1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[]; 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 {} 243 }; 244 245 static void __init aio_sysctl_init(void) 246 { 247 register_sysctl_init("fs", aio_sysctls); 248 } 249 #else 250 #define aio_sysctl_init() do { } while (0) 251 #endif 252 253 static struct kmem_cache *kiocb_cachep; 254 static struct kmem_cache *kioctx_cachep; 255 256 static struct vfsmount *aio_mnt; 257 258 static const struct file_operations aio_ring_fops; 259 static const struct address_space_operations aio_ctx_aops; 260 261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 262 { 263 struct file *file; 264 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 265 if (IS_ERR(inode)) 266 return ERR_CAST(inode); 267 268 inode->i_mapping->a_ops = &aio_ctx_aops; 269 inode->i_mapping->private_data = ctx; 270 inode->i_size = PAGE_SIZE * nr_pages; 271 272 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 273 O_RDWR, &aio_ring_fops); 274 if (IS_ERR(file)) 275 iput(inode); 276 return file; 277 } 278 279 static int aio_init_fs_context(struct fs_context *fc) 280 { 281 if (!init_pseudo(fc, AIO_RING_MAGIC)) 282 return -ENOMEM; 283 fc->s_iflags |= SB_I_NOEXEC; 284 return 0; 285 } 286 287 /* aio_setup 288 * Creates the slab caches used by the aio routines, panic on 289 * failure as this is done early during the boot sequence. 290 */ 291 static int __init aio_setup(void) 292 { 293 static struct file_system_type aio_fs = { 294 .name = "aio", 295 .init_fs_context = aio_init_fs_context, 296 .kill_sb = kill_anon_super, 297 }; 298 aio_mnt = kern_mount(&aio_fs); 299 if (IS_ERR(aio_mnt)) 300 panic("Failed to create aio fs mount."); 301 302 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 304 aio_sysctl_init(); 305 return 0; 306 } 307 __initcall(aio_setup); 308 309 static void put_aio_ring_file(struct kioctx *ctx) 310 { 311 struct file *aio_ring_file = ctx->aio_ring_file; 312 struct address_space *i_mapping; 313 314 if (aio_ring_file) { 315 truncate_setsize(file_inode(aio_ring_file), 0); 316 317 /* Prevent further access to the kioctx from migratepages */ 318 i_mapping = aio_ring_file->f_mapping; 319 spin_lock(&i_mapping->private_lock); 320 i_mapping->private_data = NULL; 321 ctx->aio_ring_file = NULL; 322 spin_unlock(&i_mapping->private_lock); 323 324 fput(aio_ring_file); 325 } 326 } 327 328 static void aio_free_ring(struct kioctx *ctx) 329 { 330 int i; 331 332 /* Disconnect the kiotx from the ring file. This prevents future 333 * accesses to the kioctx from page migration. 334 */ 335 put_aio_ring_file(ctx); 336 337 for (i = 0; i < ctx->nr_pages; i++) { 338 struct page *page; 339 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 340 page_count(ctx->ring_pages[i])); 341 page = ctx->ring_pages[i]; 342 if (!page) 343 continue; 344 ctx->ring_pages[i] = NULL; 345 put_page(page); 346 } 347 348 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 349 kfree(ctx->ring_pages); 350 ctx->ring_pages = NULL; 351 } 352 } 353 354 static int aio_ring_mremap(struct vm_area_struct *vma) 355 { 356 struct file *file = vma->vm_file; 357 struct mm_struct *mm = vma->vm_mm; 358 struct kioctx_table *table; 359 int i, res = -EINVAL; 360 361 spin_lock(&mm->ioctx_lock); 362 rcu_read_lock(); 363 table = rcu_dereference(mm->ioctx_table); 364 if (!table) 365 goto out_unlock; 366 367 for (i = 0; i < table->nr; i++) { 368 struct kioctx *ctx; 369 370 ctx = rcu_dereference(table->table[i]); 371 if (ctx && ctx->aio_ring_file == file) { 372 if (!atomic_read(&ctx->dead)) { 373 ctx->user_id = ctx->mmap_base = vma->vm_start; 374 res = 0; 375 } 376 break; 377 } 378 } 379 380 out_unlock: 381 rcu_read_unlock(); 382 spin_unlock(&mm->ioctx_lock); 383 return res; 384 } 385 386 static const struct vm_operations_struct aio_ring_vm_ops = { 387 .mremap = aio_ring_mremap, 388 #if IS_ENABLED(CONFIG_MMU) 389 .fault = filemap_fault, 390 .map_pages = filemap_map_pages, 391 .page_mkwrite = filemap_page_mkwrite, 392 #endif 393 }; 394 395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 396 { 397 vm_flags_set(vma, VM_DONTEXPAND); 398 vma->vm_ops = &aio_ring_vm_ops; 399 return 0; 400 } 401 402 static const struct file_operations aio_ring_fops = { 403 .mmap = aio_ring_mmap, 404 }; 405 406 #if IS_ENABLED(CONFIG_MIGRATION) 407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, 408 struct folio *src, enum migrate_mode mode) 409 { 410 struct kioctx *ctx; 411 unsigned long flags; 412 pgoff_t idx; 413 int rc; 414 415 /* 416 * We cannot support the _NO_COPY case here, because copy needs to 417 * happen under the ctx->completion_lock. That does not work with the 418 * migration workflow of MIGRATE_SYNC_NO_COPY. 419 */ 420 if (mode == MIGRATE_SYNC_NO_COPY) 421 return -EINVAL; 422 423 rc = 0; 424 425 /* mapping->private_lock here protects against the kioctx teardown. */ 426 spin_lock(&mapping->private_lock); 427 ctx = mapping->private_data; 428 if (!ctx) { 429 rc = -EINVAL; 430 goto out; 431 } 432 433 /* The ring_lock mutex. The prevents aio_read_events() from writing 434 * to the ring's head, and prevents page migration from mucking in 435 * a partially initialized kiotx. 436 */ 437 if (!mutex_trylock(&ctx->ring_lock)) { 438 rc = -EAGAIN; 439 goto out; 440 } 441 442 idx = src->index; 443 if (idx < (pgoff_t)ctx->nr_pages) { 444 /* Make sure the old folio hasn't already been changed */ 445 if (ctx->ring_pages[idx] != &src->page) 446 rc = -EAGAIN; 447 } else 448 rc = -EINVAL; 449 450 if (rc != 0) 451 goto out_unlock; 452 453 /* Writeback must be complete */ 454 BUG_ON(folio_test_writeback(src)); 455 folio_get(dst); 456 457 rc = folio_migrate_mapping(mapping, dst, src, 1); 458 if (rc != MIGRATEPAGE_SUCCESS) { 459 folio_put(dst); 460 goto out_unlock; 461 } 462 463 /* Take completion_lock to prevent other writes to the ring buffer 464 * while the old folio is copied to the new. This prevents new 465 * events from being lost. 466 */ 467 spin_lock_irqsave(&ctx->completion_lock, flags); 468 folio_migrate_copy(dst, src); 469 BUG_ON(ctx->ring_pages[idx] != &src->page); 470 ctx->ring_pages[idx] = &dst->page; 471 spin_unlock_irqrestore(&ctx->completion_lock, flags); 472 473 /* The old folio is no longer accessible. */ 474 folio_put(src); 475 476 out_unlock: 477 mutex_unlock(&ctx->ring_lock); 478 out: 479 spin_unlock(&mapping->private_lock); 480 return rc; 481 } 482 #else 483 #define aio_migrate_folio NULL 484 #endif 485 486 static const struct address_space_operations aio_ctx_aops = { 487 .dirty_folio = noop_dirty_folio, 488 .migrate_folio = aio_migrate_folio, 489 }; 490 491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 492 { 493 struct aio_ring *ring; 494 struct mm_struct *mm = current->mm; 495 unsigned long size, unused; 496 int nr_pages; 497 int i; 498 struct file *file; 499 500 /* Compensate for the ring buffer's head/tail overlap entry */ 501 nr_events += 2; /* 1 is required, 2 for good luck */ 502 503 size = sizeof(struct aio_ring); 504 size += sizeof(struct io_event) * nr_events; 505 506 nr_pages = PFN_UP(size); 507 if (nr_pages < 0) 508 return -EINVAL; 509 510 file = aio_private_file(ctx, nr_pages); 511 if (IS_ERR(file)) { 512 ctx->aio_ring_file = NULL; 513 return -ENOMEM; 514 } 515 516 ctx->aio_ring_file = file; 517 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 518 / sizeof(struct io_event); 519 520 ctx->ring_pages = ctx->internal_pages; 521 if (nr_pages > AIO_RING_PAGES) { 522 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 523 GFP_KERNEL); 524 if (!ctx->ring_pages) { 525 put_aio_ring_file(ctx); 526 return -ENOMEM; 527 } 528 } 529 530 for (i = 0; i < nr_pages; i++) { 531 struct page *page; 532 page = find_or_create_page(file->f_mapping, 533 i, GFP_USER | __GFP_ZERO); 534 if (!page) 535 break; 536 pr_debug("pid(%d) page[%d]->count=%d\n", 537 current->pid, i, page_count(page)); 538 SetPageUptodate(page); 539 unlock_page(page); 540 541 ctx->ring_pages[i] = page; 542 } 543 ctx->nr_pages = i; 544 545 if (unlikely(i != nr_pages)) { 546 aio_free_ring(ctx); 547 return -ENOMEM; 548 } 549 550 ctx->mmap_size = nr_pages * PAGE_SIZE; 551 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 552 553 if (mmap_write_lock_killable(mm)) { 554 ctx->mmap_size = 0; 555 aio_free_ring(ctx); 556 return -EINTR; 557 } 558 559 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 560 PROT_READ | PROT_WRITE, 561 MAP_SHARED, 0, 0, &unused, NULL); 562 mmap_write_unlock(mm); 563 if (IS_ERR((void *)ctx->mmap_base)) { 564 ctx->mmap_size = 0; 565 aio_free_ring(ctx); 566 return -ENOMEM; 567 } 568 569 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 570 571 ctx->user_id = ctx->mmap_base; 572 ctx->nr_events = nr_events; /* trusted copy */ 573 574 ring = page_address(ctx->ring_pages[0]); 575 ring->nr = nr_events; /* user copy */ 576 ring->id = ~0U; 577 ring->head = ring->tail = 0; 578 ring->magic = AIO_RING_MAGIC; 579 ring->compat_features = AIO_RING_COMPAT_FEATURES; 580 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 581 ring->header_length = sizeof(struct aio_ring); 582 flush_dcache_page(ctx->ring_pages[0]); 583 584 return 0; 585 } 586 587 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 588 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 589 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 590 591 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 592 { 593 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 594 struct kioctx *ctx = req->ki_ctx; 595 unsigned long flags; 596 597 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 598 return; 599 600 spin_lock_irqsave(&ctx->ctx_lock, flags); 601 list_add_tail(&req->ki_list, &ctx->active_reqs); 602 req->ki_cancel = cancel; 603 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 604 } 605 EXPORT_SYMBOL(kiocb_set_cancel_fn); 606 607 /* 608 * free_ioctx() should be RCU delayed to synchronize against the RCU 609 * protected lookup_ioctx() and also needs process context to call 610 * aio_free_ring(). Use rcu_work. 611 */ 612 static void free_ioctx(struct work_struct *work) 613 { 614 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 615 free_rwork); 616 pr_debug("freeing %p\n", ctx); 617 618 aio_free_ring(ctx); 619 free_percpu(ctx->cpu); 620 percpu_ref_exit(&ctx->reqs); 621 percpu_ref_exit(&ctx->users); 622 kmem_cache_free(kioctx_cachep, ctx); 623 } 624 625 static void free_ioctx_reqs(struct percpu_ref *ref) 626 { 627 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 628 629 /* At this point we know that there are no any in-flight requests */ 630 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 631 complete(&ctx->rq_wait->comp); 632 633 /* Synchronize against RCU protected table->table[] dereferences */ 634 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 635 queue_rcu_work(system_wq, &ctx->free_rwork); 636 } 637 638 /* 639 * When this function runs, the kioctx has been removed from the "hash table" 640 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 641 * now it's safe to cancel any that need to be. 642 */ 643 static void free_ioctx_users(struct percpu_ref *ref) 644 { 645 struct kioctx *ctx = container_of(ref, struct kioctx, users); 646 struct aio_kiocb *req; 647 648 spin_lock_irq(&ctx->ctx_lock); 649 650 while (!list_empty(&ctx->active_reqs)) { 651 req = list_first_entry(&ctx->active_reqs, 652 struct aio_kiocb, ki_list); 653 req->ki_cancel(&req->rw); 654 list_del_init(&req->ki_list); 655 } 656 657 spin_unlock_irq(&ctx->ctx_lock); 658 659 percpu_ref_kill(&ctx->reqs); 660 percpu_ref_put(&ctx->reqs); 661 } 662 663 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 664 { 665 unsigned i, new_nr; 666 struct kioctx_table *table, *old; 667 struct aio_ring *ring; 668 669 spin_lock(&mm->ioctx_lock); 670 table = rcu_dereference_raw(mm->ioctx_table); 671 672 while (1) { 673 if (table) 674 for (i = 0; i < table->nr; i++) 675 if (!rcu_access_pointer(table->table[i])) { 676 ctx->id = i; 677 rcu_assign_pointer(table->table[i], ctx); 678 spin_unlock(&mm->ioctx_lock); 679 680 /* While kioctx setup is in progress, 681 * we are protected from page migration 682 * changes ring_pages by ->ring_lock. 683 */ 684 ring = page_address(ctx->ring_pages[0]); 685 ring->id = ctx->id; 686 return 0; 687 } 688 689 new_nr = (table ? table->nr : 1) * 4; 690 spin_unlock(&mm->ioctx_lock); 691 692 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 693 if (!table) 694 return -ENOMEM; 695 696 table->nr = new_nr; 697 698 spin_lock(&mm->ioctx_lock); 699 old = rcu_dereference_raw(mm->ioctx_table); 700 701 if (!old) { 702 rcu_assign_pointer(mm->ioctx_table, table); 703 } else if (table->nr > old->nr) { 704 memcpy(table->table, old->table, 705 old->nr * sizeof(struct kioctx *)); 706 707 rcu_assign_pointer(mm->ioctx_table, table); 708 kfree_rcu(old, rcu); 709 } else { 710 kfree(table); 711 table = old; 712 } 713 } 714 } 715 716 static void aio_nr_sub(unsigned nr) 717 { 718 spin_lock(&aio_nr_lock); 719 if (WARN_ON(aio_nr - nr > aio_nr)) 720 aio_nr = 0; 721 else 722 aio_nr -= nr; 723 spin_unlock(&aio_nr_lock); 724 } 725 726 /* ioctx_alloc 727 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 728 */ 729 static struct kioctx *ioctx_alloc(unsigned nr_events) 730 { 731 struct mm_struct *mm = current->mm; 732 struct kioctx *ctx; 733 int err = -ENOMEM; 734 735 /* 736 * Store the original nr_events -- what userspace passed to io_setup(), 737 * for counting against the global limit -- before it changes. 738 */ 739 unsigned int max_reqs = nr_events; 740 741 /* 742 * We keep track of the number of available ringbuffer slots, to prevent 743 * overflow (reqs_available), and we also use percpu counters for this. 744 * 745 * So since up to half the slots might be on other cpu's percpu counters 746 * and unavailable, double nr_events so userspace sees what they 747 * expected: additionally, we move req_batch slots to/from percpu 748 * counters at a time, so make sure that isn't 0: 749 */ 750 nr_events = max(nr_events, num_possible_cpus() * 4); 751 nr_events *= 2; 752 753 /* Prevent overflows */ 754 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 755 pr_debug("ENOMEM: nr_events too high\n"); 756 return ERR_PTR(-EINVAL); 757 } 758 759 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 760 return ERR_PTR(-EAGAIN); 761 762 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 763 if (!ctx) 764 return ERR_PTR(-ENOMEM); 765 766 ctx->max_reqs = max_reqs; 767 768 spin_lock_init(&ctx->ctx_lock); 769 spin_lock_init(&ctx->completion_lock); 770 mutex_init(&ctx->ring_lock); 771 /* Protect against page migration throughout kiotx setup by keeping 772 * the ring_lock mutex held until setup is complete. */ 773 mutex_lock(&ctx->ring_lock); 774 init_waitqueue_head(&ctx->wait); 775 776 INIT_LIST_HEAD(&ctx->active_reqs); 777 778 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 779 goto err; 780 781 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 782 goto err; 783 784 ctx->cpu = alloc_percpu(struct kioctx_cpu); 785 if (!ctx->cpu) 786 goto err; 787 788 err = aio_setup_ring(ctx, nr_events); 789 if (err < 0) 790 goto err; 791 792 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 793 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 794 if (ctx->req_batch < 1) 795 ctx->req_batch = 1; 796 797 /* limit the number of system wide aios */ 798 spin_lock(&aio_nr_lock); 799 if (aio_nr + ctx->max_reqs > aio_max_nr || 800 aio_nr + ctx->max_reqs < aio_nr) { 801 spin_unlock(&aio_nr_lock); 802 err = -EAGAIN; 803 goto err_ctx; 804 } 805 aio_nr += ctx->max_reqs; 806 spin_unlock(&aio_nr_lock); 807 808 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 809 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 810 811 err = ioctx_add_table(ctx, mm); 812 if (err) 813 goto err_cleanup; 814 815 /* Release the ring_lock mutex now that all setup is complete. */ 816 mutex_unlock(&ctx->ring_lock); 817 818 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 819 ctx, ctx->user_id, mm, ctx->nr_events); 820 return ctx; 821 822 err_cleanup: 823 aio_nr_sub(ctx->max_reqs); 824 err_ctx: 825 atomic_set(&ctx->dead, 1); 826 if (ctx->mmap_size) 827 vm_munmap(ctx->mmap_base, ctx->mmap_size); 828 aio_free_ring(ctx); 829 err: 830 mutex_unlock(&ctx->ring_lock); 831 free_percpu(ctx->cpu); 832 percpu_ref_exit(&ctx->reqs); 833 percpu_ref_exit(&ctx->users); 834 kmem_cache_free(kioctx_cachep, ctx); 835 pr_debug("error allocating ioctx %d\n", err); 836 return ERR_PTR(err); 837 } 838 839 /* kill_ioctx 840 * Cancels all outstanding aio requests on an aio context. Used 841 * when the processes owning a context have all exited to encourage 842 * the rapid destruction of the kioctx. 843 */ 844 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 845 struct ctx_rq_wait *wait) 846 { 847 struct kioctx_table *table; 848 849 spin_lock(&mm->ioctx_lock); 850 if (atomic_xchg(&ctx->dead, 1)) { 851 spin_unlock(&mm->ioctx_lock); 852 return -EINVAL; 853 } 854 855 table = rcu_dereference_raw(mm->ioctx_table); 856 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 857 RCU_INIT_POINTER(table->table[ctx->id], NULL); 858 spin_unlock(&mm->ioctx_lock); 859 860 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 861 wake_up_all(&ctx->wait); 862 863 /* 864 * It'd be more correct to do this in free_ioctx(), after all 865 * the outstanding kiocbs have finished - but by then io_destroy 866 * has already returned, so io_setup() could potentially return 867 * -EAGAIN with no ioctxs actually in use (as far as userspace 868 * could tell). 869 */ 870 aio_nr_sub(ctx->max_reqs); 871 872 if (ctx->mmap_size) 873 vm_munmap(ctx->mmap_base, ctx->mmap_size); 874 875 ctx->rq_wait = wait; 876 percpu_ref_kill(&ctx->users); 877 return 0; 878 } 879 880 /* 881 * exit_aio: called when the last user of mm goes away. At this point, there is 882 * no way for any new requests to be submited or any of the io_* syscalls to be 883 * called on the context. 884 * 885 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 886 * them. 887 */ 888 void exit_aio(struct mm_struct *mm) 889 { 890 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 891 struct ctx_rq_wait wait; 892 int i, skipped; 893 894 if (!table) 895 return; 896 897 atomic_set(&wait.count, table->nr); 898 init_completion(&wait.comp); 899 900 skipped = 0; 901 for (i = 0; i < table->nr; ++i) { 902 struct kioctx *ctx = 903 rcu_dereference_protected(table->table[i], true); 904 905 if (!ctx) { 906 skipped++; 907 continue; 908 } 909 910 /* 911 * We don't need to bother with munmap() here - exit_mmap(mm) 912 * is coming and it'll unmap everything. And we simply can't, 913 * this is not necessarily our ->mm. 914 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 915 * that it needs to unmap the area, just set it to 0. 916 */ 917 ctx->mmap_size = 0; 918 kill_ioctx(mm, ctx, &wait); 919 } 920 921 if (!atomic_sub_and_test(skipped, &wait.count)) { 922 /* Wait until all IO for the context are done. */ 923 wait_for_completion(&wait.comp); 924 } 925 926 RCU_INIT_POINTER(mm->ioctx_table, NULL); 927 kfree(table); 928 } 929 930 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 931 { 932 struct kioctx_cpu *kcpu; 933 unsigned long flags; 934 935 local_irq_save(flags); 936 kcpu = this_cpu_ptr(ctx->cpu); 937 kcpu->reqs_available += nr; 938 939 while (kcpu->reqs_available >= ctx->req_batch * 2) { 940 kcpu->reqs_available -= ctx->req_batch; 941 atomic_add(ctx->req_batch, &ctx->reqs_available); 942 } 943 944 local_irq_restore(flags); 945 } 946 947 static bool __get_reqs_available(struct kioctx *ctx) 948 { 949 struct kioctx_cpu *kcpu; 950 bool ret = false; 951 unsigned long flags; 952 953 local_irq_save(flags); 954 kcpu = this_cpu_ptr(ctx->cpu); 955 if (!kcpu->reqs_available) { 956 int avail = atomic_read(&ctx->reqs_available); 957 958 do { 959 if (avail < ctx->req_batch) 960 goto out; 961 } while (!atomic_try_cmpxchg(&ctx->reqs_available, 962 &avail, avail - ctx->req_batch)); 963 964 kcpu->reqs_available += ctx->req_batch; 965 } 966 967 ret = true; 968 kcpu->reqs_available--; 969 out: 970 local_irq_restore(flags); 971 return ret; 972 } 973 974 /* refill_reqs_available 975 * Updates the reqs_available reference counts used for tracking the 976 * number of free slots in the completion ring. This can be called 977 * from aio_complete() (to optimistically update reqs_available) or 978 * from aio_get_req() (the we're out of events case). It must be 979 * called holding ctx->completion_lock. 980 */ 981 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 982 unsigned tail) 983 { 984 unsigned events_in_ring, completed; 985 986 /* Clamp head since userland can write to it. */ 987 head %= ctx->nr_events; 988 if (head <= tail) 989 events_in_ring = tail - head; 990 else 991 events_in_ring = ctx->nr_events - (head - tail); 992 993 completed = ctx->completed_events; 994 if (events_in_ring < completed) 995 completed -= events_in_ring; 996 else 997 completed = 0; 998 999 if (!completed) 1000 return; 1001 1002 ctx->completed_events -= completed; 1003 put_reqs_available(ctx, completed); 1004 } 1005 1006 /* user_refill_reqs_available 1007 * Called to refill reqs_available when aio_get_req() encounters an 1008 * out of space in the completion ring. 1009 */ 1010 static void user_refill_reqs_available(struct kioctx *ctx) 1011 { 1012 spin_lock_irq(&ctx->completion_lock); 1013 if (ctx->completed_events) { 1014 struct aio_ring *ring; 1015 unsigned head; 1016 1017 /* Access of ring->head may race with aio_read_events_ring() 1018 * here, but that's okay since whether we read the old version 1019 * or the new version, and either will be valid. The important 1020 * part is that head cannot pass tail since we prevent 1021 * aio_complete() from updating tail by holding 1022 * ctx->completion_lock. Even if head is invalid, the check 1023 * against ctx->completed_events below will make sure we do the 1024 * safe/right thing. 1025 */ 1026 ring = page_address(ctx->ring_pages[0]); 1027 head = ring->head; 1028 1029 refill_reqs_available(ctx, head, ctx->tail); 1030 } 1031 1032 spin_unlock_irq(&ctx->completion_lock); 1033 } 1034 1035 static bool get_reqs_available(struct kioctx *ctx) 1036 { 1037 if (__get_reqs_available(ctx)) 1038 return true; 1039 user_refill_reqs_available(ctx); 1040 return __get_reqs_available(ctx); 1041 } 1042 1043 /* aio_get_req 1044 * Allocate a slot for an aio request. 1045 * Returns NULL if no requests are free. 1046 * 1047 * The refcount is initialized to 2 - one for the async op completion, 1048 * one for the synchronous code that does this. 1049 */ 1050 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1051 { 1052 struct aio_kiocb *req; 1053 1054 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1055 if (unlikely(!req)) 1056 return NULL; 1057 1058 if (unlikely(!get_reqs_available(ctx))) { 1059 kmem_cache_free(kiocb_cachep, req); 1060 return NULL; 1061 } 1062 1063 percpu_ref_get(&ctx->reqs); 1064 req->ki_ctx = ctx; 1065 INIT_LIST_HEAD(&req->ki_list); 1066 refcount_set(&req->ki_refcnt, 2); 1067 req->ki_eventfd = NULL; 1068 return req; 1069 } 1070 1071 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1072 { 1073 struct aio_ring __user *ring = (void __user *)ctx_id; 1074 struct mm_struct *mm = current->mm; 1075 struct kioctx *ctx, *ret = NULL; 1076 struct kioctx_table *table; 1077 unsigned id; 1078 1079 if (get_user(id, &ring->id)) 1080 return NULL; 1081 1082 rcu_read_lock(); 1083 table = rcu_dereference(mm->ioctx_table); 1084 1085 if (!table || id >= table->nr) 1086 goto out; 1087 1088 id = array_index_nospec(id, table->nr); 1089 ctx = rcu_dereference(table->table[id]); 1090 if (ctx && ctx->user_id == ctx_id) { 1091 if (percpu_ref_tryget_live(&ctx->users)) 1092 ret = ctx; 1093 } 1094 out: 1095 rcu_read_unlock(); 1096 return ret; 1097 } 1098 1099 static inline void iocb_destroy(struct aio_kiocb *iocb) 1100 { 1101 if (iocb->ki_eventfd) 1102 eventfd_ctx_put(iocb->ki_eventfd); 1103 if (iocb->ki_filp) 1104 fput(iocb->ki_filp); 1105 percpu_ref_put(&iocb->ki_ctx->reqs); 1106 kmem_cache_free(kiocb_cachep, iocb); 1107 } 1108 1109 /* aio_complete 1110 * Called when the io request on the given iocb is complete. 1111 */ 1112 static void aio_complete(struct aio_kiocb *iocb) 1113 { 1114 struct kioctx *ctx = iocb->ki_ctx; 1115 struct aio_ring *ring; 1116 struct io_event *ev_page, *event; 1117 unsigned tail, pos, head; 1118 unsigned long flags; 1119 1120 /* 1121 * Add a completion event to the ring buffer. Must be done holding 1122 * ctx->completion_lock to prevent other code from messing with the tail 1123 * pointer since we might be called from irq context. 1124 */ 1125 spin_lock_irqsave(&ctx->completion_lock, flags); 1126 1127 tail = ctx->tail; 1128 pos = tail + AIO_EVENTS_OFFSET; 1129 1130 if (++tail >= ctx->nr_events) 1131 tail = 0; 1132 1133 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1134 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1135 1136 *event = iocb->ki_res; 1137 1138 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1139 1140 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1141 (void __user *)(unsigned long)iocb->ki_res.obj, 1142 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1143 1144 /* after flagging the request as done, we 1145 * must never even look at it again 1146 */ 1147 smp_wmb(); /* make event visible before updating tail */ 1148 1149 ctx->tail = tail; 1150 1151 ring = page_address(ctx->ring_pages[0]); 1152 head = ring->head; 1153 ring->tail = tail; 1154 flush_dcache_page(ctx->ring_pages[0]); 1155 1156 ctx->completed_events++; 1157 if (ctx->completed_events > 1) 1158 refill_reqs_available(ctx, head, tail); 1159 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1160 1161 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1162 1163 /* 1164 * Check if the user asked us to deliver the result through an 1165 * eventfd. The eventfd_signal() function is safe to be called 1166 * from IRQ context. 1167 */ 1168 if (iocb->ki_eventfd) 1169 eventfd_signal(iocb->ki_eventfd, 1); 1170 1171 /* 1172 * We have to order our ring_info tail store above and test 1173 * of the wait list below outside the wait lock. This is 1174 * like in wake_up_bit() where clearing a bit has to be 1175 * ordered with the unlocked test. 1176 */ 1177 smp_mb(); 1178 1179 if (waitqueue_active(&ctx->wait)) 1180 wake_up(&ctx->wait); 1181 } 1182 1183 static inline void iocb_put(struct aio_kiocb *iocb) 1184 { 1185 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1186 aio_complete(iocb); 1187 iocb_destroy(iocb); 1188 } 1189 } 1190 1191 /* aio_read_events_ring 1192 * Pull an event off of the ioctx's event ring. Returns the number of 1193 * events fetched 1194 */ 1195 static long aio_read_events_ring(struct kioctx *ctx, 1196 struct io_event __user *event, long nr) 1197 { 1198 struct aio_ring *ring; 1199 unsigned head, tail, pos; 1200 long ret = 0; 1201 int copy_ret; 1202 1203 /* 1204 * The mutex can block and wake us up and that will cause 1205 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1206 * and repeat. This should be rare enough that it doesn't cause 1207 * peformance issues. See the comment in read_events() for more detail. 1208 */ 1209 sched_annotate_sleep(); 1210 mutex_lock(&ctx->ring_lock); 1211 1212 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1213 ring = page_address(ctx->ring_pages[0]); 1214 head = ring->head; 1215 tail = ring->tail; 1216 1217 /* 1218 * Ensure that once we've read the current tail pointer, that 1219 * we also see the events that were stored up to the tail. 1220 */ 1221 smp_rmb(); 1222 1223 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1224 1225 if (head == tail) 1226 goto out; 1227 1228 head %= ctx->nr_events; 1229 tail %= ctx->nr_events; 1230 1231 while (ret < nr) { 1232 long avail; 1233 struct io_event *ev; 1234 struct page *page; 1235 1236 avail = (head <= tail ? tail : ctx->nr_events) - head; 1237 if (head == tail) 1238 break; 1239 1240 pos = head + AIO_EVENTS_OFFSET; 1241 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1242 pos %= AIO_EVENTS_PER_PAGE; 1243 1244 avail = min(avail, nr - ret); 1245 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1246 1247 ev = page_address(page); 1248 copy_ret = copy_to_user(event + ret, ev + pos, 1249 sizeof(*ev) * avail); 1250 1251 if (unlikely(copy_ret)) { 1252 ret = -EFAULT; 1253 goto out; 1254 } 1255 1256 ret += avail; 1257 head += avail; 1258 head %= ctx->nr_events; 1259 } 1260 1261 ring = page_address(ctx->ring_pages[0]); 1262 ring->head = head; 1263 flush_dcache_page(ctx->ring_pages[0]); 1264 1265 pr_debug("%li h%u t%u\n", ret, head, tail); 1266 out: 1267 mutex_unlock(&ctx->ring_lock); 1268 1269 return ret; 1270 } 1271 1272 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1273 struct io_event __user *event, long *i) 1274 { 1275 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1276 1277 if (ret > 0) 1278 *i += ret; 1279 1280 if (unlikely(atomic_read(&ctx->dead))) 1281 ret = -EINVAL; 1282 1283 if (!*i) 1284 *i = ret; 1285 1286 return ret < 0 || *i >= min_nr; 1287 } 1288 1289 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1290 struct io_event __user *event, 1291 ktime_t until) 1292 { 1293 long ret = 0; 1294 1295 /* 1296 * Note that aio_read_events() is being called as the conditional - i.e. 1297 * we're calling it after prepare_to_wait() has set task state to 1298 * TASK_INTERRUPTIBLE. 1299 * 1300 * But aio_read_events() can block, and if it blocks it's going to flip 1301 * the task state back to TASK_RUNNING. 1302 * 1303 * This should be ok, provided it doesn't flip the state back to 1304 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1305 * will only happen if the mutex_lock() call blocks, and we then find 1306 * the ringbuffer empty. So in practice we should be ok, but it's 1307 * something to be aware of when touching this code. 1308 */ 1309 if (until == 0) 1310 aio_read_events(ctx, min_nr, nr, event, &ret); 1311 else 1312 wait_event_interruptible_hrtimeout(ctx->wait, 1313 aio_read_events(ctx, min_nr, nr, event, &ret), 1314 until); 1315 return ret; 1316 } 1317 1318 /* sys_io_setup: 1319 * Create an aio_context capable of receiving at least nr_events. 1320 * ctxp must not point to an aio_context that already exists, and 1321 * must be initialized to 0 prior to the call. On successful 1322 * creation of the aio_context, *ctxp is filled in with the resulting 1323 * handle. May fail with -EINVAL if *ctxp is not initialized, 1324 * if the specified nr_events exceeds internal limits. May fail 1325 * with -EAGAIN if the specified nr_events exceeds the user's limit 1326 * of available events. May fail with -ENOMEM if insufficient kernel 1327 * resources are available. May fail with -EFAULT if an invalid 1328 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1329 * implemented. 1330 */ 1331 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1332 { 1333 struct kioctx *ioctx = NULL; 1334 unsigned long ctx; 1335 long ret; 1336 1337 ret = get_user(ctx, ctxp); 1338 if (unlikely(ret)) 1339 goto out; 1340 1341 ret = -EINVAL; 1342 if (unlikely(ctx || nr_events == 0)) { 1343 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1344 ctx, nr_events); 1345 goto out; 1346 } 1347 1348 ioctx = ioctx_alloc(nr_events); 1349 ret = PTR_ERR(ioctx); 1350 if (!IS_ERR(ioctx)) { 1351 ret = put_user(ioctx->user_id, ctxp); 1352 if (ret) 1353 kill_ioctx(current->mm, ioctx, NULL); 1354 percpu_ref_put(&ioctx->users); 1355 } 1356 1357 out: 1358 return ret; 1359 } 1360 1361 #ifdef CONFIG_COMPAT 1362 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1363 { 1364 struct kioctx *ioctx = NULL; 1365 unsigned long ctx; 1366 long ret; 1367 1368 ret = get_user(ctx, ctx32p); 1369 if (unlikely(ret)) 1370 goto out; 1371 1372 ret = -EINVAL; 1373 if (unlikely(ctx || nr_events == 0)) { 1374 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1375 ctx, nr_events); 1376 goto out; 1377 } 1378 1379 ioctx = ioctx_alloc(nr_events); 1380 ret = PTR_ERR(ioctx); 1381 if (!IS_ERR(ioctx)) { 1382 /* truncating is ok because it's a user address */ 1383 ret = put_user((u32)ioctx->user_id, ctx32p); 1384 if (ret) 1385 kill_ioctx(current->mm, ioctx, NULL); 1386 percpu_ref_put(&ioctx->users); 1387 } 1388 1389 out: 1390 return ret; 1391 } 1392 #endif 1393 1394 /* sys_io_destroy: 1395 * Destroy the aio_context specified. May cancel any outstanding 1396 * AIOs and block on completion. Will fail with -ENOSYS if not 1397 * implemented. May fail with -EINVAL if the context pointed to 1398 * is invalid. 1399 */ 1400 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1401 { 1402 struct kioctx *ioctx = lookup_ioctx(ctx); 1403 if (likely(NULL != ioctx)) { 1404 struct ctx_rq_wait wait; 1405 int ret; 1406 1407 init_completion(&wait.comp); 1408 atomic_set(&wait.count, 1); 1409 1410 /* Pass requests_done to kill_ioctx() where it can be set 1411 * in a thread-safe way. If we try to set it here then we have 1412 * a race condition if two io_destroy() called simultaneously. 1413 */ 1414 ret = kill_ioctx(current->mm, ioctx, &wait); 1415 percpu_ref_put(&ioctx->users); 1416 1417 /* Wait until all IO for the context are done. Otherwise kernel 1418 * keep using user-space buffers even if user thinks the context 1419 * is destroyed. 1420 */ 1421 if (!ret) 1422 wait_for_completion(&wait.comp); 1423 1424 return ret; 1425 } 1426 pr_debug("EINVAL: invalid context id\n"); 1427 return -EINVAL; 1428 } 1429 1430 static void aio_remove_iocb(struct aio_kiocb *iocb) 1431 { 1432 struct kioctx *ctx = iocb->ki_ctx; 1433 unsigned long flags; 1434 1435 spin_lock_irqsave(&ctx->ctx_lock, flags); 1436 list_del(&iocb->ki_list); 1437 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1438 } 1439 1440 static void aio_complete_rw(struct kiocb *kiocb, long res) 1441 { 1442 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1443 1444 if (!list_empty_careful(&iocb->ki_list)) 1445 aio_remove_iocb(iocb); 1446 1447 if (kiocb->ki_flags & IOCB_WRITE) { 1448 struct inode *inode = file_inode(kiocb->ki_filp); 1449 1450 if (S_ISREG(inode->i_mode)) 1451 kiocb_end_write(kiocb); 1452 } 1453 1454 iocb->ki_res.res = res; 1455 iocb->ki_res.res2 = 0; 1456 iocb_put(iocb); 1457 } 1458 1459 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1460 { 1461 int ret; 1462 1463 req->ki_complete = aio_complete_rw; 1464 req->private = NULL; 1465 req->ki_pos = iocb->aio_offset; 1466 req->ki_flags = req->ki_filp->f_iocb_flags; 1467 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1468 req->ki_flags |= IOCB_EVENTFD; 1469 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1470 /* 1471 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1472 * aio_reqprio is interpreted as an I/O scheduling 1473 * class and priority. 1474 */ 1475 ret = ioprio_check_cap(iocb->aio_reqprio); 1476 if (ret) { 1477 pr_debug("aio ioprio check cap error: %d\n", ret); 1478 return ret; 1479 } 1480 1481 req->ki_ioprio = iocb->aio_reqprio; 1482 } else 1483 req->ki_ioprio = get_current_ioprio(); 1484 1485 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1486 if (unlikely(ret)) 1487 return ret; 1488 1489 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1490 return 0; 1491 } 1492 1493 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1494 struct iovec **iovec, bool vectored, bool compat, 1495 struct iov_iter *iter) 1496 { 1497 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1498 size_t len = iocb->aio_nbytes; 1499 1500 if (!vectored) { 1501 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1502 *iovec = NULL; 1503 return ret; 1504 } 1505 1506 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1507 } 1508 1509 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1510 { 1511 switch (ret) { 1512 case -EIOCBQUEUED: 1513 break; 1514 case -ERESTARTSYS: 1515 case -ERESTARTNOINTR: 1516 case -ERESTARTNOHAND: 1517 case -ERESTART_RESTARTBLOCK: 1518 /* 1519 * There's no easy way to restart the syscall since other AIO's 1520 * may be already running. Just fail this IO with EINTR. 1521 */ 1522 ret = -EINTR; 1523 fallthrough; 1524 default: 1525 req->ki_complete(req, ret); 1526 } 1527 } 1528 1529 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1530 bool vectored, bool compat) 1531 { 1532 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1533 struct iov_iter iter; 1534 struct file *file; 1535 int ret; 1536 1537 ret = aio_prep_rw(req, iocb); 1538 if (ret) 1539 return ret; 1540 file = req->ki_filp; 1541 if (unlikely(!(file->f_mode & FMODE_READ))) 1542 return -EBADF; 1543 if (unlikely(!file->f_op->read_iter)) 1544 return -EINVAL; 1545 1546 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); 1547 if (ret < 0) 1548 return ret; 1549 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1550 if (!ret) 1551 aio_rw_done(req, call_read_iter(file, req, &iter)); 1552 kfree(iovec); 1553 return ret; 1554 } 1555 1556 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1557 bool vectored, bool compat) 1558 { 1559 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1560 struct iov_iter iter; 1561 struct file *file; 1562 int ret; 1563 1564 ret = aio_prep_rw(req, iocb); 1565 if (ret) 1566 return ret; 1567 file = req->ki_filp; 1568 1569 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1570 return -EBADF; 1571 if (unlikely(!file->f_op->write_iter)) 1572 return -EINVAL; 1573 1574 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); 1575 if (ret < 0) 1576 return ret; 1577 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1578 if (!ret) { 1579 if (S_ISREG(file_inode(file)->i_mode)) 1580 kiocb_start_write(req); 1581 req->ki_flags |= IOCB_WRITE; 1582 aio_rw_done(req, call_write_iter(file, req, &iter)); 1583 } 1584 kfree(iovec); 1585 return ret; 1586 } 1587 1588 static void aio_fsync_work(struct work_struct *work) 1589 { 1590 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1591 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1592 1593 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1594 revert_creds(old_cred); 1595 put_cred(iocb->fsync.creds); 1596 iocb_put(iocb); 1597 } 1598 1599 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1600 bool datasync) 1601 { 1602 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1603 iocb->aio_rw_flags)) 1604 return -EINVAL; 1605 1606 if (unlikely(!req->file->f_op->fsync)) 1607 return -EINVAL; 1608 1609 req->creds = prepare_creds(); 1610 if (!req->creds) 1611 return -ENOMEM; 1612 1613 req->datasync = datasync; 1614 INIT_WORK(&req->work, aio_fsync_work); 1615 schedule_work(&req->work); 1616 return 0; 1617 } 1618 1619 static void aio_poll_put_work(struct work_struct *work) 1620 { 1621 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1622 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1623 1624 iocb_put(iocb); 1625 } 1626 1627 /* 1628 * Safely lock the waitqueue which the request is on, synchronizing with the 1629 * case where the ->poll() provider decides to free its waitqueue early. 1630 * 1631 * Returns true on success, meaning that req->head->lock was locked, req->wait 1632 * is on req->head, and an RCU read lock was taken. Returns false if the 1633 * request was already removed from its waitqueue (which might no longer exist). 1634 */ 1635 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1636 { 1637 wait_queue_head_t *head; 1638 1639 /* 1640 * While we hold the waitqueue lock and the waitqueue is nonempty, 1641 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1642 * lock in the first place can race with the waitqueue being freed. 1643 * 1644 * We solve this as eventpoll does: by taking advantage of the fact that 1645 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1646 * we enter rcu_read_lock() and see that the pointer to the queue is 1647 * non-NULL, we can then lock it without the memory being freed out from 1648 * under us, then check whether the request is still on the queue. 1649 * 1650 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1651 * case the caller deletes the entry from the queue, leaving it empty. 1652 * In that case, only RCU prevents the queue memory from being freed. 1653 */ 1654 rcu_read_lock(); 1655 head = smp_load_acquire(&req->head); 1656 if (head) { 1657 spin_lock(&head->lock); 1658 if (!list_empty(&req->wait.entry)) 1659 return true; 1660 spin_unlock(&head->lock); 1661 } 1662 rcu_read_unlock(); 1663 return false; 1664 } 1665 1666 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1667 { 1668 spin_unlock(&req->head->lock); 1669 rcu_read_unlock(); 1670 } 1671 1672 static void aio_poll_complete_work(struct work_struct *work) 1673 { 1674 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1675 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1676 struct poll_table_struct pt = { ._key = req->events }; 1677 struct kioctx *ctx = iocb->ki_ctx; 1678 __poll_t mask = 0; 1679 1680 if (!READ_ONCE(req->cancelled)) 1681 mask = vfs_poll(req->file, &pt) & req->events; 1682 1683 /* 1684 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1685 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1686 * synchronize with them. In the cancellation case the list_del_init 1687 * itself is not actually needed, but harmless so we keep it in to 1688 * avoid further branches in the fast path. 1689 */ 1690 spin_lock_irq(&ctx->ctx_lock); 1691 if (poll_iocb_lock_wq(req)) { 1692 if (!mask && !READ_ONCE(req->cancelled)) { 1693 /* 1694 * The request isn't actually ready to be completed yet. 1695 * Reschedule completion if another wakeup came in. 1696 */ 1697 if (req->work_need_resched) { 1698 schedule_work(&req->work); 1699 req->work_need_resched = false; 1700 } else { 1701 req->work_scheduled = false; 1702 } 1703 poll_iocb_unlock_wq(req); 1704 spin_unlock_irq(&ctx->ctx_lock); 1705 return; 1706 } 1707 list_del_init(&req->wait.entry); 1708 poll_iocb_unlock_wq(req); 1709 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1710 list_del_init(&iocb->ki_list); 1711 iocb->ki_res.res = mangle_poll(mask); 1712 spin_unlock_irq(&ctx->ctx_lock); 1713 1714 iocb_put(iocb); 1715 } 1716 1717 /* assumes we are called with irqs disabled */ 1718 static int aio_poll_cancel(struct kiocb *iocb) 1719 { 1720 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1721 struct poll_iocb *req = &aiocb->poll; 1722 1723 if (poll_iocb_lock_wq(req)) { 1724 WRITE_ONCE(req->cancelled, true); 1725 if (!req->work_scheduled) { 1726 schedule_work(&aiocb->poll.work); 1727 req->work_scheduled = true; 1728 } 1729 poll_iocb_unlock_wq(req); 1730 } /* else, the request was force-cancelled by POLLFREE already */ 1731 1732 return 0; 1733 } 1734 1735 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1736 void *key) 1737 { 1738 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1739 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1740 __poll_t mask = key_to_poll(key); 1741 unsigned long flags; 1742 1743 /* for instances that support it check for an event match first: */ 1744 if (mask && !(mask & req->events)) 1745 return 0; 1746 1747 /* 1748 * Complete the request inline if possible. This requires that three 1749 * conditions be met: 1750 * 1. An event mask must have been passed. If a plain wakeup was done 1751 * instead, then mask == 0 and we have to call vfs_poll() to get 1752 * the events, so inline completion isn't possible. 1753 * 2. The completion work must not have already been scheduled. 1754 * 3. ctx_lock must not be busy. We have to use trylock because we 1755 * already hold the waitqueue lock, so this inverts the normal 1756 * locking order. Use irqsave/irqrestore because not all 1757 * filesystems (e.g. fuse) call this function with IRQs disabled, 1758 * yet IRQs have to be disabled before ctx_lock is obtained. 1759 */ 1760 if (mask && !req->work_scheduled && 1761 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1762 struct kioctx *ctx = iocb->ki_ctx; 1763 1764 list_del_init(&req->wait.entry); 1765 list_del(&iocb->ki_list); 1766 iocb->ki_res.res = mangle_poll(mask); 1767 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1768 iocb = NULL; 1769 INIT_WORK(&req->work, aio_poll_put_work); 1770 schedule_work(&req->work); 1771 } 1772 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1773 if (iocb) 1774 iocb_put(iocb); 1775 } else { 1776 /* 1777 * Schedule the completion work if needed. If it was already 1778 * scheduled, record that another wakeup came in. 1779 * 1780 * Don't remove the request from the waitqueue here, as it might 1781 * not actually be complete yet (we won't know until vfs_poll() 1782 * is called), and we must not miss any wakeups. POLLFREE is an 1783 * exception to this; see below. 1784 */ 1785 if (req->work_scheduled) { 1786 req->work_need_resched = true; 1787 } else { 1788 schedule_work(&req->work); 1789 req->work_scheduled = true; 1790 } 1791 1792 /* 1793 * If the waitqueue is being freed early but we can't complete 1794 * the request inline, we have to tear down the request as best 1795 * we can. That means immediately removing the request from its 1796 * waitqueue and preventing all further accesses to the 1797 * waitqueue via the request. We also need to schedule the 1798 * completion work (done above). Also mark the request as 1799 * cancelled, to potentially skip an unneeded call to ->poll(). 1800 */ 1801 if (mask & POLLFREE) { 1802 WRITE_ONCE(req->cancelled, true); 1803 list_del_init(&req->wait.entry); 1804 1805 /* 1806 * Careful: this *must* be the last step, since as soon 1807 * as req->head is NULL'ed out, the request can be 1808 * completed and freed, since aio_poll_complete_work() 1809 * will no longer need to take the waitqueue lock. 1810 */ 1811 smp_store_release(&req->head, NULL); 1812 } 1813 } 1814 return 1; 1815 } 1816 1817 struct aio_poll_table { 1818 struct poll_table_struct pt; 1819 struct aio_kiocb *iocb; 1820 bool queued; 1821 int error; 1822 }; 1823 1824 static void 1825 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1826 struct poll_table_struct *p) 1827 { 1828 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1829 1830 /* multiple wait queues per file are not supported */ 1831 if (unlikely(pt->queued)) { 1832 pt->error = -EINVAL; 1833 return; 1834 } 1835 1836 pt->queued = true; 1837 pt->error = 0; 1838 pt->iocb->poll.head = head; 1839 add_wait_queue(head, &pt->iocb->poll.wait); 1840 } 1841 1842 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1843 { 1844 struct kioctx *ctx = aiocb->ki_ctx; 1845 struct poll_iocb *req = &aiocb->poll; 1846 struct aio_poll_table apt; 1847 bool cancel = false; 1848 __poll_t mask; 1849 1850 /* reject any unknown events outside the normal event mask. */ 1851 if ((u16)iocb->aio_buf != iocb->aio_buf) 1852 return -EINVAL; 1853 /* reject fields that are not defined for poll */ 1854 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1855 return -EINVAL; 1856 1857 INIT_WORK(&req->work, aio_poll_complete_work); 1858 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1859 1860 req->head = NULL; 1861 req->cancelled = false; 1862 req->work_scheduled = false; 1863 req->work_need_resched = false; 1864 1865 apt.pt._qproc = aio_poll_queue_proc; 1866 apt.pt._key = req->events; 1867 apt.iocb = aiocb; 1868 apt.queued = false; 1869 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1870 1871 /* initialized the list so that we can do list_empty checks */ 1872 INIT_LIST_HEAD(&req->wait.entry); 1873 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1874 1875 mask = vfs_poll(req->file, &apt.pt) & req->events; 1876 spin_lock_irq(&ctx->ctx_lock); 1877 if (likely(apt.queued)) { 1878 bool on_queue = poll_iocb_lock_wq(req); 1879 1880 if (!on_queue || req->work_scheduled) { 1881 /* 1882 * aio_poll_wake() already either scheduled the async 1883 * completion work, or completed the request inline. 1884 */ 1885 if (apt.error) /* unsupported case: multiple queues */ 1886 cancel = true; 1887 apt.error = 0; 1888 mask = 0; 1889 } 1890 if (mask || apt.error) { 1891 /* Steal to complete synchronously. */ 1892 list_del_init(&req->wait.entry); 1893 } else if (cancel) { 1894 /* Cancel if possible (may be too late though). */ 1895 WRITE_ONCE(req->cancelled, true); 1896 } else if (on_queue) { 1897 /* 1898 * Actually waiting for an event, so add the request to 1899 * active_reqs so that it can be cancelled if needed. 1900 */ 1901 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1902 aiocb->ki_cancel = aio_poll_cancel; 1903 } 1904 if (on_queue) 1905 poll_iocb_unlock_wq(req); 1906 } 1907 if (mask) { /* no async, we'd stolen it */ 1908 aiocb->ki_res.res = mangle_poll(mask); 1909 apt.error = 0; 1910 } 1911 spin_unlock_irq(&ctx->ctx_lock); 1912 if (mask) 1913 iocb_put(aiocb); 1914 return apt.error; 1915 } 1916 1917 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1918 struct iocb __user *user_iocb, struct aio_kiocb *req, 1919 bool compat) 1920 { 1921 req->ki_filp = fget(iocb->aio_fildes); 1922 if (unlikely(!req->ki_filp)) 1923 return -EBADF; 1924 1925 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1926 struct eventfd_ctx *eventfd; 1927 /* 1928 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1929 * instance of the file* now. The file descriptor must be 1930 * an eventfd() fd, and will be signaled for each completed 1931 * event using the eventfd_signal() function. 1932 */ 1933 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1934 if (IS_ERR(eventfd)) 1935 return PTR_ERR(eventfd); 1936 1937 req->ki_eventfd = eventfd; 1938 } 1939 1940 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1941 pr_debug("EFAULT: aio_key\n"); 1942 return -EFAULT; 1943 } 1944 1945 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1946 req->ki_res.data = iocb->aio_data; 1947 req->ki_res.res = 0; 1948 req->ki_res.res2 = 0; 1949 1950 switch (iocb->aio_lio_opcode) { 1951 case IOCB_CMD_PREAD: 1952 return aio_read(&req->rw, iocb, false, compat); 1953 case IOCB_CMD_PWRITE: 1954 return aio_write(&req->rw, iocb, false, compat); 1955 case IOCB_CMD_PREADV: 1956 return aio_read(&req->rw, iocb, true, compat); 1957 case IOCB_CMD_PWRITEV: 1958 return aio_write(&req->rw, iocb, true, compat); 1959 case IOCB_CMD_FSYNC: 1960 return aio_fsync(&req->fsync, iocb, false); 1961 case IOCB_CMD_FDSYNC: 1962 return aio_fsync(&req->fsync, iocb, true); 1963 case IOCB_CMD_POLL: 1964 return aio_poll(req, iocb); 1965 default: 1966 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1967 return -EINVAL; 1968 } 1969 } 1970 1971 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1972 bool compat) 1973 { 1974 struct aio_kiocb *req; 1975 struct iocb iocb; 1976 int err; 1977 1978 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1979 return -EFAULT; 1980 1981 /* enforce forwards compatibility on users */ 1982 if (unlikely(iocb.aio_reserved2)) { 1983 pr_debug("EINVAL: reserve field set\n"); 1984 return -EINVAL; 1985 } 1986 1987 /* prevent overflows */ 1988 if (unlikely( 1989 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1990 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1991 ((ssize_t)iocb.aio_nbytes < 0) 1992 )) { 1993 pr_debug("EINVAL: overflow check\n"); 1994 return -EINVAL; 1995 } 1996 1997 req = aio_get_req(ctx); 1998 if (unlikely(!req)) 1999 return -EAGAIN; 2000 2001 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2002 2003 /* Done with the synchronous reference */ 2004 iocb_put(req); 2005 2006 /* 2007 * If err is 0, we'd either done aio_complete() ourselves or have 2008 * arranged for that to be done asynchronously. Anything non-zero 2009 * means that we need to destroy req ourselves. 2010 */ 2011 if (unlikely(err)) { 2012 iocb_destroy(req); 2013 put_reqs_available(ctx, 1); 2014 } 2015 return err; 2016 } 2017 2018 /* sys_io_submit: 2019 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2020 * the number of iocbs queued. May return -EINVAL if the aio_context 2021 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2022 * *iocbpp[0] is not properly initialized, if the operation specified 2023 * is invalid for the file descriptor in the iocb. May fail with 2024 * -EFAULT if any of the data structures point to invalid data. May 2025 * fail with -EBADF if the file descriptor specified in the first 2026 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2027 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2028 * fail with -ENOSYS if not implemented. 2029 */ 2030 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2031 struct iocb __user * __user *, iocbpp) 2032 { 2033 struct kioctx *ctx; 2034 long ret = 0; 2035 int i = 0; 2036 struct blk_plug plug; 2037 2038 if (unlikely(nr < 0)) 2039 return -EINVAL; 2040 2041 ctx = lookup_ioctx(ctx_id); 2042 if (unlikely(!ctx)) { 2043 pr_debug("EINVAL: invalid context id\n"); 2044 return -EINVAL; 2045 } 2046 2047 if (nr > ctx->nr_events) 2048 nr = ctx->nr_events; 2049 2050 if (nr > AIO_PLUG_THRESHOLD) 2051 blk_start_plug(&plug); 2052 for (i = 0; i < nr; i++) { 2053 struct iocb __user *user_iocb; 2054 2055 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2056 ret = -EFAULT; 2057 break; 2058 } 2059 2060 ret = io_submit_one(ctx, user_iocb, false); 2061 if (ret) 2062 break; 2063 } 2064 if (nr > AIO_PLUG_THRESHOLD) 2065 blk_finish_plug(&plug); 2066 2067 percpu_ref_put(&ctx->users); 2068 return i ? i : ret; 2069 } 2070 2071 #ifdef CONFIG_COMPAT 2072 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2073 int, nr, compat_uptr_t __user *, iocbpp) 2074 { 2075 struct kioctx *ctx; 2076 long ret = 0; 2077 int i = 0; 2078 struct blk_plug plug; 2079 2080 if (unlikely(nr < 0)) 2081 return -EINVAL; 2082 2083 ctx = lookup_ioctx(ctx_id); 2084 if (unlikely(!ctx)) { 2085 pr_debug("EINVAL: invalid context id\n"); 2086 return -EINVAL; 2087 } 2088 2089 if (nr > ctx->nr_events) 2090 nr = ctx->nr_events; 2091 2092 if (nr > AIO_PLUG_THRESHOLD) 2093 blk_start_plug(&plug); 2094 for (i = 0; i < nr; i++) { 2095 compat_uptr_t user_iocb; 2096 2097 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2098 ret = -EFAULT; 2099 break; 2100 } 2101 2102 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2103 if (ret) 2104 break; 2105 } 2106 if (nr > AIO_PLUG_THRESHOLD) 2107 blk_finish_plug(&plug); 2108 2109 percpu_ref_put(&ctx->users); 2110 return i ? i : ret; 2111 } 2112 #endif 2113 2114 /* sys_io_cancel: 2115 * Attempts to cancel an iocb previously passed to io_submit. If 2116 * the operation is successfully cancelled, the resulting event is 2117 * copied into the memory pointed to by result without being placed 2118 * into the completion queue and 0 is returned. May fail with 2119 * -EFAULT if any of the data structures pointed to are invalid. 2120 * May fail with -EINVAL if aio_context specified by ctx_id is 2121 * invalid. May fail with -EAGAIN if the iocb specified was not 2122 * cancelled. Will fail with -ENOSYS if not implemented. 2123 */ 2124 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2125 struct io_event __user *, result) 2126 { 2127 struct kioctx *ctx; 2128 struct aio_kiocb *kiocb; 2129 int ret = -EINVAL; 2130 u32 key; 2131 u64 obj = (u64)(unsigned long)iocb; 2132 2133 if (unlikely(get_user(key, &iocb->aio_key))) 2134 return -EFAULT; 2135 if (unlikely(key != KIOCB_KEY)) 2136 return -EINVAL; 2137 2138 ctx = lookup_ioctx(ctx_id); 2139 if (unlikely(!ctx)) 2140 return -EINVAL; 2141 2142 spin_lock_irq(&ctx->ctx_lock); 2143 /* TODO: use a hash or array, this sucks. */ 2144 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2145 if (kiocb->ki_res.obj == obj) { 2146 ret = kiocb->ki_cancel(&kiocb->rw); 2147 list_del_init(&kiocb->ki_list); 2148 break; 2149 } 2150 } 2151 spin_unlock_irq(&ctx->ctx_lock); 2152 2153 if (!ret) { 2154 /* 2155 * The result argument is no longer used - the io_event is 2156 * always delivered via the ring buffer. -EINPROGRESS indicates 2157 * cancellation is progress: 2158 */ 2159 ret = -EINPROGRESS; 2160 } 2161 2162 percpu_ref_put(&ctx->users); 2163 2164 return ret; 2165 } 2166 2167 static long do_io_getevents(aio_context_t ctx_id, 2168 long min_nr, 2169 long nr, 2170 struct io_event __user *events, 2171 struct timespec64 *ts) 2172 { 2173 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2174 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2175 long ret = -EINVAL; 2176 2177 if (likely(ioctx)) { 2178 if (likely(min_nr <= nr && min_nr >= 0)) 2179 ret = read_events(ioctx, min_nr, nr, events, until); 2180 percpu_ref_put(&ioctx->users); 2181 } 2182 2183 return ret; 2184 } 2185 2186 /* io_getevents: 2187 * Attempts to read at least min_nr events and up to nr events from 2188 * the completion queue for the aio_context specified by ctx_id. If 2189 * it succeeds, the number of read events is returned. May fail with 2190 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2191 * out of range, if timeout is out of range. May fail with -EFAULT 2192 * if any of the memory specified is invalid. May return 0 or 2193 * < min_nr if the timeout specified by timeout has elapsed 2194 * before sufficient events are available, where timeout == NULL 2195 * specifies an infinite timeout. Note that the timeout pointed to by 2196 * timeout is relative. Will fail with -ENOSYS if not implemented. 2197 */ 2198 #ifdef CONFIG_64BIT 2199 2200 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2201 long, min_nr, 2202 long, nr, 2203 struct io_event __user *, events, 2204 struct __kernel_timespec __user *, timeout) 2205 { 2206 struct timespec64 ts; 2207 int ret; 2208 2209 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2210 return -EFAULT; 2211 2212 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2213 if (!ret && signal_pending(current)) 2214 ret = -EINTR; 2215 return ret; 2216 } 2217 2218 #endif 2219 2220 struct __aio_sigset { 2221 const sigset_t __user *sigmask; 2222 size_t sigsetsize; 2223 }; 2224 2225 SYSCALL_DEFINE6(io_pgetevents, 2226 aio_context_t, ctx_id, 2227 long, min_nr, 2228 long, nr, 2229 struct io_event __user *, events, 2230 struct __kernel_timespec __user *, timeout, 2231 const struct __aio_sigset __user *, usig) 2232 { 2233 struct __aio_sigset ksig = { NULL, }; 2234 struct timespec64 ts; 2235 bool interrupted; 2236 int ret; 2237 2238 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2239 return -EFAULT; 2240 2241 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2242 return -EFAULT; 2243 2244 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2245 if (ret) 2246 return ret; 2247 2248 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2249 2250 interrupted = signal_pending(current); 2251 restore_saved_sigmask_unless(interrupted); 2252 if (interrupted && !ret) 2253 ret = -ERESTARTNOHAND; 2254 2255 return ret; 2256 } 2257 2258 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2259 2260 SYSCALL_DEFINE6(io_pgetevents_time32, 2261 aio_context_t, ctx_id, 2262 long, min_nr, 2263 long, nr, 2264 struct io_event __user *, events, 2265 struct old_timespec32 __user *, timeout, 2266 const struct __aio_sigset __user *, usig) 2267 { 2268 struct __aio_sigset ksig = { NULL, }; 2269 struct timespec64 ts; 2270 bool interrupted; 2271 int ret; 2272 2273 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2274 return -EFAULT; 2275 2276 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2277 return -EFAULT; 2278 2279 2280 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2281 if (ret) 2282 return ret; 2283 2284 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2285 2286 interrupted = signal_pending(current); 2287 restore_saved_sigmask_unless(interrupted); 2288 if (interrupted && !ret) 2289 ret = -ERESTARTNOHAND; 2290 2291 return ret; 2292 } 2293 2294 #endif 2295 2296 #if defined(CONFIG_COMPAT_32BIT_TIME) 2297 2298 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2299 __s32, min_nr, 2300 __s32, nr, 2301 struct io_event __user *, events, 2302 struct old_timespec32 __user *, timeout) 2303 { 2304 struct timespec64 t; 2305 int ret; 2306 2307 if (timeout && get_old_timespec32(&t, timeout)) 2308 return -EFAULT; 2309 2310 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2311 if (!ret && signal_pending(current)) 2312 ret = -EINTR; 2313 return ret; 2314 } 2315 2316 #endif 2317 2318 #ifdef CONFIG_COMPAT 2319 2320 struct __compat_aio_sigset { 2321 compat_uptr_t sigmask; 2322 compat_size_t sigsetsize; 2323 }; 2324 2325 #if defined(CONFIG_COMPAT_32BIT_TIME) 2326 2327 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2328 compat_aio_context_t, ctx_id, 2329 compat_long_t, min_nr, 2330 compat_long_t, nr, 2331 struct io_event __user *, events, 2332 struct old_timespec32 __user *, timeout, 2333 const struct __compat_aio_sigset __user *, usig) 2334 { 2335 struct __compat_aio_sigset ksig = { 0, }; 2336 struct timespec64 t; 2337 bool interrupted; 2338 int ret; 2339 2340 if (timeout && get_old_timespec32(&t, timeout)) 2341 return -EFAULT; 2342 2343 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2344 return -EFAULT; 2345 2346 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2347 if (ret) 2348 return ret; 2349 2350 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2351 2352 interrupted = signal_pending(current); 2353 restore_saved_sigmask_unless(interrupted); 2354 if (interrupted && !ret) 2355 ret = -ERESTARTNOHAND; 2356 2357 return ret; 2358 } 2359 2360 #endif 2361 2362 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2363 compat_aio_context_t, ctx_id, 2364 compat_long_t, min_nr, 2365 compat_long_t, nr, 2366 struct io_event __user *, events, 2367 struct __kernel_timespec __user *, timeout, 2368 const struct __compat_aio_sigset __user *, usig) 2369 { 2370 struct __compat_aio_sigset ksig = { 0, }; 2371 struct timespec64 t; 2372 bool interrupted; 2373 int ret; 2374 2375 if (timeout && get_timespec64(&t, timeout)) 2376 return -EFAULT; 2377 2378 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2379 return -EFAULT; 2380 2381 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2382 if (ret) 2383 return ret; 2384 2385 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2386 2387 interrupted = signal_pending(current); 2388 restore_saved_sigmask_unless(interrupted); 2389 if (interrupted && !ret) 2390 ret = -ERESTARTNOHAND; 2391 2392 return ret; 2393 } 2394 #endif 2395