xref: /linux/fs/aio.c (revision f3d9478b2ce468c3115b02ecae7e975990697f15)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 
19 #define DEBUG 0
20 
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 
37 #if DEBUG > 1
38 #define dprintk		printk
39 #else
40 #define dprintk(x...)	do { ; } while (0)
41 #endif
42 
43 /*------ sysctl variables----*/
44 static DEFINE_SPINLOCK(aio_nr_lock);
45 unsigned long aio_nr;		/* current system wide number of aio requests */
46 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
47 /*----end sysctl variables---*/
48 
49 static kmem_cache_t	*kiocb_cachep;
50 static kmem_cache_t	*kioctx_cachep;
51 
52 static struct workqueue_struct *aio_wq;
53 
54 /* Used for rare fput completion. */
55 static void aio_fput_routine(void *);
56 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
57 
58 static DEFINE_SPINLOCK(fput_lock);
59 static LIST_HEAD(fput_head);
60 
61 static void aio_kick_handler(void *);
62 static void aio_queue_work(struct kioctx *);
63 
64 /* aio_setup
65  *	Creates the slab caches used by the aio routines, panic on
66  *	failure as this is done early during the boot sequence.
67  */
68 static int __init aio_setup(void)
69 {
70 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
71 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
72 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
73 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		printk("mmap err: %ld\n", -info->mmap_base);
139 		info->mmap_size = 0;
140 		aio_free_ring(ctx);
141 		return -EAGAIN;
142 	}
143 
144 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
145 	info->nr_pages = get_user_pages(current, ctx->mm,
146 					info->mmap_base, nr_pages,
147 					1, 0, info->ring_pages, NULL);
148 	up_write(&ctx->mm->mmap_sem);
149 
150 	if (unlikely(info->nr_pages != nr_pages)) {
151 		aio_free_ring(ctx);
152 		return -EAGAIN;
153 	}
154 
155 	ctx->user_id = info->mmap_base;
156 
157 	info->nr = nr_events;		/* trusted copy */
158 
159 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
160 	ring->nr = nr_events;	/* user copy */
161 	ring->id = ctx->user_id;
162 	ring->head = ring->tail = 0;
163 	ring->magic = AIO_RING_MAGIC;
164 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
165 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
166 	ring->header_length = sizeof(struct aio_ring);
167 	kunmap_atomic(ring, KM_USER0);
168 
169 	return 0;
170 }
171 
172 
173 /* aio_ring_event: returns a pointer to the event at the given index from
174  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
175  */
176 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 
180 #define aio_ring_event(info, nr, km) ({					\
181 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
182 	struct io_event *__event;					\
183 	__event = kmap_atomic(						\
184 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 	__event += pos % AIO_EVENTS_PER_PAGE;				\
186 	__event;							\
187 })
188 
189 #define put_aio_ring_event(event, km) do {	\
190 	struct io_event *__event = (event);	\
191 	(void)__event;				\
192 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
193 } while(0)
194 
195 /* ioctx_alloc
196  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
197  */
198 static struct kioctx *ioctx_alloc(unsigned nr_events)
199 {
200 	struct mm_struct *mm;
201 	struct kioctx *ctx;
202 
203 	/* Prevent overflows */
204 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
205 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
206 		pr_debug("ENOMEM: nr_events too high\n");
207 		return ERR_PTR(-EINVAL);
208 	}
209 
210 	if ((unsigned long)nr_events > aio_max_nr)
211 		return ERR_PTR(-EAGAIN);
212 
213 	ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
214 	if (!ctx)
215 		return ERR_PTR(-ENOMEM);
216 
217 	memset(ctx, 0, sizeof(*ctx));
218 	ctx->max_reqs = nr_events;
219 	mm = ctx->mm = current->mm;
220 	atomic_inc(&mm->mm_count);
221 
222 	atomic_set(&ctx->users, 1);
223 	spin_lock_init(&ctx->ctx_lock);
224 	spin_lock_init(&ctx->ring_info.ring_lock);
225 	init_waitqueue_head(&ctx->wait);
226 
227 	INIT_LIST_HEAD(&ctx->active_reqs);
228 	INIT_LIST_HEAD(&ctx->run_list);
229 	INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
230 
231 	if (aio_setup_ring(ctx) < 0)
232 		goto out_freectx;
233 
234 	/* limit the number of system wide aios */
235 	spin_lock(&aio_nr_lock);
236 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
237 	    aio_nr + ctx->max_reqs < aio_nr)
238 		ctx->max_reqs = 0;
239 	else
240 		aio_nr += ctx->max_reqs;
241 	spin_unlock(&aio_nr_lock);
242 	if (ctx->max_reqs == 0)
243 		goto out_cleanup;
244 
245 	/* now link into global list.  kludge.  FIXME */
246 	write_lock(&mm->ioctx_list_lock);
247 	ctx->next = mm->ioctx_list;
248 	mm->ioctx_list = ctx;
249 	write_unlock(&mm->ioctx_list_lock);
250 
251 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
252 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
253 	return ctx;
254 
255 out_cleanup:
256 	__put_ioctx(ctx);
257 	return ERR_PTR(-EAGAIN);
258 
259 out_freectx:
260 	mmdrop(mm);
261 	kmem_cache_free(kioctx_cachep, ctx);
262 	ctx = ERR_PTR(-ENOMEM);
263 
264 	dprintk("aio: error allocating ioctx %p\n", ctx);
265 	return ctx;
266 }
267 
268 /* aio_cancel_all
269  *	Cancels all outstanding aio requests on an aio context.  Used
270  *	when the processes owning a context have all exited to encourage
271  *	the rapid destruction of the kioctx.
272  */
273 static void aio_cancel_all(struct kioctx *ctx)
274 {
275 	int (*cancel)(struct kiocb *, struct io_event *);
276 	struct io_event res;
277 	spin_lock_irq(&ctx->ctx_lock);
278 	ctx->dead = 1;
279 	while (!list_empty(&ctx->active_reqs)) {
280 		struct list_head *pos = ctx->active_reqs.next;
281 		struct kiocb *iocb = list_kiocb(pos);
282 		list_del_init(&iocb->ki_list);
283 		cancel = iocb->ki_cancel;
284 		kiocbSetCancelled(iocb);
285 		if (cancel) {
286 			iocb->ki_users++;
287 			spin_unlock_irq(&ctx->ctx_lock);
288 			cancel(iocb, &res);
289 			spin_lock_irq(&ctx->ctx_lock);
290 		}
291 	}
292 	spin_unlock_irq(&ctx->ctx_lock);
293 }
294 
295 static void wait_for_all_aios(struct kioctx *ctx)
296 {
297 	struct task_struct *tsk = current;
298 	DECLARE_WAITQUEUE(wait, tsk);
299 
300 	if (!ctx->reqs_active)
301 		return;
302 
303 	add_wait_queue(&ctx->wait, &wait);
304 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
305 	while (ctx->reqs_active) {
306 		schedule();
307 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
308 	}
309 	__set_task_state(tsk, TASK_RUNNING);
310 	remove_wait_queue(&ctx->wait, &wait);
311 }
312 
313 /* wait_on_sync_kiocb:
314  *	Waits on the given sync kiocb to complete.
315  */
316 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
317 {
318 	while (iocb->ki_users) {
319 		set_current_state(TASK_UNINTERRUPTIBLE);
320 		if (!iocb->ki_users)
321 			break;
322 		schedule();
323 	}
324 	__set_current_state(TASK_RUNNING);
325 	return iocb->ki_user_data;
326 }
327 
328 /* exit_aio: called when the last user of mm goes away.  At this point,
329  * there is no way for any new requests to be submited or any of the
330  * io_* syscalls to be called on the context.  However, there may be
331  * outstanding requests which hold references to the context; as they
332  * go away, they will call put_ioctx and release any pinned memory
333  * associated with the request (held via struct page * references).
334  */
335 void fastcall exit_aio(struct mm_struct *mm)
336 {
337 	struct kioctx *ctx = mm->ioctx_list;
338 	mm->ioctx_list = NULL;
339 	while (ctx) {
340 		struct kioctx *next = ctx->next;
341 		ctx->next = NULL;
342 		aio_cancel_all(ctx);
343 
344 		wait_for_all_aios(ctx);
345 		/*
346 		 * this is an overkill, but ensures we don't leave
347 		 * the ctx on the aio_wq
348 		 */
349 		flush_workqueue(aio_wq);
350 
351 		if (1 != atomic_read(&ctx->users))
352 			printk(KERN_DEBUG
353 				"exit_aio:ioctx still alive: %d %d %d\n",
354 				atomic_read(&ctx->users), ctx->dead,
355 				ctx->reqs_active);
356 		put_ioctx(ctx);
357 		ctx = next;
358 	}
359 }
360 
361 /* __put_ioctx
362  *	Called when the last user of an aio context has gone away,
363  *	and the struct needs to be freed.
364  */
365 void fastcall __put_ioctx(struct kioctx *ctx)
366 {
367 	unsigned nr_events = ctx->max_reqs;
368 
369 	if (unlikely(ctx->reqs_active))
370 		BUG();
371 
372 	cancel_delayed_work(&ctx->wq);
373 	flush_workqueue(aio_wq);
374 	aio_free_ring(ctx);
375 	mmdrop(ctx->mm);
376 	ctx->mm = NULL;
377 	pr_debug("__put_ioctx: freeing %p\n", ctx);
378 	kmem_cache_free(kioctx_cachep, ctx);
379 
380 	if (nr_events) {
381 		spin_lock(&aio_nr_lock);
382 		BUG_ON(aio_nr - nr_events > aio_nr);
383 		aio_nr -= nr_events;
384 		spin_unlock(&aio_nr_lock);
385 	}
386 }
387 
388 /* aio_get_req
389  *	Allocate a slot for an aio request.  Increments the users count
390  * of the kioctx so that the kioctx stays around until all requests are
391  * complete.  Returns NULL if no requests are free.
392  *
393  * Returns with kiocb->users set to 2.  The io submit code path holds
394  * an extra reference while submitting the i/o.
395  * This prevents races between the aio code path referencing the
396  * req (after submitting it) and aio_complete() freeing the req.
397  */
398 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
399 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
400 {
401 	struct kiocb *req = NULL;
402 	struct aio_ring *ring;
403 	int okay = 0;
404 
405 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
406 	if (unlikely(!req))
407 		return NULL;
408 
409 	req->ki_flags = 0;
410 	req->ki_users = 2;
411 	req->ki_key = 0;
412 	req->ki_ctx = ctx;
413 	req->ki_cancel = NULL;
414 	req->ki_retry = NULL;
415 	req->ki_dtor = NULL;
416 	req->private = NULL;
417 	INIT_LIST_HEAD(&req->ki_run_list);
418 
419 	/* Check if the completion queue has enough free space to
420 	 * accept an event from this io.
421 	 */
422 	spin_lock_irq(&ctx->ctx_lock);
423 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
424 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
425 		list_add(&req->ki_list, &ctx->active_reqs);
426 		get_ioctx(ctx);
427 		ctx->reqs_active++;
428 		okay = 1;
429 	}
430 	kunmap_atomic(ring, KM_USER0);
431 	spin_unlock_irq(&ctx->ctx_lock);
432 
433 	if (!okay) {
434 		kmem_cache_free(kiocb_cachep, req);
435 		req = NULL;
436 	}
437 
438 	return req;
439 }
440 
441 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
442 {
443 	struct kiocb *req;
444 	/* Handle a potential starvation case -- should be exceedingly rare as
445 	 * requests will be stuck on fput_head only if the aio_fput_routine is
446 	 * delayed and the requests were the last user of the struct file.
447 	 */
448 	req = __aio_get_req(ctx);
449 	if (unlikely(NULL == req)) {
450 		aio_fput_routine(NULL);
451 		req = __aio_get_req(ctx);
452 	}
453 	return req;
454 }
455 
456 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
457 {
458 	assert_spin_locked(&ctx->ctx_lock);
459 
460 	if (req->ki_dtor)
461 		req->ki_dtor(req);
462 	kmem_cache_free(kiocb_cachep, req);
463 	ctx->reqs_active--;
464 
465 	if (unlikely(!ctx->reqs_active && ctx->dead))
466 		wake_up(&ctx->wait);
467 }
468 
469 static void aio_fput_routine(void *data)
470 {
471 	spin_lock_irq(&fput_lock);
472 	while (likely(!list_empty(&fput_head))) {
473 		struct kiocb *req = list_kiocb(fput_head.next);
474 		struct kioctx *ctx = req->ki_ctx;
475 
476 		list_del(&req->ki_list);
477 		spin_unlock_irq(&fput_lock);
478 
479 		/* Complete the fput */
480 		__fput(req->ki_filp);
481 
482 		/* Link the iocb into the context's free list */
483 		spin_lock_irq(&ctx->ctx_lock);
484 		really_put_req(ctx, req);
485 		spin_unlock_irq(&ctx->ctx_lock);
486 
487 		put_ioctx(ctx);
488 		spin_lock_irq(&fput_lock);
489 	}
490 	spin_unlock_irq(&fput_lock);
491 }
492 
493 /* __aio_put_req
494  *	Returns true if this put was the last user of the request.
495  */
496 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
497 {
498 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
499 		req, atomic_read(&req->ki_filp->f_count));
500 
501 	assert_spin_locked(&ctx->ctx_lock);
502 
503 	req->ki_users --;
504 	if (unlikely(req->ki_users < 0))
505 		BUG();
506 	if (likely(req->ki_users))
507 		return 0;
508 	list_del(&req->ki_list);		/* remove from active_reqs */
509 	req->ki_cancel = NULL;
510 	req->ki_retry = NULL;
511 
512 	/* Must be done under the lock to serialise against cancellation.
513 	 * Call this aio_fput as it duplicates fput via the fput_work.
514 	 */
515 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
516 		get_ioctx(ctx);
517 		spin_lock(&fput_lock);
518 		list_add(&req->ki_list, &fput_head);
519 		spin_unlock(&fput_lock);
520 		queue_work(aio_wq, &fput_work);
521 	} else
522 		really_put_req(ctx, req);
523 	return 1;
524 }
525 
526 /* aio_put_req
527  *	Returns true if this put was the last user of the kiocb,
528  *	false if the request is still in use.
529  */
530 int fastcall aio_put_req(struct kiocb *req)
531 {
532 	struct kioctx *ctx = req->ki_ctx;
533 	int ret;
534 	spin_lock_irq(&ctx->ctx_lock);
535 	ret = __aio_put_req(ctx, req);
536 	spin_unlock_irq(&ctx->ctx_lock);
537 	if (ret)
538 		put_ioctx(ctx);
539 	return ret;
540 }
541 
542 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
543  *	FIXME: this is O(n) and is only suitable for development.
544  */
545 struct kioctx *lookup_ioctx(unsigned long ctx_id)
546 {
547 	struct kioctx *ioctx;
548 	struct mm_struct *mm;
549 
550 	mm = current->mm;
551 	read_lock(&mm->ioctx_list_lock);
552 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
553 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
554 			get_ioctx(ioctx);
555 			break;
556 		}
557 	read_unlock(&mm->ioctx_list_lock);
558 
559 	return ioctx;
560 }
561 
562 /*
563  * use_mm
564  *	Makes the calling kernel thread take on the specified
565  *	mm context.
566  *	Called by the retry thread execute retries within the
567  *	iocb issuer's mm context, so that copy_from/to_user
568  *	operations work seamlessly for aio.
569  *	(Note: this routine is intended to be called only
570  *	from a kernel thread context)
571  */
572 static void use_mm(struct mm_struct *mm)
573 {
574 	struct mm_struct *active_mm;
575 	struct task_struct *tsk = current;
576 
577 	task_lock(tsk);
578 	tsk->flags |= PF_BORROWED_MM;
579 	active_mm = tsk->active_mm;
580 	atomic_inc(&mm->mm_count);
581 	tsk->mm = mm;
582 	tsk->active_mm = mm;
583 	/*
584 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
585 	 * it won't work. Update it accordingly if you change it here
586 	 */
587 	activate_mm(active_mm, mm);
588 	task_unlock(tsk);
589 
590 	mmdrop(active_mm);
591 }
592 
593 /*
594  * unuse_mm
595  *	Reverses the effect of use_mm, i.e. releases the
596  *	specified mm context which was earlier taken on
597  *	by the calling kernel thread
598  *	(Note: this routine is intended to be called only
599  *	from a kernel thread context)
600  *
601  * Comments: Called with ctx->ctx_lock held. This nests
602  * task_lock instead ctx_lock.
603  */
604 static void unuse_mm(struct mm_struct *mm)
605 {
606 	struct task_struct *tsk = current;
607 
608 	task_lock(tsk);
609 	tsk->flags &= ~PF_BORROWED_MM;
610 	tsk->mm = NULL;
611 	/* active_mm is still 'mm' */
612 	enter_lazy_tlb(mm, tsk);
613 	task_unlock(tsk);
614 }
615 
616 /*
617  * Queue up a kiocb to be retried. Assumes that the kiocb
618  * has already been marked as kicked, and places it on
619  * the retry run list for the corresponding ioctx, if it
620  * isn't already queued. Returns 1 if it actually queued
621  * the kiocb (to tell the caller to activate the work
622  * queue to process it), or 0, if it found that it was
623  * already queued.
624  */
625 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 {
627 	struct kioctx *ctx = iocb->ki_ctx;
628 
629 	assert_spin_locked(&ctx->ctx_lock);
630 
631 	if (list_empty(&iocb->ki_run_list)) {
632 		list_add_tail(&iocb->ki_run_list,
633 			&ctx->run_list);
634 		return 1;
635 	}
636 	return 0;
637 }
638 
639 /* aio_run_iocb
640  *	This is the core aio execution routine. It is
641  *	invoked both for initial i/o submission and
642  *	subsequent retries via the aio_kick_handler.
643  *	Expects to be invoked with iocb->ki_ctx->lock
644  *	already held. The lock is released and reaquired
645  *	as needed during processing.
646  *
647  * Calls the iocb retry method (already setup for the
648  * iocb on initial submission) for operation specific
649  * handling, but takes care of most of common retry
650  * execution details for a given iocb. The retry method
651  * needs to be non-blocking as far as possible, to avoid
652  * holding up other iocbs waiting to be serviced by the
653  * retry kernel thread.
654  *
655  * The trickier parts in this code have to do with
656  * ensuring that only one retry instance is in progress
657  * for a given iocb at any time. Providing that guarantee
658  * simplifies the coding of individual aio operations as
659  * it avoids various potential races.
660  */
661 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 {
663 	struct kioctx	*ctx = iocb->ki_ctx;
664 	ssize_t (*retry)(struct kiocb *);
665 	ssize_t ret;
666 
667 	if (iocb->ki_retried++ > 1024*1024) {
668 		printk("Maximal retry count.  Bytes done %Zd\n",
669 			iocb->ki_nbytes - iocb->ki_left);
670 		return -EAGAIN;
671 	}
672 
673 	if (!(iocb->ki_retried & 0xff)) {
674 		pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
675 			iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
676 	}
677 
678 	if (!(retry = iocb->ki_retry)) {
679 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
680 		return 0;
681 	}
682 
683 	/*
684 	 * We don't want the next retry iteration for this
685 	 * operation to start until this one has returned and
686 	 * updated the iocb state. However, wait_queue functions
687 	 * can trigger a kick_iocb from interrupt context in the
688 	 * meantime, indicating that data is available for the next
689 	 * iteration. We want to remember that and enable the
690 	 * next retry iteration _after_ we are through with
691 	 * this one.
692 	 *
693 	 * So, in order to be able to register a "kick", but
694 	 * prevent it from being queued now, we clear the kick
695 	 * flag, but make the kick code *think* that the iocb is
696 	 * still on the run list until we are actually done.
697 	 * When we are done with this iteration, we check if
698 	 * the iocb was kicked in the meantime and if so, queue
699 	 * it up afresh.
700 	 */
701 
702 	kiocbClearKicked(iocb);
703 
704 	/*
705 	 * This is so that aio_complete knows it doesn't need to
706 	 * pull the iocb off the run list (We can't just call
707 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
708 	 * queue this on the run list yet)
709 	 */
710 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
711 	spin_unlock_irq(&ctx->ctx_lock);
712 
713 	/* Quit retrying if the i/o has been cancelled */
714 	if (kiocbIsCancelled(iocb)) {
715 		ret = -EINTR;
716 		aio_complete(iocb, ret, 0);
717 		/* must not access the iocb after this */
718 		goto out;
719 	}
720 
721 	/*
722 	 * Now we are all set to call the retry method in async
723 	 * context. By setting this thread's io_wait context
724 	 * to point to the wait queue entry inside the currently
725 	 * running iocb for the duration of the retry, we ensure
726 	 * that async notification wakeups are queued by the
727 	 * operation instead of blocking waits, and when notified,
728 	 * cause the iocb to be kicked for continuation (through
729 	 * the aio_wake_function callback).
730 	 */
731 	BUG_ON(current->io_wait != NULL);
732 	current->io_wait = &iocb->ki_wait;
733 	ret = retry(iocb);
734 	current->io_wait = NULL;
735 
736 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
737 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
738 		aio_complete(iocb, ret, 0);
739 	}
740 out:
741 	spin_lock_irq(&ctx->ctx_lock);
742 
743 	if (-EIOCBRETRY == ret) {
744 		/*
745 		 * OK, now that we are done with this iteration
746 		 * and know that there is more left to go,
747 		 * this is where we let go so that a subsequent
748 		 * "kick" can start the next iteration
749 		 */
750 
751 		/* will make __queue_kicked_iocb succeed from here on */
752 		INIT_LIST_HEAD(&iocb->ki_run_list);
753 		/* we must queue the next iteration ourselves, if it
754 		 * has already been kicked */
755 		if (kiocbIsKicked(iocb)) {
756 			__queue_kicked_iocb(iocb);
757 
758 			/*
759 			 * __queue_kicked_iocb will always return 1 here, because
760 			 * iocb->ki_run_list is empty at this point so it should
761 			 * be safe to unconditionally queue the context into the
762 			 * work queue.
763 			 */
764 			aio_queue_work(ctx);
765 		}
766 	}
767 	return ret;
768 }
769 
770 /*
771  * __aio_run_iocbs:
772  * 	Process all pending retries queued on the ioctx
773  * 	run list.
774  * Assumes it is operating within the aio issuer's mm
775  * context.
776  */
777 static int __aio_run_iocbs(struct kioctx *ctx)
778 {
779 	struct kiocb *iocb;
780 	LIST_HEAD(run_list);
781 
782 	assert_spin_locked(&ctx->ctx_lock);
783 
784 	list_splice_init(&ctx->run_list, &run_list);
785 	while (!list_empty(&run_list)) {
786 		iocb = list_entry(run_list.next, struct kiocb,
787 			ki_run_list);
788 		list_del(&iocb->ki_run_list);
789 		/*
790 		 * Hold an extra reference while retrying i/o.
791 		 */
792 		iocb->ki_users++;       /* grab extra reference */
793 		aio_run_iocb(iocb);
794 		if (__aio_put_req(ctx, iocb))  /* drop extra ref */
795 			put_ioctx(ctx);
796  	}
797 	if (!list_empty(&ctx->run_list))
798 		return 1;
799 	return 0;
800 }
801 
802 static void aio_queue_work(struct kioctx * ctx)
803 {
804 	unsigned long timeout;
805 	/*
806 	 * if someone is waiting, get the work started right
807 	 * away, otherwise, use a longer delay
808 	 */
809 	smp_mb();
810 	if (waitqueue_active(&ctx->wait))
811 		timeout = 1;
812 	else
813 		timeout = HZ/10;
814 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
815 }
816 
817 
818 /*
819  * aio_run_iocbs:
820  * 	Process all pending retries queued on the ioctx
821  * 	run list.
822  * Assumes it is operating within the aio issuer's mm
823  * context.
824  */
825 static inline void aio_run_iocbs(struct kioctx *ctx)
826 {
827 	int requeue;
828 
829 	spin_lock_irq(&ctx->ctx_lock);
830 
831 	requeue = __aio_run_iocbs(ctx);
832 	spin_unlock_irq(&ctx->ctx_lock);
833 	if (requeue)
834 		aio_queue_work(ctx);
835 }
836 
837 /*
838  * just like aio_run_iocbs, but keeps running them until
839  * the list stays empty
840  */
841 static inline void aio_run_all_iocbs(struct kioctx *ctx)
842 {
843 	spin_lock_irq(&ctx->ctx_lock);
844 	while (__aio_run_iocbs(ctx))
845 		;
846 	spin_unlock_irq(&ctx->ctx_lock);
847 }
848 
849 /*
850  * aio_kick_handler:
851  * 	Work queue handler triggered to process pending
852  * 	retries on an ioctx. Takes on the aio issuer's
853  *	mm context before running the iocbs, so that
854  *	copy_xxx_user operates on the issuer's address
855  *      space.
856  * Run on aiod's context.
857  */
858 static void aio_kick_handler(void *data)
859 {
860 	struct kioctx *ctx = data;
861 	mm_segment_t oldfs = get_fs();
862 	int requeue;
863 
864 	set_fs(USER_DS);
865 	use_mm(ctx->mm);
866 	spin_lock_irq(&ctx->ctx_lock);
867 	requeue =__aio_run_iocbs(ctx);
868  	unuse_mm(ctx->mm);
869 	spin_unlock_irq(&ctx->ctx_lock);
870 	set_fs(oldfs);
871 	/*
872 	 * we're in a worker thread already, don't use queue_delayed_work,
873 	 */
874 	if (requeue)
875 		queue_work(aio_wq, &ctx->wq);
876 }
877 
878 
879 /*
880  * Called by kick_iocb to queue the kiocb for retry
881  * and if required activate the aio work queue to process
882  * it
883  */
884 static void try_queue_kicked_iocb(struct kiocb *iocb)
885 {
886  	struct kioctx	*ctx = iocb->ki_ctx;
887 	unsigned long flags;
888 	int run = 0;
889 
890 	/* We're supposed to be the only path putting the iocb back on the run
891 	 * list.  If we find that the iocb is *back* on a wait queue already
892 	 * than retry has happened before we could queue the iocb.  This also
893 	 * means that the retry could have completed and freed our iocb, no
894 	 * good. */
895 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
896 
897 	spin_lock_irqsave(&ctx->ctx_lock, flags);
898 	/* set this inside the lock so that we can't race with aio_run_iocb()
899 	 * testing it and putting the iocb on the run list under the lock */
900 	if (!kiocbTryKick(iocb))
901 		run = __queue_kicked_iocb(iocb);
902 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
903 	if (run)
904 		aio_queue_work(ctx);
905 }
906 
907 /*
908  * kick_iocb:
909  *      Called typically from a wait queue callback context
910  *      (aio_wake_function) to trigger a retry of the iocb.
911  *      The retry is usually executed by aio workqueue
912  *      threads (See aio_kick_handler).
913  */
914 void fastcall kick_iocb(struct kiocb *iocb)
915 {
916 	/* sync iocbs are easy: they can only ever be executing from a
917 	 * single context. */
918 	if (is_sync_kiocb(iocb)) {
919 		kiocbSetKicked(iocb);
920 	        wake_up_process(iocb->ki_obj.tsk);
921 		return;
922 	}
923 
924 	try_queue_kicked_iocb(iocb);
925 }
926 EXPORT_SYMBOL(kick_iocb);
927 
928 /* aio_complete
929  *	Called when the io request on the given iocb is complete.
930  *	Returns true if this is the last user of the request.  The
931  *	only other user of the request can be the cancellation code.
932  */
933 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
934 {
935 	struct kioctx	*ctx = iocb->ki_ctx;
936 	struct aio_ring_info	*info;
937 	struct aio_ring	*ring;
938 	struct io_event	*event;
939 	unsigned long	flags;
940 	unsigned long	tail;
941 	int		ret;
942 
943 	/*
944 	 * Special case handling for sync iocbs:
945 	 *  - events go directly into the iocb for fast handling
946 	 *  - the sync task with the iocb in its stack holds the single iocb
947 	 *    ref, no other paths have a way to get another ref
948 	 *  - the sync task helpfully left a reference to itself in the iocb
949 	 */
950 	if (is_sync_kiocb(iocb)) {
951 		BUG_ON(iocb->ki_users != 1);
952 		iocb->ki_user_data = res;
953 		iocb->ki_users = 0;
954 		wake_up_process(iocb->ki_obj.tsk);
955 		return 1;
956 	}
957 
958 	info = &ctx->ring_info;
959 
960 	/* add a completion event to the ring buffer.
961 	 * must be done holding ctx->ctx_lock to prevent
962 	 * other code from messing with the tail
963 	 * pointer since we might be called from irq
964 	 * context.
965 	 */
966 	spin_lock_irqsave(&ctx->ctx_lock, flags);
967 
968 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
969 		list_del_init(&iocb->ki_run_list);
970 
971 	/*
972 	 * cancelled requests don't get events, userland was given one
973 	 * when the event got cancelled.
974 	 */
975 	if (kiocbIsCancelled(iocb))
976 		goto put_rq;
977 
978 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
979 
980 	tail = info->tail;
981 	event = aio_ring_event(info, tail, KM_IRQ0);
982 	if (++tail >= info->nr)
983 		tail = 0;
984 
985 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
986 	event->data = iocb->ki_user_data;
987 	event->res = res;
988 	event->res2 = res2;
989 
990 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
991 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
992 		res, res2);
993 
994 	/* after flagging the request as done, we
995 	 * must never even look at it again
996 	 */
997 	smp_wmb();	/* make event visible before updating tail */
998 
999 	info->tail = tail;
1000 	ring->tail = tail;
1001 
1002 	put_aio_ring_event(event, KM_IRQ0);
1003 	kunmap_atomic(ring, KM_IRQ1);
1004 
1005 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1006 
1007 	pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
1008 		iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
1009 put_rq:
1010 	/* everything turned out well, dispose of the aiocb. */
1011 	ret = __aio_put_req(ctx, iocb);
1012 
1013 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1014 
1015 	if (waitqueue_active(&ctx->wait))
1016 		wake_up(&ctx->wait);
1017 
1018 	if (ret)
1019 		put_ioctx(ctx);
1020 
1021 	return ret;
1022 }
1023 
1024 /* aio_read_evt
1025  *	Pull an event off of the ioctx's event ring.  Returns the number of
1026  *	events fetched (0 or 1 ;-)
1027  *	FIXME: make this use cmpxchg.
1028  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1029  */
1030 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1031 {
1032 	struct aio_ring_info *info = &ioctx->ring_info;
1033 	struct aio_ring *ring;
1034 	unsigned long head;
1035 	int ret = 0;
1036 
1037 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1038 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1039 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1040 		 (unsigned long)ring->nr);
1041 
1042 	if (ring->head == ring->tail)
1043 		goto out;
1044 
1045 	spin_lock(&info->ring_lock);
1046 
1047 	head = ring->head % info->nr;
1048 	if (head != ring->tail) {
1049 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1050 		*ent = *evp;
1051 		head = (head + 1) % info->nr;
1052 		smp_mb(); /* finish reading the event before updatng the head */
1053 		ring->head = head;
1054 		ret = 1;
1055 		put_aio_ring_event(evp, KM_USER1);
1056 	}
1057 	spin_unlock(&info->ring_lock);
1058 
1059 out:
1060 	kunmap_atomic(ring, KM_USER0);
1061 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1062 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1063 	return ret;
1064 }
1065 
1066 struct aio_timeout {
1067 	struct timer_list	timer;
1068 	int			timed_out;
1069 	struct task_struct	*p;
1070 };
1071 
1072 static void timeout_func(unsigned long data)
1073 {
1074 	struct aio_timeout *to = (struct aio_timeout *)data;
1075 
1076 	to->timed_out = 1;
1077 	wake_up_process(to->p);
1078 }
1079 
1080 static inline void init_timeout(struct aio_timeout *to)
1081 {
1082 	init_timer(&to->timer);
1083 	to->timer.data = (unsigned long)to;
1084 	to->timer.function = timeout_func;
1085 	to->timed_out = 0;
1086 	to->p = current;
1087 }
1088 
1089 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1090 			       const struct timespec *ts)
1091 {
1092 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1093 	if (time_after(to->timer.expires, jiffies))
1094 		add_timer(&to->timer);
1095 	else
1096 		to->timed_out = 1;
1097 }
1098 
1099 static inline void clear_timeout(struct aio_timeout *to)
1100 {
1101 	del_singleshot_timer_sync(&to->timer);
1102 }
1103 
1104 static int read_events(struct kioctx *ctx,
1105 			long min_nr, long nr,
1106 			struct io_event __user *event,
1107 			struct timespec __user *timeout)
1108 {
1109 	long			start_jiffies = jiffies;
1110 	struct task_struct	*tsk = current;
1111 	DECLARE_WAITQUEUE(wait, tsk);
1112 	int			ret;
1113 	int			i = 0;
1114 	struct io_event		ent;
1115 	struct aio_timeout	to;
1116 	int			retry = 0;
1117 
1118 	/* needed to zero any padding within an entry (there shouldn't be
1119 	 * any, but C is fun!
1120 	 */
1121 	memset(&ent, 0, sizeof(ent));
1122 retry:
1123 	ret = 0;
1124 	while (likely(i < nr)) {
1125 		ret = aio_read_evt(ctx, &ent);
1126 		if (unlikely(ret <= 0))
1127 			break;
1128 
1129 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1130 			ent.data, ent.obj, ent.res, ent.res2);
1131 
1132 		/* Could we split the check in two? */
1133 		ret = -EFAULT;
1134 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1135 			dprintk("aio: lost an event due to EFAULT.\n");
1136 			break;
1137 		}
1138 		ret = 0;
1139 
1140 		/* Good, event copied to userland, update counts. */
1141 		event ++;
1142 		i ++;
1143 	}
1144 
1145 	if (min_nr <= i)
1146 		return i;
1147 	if (ret)
1148 		return ret;
1149 
1150 	/* End fast path */
1151 
1152 	/* racey check, but it gets redone */
1153 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1154 		retry = 1;
1155 		aio_run_all_iocbs(ctx);
1156 		goto retry;
1157 	}
1158 
1159 	init_timeout(&to);
1160 	if (timeout) {
1161 		struct timespec	ts;
1162 		ret = -EFAULT;
1163 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1164 			goto out;
1165 
1166 		set_timeout(start_jiffies, &to, &ts);
1167 	}
1168 
1169 	while (likely(i < nr)) {
1170 		add_wait_queue_exclusive(&ctx->wait, &wait);
1171 		do {
1172 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1173 			ret = aio_read_evt(ctx, &ent);
1174 			if (ret)
1175 				break;
1176 			if (min_nr <= i)
1177 				break;
1178 			ret = 0;
1179 			if (to.timed_out)	/* Only check after read evt */
1180 				break;
1181 			schedule();
1182 			if (signal_pending(tsk)) {
1183 				ret = -EINTR;
1184 				break;
1185 			}
1186 			/*ret = aio_read_evt(ctx, &ent);*/
1187 		} while (1) ;
1188 
1189 		set_task_state(tsk, TASK_RUNNING);
1190 		remove_wait_queue(&ctx->wait, &wait);
1191 
1192 		if (unlikely(ret <= 0))
1193 			break;
1194 
1195 		ret = -EFAULT;
1196 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1197 			dprintk("aio: lost an event due to EFAULT.\n");
1198 			break;
1199 		}
1200 
1201 		/* Good, event copied to userland, update counts. */
1202 		event ++;
1203 		i ++;
1204 	}
1205 
1206 	if (timeout)
1207 		clear_timeout(&to);
1208 out:
1209 	return i ? i : ret;
1210 }
1211 
1212 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1213  * against races with itself via ->dead.
1214  */
1215 static void io_destroy(struct kioctx *ioctx)
1216 {
1217 	struct mm_struct *mm = current->mm;
1218 	struct kioctx **tmp;
1219 	int was_dead;
1220 
1221 	/* delete the entry from the list is someone else hasn't already */
1222 	write_lock(&mm->ioctx_list_lock);
1223 	was_dead = ioctx->dead;
1224 	ioctx->dead = 1;
1225 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1226 	     tmp = &(*tmp)->next)
1227 		;
1228 	if (*tmp)
1229 		*tmp = ioctx->next;
1230 	write_unlock(&mm->ioctx_list_lock);
1231 
1232 	dprintk("aio_release(%p)\n", ioctx);
1233 	if (likely(!was_dead))
1234 		put_ioctx(ioctx);	/* twice for the list */
1235 
1236 	aio_cancel_all(ioctx);
1237 	wait_for_all_aios(ioctx);
1238 	put_ioctx(ioctx);	/* once for the lookup */
1239 }
1240 
1241 /* sys_io_setup:
1242  *	Create an aio_context capable of receiving at least nr_events.
1243  *	ctxp must not point to an aio_context that already exists, and
1244  *	must be initialized to 0 prior to the call.  On successful
1245  *	creation of the aio_context, *ctxp is filled in with the resulting
1246  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1247  *	if the specified nr_events exceeds internal limits.  May fail
1248  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1249  *	of available events.  May fail with -ENOMEM if insufficient kernel
1250  *	resources are available.  May fail with -EFAULT if an invalid
1251  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1252  *	implemented.
1253  */
1254 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1255 {
1256 	struct kioctx *ioctx = NULL;
1257 	unsigned long ctx;
1258 	long ret;
1259 
1260 	ret = get_user(ctx, ctxp);
1261 	if (unlikely(ret))
1262 		goto out;
1263 
1264 	ret = -EINVAL;
1265 	if (unlikely(ctx || nr_events == 0)) {
1266 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1267 		         ctx, nr_events);
1268 		goto out;
1269 	}
1270 
1271 	ioctx = ioctx_alloc(nr_events);
1272 	ret = PTR_ERR(ioctx);
1273 	if (!IS_ERR(ioctx)) {
1274 		ret = put_user(ioctx->user_id, ctxp);
1275 		if (!ret)
1276 			return 0;
1277 
1278 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1279 		io_destroy(ioctx);
1280 	}
1281 
1282 out:
1283 	return ret;
1284 }
1285 
1286 /* sys_io_destroy:
1287  *	Destroy the aio_context specified.  May cancel any outstanding
1288  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1289  *	implemented.  May fail with -EFAULT if the context pointed to
1290  *	is invalid.
1291  */
1292 asmlinkage long sys_io_destroy(aio_context_t ctx)
1293 {
1294 	struct kioctx *ioctx = lookup_ioctx(ctx);
1295 	if (likely(NULL != ioctx)) {
1296 		io_destroy(ioctx);
1297 		return 0;
1298 	}
1299 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1300 	return -EINVAL;
1301 }
1302 
1303 /*
1304  * aio_p{read,write} are the default  ki_retry methods for
1305  * IO_CMD_P{READ,WRITE}.  They maintains kiocb retry state around potentially
1306  * multiple calls to f_op->aio_read().  They loop around partial progress
1307  * instead of returning -EIOCBRETRY because they don't have the means to call
1308  * kick_iocb().
1309  */
1310 static ssize_t aio_pread(struct kiocb *iocb)
1311 {
1312 	struct file *file = iocb->ki_filp;
1313 	struct address_space *mapping = file->f_mapping;
1314 	struct inode *inode = mapping->host;
1315 	ssize_t ret = 0;
1316 
1317 	do {
1318 		ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1319 			iocb->ki_left, iocb->ki_pos);
1320 		/*
1321 		 * Can't just depend on iocb->ki_left to determine
1322 		 * whether we are done. This may have been a short read.
1323 		 */
1324 		if (ret > 0) {
1325 			iocb->ki_buf += ret;
1326 			iocb->ki_left -= ret;
1327 		}
1328 
1329 		/*
1330 		 * For pipes and sockets we return once we have some data; for
1331 		 * regular files we retry till we complete the entire read or
1332 		 * find that we can't read any more data (e.g short reads).
1333 		 */
1334 	} while (ret > 0 && iocb->ki_left > 0 &&
1335 		 !S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode));
1336 
1337 	/* This means we must have transferred all that we could */
1338 	/* No need to retry anymore */
1339 	if ((ret == 0) || (iocb->ki_left == 0))
1340 		ret = iocb->ki_nbytes - iocb->ki_left;
1341 
1342 	return ret;
1343 }
1344 
1345 /* see aio_pread() */
1346 static ssize_t aio_pwrite(struct kiocb *iocb)
1347 {
1348 	struct file *file = iocb->ki_filp;
1349 	ssize_t ret = 0;
1350 
1351 	do {
1352 		ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1353 			iocb->ki_left, iocb->ki_pos);
1354 		if (ret > 0) {
1355 			iocb->ki_buf += ret;
1356 			iocb->ki_left -= ret;
1357 		}
1358 	} while (ret > 0 && iocb->ki_left > 0);
1359 
1360 	if ((ret == 0) || (iocb->ki_left == 0))
1361 		ret = iocb->ki_nbytes - iocb->ki_left;
1362 
1363 	return ret;
1364 }
1365 
1366 static ssize_t aio_fdsync(struct kiocb *iocb)
1367 {
1368 	struct file *file = iocb->ki_filp;
1369 	ssize_t ret = -EINVAL;
1370 
1371 	if (file->f_op->aio_fsync)
1372 		ret = file->f_op->aio_fsync(iocb, 1);
1373 	return ret;
1374 }
1375 
1376 static ssize_t aio_fsync(struct kiocb *iocb)
1377 {
1378 	struct file *file = iocb->ki_filp;
1379 	ssize_t ret = -EINVAL;
1380 
1381 	if (file->f_op->aio_fsync)
1382 		ret = file->f_op->aio_fsync(iocb, 0);
1383 	return ret;
1384 }
1385 
1386 /*
1387  * aio_setup_iocb:
1388  *	Performs the initial checks and aio retry method
1389  *	setup for the kiocb at the time of io submission.
1390  */
1391 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1392 {
1393 	struct file *file = kiocb->ki_filp;
1394 	ssize_t ret = 0;
1395 
1396 	switch (kiocb->ki_opcode) {
1397 	case IOCB_CMD_PREAD:
1398 		ret = -EBADF;
1399 		if (unlikely(!(file->f_mode & FMODE_READ)))
1400 			break;
1401 		ret = -EFAULT;
1402 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1403 			kiocb->ki_left)))
1404 			break;
1405 		ret = security_file_permission(file, MAY_READ);
1406 		if (unlikely(ret))
1407 			break;
1408 		ret = -EINVAL;
1409 		if (file->f_op->aio_read)
1410 			kiocb->ki_retry = aio_pread;
1411 		break;
1412 	case IOCB_CMD_PWRITE:
1413 		ret = -EBADF;
1414 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1415 			break;
1416 		ret = -EFAULT;
1417 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1418 			kiocb->ki_left)))
1419 			break;
1420 		ret = security_file_permission(file, MAY_WRITE);
1421 		if (unlikely(ret))
1422 			break;
1423 		ret = -EINVAL;
1424 		if (file->f_op->aio_write)
1425 			kiocb->ki_retry = aio_pwrite;
1426 		break;
1427 	case IOCB_CMD_FDSYNC:
1428 		ret = -EINVAL;
1429 		if (file->f_op->aio_fsync)
1430 			kiocb->ki_retry = aio_fdsync;
1431 		break;
1432 	case IOCB_CMD_FSYNC:
1433 		ret = -EINVAL;
1434 		if (file->f_op->aio_fsync)
1435 			kiocb->ki_retry = aio_fsync;
1436 		break;
1437 	default:
1438 		dprintk("EINVAL: io_submit: no operation provided\n");
1439 		ret = -EINVAL;
1440 	}
1441 
1442 	if (!kiocb->ki_retry)
1443 		return ret;
1444 
1445 	return 0;
1446 }
1447 
1448 /*
1449  * aio_wake_function:
1450  * 	wait queue callback function for aio notification,
1451  * 	Simply triggers a retry of the operation via kick_iocb.
1452  *
1453  * 	This callback is specified in the wait queue entry in
1454  *	a kiocb	(current->io_wait points to this wait queue
1455  *	entry when an aio operation executes; it is used
1456  * 	instead of a synchronous wait when an i/o blocking
1457  *	condition is encountered during aio).
1458  *
1459  * Note:
1460  * This routine is executed with the wait queue lock held.
1461  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1462  * the ioctx lock inside the wait queue lock. This is safe
1463  * because this callback isn't used for wait queues which
1464  * are nested inside ioctx lock (i.e. ctx->wait)
1465  */
1466 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1467 			     int sync, void *key)
1468 {
1469 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1470 
1471 	list_del_init(&wait->task_list);
1472 	kick_iocb(iocb);
1473 	return 1;
1474 }
1475 
1476 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1477 			 struct iocb *iocb)
1478 {
1479 	struct kiocb *req;
1480 	struct file *file;
1481 	ssize_t ret;
1482 
1483 	/* enforce forwards compatibility on users */
1484 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1485 		     iocb->aio_reserved3)) {
1486 		pr_debug("EINVAL: io_submit: reserve field set\n");
1487 		return -EINVAL;
1488 	}
1489 
1490 	/* prevent overflows */
1491 	if (unlikely(
1492 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1493 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1494 	    ((ssize_t)iocb->aio_nbytes < 0)
1495 	   )) {
1496 		pr_debug("EINVAL: io_submit: overflow check\n");
1497 		return -EINVAL;
1498 	}
1499 
1500 	file = fget(iocb->aio_fildes);
1501 	if (unlikely(!file))
1502 		return -EBADF;
1503 
1504 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1505 	if (unlikely(!req)) {
1506 		fput(file);
1507 		return -EAGAIN;
1508 	}
1509 
1510 	req->ki_filp = file;
1511 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1512 	if (unlikely(ret)) {
1513 		dprintk("EFAULT: aio_key\n");
1514 		goto out_put_req;
1515 	}
1516 
1517 	req->ki_obj.user = user_iocb;
1518 	req->ki_user_data = iocb->aio_data;
1519 	req->ki_pos = iocb->aio_offset;
1520 
1521 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1522 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1523 	req->ki_opcode = iocb->aio_lio_opcode;
1524 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1525 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1526 	req->ki_retried = 0;
1527 
1528 	ret = aio_setup_iocb(req);
1529 
1530 	if (ret)
1531 		goto out_put_req;
1532 
1533 	spin_lock_irq(&ctx->ctx_lock);
1534 	aio_run_iocb(req);
1535 	if (!list_empty(&ctx->run_list)) {
1536 		/* drain the run list */
1537 		while (__aio_run_iocbs(ctx))
1538 			;
1539 	}
1540 	spin_unlock_irq(&ctx->ctx_lock);
1541 	aio_put_req(req);	/* drop extra ref to req */
1542 	return 0;
1543 
1544 out_put_req:
1545 	aio_put_req(req);	/* drop extra ref to req */
1546 	aio_put_req(req);	/* drop i/o ref to req */
1547 	return ret;
1548 }
1549 
1550 /* sys_io_submit:
1551  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1552  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1553  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1554  *	*iocbpp[0] is not properly initialized, if the operation specified
1555  *	is invalid for the file descriptor in the iocb.  May fail with
1556  *	-EFAULT if any of the data structures point to invalid data.  May
1557  *	fail with -EBADF if the file descriptor specified in the first
1558  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1559  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1560  *	fail with -ENOSYS if not implemented.
1561  */
1562 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1563 			      struct iocb __user * __user *iocbpp)
1564 {
1565 	struct kioctx *ctx;
1566 	long ret = 0;
1567 	int i;
1568 
1569 	if (unlikely(nr < 0))
1570 		return -EINVAL;
1571 
1572 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1573 		return -EFAULT;
1574 
1575 	ctx = lookup_ioctx(ctx_id);
1576 	if (unlikely(!ctx)) {
1577 		pr_debug("EINVAL: io_submit: invalid context id\n");
1578 		return -EINVAL;
1579 	}
1580 
1581 	/*
1582 	 * AKPM: should this return a partial result if some of the IOs were
1583 	 * successfully submitted?
1584 	 */
1585 	for (i=0; i<nr; i++) {
1586 		struct iocb __user *user_iocb;
1587 		struct iocb tmp;
1588 
1589 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1590 			ret = -EFAULT;
1591 			break;
1592 		}
1593 
1594 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1595 			ret = -EFAULT;
1596 			break;
1597 		}
1598 
1599 		ret = io_submit_one(ctx, user_iocb, &tmp);
1600 		if (ret)
1601 			break;
1602 	}
1603 
1604 	put_ioctx(ctx);
1605 	return i ? i : ret;
1606 }
1607 
1608 /* lookup_kiocb
1609  *	Finds a given iocb for cancellation.
1610  */
1611 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1612 				  u32 key)
1613 {
1614 	struct list_head *pos;
1615 
1616 	assert_spin_locked(&ctx->ctx_lock);
1617 
1618 	/* TODO: use a hash or array, this sucks. */
1619 	list_for_each(pos, &ctx->active_reqs) {
1620 		struct kiocb *kiocb = list_kiocb(pos);
1621 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1622 			return kiocb;
1623 	}
1624 	return NULL;
1625 }
1626 
1627 /* sys_io_cancel:
1628  *	Attempts to cancel an iocb previously passed to io_submit.  If
1629  *	the operation is successfully cancelled, the resulting event is
1630  *	copied into the memory pointed to by result without being placed
1631  *	into the completion queue and 0 is returned.  May fail with
1632  *	-EFAULT if any of the data structures pointed to are invalid.
1633  *	May fail with -EINVAL if aio_context specified by ctx_id is
1634  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1635  *	cancelled.  Will fail with -ENOSYS if not implemented.
1636  */
1637 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1638 			      struct io_event __user *result)
1639 {
1640 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1641 	struct kioctx *ctx;
1642 	struct kiocb *kiocb;
1643 	u32 key;
1644 	int ret;
1645 
1646 	ret = get_user(key, &iocb->aio_key);
1647 	if (unlikely(ret))
1648 		return -EFAULT;
1649 
1650 	ctx = lookup_ioctx(ctx_id);
1651 	if (unlikely(!ctx))
1652 		return -EINVAL;
1653 
1654 	spin_lock_irq(&ctx->ctx_lock);
1655 	ret = -EAGAIN;
1656 	kiocb = lookup_kiocb(ctx, iocb, key);
1657 	if (kiocb && kiocb->ki_cancel) {
1658 		cancel = kiocb->ki_cancel;
1659 		kiocb->ki_users ++;
1660 		kiocbSetCancelled(kiocb);
1661 	} else
1662 		cancel = NULL;
1663 	spin_unlock_irq(&ctx->ctx_lock);
1664 
1665 	if (NULL != cancel) {
1666 		struct io_event tmp;
1667 		pr_debug("calling cancel\n");
1668 		memset(&tmp, 0, sizeof(tmp));
1669 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1670 		tmp.data = kiocb->ki_user_data;
1671 		ret = cancel(kiocb, &tmp);
1672 		if (!ret) {
1673 			/* Cancellation succeeded -- copy the result
1674 			 * into the user's buffer.
1675 			 */
1676 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1677 				ret = -EFAULT;
1678 		}
1679 	} else
1680 		ret = -EINVAL;
1681 
1682 	put_ioctx(ctx);
1683 
1684 	return ret;
1685 }
1686 
1687 /* io_getevents:
1688  *	Attempts to read at least min_nr events and up to nr events from
1689  *	the completion queue for the aio_context specified by ctx_id.  May
1690  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1691  *	if nr is out of range, if when is out of range.  May fail with
1692  *	-EFAULT if any of the memory specified to is invalid.  May return
1693  *	0 or < min_nr if no events are available and the timeout specified
1694  *	by when	has elapsed, where when == NULL specifies an infinite
1695  *	timeout.  Note that the timeout pointed to by when is relative and
1696  *	will be updated if not NULL and the operation blocks.  Will fail
1697  *	with -ENOSYS if not implemented.
1698  */
1699 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1700 				 long min_nr,
1701 				 long nr,
1702 				 struct io_event __user *events,
1703 				 struct timespec __user *timeout)
1704 {
1705 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1706 	long ret = -EINVAL;
1707 
1708 	if (likely(ioctx)) {
1709 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1710 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1711 		put_ioctx(ioctx);
1712 	}
1713 
1714 	return ret;
1715 }
1716 
1717 __initcall(aio_setup);
1718 
1719 EXPORT_SYMBOL(aio_complete);
1720 EXPORT_SYMBOL(aio_put_req);
1721 EXPORT_SYMBOL(wait_on_sync_kiocb);
1722