in_smp; 99 100 struct { 101 struct mutex ring_lock; 102 wait_queue_head_t wait; 103 } ____cacheline_aligned_in_smp; 104 105 struct { 106 unsigned tail; 107 spinlock_t completion_lock; 108 } ____cacheline_aligned_in_smp; 109 110 struct page *internal_pages[AIO_RING_PAGES]; 111 }; 112 113 /*------ sysctl variables----*/ 114 static DEFINE_SPINLOCK(aio_nr_lock); 115 unsigned long aio_nr; /* current system wide number of aio requests */ 116 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 117 /*----end sysctl variables---*/ 118 119 static struct kmem_cache *kiocb_cachep; 120 static struct kmem_cache *kioctx_cachep; 121 122 /* aio_setup 123 * Creates the slab caches used by the aio routines, panic on 124 * failure as this is done early during the boot sequence. 125 */ 126 static int __init aio_setup(void) 127 { 128 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 129 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 130 131 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 132 133 return 0; 134 } 135 __initcall(aio_setup); 136 137 static void aio_free_ring(struct kioctx *ctx) 138 { 139 long i; 140 141 for (i = 0; i < ctx->nr_pages; i++) 142 put_page(ctx->ring_pages[i]); 143 144 if (ctx->mmap_size) 145 vm_munmap(ctx->mmap_base, ctx->mmap_size); 146 147 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) 148 kfree(ctx->ring_pages); 149 } 150 151 static int aio_setup_ring(struct kioctx *ctx) 152 { 153 struct aio_ring *ring; 154 unsigned nr_events = ctx->max_reqs; 155 struct mm_struct *mm = current->mm; 156 unsigned long size, populate; 157 int nr_pages; 158 159 /* Compensate for the ring buffer's head/tail overlap entry */ 160 nr_events += 2; /* 1 is required, 2 for good luck */ 161 162 size = sizeof(struct aio_ring); 163 size += sizeof(struct io_event) * nr_events; 164 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 165 166 if (nr_pages < 0) 167 return -EINVAL; 168 169 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 170 171 ctx->nr_events = 0; 172 ctx->ring_pages = ctx->internal_pages; 173 if (nr_pages > AIO_RING_PAGES) { 174 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 175 GFP_KERNEL); 176 if (!ctx->ring_pages) 177 return -ENOMEM; 178 } 179 180 ctx->mmap_size = nr_pages * PAGE_SIZE; 181 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 182 down_write(&mm->mmap_sem); 183 ctx->mmap_base = do_mmap_pgoff(NULL, 0, ctx->mmap_size, 184 PROT_READ|PROT_WRITE, 185 MAP_ANONYMOUS|MAP_PRIVATE, 0, &populate); 186 if (IS_ERR((void *)ctx->mmap_base)) { 187 up_write(&mm->mmap_sem); 188 ctx->mmap_size = 0; 189 aio_free_ring(ctx); 190 return -EAGAIN; 191 } 192 193 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 194 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 195 1, 0, ctx->ring_pages, NULL); 196 up_write(&mm->mmap_sem); 197 198 if (unlikely(ctx->nr_pages != nr_pages)) { 199 aio_free_ring(ctx); 200 return -EAGAIN; 201 } 202 if (populate) 203 mm_populate(ctx->mmap_base, populate); 204 205 ctx->user_id = ctx->mmap_base; 206 ctx->nr_events = nr_events; /* trusted copy */ 207 208 ring = kmap_atomic(ctx->ring_pages[0]); 209 ring->nr = nr_events; /* user copy */ 210 ring->id = ctx->user_id; 211 ring->head = ring->tail = 0; 212 ring->magic = AIO_RING_MAGIC; 213 ring->compat_features = AIO_RING_COMPAT_FEATURES; 214 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 215 ring->header_length = sizeof(struct aio_ring); 216 kunmap_atomic(ring); 217 flush_dcache_page(ctx->ring_pages[0]); 218 219 return 0; 220 } 221 222 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 223 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 224 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 225 226 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 227 { 228 struct kioctx *ctx = req->ki_ctx; 229 unsigned long flags; 230 231 spin_lock_irqsave(&ctx->ctx_lock, flags); 232 233 if (!req->ki_list.next) 234 list_add(&req->ki_list, &ctx->active_reqs); 235 236 req->ki_cancel = cancel; 237 238 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 239 } 240 EXPORT_SYMBOL(kiocb_set_cancel_fn); 241 242 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb, 243 struct io_event *res) 244 { 245 kiocb_cancel_fn *old, *cancel; 246 int ret = -EINVAL; 247 248 /* 249 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 250 * actually has a cancel function, hence the cmpxchg() 251 */ 252 253 cancel = ACCESS_ONCE(kiocb->ki_cancel); 254 do { 255 if (!cancel || cancel == KIOCB_CANCELLED) 256 return ret; 257 258 old = cancel; 259 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 260 } while (cancel != old); 261 262 atomic_inc(&kiocb->ki_users); 263 spin_unlock_irq(&ctx->ctx_lock); 264 265 memset(res, 0, sizeof(*res)); 266 res->obj = (u64)(unsigned long)kiocb->ki_obj.user; 267 res->data = kiocb->ki_user_data; 268 ret = cancel(kiocb, res); 269 270 spin_lock_irq(&ctx->ctx_lock); 271 272 return ret; 273 } 274 275 static void free_ioctx_rcu(struct rcu_head *head) 276 { 277 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 278 kmem_cache_free(kioctx_cachep, ctx); 279 } 280 281 /* 282 * When this function runs, the kioctx has been removed from the "hash table" 283 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 284 * now it's safe to cancel any that need to be. 285 */ 286 static void free_ioctx(struct kioctx *ctx) 287 { 288 struct aio_ring *ring; 289 struct io_event res; 290 struct kiocb *req; 291 unsigned head, avail; 292 293 spin_lock_irq(&ctx->ctx_lock); 294 295 while (!list_empty(&ctx->active_reqs)) { 296 req = list_first_entry(&ctx->active_reqs, 297 struct kiocb, ki_list); 298 299 list_del_init(&req->ki_list); 300 kiocb_cancel(ctx, req, &res); 301 } 302 303 spin_unlock_irq(&ctx->ctx_lock); 304 305 ring = kmap_atomic(ctx->ring_pages[0]); 306 head = ring->head; 307 kunmap_atomic(ring); 308 309 while (atomic_read(&ctx->reqs_active) > 0) { 310 wait_event(ctx->wait, 311 head != ctx->tail || 312 atomic_read(&ctx->reqs_active) <= 0); 313 314 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head; 315 316 atomic_sub(avail, &ctx->reqs_active); 317 head += avail; 318 head %= ctx->nr_events; 319 } 320 321 WARN_ON(atomic_read(&ctx->reqs_active) < 0); 322 323 aio_free_ring(ctx); 324 325 spin_lock(&aio_nr_lock); 326 BUG_ON(aio_nr - ctx->max_reqs > aio_nr); 327 aio_nr -= ctx->max_reqs; 328 spin_unlock(&aio_nr_lock); 329 330 pr_debug("freeing %p\n", ctx); 331 332 /* 333 * Here the call_rcu() is between the wait_event() for reqs_active to 334 * hit 0, and freeing the ioctx. 335 * 336 * aio_complete() decrements reqs_active, but it has to touch the ioctx 337 * after to issue a wakeup so we use rcu. 338 */ 339 call_rcu(&ctx->rcu_head, free_ioctx_rcu); 340 } 341 342 static void put_ioctx(struct kioctx *ctx) 343 { 344 if (unlikely(atomic_dec_and_test(&ctx->users))) 345 free_ioctx(ctx); 346 } 347 348 /* ioctx_alloc 349 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 350 */ 351 static struct kioctx *ioctx_alloc(unsigned nr_events) 352 { 353 struct mm_struct *mm = current->mm; 354 struct kioctx *ctx; 355 int err = -ENOMEM; 356 357 /* Prevent overflows */ 358 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 359 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 360 pr_debug("ENOMEM: nr_events too high\n"); 361 return ERR_PTR(-EINVAL); 362 } 363 364 if (!nr_events || (unsigned long)nr_events > aio_max_nr) 365 return ERR_PTR(-EAGAIN); 366 367 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 368 if (!ctx) 369 return ERR_PTR(-ENOMEM); 370 371 ctx->max_reqs = nr_events; 372 373 atomic_set(&ctx->users, 2); 374 atomic_set(&ctx->dead, 0); 375 spin_lock_init(&ctx->ctx_lock); 376 spin_lock_init(&ctx->completion_lock); 377 mutex_init(&ctx->ring_lock); 378 init_waitqueue_head(&ctx->wait); 379 380 INIT_LIST_HEAD(&ctx->active_reqs); 381 382 if (aio_setup_ring(ctx) < 0) 383 goto out_freectx; 384 385 /* limit the number of system wide aios */ 386 spin_lock(&aio_nr_lock); 387 if (aio_nr + nr_events > aio_max_nr || 388 aio_nr + nr_events < aio_nr) { 389 spin_unlock(&aio_nr_lock); 390 goto out_cleanup; 391 } 392 aio_nr += ctx->max_reqs; 393 spin_unlock(&aio_nr_lock); 394 395 /* now link into global list. */ 396 spin_lock(&mm->ioctx_lock); 397 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 398 spin_unlock(&mm->ioctx_lock); 399 400 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 401 ctx, ctx->user_id, mm, ctx->nr_events); 402 return ctx; 403 404 out_cleanup: 405 err = -EAGAIN; 406 aio_free_ring(ctx); 407 out_freectx: 408 kmem_cache_free(kioctx_cachep, ctx); 409 pr_debug("error allocating ioctx %d\n", err); 410 return ERR_PTR(err); 411 } 412 413 static void kill_ioctx_work(struct work_struct *work) 414 { 415 struct kioctx *ctx = container_of(work, struct kioctx, rcu_work); 416 417 wake_up_all(&ctx->wait); 418 put_ioctx(ctx); 419 } 420 421 static void kill_ioctx_rcu(struct rcu_head *head) 422 { 423 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 424 425 INIT_WORK(&ctx->rcu_work, kill_ioctx_work); 426 schedule_work(&ctx->rcu_work); 427 } 428 429 /* kill_ioctx 430 * Cancels all outstanding aio requests on an aio context. Used 431 * when the processes owning a context have all exited to encourage 432 * the rapid destruction of the kioctx. 433 */ 434 static void kill_ioctx(struct kioctx *ctx) 435 { 436 if (!atomic_xchg(&ctx->dead, 1)) { 437 hlist_del_rcu(&ctx->list); 438 /* Between hlist_del_rcu() and dropping the initial ref */ 439 synchronize_rcu(); 440 441 /* 442 * We can't punt to workqueue here because put_ioctx() -> 443 * free_ioctx() will unmap the ringbuffer, and that has to be 444 * done in the original process's context. kill_ioctx_rcu/work() 445 * exist for exit_aio(), as in that path free_ioctx() won't do 446 * the unmap. 447 */ 448 kill_ioctx_work(&ctx->rcu_work); 449 } 450 } 451 452 /* wait_on_sync_kiocb: 453 * Waits on the given sync kiocb to complete. 454 */ 455 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 456 { 457 while (atomic_read(&iocb->ki_users)) { 458 set_current_state(TASK_UNINTERRUPTIBLE); 459 if (!atomic_read(&iocb->ki_users)) 460 break; 461 io_schedule(); 462 } 463 __set_current_state(TASK_RUNNING); 464 return iocb->ki_user_data; 465 } 466 EXPORT_SYMBOL(wait_on_sync_kiocb); 467 468 /* 469 * exit_aio: called when the last user of mm goes away. At this point, there is 470 * no way for any new requests to be submited or any of the io_* syscalls to be 471 * called on the context. 472 * 473 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 474 * them. 475 */ 476 void exit_aio(struct mm_struct *mm) 477 { 478 struct kioctx *ctx; 479 struct hlist_node *n; 480 481 hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) { 482 if (1 != atomic_read(&ctx->users)) 483 printk(KERN_DEBUG 484 "exit_aio:ioctx still alive: %d %d %d\n", 485 atomic_read(&ctx->users), 486 atomic_read(&ctx->dead), 487 atomic_read(&ctx->reqs_active)); 488 /* 489 * We don't need to bother with munmap() here - 490 * exit_mmap(mm) is coming and it'll unmap everything. 491 * Since aio_free_ring() uses non-zero ->mmap_size 492 * as indicator that it needs to unmap the area, 493 * just set it to 0; aio_free_ring() is the only 494 * place that uses ->mmap_size, so it's safe. 495 */ 496 ctx->mmap_size = 0; 497 498 if (!atomic_xchg(&ctx->dead, 1)) { 499 hlist_del_rcu(&ctx->list); 500 call_rcu(&ctx->rcu_head, kill_ioctx_rcu); 501 } 502 } 503 } 504 505 /* aio_get_req 506 * Allocate a slot for an aio request. Increments the ki_users count 507 * of the kioctx so that the kioctx stays around until all requests are 508 * complete. Returns NULL if no requests are free. 509 * 510 * Returns with kiocb->ki_users set to 2. The io submit code path holds 511 * an extra reference while submitting the i/o. 512 * This prevents races between the aio code path referencing the 513 * req (after submitting it) and aio_complete() freeing the req. 514 */ 515 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 516 { 517 struct kiocb *req; 518 519 if (atomic_read(&ctx->reqs_active) >= ctx->nr_events) 520 return NULL; 521 522 if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1) 523 goto out_put; 524 525 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 526 if (unlikely(!req)) 527 goto out_put; 528 529 atomic_set(&req->ki_users, 2); 530 req->ki_ctx = ctx; 531 532 return req; 533 out_put: 534 atomic_dec(&ctx->reqs_active); 535 return NULL; 536 } 537 538 static void kiocb_free(struct kiocb *req) 539 { 540 if (req->ki_filp) 541 fput(req->ki_filp); 542 if (req->ki_eventfd != NULL) 543 eventfd_ctx_put(req->ki_eventfd); 544 if (req->ki_dtor) 545 req->ki_dtor(req); 546 if (req->ki_iovec != &req->ki_inline_vec) 547 kfree(req->ki_iovec); 548 kmem_cache_free(kiocb_cachep, req); 549 } 550 551 void aio_put_req(struct kiocb *req) 552 { 553 if (atomic_dec_and_test(&req->ki_users)) 554 kiocb_free(req); 555 } 556 EXPORT_SYMBOL(aio_put_req); 557 558 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 559 { 560 struct mm_struct *mm = current->mm; 561 struct kioctx *ctx, *ret = NULL; 562 563 rcu_read_lock(); 564 565 hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) { 566 if (ctx->user_id == ctx_id) { 567 atomic_inc(&ctx->users); 568 ret = ctx; 569 break; 570 } 571 } 572 573 rcu_read_unlock(); 574 return ret; 575 } 576 577 /* aio_complete 578 * Called when the io request on the given iocb is complete. 579 */ 580 void aio_complete(struct kiocb *iocb, long res, long res2) 581 { 582 struct kioctx *ctx = iocb->ki_ctx; 583 struct aio_ring *ring; 584 struct io_event *ev_page, *event; 585 unsigned long flags; 586 unsigned tail, pos; 587 588 /* 589 * Special case handling for sync iocbs: 590 * - events go directly into the iocb for fast handling 591 * - the sync task with the iocb in its stack holds the single iocb 592 * ref, no other paths have a way to get another ref 593 * - the sync task helpfully left a reference to itself in the iocb 594 */ 595 if (is_sync_kiocb(iocb)) { 596 BUG_ON(atomic_read(&iocb->ki_users) != 1); 597 iocb->ki_user_data = res; 598 atomic_set(&iocb->ki_users, 0); 599 wake_up_process(iocb->ki_obj.tsk); 600 return; 601 } 602 603 /* 604 * Take rcu_read_lock() in case the kioctx is being destroyed, as we 605 * need to issue a wakeup after decrementing reqs_active. 606 */ 607 rcu_read_lock(); 608 609 if (iocb->ki_list.next) { 610 unsigned long flags; 611 612 spin_lock_irqsave(&ctx->ctx_lock, flags); 613 list_del(&iocb->ki_list); 614 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 615 } 616 617 /* 618 * cancelled requests don't get events, userland was given one 619 * when the event got cancelled. 620 */ 621 if (unlikely(xchg(&iocb->ki_cancel, 622 KIOCB_CANCELLED) == KIOCB_CANCELLED)) { 623 atomic_dec(&ctx->reqs_active); 624 /* Still need the wake_up in case free_ioctx is waiting */ 625 goto put_rq; 626 } 627 628 /* 629 * Add a completion event to the ring buffer. Must be done holding 630 * ctx->ctx_lock to prevent other code from messing with the tail 631 * pointer since we might be called from irq context. 632 */ 633 spin_lock_irqsave(&ctx->completion_lock, flags); 634 635 tail = ctx->tail; 636 pos = tail + AIO_EVENTS_OFFSET; 637 638 if (++tail >= ctx->nr_events) 639 tail = 0; 640 641 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 642 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 643 644 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 645 event->data = iocb->ki_user_data; 646 event->res = res; 647 event->res2 = res2; 648 649 kunmap_atomic(ev_page); 650 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 651 652 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 653 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 654 res, res2); 655 656 /* after flagging the request as done, we 657 * must never even look at it again 658 */ 659 smp_wmb(); /* make event visible before updating tail */ 660 661 ctx->tail = tail; 662 663 ring = kmap_atomic(ctx->ring_pages[0]); 664 ring->tail = tail; 665 kunmap_atomic(ring); 666 flush_dcache_page(ctx->ring_pages[0]); 667 668 spin_unlock_irqrestore(&ctx->completion_lock, flags); 669 670 pr_debug("added to ring %p at [%u]\n", iocb, tail); 671 672 /* 673 * Check if the user asked us to deliver the result through an 674 * eventfd. The eventfd_signal() function is safe to be called 675 * from IRQ context. 676 */ 677 if (iocb->ki_eventfd != NULL) 678 eventfd_signal(iocb->ki_eventfd, 1); 679 680 put_rq: 681 /* everything turned out well, dispose of the aiocb. */ 682 aio_put_req(iocb); 683 684 /* 685 * We have to order our ring_info tail store above and test 686 * of the wait list below outside the wait lock. This is 687 * like in wake_up_bit() where clearing a bit has to be 688 * ordered with the unlocked test. 689 */ 690 smp_mb(); 691 692 if (waitqueue_active(&ctx->wait)) 693 wake_up(&ctx->wait); 694 695 rcu_read_unlock(); 696 } 697 EXPORT_SYMBOL(aio_complete); 698 699 /* aio_read_events 700 * Pull an event off of the ioctx's event ring. Returns the number of 701 * events fetched 702 */ 703 static long aio_read_events_ring(struct kioctx *ctx, 704 struct io_event __user *event, long nr) 705 { 706 struct aio_ring *ring; 707 unsigned head, pos; 708 long ret = 0; 709 int copy_ret; 710 711 mutex_lock(&ctx->ring_lock); 712 713 ring = kmap_atomic(ctx->ring_pages[0]); 714 head = ring->head; 715 kunmap_atomic(ring); 716 717 pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events); 718 719 if (head == ctx->tail) 720 goto out; 721 722 while (ret < nr) { 723 long avail; 724 struct io_event *ev; 725 struct page *page; 726 727 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head; 728 if (head == ctx->tail) 729 break; 730 731 avail = min(avail, nr - ret); 732 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 733 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 734 735 pos = head + AIO_EVENTS_OFFSET; 736 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 737 pos %= AIO_EVENTS_PER_PAGE; 738 739 ev = kmap(page); 740 copy_ret = copy_to_user(event + ret, ev + pos, 741 sizeof(*ev) * avail); 742 kunmap(page); 743 744 if (unlikely(copy_ret)) { 745 ret = -EFAULT; 746 goto out; 747 } 748 749 ret += avail; 750 head += avail; 751 head %= ctx->nr_events; 752 } 753 754 ring = kmap_atomic(ctx->ring_pages[0]); 755 ring->head = head; 756 kunmap_atomic(ring); 757 flush_dcache_page(ctx->ring_pages[0]); 758 759 pr_debug("%li h%u t%u\n", ret, head, ctx->tail); 760 761 atomic_sub(ret, &ctx->reqs_active); 762 out: 763 mutex_unlock(&ctx->ring_lock); 764 765 return ret; 766 } 767 768 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 769 struct io_event __user *event, long *i) 770 { 771 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 772 773 if (ret > 0) 774 *i += ret; 775 776 if (unlikely(atomic_read(&ctx->dead))) 777 ret = -EINVAL; 778 779 if (!*i) 780 *i = ret; 781 782 return ret < 0 || *i >= min_nr; 783 } 784 785 static long read_events(struct kioctx *ctx, long min_nr, long nr, 786 struct io_event __user *event, 787 struct timespec __user *timeout) 788 { 789 ktime_t until = { .tv64 = KTIME_MAX }; 790 long ret = 0; 791 792 if (timeout) { 793 struct timespec ts; 794 795 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 796 return -EFAULT; 797 798 until = timespec_to_ktime(ts); 799 } 800 801 /* 802 * Note that aio_read_events() is being called as the conditional - i.e. 803 * we're calling it after prepare_to_wait() has set task state to 804 * TASK_INTERRUPTIBLE. 805 * 806 * But aio_read_events() can block, and if it blocks it's going to flip 807 * the task state back to TASK_RUNNING. 808 * 809 * This should be ok, provided it doesn't flip the state back to 810 * TASK_RUNNING and return 0 too much - that causes us to spin. That 811 * will only happen if the mutex_lock() call blocks, and we then find 812 * the ringbuffer empty. So in practice we should be ok, but it's 813 * something to be aware of when touching this code. 814 */ 815 wait_event_interruptible_hrtimeout(ctx->wait, 816 aio_read_events(ctx, min_nr, nr, event, &ret), until); 817 818 if (!ret && signal_pending(current)) 819 ret = -EINTR; 820 821 return ret; 822 } 823 824 /* sys_io_setup: 825 * Create an aio_context capable of receiving at least nr_events. 826 * ctxp must not point to an aio_context that already exists, and 827 * must be initialized to 0 prior to the call. On successful 828 * creation of the aio_context, *ctxp is filled in with the resulting 829 * handle. May fail with -EINVAL if *ctxp is not initialized, 830 * if the specified nr_events exceeds internal limits. May fail 831 * with -EAGAIN if the specified nr_events exceeds the user's limit 832 * of available events. May fail with -ENOMEM if insufficient kernel 833 * resources are available. May fail with -EFAULT if an invalid 834 * pointer is passed for ctxp. Will fail with -ENOSYS if not 835 * implemented. 836 */ 837 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 838 { 839 struct kioctx *ioctx = NULL; 840 unsigned long ctx; 841 long ret; 842 843 ret = get_user(ctx, ctxp); 844 if (unlikely(ret)) 845 goto out; 846 847 ret = -EINVAL; 848 if (unlikely(ctx || nr_events == 0)) { 849 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 850 ctx, nr_events); 851 goto out; 852 } 853 854 ioctx = ioctx_alloc(nr_events); 855 ret = PTR_ERR(ioctx); 856 if (!IS_ERR(ioctx)) { 857 ret = put_user(ioctx->user_id, ctxp); 858 if (ret) 859 kill_ioctx(ioctx); 860 put_ioctx(ioctx); 861 } 862 863 out: 864 return ret; 865 } 866 867 /* sys_io_destroy: 868 * Destroy the aio_context specified. May cancel any outstanding 869 * AIOs and block on completion. Will fail with -ENOSYS if not 870 * implemented. May fail with -EINVAL if the context pointed to 871 * is invalid. 872 */ 873 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 874 { 875 struct kioctx *ioctx = lookup_ioctx(ctx); 876 if (likely(NULL != ioctx)) { 877 kill_ioctx(ioctx); 878 put_ioctx(ioctx); 879 return 0; 880 } 881 pr_debug("EINVAL: io_destroy: invalid context id\n"); 882 return -EINVAL; 883 } 884 885 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 886 { 887 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 888 889 BUG_ON(ret <= 0); 890 891 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 892 ssize_t this = min((ssize_t)iov->iov_len, ret); 893 iov->iov_base += this; 894 iov->iov_len -= this; 895 iocb->ki_left -= this; 896 ret -= this; 897 if (iov->iov_len == 0) { 898 iocb->ki_cur_seg++; 899 iov++; 900 } 901 } 902 903 /* the caller should not have done more io than what fit in 904 * the remaining iovecs */ 905 BUG_ON(ret > 0 && iocb->ki_left == 0); 906 } 907 908 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 909 unsigned long, loff_t); 910 911 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op) 912 { 913 struct file *file = iocb->ki_filp; 914 struct address_space *mapping = file->f_mapping; 915 struct inode *inode = mapping->host; 916 ssize_t ret = 0; 917 918 /* This matches the pread()/pwrite() logic */ 919 if (iocb->ki_pos < 0) 920 return -EINVAL; 921 922 if (rw == WRITE) 923 file_start_write(file); 924 do { 925 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 926 iocb->ki_nr_segs - iocb->ki_cur_seg, 927 iocb->ki_pos); 928 if (ret > 0) 929 aio_advance_iovec(iocb, ret); 930 931 /* retry all partial writes. retry partial reads as long as its a 932 * regular file. */ 933 } while (ret > 0 && iocb->ki_left > 0 && 934 (rw == WRITE || 935 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 936 if (rw == WRITE) 937 file_end_write(file); 938 939 /* This means we must have transferred all that we could */ 940 /* No need to retry anymore */ 941 if ((ret == 0) || (iocb->ki_left == 0)) 942 ret = iocb->ki_nbytes - iocb->ki_left; 943 944 /* If we managed to write some out we return that, rather than 945 * the eventual error. */ 946 if (rw == WRITE 947 && ret < 0 && ret != -EIOCBQUEUED 948 && iocb->ki_nbytes - iocb->ki_left) 949 ret = iocb->ki_nbytes - iocb->ki_left; 950 951 return ret; 952 } 953 954 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat) 955 { 956 ssize_t ret; 957 958 kiocb->ki_nr_segs = kiocb->ki_nbytes; 959 960 #ifdef CONFIG_COMPAT 961 if (compat) 962 ret = compat_rw_copy_check_uvector(rw, 963 (struct compat_iovec __user *)kiocb->ki_buf, 964 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec, 965 &kiocb->ki_iovec); 966 else 967 #endif 968 ret = rw_copy_check_uvector(rw, 969 (struct iovec __user *)kiocb->ki_buf, 970 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec, 971 &kiocb->ki_iovec); 972 if (ret < 0) 973 return ret; 974 975 /* ki_nbytes now reflect bytes instead of segs */ 976 kiocb->ki_nbytes = ret; 977 return 0; 978 } 979 980 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb) 981 { 982 if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes))) 983 return -EFAULT; 984 985 kiocb->ki_iovec = &kiocb->ki_inline_vec; 986 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 987 kiocb->ki_iovec->iov_len = kiocb->ki_nbytes; 988 kiocb->ki_nr_segs = 1; 989 return 0; 990 } 991 992 /* 993 * aio_setup_iocb: 994 * Performs the initial checks and aio retry method 995 * setup for the kiocb at the time of io submission. 996 */ 997 static ssize_t aio_run_iocb(struct kiocb *req, bool compat) 998 { 999 struct file *file = req->ki_filp; 1000 ssize_t ret; 1001 int rw; 1002 fmode_t mode; 1003 aio_rw_op *rw_op; 1004 1005 switch (req->ki_opcode) { 1006 case IOCB_CMD_PREAD: 1007 case IOCB_CMD_PREADV: 1008 mode = FMODE_READ; 1009 rw = READ; 1010 rw_op = file->f_op->aio_read; 1011 goto rw_common; 1012 1013 case IOCB_CMD_PWRITE: 1014 case IOCB_CMD_PWRITEV: 1015 mode = FMODE_WRITE; 1016 rw = WRITE; 1017 rw_op = file->f_op->aio_write; 1018 goto rw_common; 1019 rw_common: 1020 if (unlikely(!(file->f_mode & mode))) 1021 return -EBADF; 1022 1023 if (!rw_op) 1024 return -EINVAL; 1025 1026 ret = (req->ki_opcode == IOCB_CMD_PREADV || 1027 req->ki_opcode == IOCB_CMD_PWRITEV) 1028 ? aio_setup_vectored_rw(rw, req, compat) 1029 : aio_setup_single_vector(rw, req); 1030 if (ret) 1031 return ret; 1032 1033 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1034 if (ret < 0) 1035 return ret; 1036 1037 req->ki_nbytes = ret; 1038 req->ki_left = ret; 1039 1040 ret = aio_rw_vect_retry(req, rw, rw_op); 1041 break; 1042 1043 case IOCB_CMD_FDSYNC: 1044 if (!file->f_op->aio_fsync) 1045 return -EINVAL; 1046 1047 ret = file->f_op->aio_fsync(req, 1); 1048 break; 1049 1050 case IOCB_CMD_FSYNC: 1051 if (!file->f_op->aio_fsync) 1052 return -EINVAL; 1053 1054 ret = file->f_op->aio_fsync(req, 0); 1055 break; 1056 1057 default: 1058 pr_debug("EINVAL: no operation provided\n"); 1059 return -EINVAL; 1060 } 1061 1062 if (ret != -EIOCBQUEUED) { 1063 /* 1064 * There's no easy way to restart the syscall since other AIO's 1065 * may be already running. Just fail this IO with EINTR. 1066 */ 1067 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1068 ret == -ERESTARTNOHAND || 1069 ret == -ERESTART_RESTARTBLOCK)) 1070 ret = -EINTR; 1071 aio_complete(req, ret, 0); 1072 } 1073 1074 return 0; 1075 } 1076 1077 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1078 struct iocb *iocb, bool compat) 1079 { 1080 struct kiocb *req; 1081 ssize_t ret; 1082 1083 /* enforce forwards compatibility on users */ 1084 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1085 pr_debug("EINVAL: reserve field set\n"); 1086 return -EINVAL; 1087 } 1088 1089 /* prevent overflows */ 1090 if (unlikely( 1091 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1092 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1093 ((ssize_t)iocb->aio_nbytes < 0) 1094 )) { 1095 pr_debug("EINVAL: io_submit: overflow check\n"); 1096 return -EINVAL; 1097 } 1098 1099 req = aio_get_req(ctx); 1100 if (unlikely(!req)) 1101 return -EAGAIN; 1102 1103 req->ki_filp = fget(iocb->aio_fildes); 1104 if (unlikely(!req->ki_filp)) { 1105 ret = -EBADF; 1106 goto out_put_req; 1107 } 1108 1109 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1110 /* 1111 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1112 * instance of the file* now. The file descriptor must be 1113 * an eventfd() fd, and will be signaled for each completed 1114 * event using the eventfd_signal() function. 1115 */ 1116 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1117 if (IS_ERR(req->ki_eventfd)) { 1118 ret = PTR_ERR(req->ki_eventfd); 1119 req->ki_eventfd = NULL; 1120 goto out_put_req; 1121 } 1122 } 1123 1124 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1125 if (unlikely(ret)) { 1126 pr_debug("EFAULT: aio_key\n"); 1127 goto out_put_req; 1128 } 1129 1130 req->ki_obj.user = user_iocb; 1131 req->ki_user_data = iocb->aio_data; 1132 req->ki_pos = iocb->aio_offset; 1133 1134 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1135 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1136 req->ki_opcode = iocb->aio_lio_opcode; 1137 1138 ret = aio_run_iocb(req, compat); 1139 if (ret) 1140 goto out_put_req; 1141 1142 aio_put_req(req); /* drop extra ref to req */ 1143 return 0; 1144 out_put_req: 1145 atomic_dec(&ctx->reqs_active); 1146 aio_put_req(req); /* drop extra ref to req */ 1147 aio_put_req(req); /* drop i/o ref to req */ 1148 return ret; 1149 } 1150 1151 long do_io_submit(aio_context_t ctx_id, long nr, 1152 struct iocb __user *__user *iocbpp, bool compat) 1153 { 1154 struct kioctx *ctx; 1155 long ret = 0; 1156 int i = 0; 1157 struct blk_plug plug; 1158 1159 if (unlikely(nr < 0)) 1160 return -EINVAL; 1161 1162 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1163 nr = LONG_MAX/sizeof(*iocbpp); 1164 1165 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1166 return -EFAULT; 1167 1168 ctx = lookup_ioctx(ctx_id); 1169 if (unlikely(!ctx)) { 1170 pr_debug("EINVAL: invalid context id\n"); 1171 return -EINVAL; 1172 } 1173 1174 blk_start_plug(&plug); 1175 1176 /* 1177 * AKPM: should this return a partial result if some of the IOs were 1178 * successfully submitted? 1179 */ 1180 for (i=0; i<nr; i++) { 1181 struct iocb __user *user_iocb; 1182 struct iocb tmp; 1183 1184 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1185 ret = -EFAULT; 1186 break; 1187 } 1188 1189 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1190 ret = -EFAULT; 1191 break; 1192 } 1193 1194 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1195 if (ret) 1196 break; 1197 } 1198 blk_finish_plug(&plug); 1199 1200 put_ioctx(ctx); 1201 return i ? i : ret; 1202 } 1203 1204 /* sys_io_submit: 1205 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1206 * the number of iocbs queued. May return -EINVAL if the aio_context 1207 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1208 * *iocbpp[0] is not properly initialized, if the operation specified 1209 * is invalid for the file descriptor in the iocb. May fail with 1210 * -EFAULT if any of the data structures point to invalid data. May 1211 * fail with -EBADF if the file descriptor specified in the first 1212 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1213 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1214 * fail with -ENOSYS if not implemented. 1215 */ 1216 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1217 struct iocb __user * __user *, iocbpp) 1218 { 1219 return do_io_submit(ctx_id, nr, iocbpp, 0); 1220 } 1221 1222 /* lookup_kiocb 1223 * Finds a given iocb for cancellation. 1224 */ 1225 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1226 u32 key) 1227 { 1228 struct list_head *pos; 1229 1230 assert_spin_locked(&ctx->ctx_lock); 1231 1232 if (key != KIOCB_KEY) 1233 return NULL; 1234 1235 /* TODO: use a hash or array, this sucks. */ 1236 list_for_each(pos, &ctx->active_reqs) { 1237 struct kiocb *kiocb = list_kiocb(pos); 1238 if (kiocb->ki_obj.user == iocb) 1239 return kiocb; 1240 } 1241 return NULL; 1242 } 1243 1244 /* sys_io_cancel: 1245 * Attempts to cancel an iocb previously passed to io_submit. If 1246 * the operation is successfully cancelled, the resulting event is 1247 * copied into the memory pointed to by result without being placed 1248 * into the completion queue and 0 is returned. May fail with 1249 * -EFAULT if any of the data structures pointed to are invalid. 1250 * May fail with -EINVAL if aio_context specified by ctx_id is 1251 * invalid. May fail with -EAGAIN if the iocb specified was not 1252 * cancelled. Will fail with -ENOSYS if not implemented. 1253 */ 1254 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1255 struct io_event __user *, result) 1256 { 1257 struct io_event res; 1258 struct kioctx *ctx; 1259 struct kiocb *kiocb; 1260 u32 key; 1261 int ret; 1262 1263 ret = get_user(key, &iocb->aio_key); 1264 if (unlikely(ret)) 1265 return -EFAULT; 1266 1267 ctx = lookup_ioctx(ctx_id); 1268 if (unlikely(!ctx)) 1269 return -EINVAL; 1270 1271 spin_lock_irq(&ctx->ctx_lock); 1272 1273 kiocb = lookup_kiocb(ctx, iocb, key); 1274 if (kiocb) 1275 ret = kiocb_cancel(ctx, kiocb, &res); 1276 else 1277 ret = -EINVAL; 1278 1279 spin_unlock_irq(&ctx->ctx_lock); 1280 1281 if (!ret) { 1282 /* Cancellation succeeded -- copy the result 1283 * into the user's buffer. 1284 */ 1285 if (copy_to_user(result, &res, sizeof(res))) 1286 ret = -EFAULT; 1287 } 1288 1289 put_ioctx(ctx); 1290 1291 return ret; 1292 } 1293 1294 /* io_getevents: 1295 * Attempts to read at least min_nr events and up to nr events from 1296 * the completion queue for the aio_context specified by ctx_id. If 1297 * it succeeds, the number of read events is returned. May fail with 1298 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1299 * out of range, if timeout is out of range. May fail with -EFAULT 1300 * if any of the memory specified is invalid. May return 0 or 1301 * < min_nr if the timeout specified by timeout has elapsed 1302 * before sufficient events are available, where timeout == NULL 1303 * specifies an infinite timeout. Note that the timeout pointed to by 1304 * timeout is relative. Will fail with -ENOSYS if not implemented. 1305 */ 1306 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1307 long, min_nr, 1308 long, nr, 1309 struct io_event __user *, events, 1310 struct timespec __user *, timeout) 1311 { 1312 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1313 long ret = -EINVAL; 1314 1315 if (likely(ioctx)) { 1316 if (likely(min_nr <= nr && min_nr >= 0)) 1317 ret = read_events(ioctx, min_nr, nr, events, timeout); 1318 put_ioctx(ioctx); 1319 } 1320 return ret; 1321 } 1322