xref: /linux/fs/aio.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 
38 #if DEBUG > 1
39 #define dprintk		printk
40 #else
41 #define dprintk(x...)	do { ; } while (0)
42 #endif
43 
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock);
46 unsigned long aio_nr;		/* current system wide number of aio requests */
47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
49 
50 static struct kmem_cache	*kiocb_cachep;
51 static struct kmem_cache	*kioctx_cachep;
52 
53 static struct workqueue_struct *aio_wq;
54 
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(struct work_struct *);
57 static DECLARE_WORK(fput_work, aio_fput_routine);
58 
59 static DEFINE_SPINLOCK(fput_lock);
60 static LIST_HEAD(fput_head);
61 
62 static void aio_kick_handler(struct work_struct *);
63 static void aio_queue_work(struct kioctx *);
64 
65 /* aio_setup
66  *	Creates the slab caches used by the aio routines, panic on
67  *	failure as this is done early during the boot sequence.
68  */
69 static int __init aio_setup(void)
70 {
71 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
72 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 
74 	aio_wq = create_workqueue("aio");
75 
76 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
77 
78 	return 0;
79 }
80 
81 static void aio_free_ring(struct kioctx *ctx)
82 {
83 	struct aio_ring_info *info = &ctx->ring_info;
84 	long i;
85 
86 	for (i=0; i<info->nr_pages; i++)
87 		put_page(info->ring_pages[i]);
88 
89 	if (info->mmap_size) {
90 		down_write(&ctx->mm->mmap_sem);
91 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
92 		up_write(&ctx->mm->mmap_sem);
93 	}
94 
95 	if (info->ring_pages && info->ring_pages != info->internal_pages)
96 		kfree(info->ring_pages);
97 	info->ring_pages = NULL;
98 	info->nr = 0;
99 }
100 
101 static int aio_setup_ring(struct kioctx *ctx)
102 {
103 	struct aio_ring *ring;
104 	struct aio_ring_info *info = &ctx->ring_info;
105 	unsigned nr_events = ctx->max_reqs;
106 	unsigned long size;
107 	int nr_pages;
108 
109 	/* Compensate for the ring buffer's head/tail overlap entry */
110 	nr_events += 2;	/* 1 is required, 2 for good luck */
111 
112 	size = sizeof(struct aio_ring);
113 	size += sizeof(struct io_event) * nr_events;
114 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
115 
116 	if (nr_pages < 0)
117 		return -EINVAL;
118 
119 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
120 
121 	info->nr = 0;
122 	info->ring_pages = info->internal_pages;
123 	if (nr_pages > AIO_RING_PAGES) {
124 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
125 		if (!info->ring_pages)
126 			return -ENOMEM;
127 	}
128 
129 	info->mmap_size = nr_pages * PAGE_SIZE;
130 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
131 	down_write(&ctx->mm->mmap_sem);
132 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
133 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
134 				  0);
135 	if (IS_ERR((void *)info->mmap_base)) {
136 		up_write(&ctx->mm->mmap_sem);
137 		info->mmap_size = 0;
138 		aio_free_ring(ctx);
139 		return -EAGAIN;
140 	}
141 
142 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
143 	info->nr_pages = get_user_pages(current, ctx->mm,
144 					info->mmap_base, nr_pages,
145 					1, 0, info->ring_pages, NULL);
146 	up_write(&ctx->mm->mmap_sem);
147 
148 	if (unlikely(info->nr_pages != nr_pages)) {
149 		aio_free_ring(ctx);
150 		return -EAGAIN;
151 	}
152 
153 	ctx->user_id = info->mmap_base;
154 
155 	info->nr = nr_events;		/* trusted copy */
156 
157 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
158 	ring->nr = nr_events;	/* user copy */
159 	ring->id = ctx->user_id;
160 	ring->head = ring->tail = 0;
161 	ring->magic = AIO_RING_MAGIC;
162 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
163 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
164 	ring->header_length = sizeof(struct aio_ring);
165 	kunmap_atomic(ring, KM_USER0);
166 
167 	return 0;
168 }
169 
170 
171 /* aio_ring_event: returns a pointer to the event at the given index from
172  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
173  */
174 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
175 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
176 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
177 
178 #define aio_ring_event(info, nr, km) ({					\
179 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
180 	struct io_event *__event;					\
181 	__event = kmap_atomic(						\
182 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
183 	__event += pos % AIO_EVENTS_PER_PAGE;				\
184 	__event;							\
185 })
186 
187 #define put_aio_ring_event(event, km) do {	\
188 	struct io_event *__event = (event);	\
189 	(void)__event;				\
190 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
191 } while(0)
192 
193 /* ioctx_alloc
194  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
195  */
196 static struct kioctx *ioctx_alloc(unsigned nr_events)
197 {
198 	struct mm_struct *mm;
199 	struct kioctx *ctx;
200 
201 	/* Prevent overflows */
202 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
203 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
204 		pr_debug("ENOMEM: nr_events too high\n");
205 		return ERR_PTR(-EINVAL);
206 	}
207 
208 	if ((unsigned long)nr_events > aio_max_nr)
209 		return ERR_PTR(-EAGAIN);
210 
211 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
212 	if (!ctx)
213 		return ERR_PTR(-ENOMEM);
214 
215 	ctx->max_reqs = nr_events;
216 	mm = ctx->mm = current->mm;
217 	atomic_inc(&mm->mm_count);
218 
219 	atomic_set(&ctx->users, 1);
220 	spin_lock_init(&ctx->ctx_lock);
221 	spin_lock_init(&ctx->ring_info.ring_lock);
222 	init_waitqueue_head(&ctx->wait);
223 
224 	INIT_LIST_HEAD(&ctx->active_reqs);
225 	INIT_LIST_HEAD(&ctx->run_list);
226 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
227 
228 	if (aio_setup_ring(ctx) < 0)
229 		goto out_freectx;
230 
231 	/* limit the number of system wide aios */
232 	spin_lock(&aio_nr_lock);
233 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
234 	    aio_nr + ctx->max_reqs < aio_nr)
235 		ctx->max_reqs = 0;
236 	else
237 		aio_nr += ctx->max_reqs;
238 	spin_unlock(&aio_nr_lock);
239 	if (ctx->max_reqs == 0)
240 		goto out_cleanup;
241 
242 	/* now link into global list.  kludge.  FIXME */
243 	write_lock(&mm->ioctx_list_lock);
244 	ctx->next = mm->ioctx_list;
245 	mm->ioctx_list = ctx;
246 	write_unlock(&mm->ioctx_list_lock);
247 
248 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
249 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
250 	return ctx;
251 
252 out_cleanup:
253 	__put_ioctx(ctx);
254 	return ERR_PTR(-EAGAIN);
255 
256 out_freectx:
257 	mmdrop(mm);
258 	kmem_cache_free(kioctx_cachep, ctx);
259 	ctx = ERR_PTR(-ENOMEM);
260 
261 	dprintk("aio: error allocating ioctx %p\n", ctx);
262 	return ctx;
263 }
264 
265 /* aio_cancel_all
266  *	Cancels all outstanding aio requests on an aio context.  Used
267  *	when the processes owning a context have all exited to encourage
268  *	the rapid destruction of the kioctx.
269  */
270 static void aio_cancel_all(struct kioctx *ctx)
271 {
272 	int (*cancel)(struct kiocb *, struct io_event *);
273 	struct io_event res;
274 	spin_lock_irq(&ctx->ctx_lock);
275 	ctx->dead = 1;
276 	while (!list_empty(&ctx->active_reqs)) {
277 		struct list_head *pos = ctx->active_reqs.next;
278 		struct kiocb *iocb = list_kiocb(pos);
279 		list_del_init(&iocb->ki_list);
280 		cancel = iocb->ki_cancel;
281 		kiocbSetCancelled(iocb);
282 		if (cancel) {
283 			iocb->ki_users++;
284 			spin_unlock_irq(&ctx->ctx_lock);
285 			cancel(iocb, &res);
286 			spin_lock_irq(&ctx->ctx_lock);
287 		}
288 	}
289 	spin_unlock_irq(&ctx->ctx_lock);
290 }
291 
292 static void wait_for_all_aios(struct kioctx *ctx)
293 {
294 	struct task_struct *tsk = current;
295 	DECLARE_WAITQUEUE(wait, tsk);
296 
297 	spin_lock_irq(&ctx->ctx_lock);
298 	if (!ctx->reqs_active)
299 		goto out;
300 
301 	add_wait_queue(&ctx->wait, &wait);
302 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
303 	while (ctx->reqs_active) {
304 		spin_unlock_irq(&ctx->ctx_lock);
305 		schedule();
306 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
307 		spin_lock_irq(&ctx->ctx_lock);
308 	}
309 	__set_task_state(tsk, TASK_RUNNING);
310 	remove_wait_queue(&ctx->wait, &wait);
311 
312 out:
313 	spin_unlock_irq(&ctx->ctx_lock);
314 }
315 
316 /* wait_on_sync_kiocb:
317  *	Waits on the given sync kiocb to complete.
318  */
319 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
320 {
321 	while (iocb->ki_users) {
322 		set_current_state(TASK_UNINTERRUPTIBLE);
323 		if (!iocb->ki_users)
324 			break;
325 		schedule();
326 	}
327 	__set_current_state(TASK_RUNNING);
328 	return iocb->ki_user_data;
329 }
330 
331 /* exit_aio: called when the last user of mm goes away.  At this point,
332  * there is no way for any new requests to be submited or any of the
333  * io_* syscalls to be called on the context.  However, there may be
334  * outstanding requests which hold references to the context; as they
335  * go away, they will call put_ioctx and release any pinned memory
336  * associated with the request (held via struct page * references).
337  */
338 void fastcall exit_aio(struct mm_struct *mm)
339 {
340 	struct kioctx *ctx = mm->ioctx_list;
341 	mm->ioctx_list = NULL;
342 	while (ctx) {
343 		struct kioctx *next = ctx->next;
344 		ctx->next = NULL;
345 		aio_cancel_all(ctx);
346 
347 		wait_for_all_aios(ctx);
348 		/*
349 		 * this is an overkill, but ensures we don't leave
350 		 * the ctx on the aio_wq
351 		 */
352 		flush_workqueue(aio_wq);
353 
354 		if (1 != atomic_read(&ctx->users))
355 			printk(KERN_DEBUG
356 				"exit_aio:ioctx still alive: %d %d %d\n",
357 				atomic_read(&ctx->users), ctx->dead,
358 				ctx->reqs_active);
359 		put_ioctx(ctx);
360 		ctx = next;
361 	}
362 }
363 
364 /* __put_ioctx
365  *	Called when the last user of an aio context has gone away,
366  *	and the struct needs to be freed.
367  */
368 void fastcall __put_ioctx(struct kioctx *ctx)
369 {
370 	unsigned nr_events = ctx->max_reqs;
371 
372 	BUG_ON(ctx->reqs_active);
373 
374 	cancel_delayed_work(&ctx->wq);
375 	flush_workqueue(aio_wq);
376 	aio_free_ring(ctx);
377 	mmdrop(ctx->mm);
378 	ctx->mm = NULL;
379 	pr_debug("__put_ioctx: freeing %p\n", ctx);
380 	kmem_cache_free(kioctx_cachep, ctx);
381 
382 	if (nr_events) {
383 		spin_lock(&aio_nr_lock);
384 		BUG_ON(aio_nr - nr_events > aio_nr);
385 		aio_nr -= nr_events;
386 		spin_unlock(&aio_nr_lock);
387 	}
388 }
389 
390 /* aio_get_req
391  *	Allocate a slot for an aio request.  Increments the users count
392  * of the kioctx so that the kioctx stays around until all requests are
393  * complete.  Returns NULL if no requests are free.
394  *
395  * Returns with kiocb->users set to 2.  The io submit code path holds
396  * an extra reference while submitting the i/o.
397  * This prevents races between the aio code path referencing the
398  * req (after submitting it) and aio_complete() freeing the req.
399  */
400 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
401 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
402 {
403 	struct kiocb *req = NULL;
404 	struct aio_ring *ring;
405 	int okay = 0;
406 
407 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
408 	if (unlikely(!req))
409 		return NULL;
410 
411 	req->ki_flags = 0;
412 	req->ki_users = 2;
413 	req->ki_key = 0;
414 	req->ki_ctx = ctx;
415 	req->ki_cancel = NULL;
416 	req->ki_retry = NULL;
417 	req->ki_dtor = NULL;
418 	req->private = NULL;
419 	req->ki_iovec = NULL;
420 	INIT_LIST_HEAD(&req->ki_run_list);
421 
422 	/* Check if the completion queue has enough free space to
423 	 * accept an event from this io.
424 	 */
425 	spin_lock_irq(&ctx->ctx_lock);
426 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
427 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
428 		list_add(&req->ki_list, &ctx->active_reqs);
429 		ctx->reqs_active++;
430 		okay = 1;
431 	}
432 	kunmap_atomic(ring, KM_USER0);
433 	spin_unlock_irq(&ctx->ctx_lock);
434 
435 	if (!okay) {
436 		kmem_cache_free(kiocb_cachep, req);
437 		req = NULL;
438 	}
439 
440 	return req;
441 }
442 
443 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
444 {
445 	struct kiocb *req;
446 	/* Handle a potential starvation case -- should be exceedingly rare as
447 	 * requests will be stuck on fput_head only if the aio_fput_routine is
448 	 * delayed and the requests were the last user of the struct file.
449 	 */
450 	req = __aio_get_req(ctx);
451 	if (unlikely(NULL == req)) {
452 		aio_fput_routine(NULL);
453 		req = __aio_get_req(ctx);
454 	}
455 	return req;
456 }
457 
458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
459 {
460 	assert_spin_locked(&ctx->ctx_lock);
461 
462 	if (req->ki_dtor)
463 		req->ki_dtor(req);
464 	if (req->ki_iovec != &req->ki_inline_vec)
465 		kfree(req->ki_iovec);
466 	kmem_cache_free(kiocb_cachep, req);
467 	ctx->reqs_active--;
468 
469 	if (unlikely(!ctx->reqs_active && ctx->dead))
470 		wake_up(&ctx->wait);
471 }
472 
473 static void aio_fput_routine(struct work_struct *data)
474 {
475 	spin_lock_irq(&fput_lock);
476 	while (likely(!list_empty(&fput_head))) {
477 		struct kiocb *req = list_kiocb(fput_head.next);
478 		struct kioctx *ctx = req->ki_ctx;
479 
480 		list_del(&req->ki_list);
481 		spin_unlock_irq(&fput_lock);
482 
483 		/* Complete the fput */
484 		__fput(req->ki_filp);
485 
486 		/* Link the iocb into the context's free list */
487 		spin_lock_irq(&ctx->ctx_lock);
488 		really_put_req(ctx, req);
489 		spin_unlock_irq(&ctx->ctx_lock);
490 
491 		put_ioctx(ctx);
492 		spin_lock_irq(&fput_lock);
493 	}
494 	spin_unlock_irq(&fput_lock);
495 }
496 
497 /* __aio_put_req
498  *	Returns true if this put was the last user of the request.
499  */
500 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
501 {
502 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
503 		req, atomic_read(&req->ki_filp->f_count));
504 
505 	assert_spin_locked(&ctx->ctx_lock);
506 
507 	req->ki_users --;
508 	BUG_ON(req->ki_users < 0);
509 	if (likely(req->ki_users))
510 		return 0;
511 	list_del(&req->ki_list);		/* remove from active_reqs */
512 	req->ki_cancel = NULL;
513 	req->ki_retry = NULL;
514 
515 	/* Must be done under the lock to serialise against cancellation.
516 	 * Call this aio_fput as it duplicates fput via the fput_work.
517 	 */
518 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
519 		get_ioctx(ctx);
520 		spin_lock(&fput_lock);
521 		list_add(&req->ki_list, &fput_head);
522 		spin_unlock(&fput_lock);
523 		queue_work(aio_wq, &fput_work);
524 	} else
525 		really_put_req(ctx, req);
526 	return 1;
527 }
528 
529 /* aio_put_req
530  *	Returns true if this put was the last user of the kiocb,
531  *	false if the request is still in use.
532  */
533 int fastcall aio_put_req(struct kiocb *req)
534 {
535 	struct kioctx *ctx = req->ki_ctx;
536 	int ret;
537 	spin_lock_irq(&ctx->ctx_lock);
538 	ret = __aio_put_req(ctx, req);
539 	spin_unlock_irq(&ctx->ctx_lock);
540 	return ret;
541 }
542 
543 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
544  *	FIXME: this is O(n) and is only suitable for development.
545  */
546 struct kioctx *lookup_ioctx(unsigned long ctx_id)
547 {
548 	struct kioctx *ioctx;
549 	struct mm_struct *mm;
550 
551 	mm = current->mm;
552 	read_lock(&mm->ioctx_list_lock);
553 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
554 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
555 			get_ioctx(ioctx);
556 			break;
557 		}
558 	read_unlock(&mm->ioctx_list_lock);
559 
560 	return ioctx;
561 }
562 
563 /*
564  * use_mm
565  *	Makes the calling kernel thread take on the specified
566  *	mm context.
567  *	Called by the retry thread execute retries within the
568  *	iocb issuer's mm context, so that copy_from/to_user
569  *	operations work seamlessly for aio.
570  *	(Note: this routine is intended to be called only
571  *	from a kernel thread context)
572  */
573 static void use_mm(struct mm_struct *mm)
574 {
575 	struct mm_struct *active_mm;
576 	struct task_struct *tsk = current;
577 
578 	task_lock(tsk);
579 	tsk->flags |= PF_BORROWED_MM;
580 	active_mm = tsk->active_mm;
581 	atomic_inc(&mm->mm_count);
582 	tsk->mm = mm;
583 	tsk->active_mm = mm;
584 	/*
585 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
586 	 * it won't work. Update it accordingly if you change it here
587 	 */
588 	switch_mm(active_mm, mm, tsk);
589 	task_unlock(tsk);
590 
591 	mmdrop(active_mm);
592 }
593 
594 /*
595  * unuse_mm
596  *	Reverses the effect of use_mm, i.e. releases the
597  *	specified mm context which was earlier taken on
598  *	by the calling kernel thread
599  *	(Note: this routine is intended to be called only
600  *	from a kernel thread context)
601  */
602 static void unuse_mm(struct mm_struct *mm)
603 {
604 	struct task_struct *tsk = current;
605 
606 	task_lock(tsk);
607 	tsk->flags &= ~PF_BORROWED_MM;
608 	tsk->mm = NULL;
609 	/* active_mm is still 'mm' */
610 	enter_lazy_tlb(mm, tsk);
611 	task_unlock(tsk);
612 }
613 
614 /*
615  * Queue up a kiocb to be retried. Assumes that the kiocb
616  * has already been marked as kicked, and places it on
617  * the retry run list for the corresponding ioctx, if it
618  * isn't already queued. Returns 1 if it actually queued
619  * the kiocb (to tell the caller to activate the work
620  * queue to process it), or 0, if it found that it was
621  * already queued.
622  */
623 static inline int __queue_kicked_iocb(struct kiocb *iocb)
624 {
625 	struct kioctx *ctx = iocb->ki_ctx;
626 
627 	assert_spin_locked(&ctx->ctx_lock);
628 
629 	if (list_empty(&iocb->ki_run_list)) {
630 		list_add_tail(&iocb->ki_run_list,
631 			&ctx->run_list);
632 		return 1;
633 	}
634 	return 0;
635 }
636 
637 /* aio_run_iocb
638  *	This is the core aio execution routine. It is
639  *	invoked both for initial i/o submission and
640  *	subsequent retries via the aio_kick_handler.
641  *	Expects to be invoked with iocb->ki_ctx->lock
642  *	already held. The lock is released and reacquired
643  *	as needed during processing.
644  *
645  * Calls the iocb retry method (already setup for the
646  * iocb on initial submission) for operation specific
647  * handling, but takes care of most of common retry
648  * execution details for a given iocb. The retry method
649  * needs to be non-blocking as far as possible, to avoid
650  * holding up other iocbs waiting to be serviced by the
651  * retry kernel thread.
652  *
653  * The trickier parts in this code have to do with
654  * ensuring that only one retry instance is in progress
655  * for a given iocb at any time. Providing that guarantee
656  * simplifies the coding of individual aio operations as
657  * it avoids various potential races.
658  */
659 static ssize_t aio_run_iocb(struct kiocb *iocb)
660 {
661 	struct kioctx	*ctx = iocb->ki_ctx;
662 	ssize_t (*retry)(struct kiocb *);
663 	ssize_t ret;
664 
665 	if (!(retry = iocb->ki_retry)) {
666 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
667 		return 0;
668 	}
669 
670 	/*
671 	 * We don't want the next retry iteration for this
672 	 * operation to start until this one has returned and
673 	 * updated the iocb state. However, wait_queue functions
674 	 * can trigger a kick_iocb from interrupt context in the
675 	 * meantime, indicating that data is available for the next
676 	 * iteration. We want to remember that and enable the
677 	 * next retry iteration _after_ we are through with
678 	 * this one.
679 	 *
680 	 * So, in order to be able to register a "kick", but
681 	 * prevent it from being queued now, we clear the kick
682 	 * flag, but make the kick code *think* that the iocb is
683 	 * still on the run list until we are actually done.
684 	 * When we are done with this iteration, we check if
685 	 * the iocb was kicked in the meantime and if so, queue
686 	 * it up afresh.
687 	 */
688 
689 	kiocbClearKicked(iocb);
690 
691 	/*
692 	 * This is so that aio_complete knows it doesn't need to
693 	 * pull the iocb off the run list (We can't just call
694 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
695 	 * queue this on the run list yet)
696 	 */
697 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
698 	spin_unlock_irq(&ctx->ctx_lock);
699 
700 	/* Quit retrying if the i/o has been cancelled */
701 	if (kiocbIsCancelled(iocb)) {
702 		ret = -EINTR;
703 		aio_complete(iocb, ret, 0);
704 		/* must not access the iocb after this */
705 		goto out;
706 	}
707 
708 	/*
709 	 * Now we are all set to call the retry method in async
710 	 * context. By setting this thread's io_wait context
711 	 * to point to the wait queue entry inside the currently
712 	 * running iocb for the duration of the retry, we ensure
713 	 * that async notification wakeups are queued by the
714 	 * operation instead of blocking waits, and when notified,
715 	 * cause the iocb to be kicked for continuation (through
716 	 * the aio_wake_function callback).
717 	 */
718 	BUG_ON(current->io_wait != NULL);
719 	current->io_wait = &iocb->ki_wait;
720 	ret = retry(iocb);
721 	current->io_wait = NULL;
722 
723 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
724 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
725 		aio_complete(iocb, ret, 0);
726 	}
727 out:
728 	spin_lock_irq(&ctx->ctx_lock);
729 
730 	if (-EIOCBRETRY == ret) {
731 		/*
732 		 * OK, now that we are done with this iteration
733 		 * and know that there is more left to go,
734 		 * this is where we let go so that a subsequent
735 		 * "kick" can start the next iteration
736 		 */
737 
738 		/* will make __queue_kicked_iocb succeed from here on */
739 		INIT_LIST_HEAD(&iocb->ki_run_list);
740 		/* we must queue the next iteration ourselves, if it
741 		 * has already been kicked */
742 		if (kiocbIsKicked(iocb)) {
743 			__queue_kicked_iocb(iocb);
744 
745 			/*
746 			 * __queue_kicked_iocb will always return 1 here, because
747 			 * iocb->ki_run_list is empty at this point so it should
748 			 * be safe to unconditionally queue the context into the
749 			 * work queue.
750 			 */
751 			aio_queue_work(ctx);
752 		}
753 	}
754 	return ret;
755 }
756 
757 /*
758  * __aio_run_iocbs:
759  * 	Process all pending retries queued on the ioctx
760  * 	run list.
761  * Assumes it is operating within the aio issuer's mm
762  * context.
763  */
764 static int __aio_run_iocbs(struct kioctx *ctx)
765 {
766 	struct kiocb *iocb;
767 	struct list_head run_list;
768 
769 	assert_spin_locked(&ctx->ctx_lock);
770 
771 	list_replace_init(&ctx->run_list, &run_list);
772 	while (!list_empty(&run_list)) {
773 		iocb = list_entry(run_list.next, struct kiocb,
774 			ki_run_list);
775 		list_del(&iocb->ki_run_list);
776 		/*
777 		 * Hold an extra reference while retrying i/o.
778 		 */
779 		iocb->ki_users++;       /* grab extra reference */
780 		aio_run_iocb(iocb);
781 		__aio_put_req(ctx, iocb);
782  	}
783 	if (!list_empty(&ctx->run_list))
784 		return 1;
785 	return 0;
786 }
787 
788 static void aio_queue_work(struct kioctx * ctx)
789 {
790 	unsigned long timeout;
791 	/*
792 	 * if someone is waiting, get the work started right
793 	 * away, otherwise, use a longer delay
794 	 */
795 	smp_mb();
796 	if (waitqueue_active(&ctx->wait))
797 		timeout = 1;
798 	else
799 		timeout = HZ/10;
800 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
801 }
802 
803 
804 /*
805  * aio_run_iocbs:
806  * 	Process all pending retries queued on the ioctx
807  * 	run list.
808  * Assumes it is operating within the aio issuer's mm
809  * context.
810  */
811 static inline void aio_run_iocbs(struct kioctx *ctx)
812 {
813 	int requeue;
814 
815 	spin_lock_irq(&ctx->ctx_lock);
816 
817 	requeue = __aio_run_iocbs(ctx);
818 	spin_unlock_irq(&ctx->ctx_lock);
819 	if (requeue)
820 		aio_queue_work(ctx);
821 }
822 
823 /*
824  * just like aio_run_iocbs, but keeps running them until
825  * the list stays empty
826  */
827 static inline void aio_run_all_iocbs(struct kioctx *ctx)
828 {
829 	spin_lock_irq(&ctx->ctx_lock);
830 	while (__aio_run_iocbs(ctx))
831 		;
832 	spin_unlock_irq(&ctx->ctx_lock);
833 }
834 
835 /*
836  * aio_kick_handler:
837  * 	Work queue handler triggered to process pending
838  * 	retries on an ioctx. Takes on the aio issuer's
839  *	mm context before running the iocbs, so that
840  *	copy_xxx_user operates on the issuer's address
841  *      space.
842  * Run on aiod's context.
843  */
844 static void aio_kick_handler(struct work_struct *work)
845 {
846 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
847 	mm_segment_t oldfs = get_fs();
848 	struct mm_struct *mm;
849 	int requeue;
850 
851 	set_fs(USER_DS);
852 	use_mm(ctx->mm);
853 	spin_lock_irq(&ctx->ctx_lock);
854 	requeue =__aio_run_iocbs(ctx);
855 	mm = ctx->mm;
856 	spin_unlock_irq(&ctx->ctx_lock);
857  	unuse_mm(mm);
858 	set_fs(oldfs);
859 	/*
860 	 * we're in a worker thread already, don't use queue_delayed_work,
861 	 */
862 	if (requeue)
863 		queue_delayed_work(aio_wq, &ctx->wq, 0);
864 }
865 
866 
867 /*
868  * Called by kick_iocb to queue the kiocb for retry
869  * and if required activate the aio work queue to process
870  * it
871  */
872 static void try_queue_kicked_iocb(struct kiocb *iocb)
873 {
874  	struct kioctx	*ctx = iocb->ki_ctx;
875 	unsigned long flags;
876 	int run = 0;
877 
878 	/* We're supposed to be the only path putting the iocb back on the run
879 	 * list.  If we find that the iocb is *back* on a wait queue already
880 	 * than retry has happened before we could queue the iocb.  This also
881 	 * means that the retry could have completed and freed our iocb, no
882 	 * good. */
883 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
884 
885 	spin_lock_irqsave(&ctx->ctx_lock, flags);
886 	/* set this inside the lock so that we can't race with aio_run_iocb()
887 	 * testing it and putting the iocb on the run list under the lock */
888 	if (!kiocbTryKick(iocb))
889 		run = __queue_kicked_iocb(iocb);
890 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
891 	if (run)
892 		aio_queue_work(ctx);
893 }
894 
895 /*
896  * kick_iocb:
897  *      Called typically from a wait queue callback context
898  *      (aio_wake_function) to trigger a retry of the iocb.
899  *      The retry is usually executed by aio workqueue
900  *      threads (See aio_kick_handler).
901  */
902 void fastcall kick_iocb(struct kiocb *iocb)
903 {
904 	/* sync iocbs are easy: they can only ever be executing from a
905 	 * single context. */
906 	if (is_sync_kiocb(iocb)) {
907 		kiocbSetKicked(iocb);
908 	        wake_up_process(iocb->ki_obj.tsk);
909 		return;
910 	}
911 
912 	try_queue_kicked_iocb(iocb);
913 }
914 EXPORT_SYMBOL(kick_iocb);
915 
916 /* aio_complete
917  *	Called when the io request on the given iocb is complete.
918  *	Returns true if this is the last user of the request.  The
919  *	only other user of the request can be the cancellation code.
920  */
921 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
922 {
923 	struct kioctx	*ctx = iocb->ki_ctx;
924 	struct aio_ring_info	*info;
925 	struct aio_ring	*ring;
926 	struct io_event	*event;
927 	unsigned long	flags;
928 	unsigned long	tail;
929 	int		ret;
930 
931 	/*
932 	 * Special case handling for sync iocbs:
933 	 *  - events go directly into the iocb for fast handling
934 	 *  - the sync task with the iocb in its stack holds the single iocb
935 	 *    ref, no other paths have a way to get another ref
936 	 *  - the sync task helpfully left a reference to itself in the iocb
937 	 */
938 	if (is_sync_kiocb(iocb)) {
939 		BUG_ON(iocb->ki_users != 1);
940 		iocb->ki_user_data = res;
941 		iocb->ki_users = 0;
942 		wake_up_process(iocb->ki_obj.tsk);
943 		return 1;
944 	}
945 
946 	info = &ctx->ring_info;
947 
948 	/* add a completion event to the ring buffer.
949 	 * must be done holding ctx->ctx_lock to prevent
950 	 * other code from messing with the tail
951 	 * pointer since we might be called from irq
952 	 * context.
953 	 */
954 	spin_lock_irqsave(&ctx->ctx_lock, flags);
955 
956 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
957 		list_del_init(&iocb->ki_run_list);
958 
959 	/*
960 	 * cancelled requests don't get events, userland was given one
961 	 * when the event got cancelled.
962 	 */
963 	if (kiocbIsCancelled(iocb))
964 		goto put_rq;
965 
966 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
967 
968 	tail = info->tail;
969 	event = aio_ring_event(info, tail, KM_IRQ0);
970 	if (++tail >= info->nr)
971 		tail = 0;
972 
973 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
974 	event->data = iocb->ki_user_data;
975 	event->res = res;
976 	event->res2 = res2;
977 
978 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
979 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
980 		res, res2);
981 
982 	/* after flagging the request as done, we
983 	 * must never even look at it again
984 	 */
985 	smp_wmb();	/* make event visible before updating tail */
986 
987 	info->tail = tail;
988 	ring->tail = tail;
989 
990 	put_aio_ring_event(event, KM_IRQ0);
991 	kunmap_atomic(ring, KM_IRQ1);
992 
993 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
994 put_rq:
995 	/* everything turned out well, dispose of the aiocb. */
996 	ret = __aio_put_req(ctx, iocb);
997 
998 	if (waitqueue_active(&ctx->wait))
999 		wake_up(&ctx->wait);
1000 
1001 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1002 	return ret;
1003 }
1004 
1005 /* aio_read_evt
1006  *	Pull an event off of the ioctx's event ring.  Returns the number of
1007  *	events fetched (0 or 1 ;-)
1008  *	FIXME: make this use cmpxchg.
1009  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1010  */
1011 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1012 {
1013 	struct aio_ring_info *info = &ioctx->ring_info;
1014 	struct aio_ring *ring;
1015 	unsigned long head;
1016 	int ret = 0;
1017 
1018 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1019 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1020 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1021 		 (unsigned long)ring->nr);
1022 
1023 	if (ring->head == ring->tail)
1024 		goto out;
1025 
1026 	spin_lock(&info->ring_lock);
1027 
1028 	head = ring->head % info->nr;
1029 	if (head != ring->tail) {
1030 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1031 		*ent = *evp;
1032 		head = (head + 1) % info->nr;
1033 		smp_mb(); /* finish reading the event before updatng the head */
1034 		ring->head = head;
1035 		ret = 1;
1036 		put_aio_ring_event(evp, KM_USER1);
1037 	}
1038 	spin_unlock(&info->ring_lock);
1039 
1040 out:
1041 	kunmap_atomic(ring, KM_USER0);
1042 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1043 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1044 	return ret;
1045 }
1046 
1047 struct aio_timeout {
1048 	struct timer_list	timer;
1049 	int			timed_out;
1050 	struct task_struct	*p;
1051 };
1052 
1053 static void timeout_func(unsigned long data)
1054 {
1055 	struct aio_timeout *to = (struct aio_timeout *)data;
1056 
1057 	to->timed_out = 1;
1058 	wake_up_process(to->p);
1059 }
1060 
1061 static inline void init_timeout(struct aio_timeout *to)
1062 {
1063 	init_timer(&to->timer);
1064 	to->timer.data = (unsigned long)to;
1065 	to->timer.function = timeout_func;
1066 	to->timed_out = 0;
1067 	to->p = current;
1068 }
1069 
1070 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1071 			       const struct timespec *ts)
1072 {
1073 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1074 	if (time_after(to->timer.expires, jiffies))
1075 		add_timer(&to->timer);
1076 	else
1077 		to->timed_out = 1;
1078 }
1079 
1080 static inline void clear_timeout(struct aio_timeout *to)
1081 {
1082 	del_singleshot_timer_sync(&to->timer);
1083 }
1084 
1085 static int read_events(struct kioctx *ctx,
1086 			long min_nr, long nr,
1087 			struct io_event __user *event,
1088 			struct timespec __user *timeout)
1089 {
1090 	long			start_jiffies = jiffies;
1091 	struct task_struct	*tsk = current;
1092 	DECLARE_WAITQUEUE(wait, tsk);
1093 	int			ret;
1094 	int			i = 0;
1095 	struct io_event		ent;
1096 	struct aio_timeout	to;
1097 	int			retry = 0;
1098 
1099 	/* needed to zero any padding within an entry (there shouldn't be
1100 	 * any, but C is fun!
1101 	 */
1102 	memset(&ent, 0, sizeof(ent));
1103 retry:
1104 	ret = 0;
1105 	while (likely(i < nr)) {
1106 		ret = aio_read_evt(ctx, &ent);
1107 		if (unlikely(ret <= 0))
1108 			break;
1109 
1110 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1111 			ent.data, ent.obj, ent.res, ent.res2);
1112 
1113 		/* Could we split the check in two? */
1114 		ret = -EFAULT;
1115 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1116 			dprintk("aio: lost an event due to EFAULT.\n");
1117 			break;
1118 		}
1119 		ret = 0;
1120 
1121 		/* Good, event copied to userland, update counts. */
1122 		event ++;
1123 		i ++;
1124 	}
1125 
1126 	if (min_nr <= i)
1127 		return i;
1128 	if (ret)
1129 		return ret;
1130 
1131 	/* End fast path */
1132 
1133 	/* racey check, but it gets redone */
1134 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1135 		retry = 1;
1136 		aio_run_all_iocbs(ctx);
1137 		goto retry;
1138 	}
1139 
1140 	init_timeout(&to);
1141 	if (timeout) {
1142 		struct timespec	ts;
1143 		ret = -EFAULT;
1144 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1145 			goto out;
1146 
1147 		set_timeout(start_jiffies, &to, &ts);
1148 	}
1149 
1150 	while (likely(i < nr)) {
1151 		add_wait_queue_exclusive(&ctx->wait, &wait);
1152 		do {
1153 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1154 			ret = aio_read_evt(ctx, &ent);
1155 			if (ret)
1156 				break;
1157 			if (min_nr <= i)
1158 				break;
1159 			ret = 0;
1160 			if (to.timed_out)	/* Only check after read evt */
1161 				break;
1162 			schedule();
1163 			if (signal_pending(tsk)) {
1164 				ret = -EINTR;
1165 				break;
1166 			}
1167 			/*ret = aio_read_evt(ctx, &ent);*/
1168 		} while (1) ;
1169 
1170 		set_task_state(tsk, TASK_RUNNING);
1171 		remove_wait_queue(&ctx->wait, &wait);
1172 
1173 		if (unlikely(ret <= 0))
1174 			break;
1175 
1176 		ret = -EFAULT;
1177 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1178 			dprintk("aio: lost an event due to EFAULT.\n");
1179 			break;
1180 		}
1181 
1182 		/* Good, event copied to userland, update counts. */
1183 		event ++;
1184 		i ++;
1185 	}
1186 
1187 	if (timeout)
1188 		clear_timeout(&to);
1189 out:
1190 	return i ? i : ret;
1191 }
1192 
1193 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1194  * against races with itself via ->dead.
1195  */
1196 static void io_destroy(struct kioctx *ioctx)
1197 {
1198 	struct mm_struct *mm = current->mm;
1199 	struct kioctx **tmp;
1200 	int was_dead;
1201 
1202 	/* delete the entry from the list is someone else hasn't already */
1203 	write_lock(&mm->ioctx_list_lock);
1204 	was_dead = ioctx->dead;
1205 	ioctx->dead = 1;
1206 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1207 	     tmp = &(*tmp)->next)
1208 		;
1209 	if (*tmp)
1210 		*tmp = ioctx->next;
1211 	write_unlock(&mm->ioctx_list_lock);
1212 
1213 	dprintk("aio_release(%p)\n", ioctx);
1214 	if (likely(!was_dead))
1215 		put_ioctx(ioctx);	/* twice for the list */
1216 
1217 	aio_cancel_all(ioctx);
1218 	wait_for_all_aios(ioctx);
1219 	put_ioctx(ioctx);	/* once for the lookup */
1220 }
1221 
1222 /* sys_io_setup:
1223  *	Create an aio_context capable of receiving at least nr_events.
1224  *	ctxp must not point to an aio_context that already exists, and
1225  *	must be initialized to 0 prior to the call.  On successful
1226  *	creation of the aio_context, *ctxp is filled in with the resulting
1227  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1228  *	if the specified nr_events exceeds internal limits.  May fail
1229  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1230  *	of available events.  May fail with -ENOMEM if insufficient kernel
1231  *	resources are available.  May fail with -EFAULT if an invalid
1232  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1233  *	implemented.
1234  */
1235 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1236 {
1237 	struct kioctx *ioctx = NULL;
1238 	unsigned long ctx;
1239 	long ret;
1240 
1241 	ret = get_user(ctx, ctxp);
1242 	if (unlikely(ret))
1243 		goto out;
1244 
1245 	ret = -EINVAL;
1246 	if (unlikely(ctx || nr_events == 0)) {
1247 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1248 		         ctx, nr_events);
1249 		goto out;
1250 	}
1251 
1252 	ioctx = ioctx_alloc(nr_events);
1253 	ret = PTR_ERR(ioctx);
1254 	if (!IS_ERR(ioctx)) {
1255 		ret = put_user(ioctx->user_id, ctxp);
1256 		if (!ret)
1257 			return 0;
1258 
1259 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1260 		io_destroy(ioctx);
1261 	}
1262 
1263 out:
1264 	return ret;
1265 }
1266 
1267 /* sys_io_destroy:
1268  *	Destroy the aio_context specified.  May cancel any outstanding
1269  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1270  *	implemented.  May fail with -EFAULT if the context pointed to
1271  *	is invalid.
1272  */
1273 asmlinkage long sys_io_destroy(aio_context_t ctx)
1274 {
1275 	struct kioctx *ioctx = lookup_ioctx(ctx);
1276 	if (likely(NULL != ioctx)) {
1277 		io_destroy(ioctx);
1278 		return 0;
1279 	}
1280 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1281 	return -EINVAL;
1282 }
1283 
1284 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1285 {
1286 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1287 
1288 	BUG_ON(ret <= 0);
1289 
1290 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1291 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1292 		iov->iov_base += this;
1293 		iov->iov_len -= this;
1294 		iocb->ki_left -= this;
1295 		ret -= this;
1296 		if (iov->iov_len == 0) {
1297 			iocb->ki_cur_seg++;
1298 			iov++;
1299 		}
1300 	}
1301 
1302 	/* the caller should not have done more io than what fit in
1303 	 * the remaining iovecs */
1304 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1305 }
1306 
1307 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1308 {
1309 	struct file *file = iocb->ki_filp;
1310 	struct address_space *mapping = file->f_mapping;
1311 	struct inode *inode = mapping->host;
1312 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1313 			 unsigned long, loff_t);
1314 	ssize_t ret = 0;
1315 	unsigned short opcode;
1316 
1317 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1318 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1319 		rw_op = file->f_op->aio_read;
1320 		opcode = IOCB_CMD_PREADV;
1321 	} else {
1322 		rw_op = file->f_op->aio_write;
1323 		opcode = IOCB_CMD_PWRITEV;
1324 	}
1325 
1326 	do {
1327 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1328 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1329 			    iocb->ki_pos);
1330 		if (ret > 0)
1331 			aio_advance_iovec(iocb, ret);
1332 
1333 	/* retry all partial writes.  retry partial reads as long as its a
1334 	 * regular file. */
1335 	} while (ret > 0 && iocb->ki_left > 0 &&
1336 		 (opcode == IOCB_CMD_PWRITEV ||
1337 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1338 
1339 	/* This means we must have transferred all that we could */
1340 	/* No need to retry anymore */
1341 	if ((ret == 0) || (iocb->ki_left == 0))
1342 		ret = iocb->ki_nbytes - iocb->ki_left;
1343 
1344 	return ret;
1345 }
1346 
1347 static ssize_t aio_fdsync(struct kiocb *iocb)
1348 {
1349 	struct file *file = iocb->ki_filp;
1350 	ssize_t ret = -EINVAL;
1351 
1352 	if (file->f_op->aio_fsync)
1353 		ret = file->f_op->aio_fsync(iocb, 1);
1354 	return ret;
1355 }
1356 
1357 static ssize_t aio_fsync(struct kiocb *iocb)
1358 {
1359 	struct file *file = iocb->ki_filp;
1360 	ssize_t ret = -EINVAL;
1361 
1362 	if (file->f_op->aio_fsync)
1363 		ret = file->f_op->aio_fsync(iocb, 0);
1364 	return ret;
1365 }
1366 
1367 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1368 {
1369 	ssize_t ret;
1370 
1371 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1372 				    kiocb->ki_nbytes, 1,
1373 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1374 	if (ret < 0)
1375 		goto out;
1376 
1377 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1378 	kiocb->ki_cur_seg = 0;
1379 	/* ki_nbytes/left now reflect bytes instead of segs */
1380 	kiocb->ki_nbytes = ret;
1381 	kiocb->ki_left = ret;
1382 
1383 	ret = 0;
1384 out:
1385 	return ret;
1386 }
1387 
1388 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1389 {
1390 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1391 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1392 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1393 	kiocb->ki_nr_segs = 1;
1394 	kiocb->ki_cur_seg = 0;
1395 	return 0;
1396 }
1397 
1398 /*
1399  * aio_setup_iocb:
1400  *	Performs the initial checks and aio retry method
1401  *	setup for the kiocb at the time of io submission.
1402  */
1403 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1404 {
1405 	struct file *file = kiocb->ki_filp;
1406 	ssize_t ret = 0;
1407 
1408 	switch (kiocb->ki_opcode) {
1409 	case IOCB_CMD_PREAD:
1410 		ret = -EBADF;
1411 		if (unlikely(!(file->f_mode & FMODE_READ)))
1412 			break;
1413 		ret = -EFAULT;
1414 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1415 			kiocb->ki_left)))
1416 			break;
1417 		ret = security_file_permission(file, MAY_READ);
1418 		if (unlikely(ret))
1419 			break;
1420 		ret = aio_setup_single_vector(kiocb);
1421 		if (ret)
1422 			break;
1423 		ret = -EINVAL;
1424 		if (file->f_op->aio_read)
1425 			kiocb->ki_retry = aio_rw_vect_retry;
1426 		break;
1427 	case IOCB_CMD_PWRITE:
1428 		ret = -EBADF;
1429 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1430 			break;
1431 		ret = -EFAULT;
1432 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1433 			kiocb->ki_left)))
1434 			break;
1435 		ret = security_file_permission(file, MAY_WRITE);
1436 		if (unlikely(ret))
1437 			break;
1438 		ret = aio_setup_single_vector(kiocb);
1439 		if (ret)
1440 			break;
1441 		ret = -EINVAL;
1442 		if (file->f_op->aio_write)
1443 			kiocb->ki_retry = aio_rw_vect_retry;
1444 		break;
1445 	case IOCB_CMD_PREADV:
1446 		ret = -EBADF;
1447 		if (unlikely(!(file->f_mode & FMODE_READ)))
1448 			break;
1449 		ret = security_file_permission(file, MAY_READ);
1450 		if (unlikely(ret))
1451 			break;
1452 		ret = aio_setup_vectored_rw(READ, kiocb);
1453 		if (ret)
1454 			break;
1455 		ret = -EINVAL;
1456 		if (file->f_op->aio_read)
1457 			kiocb->ki_retry = aio_rw_vect_retry;
1458 		break;
1459 	case IOCB_CMD_PWRITEV:
1460 		ret = -EBADF;
1461 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1462 			break;
1463 		ret = security_file_permission(file, MAY_WRITE);
1464 		if (unlikely(ret))
1465 			break;
1466 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1467 		if (ret)
1468 			break;
1469 		ret = -EINVAL;
1470 		if (file->f_op->aio_write)
1471 			kiocb->ki_retry = aio_rw_vect_retry;
1472 		break;
1473 	case IOCB_CMD_FDSYNC:
1474 		ret = -EINVAL;
1475 		if (file->f_op->aio_fsync)
1476 			kiocb->ki_retry = aio_fdsync;
1477 		break;
1478 	case IOCB_CMD_FSYNC:
1479 		ret = -EINVAL;
1480 		if (file->f_op->aio_fsync)
1481 			kiocb->ki_retry = aio_fsync;
1482 		break;
1483 	default:
1484 		dprintk("EINVAL: io_submit: no operation provided\n");
1485 		ret = -EINVAL;
1486 	}
1487 
1488 	if (!kiocb->ki_retry)
1489 		return ret;
1490 
1491 	return 0;
1492 }
1493 
1494 /*
1495  * aio_wake_function:
1496  * 	wait queue callback function for aio notification,
1497  * 	Simply triggers a retry of the operation via kick_iocb.
1498  *
1499  * 	This callback is specified in the wait queue entry in
1500  *	a kiocb	(current->io_wait points to this wait queue
1501  *	entry when an aio operation executes; it is used
1502  * 	instead of a synchronous wait when an i/o blocking
1503  *	condition is encountered during aio).
1504  *
1505  * Note:
1506  * This routine is executed with the wait queue lock held.
1507  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1508  * the ioctx lock inside the wait queue lock. This is safe
1509  * because this callback isn't used for wait queues which
1510  * are nested inside ioctx lock (i.e. ctx->wait)
1511  */
1512 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1513 			     int sync, void *key)
1514 {
1515 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1516 
1517 	list_del_init(&wait->task_list);
1518 	kick_iocb(iocb);
1519 	return 1;
1520 }
1521 
1522 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1523 			 struct iocb *iocb)
1524 {
1525 	struct kiocb *req;
1526 	struct file *file;
1527 	ssize_t ret;
1528 
1529 	/* enforce forwards compatibility on users */
1530 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1531 		     iocb->aio_reserved3)) {
1532 		pr_debug("EINVAL: io_submit: reserve field set\n");
1533 		return -EINVAL;
1534 	}
1535 
1536 	/* prevent overflows */
1537 	if (unlikely(
1538 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1539 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1540 	    ((ssize_t)iocb->aio_nbytes < 0)
1541 	   )) {
1542 		pr_debug("EINVAL: io_submit: overflow check\n");
1543 		return -EINVAL;
1544 	}
1545 
1546 	file = fget(iocb->aio_fildes);
1547 	if (unlikely(!file))
1548 		return -EBADF;
1549 
1550 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1551 	if (unlikely(!req)) {
1552 		fput(file);
1553 		return -EAGAIN;
1554 	}
1555 
1556 	req->ki_filp = file;
1557 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1558 	if (unlikely(ret)) {
1559 		dprintk("EFAULT: aio_key\n");
1560 		goto out_put_req;
1561 	}
1562 
1563 	req->ki_obj.user = user_iocb;
1564 	req->ki_user_data = iocb->aio_data;
1565 	req->ki_pos = iocb->aio_offset;
1566 
1567 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1568 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1569 	req->ki_opcode = iocb->aio_lio_opcode;
1570 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1571 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1572 
1573 	ret = aio_setup_iocb(req);
1574 
1575 	if (ret)
1576 		goto out_put_req;
1577 
1578 	spin_lock_irq(&ctx->ctx_lock);
1579 	aio_run_iocb(req);
1580 	if (!list_empty(&ctx->run_list)) {
1581 		/* drain the run list */
1582 		while (__aio_run_iocbs(ctx))
1583 			;
1584 	}
1585 	spin_unlock_irq(&ctx->ctx_lock);
1586 	aio_put_req(req);	/* drop extra ref to req */
1587 	return 0;
1588 
1589 out_put_req:
1590 	aio_put_req(req);	/* drop extra ref to req */
1591 	aio_put_req(req);	/* drop i/o ref to req */
1592 	return ret;
1593 }
1594 
1595 /* sys_io_submit:
1596  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1597  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1598  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1599  *	*iocbpp[0] is not properly initialized, if the operation specified
1600  *	is invalid for the file descriptor in the iocb.  May fail with
1601  *	-EFAULT if any of the data structures point to invalid data.  May
1602  *	fail with -EBADF if the file descriptor specified in the first
1603  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1604  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1605  *	fail with -ENOSYS if not implemented.
1606  */
1607 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1608 			      struct iocb __user * __user *iocbpp)
1609 {
1610 	struct kioctx *ctx;
1611 	long ret = 0;
1612 	int i;
1613 
1614 	if (unlikely(nr < 0))
1615 		return -EINVAL;
1616 
1617 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1618 		return -EFAULT;
1619 
1620 	ctx = lookup_ioctx(ctx_id);
1621 	if (unlikely(!ctx)) {
1622 		pr_debug("EINVAL: io_submit: invalid context id\n");
1623 		return -EINVAL;
1624 	}
1625 
1626 	/*
1627 	 * AKPM: should this return a partial result if some of the IOs were
1628 	 * successfully submitted?
1629 	 */
1630 	for (i=0; i<nr; i++) {
1631 		struct iocb __user *user_iocb;
1632 		struct iocb tmp;
1633 
1634 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1635 			ret = -EFAULT;
1636 			break;
1637 		}
1638 
1639 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1640 			ret = -EFAULT;
1641 			break;
1642 		}
1643 
1644 		ret = io_submit_one(ctx, user_iocb, &tmp);
1645 		if (ret)
1646 			break;
1647 	}
1648 
1649 	put_ioctx(ctx);
1650 	return i ? i : ret;
1651 }
1652 
1653 /* lookup_kiocb
1654  *	Finds a given iocb for cancellation.
1655  */
1656 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1657 				  u32 key)
1658 {
1659 	struct list_head *pos;
1660 
1661 	assert_spin_locked(&ctx->ctx_lock);
1662 
1663 	/* TODO: use a hash or array, this sucks. */
1664 	list_for_each(pos, &ctx->active_reqs) {
1665 		struct kiocb *kiocb = list_kiocb(pos);
1666 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1667 			return kiocb;
1668 	}
1669 	return NULL;
1670 }
1671 
1672 /* sys_io_cancel:
1673  *	Attempts to cancel an iocb previously passed to io_submit.  If
1674  *	the operation is successfully cancelled, the resulting event is
1675  *	copied into the memory pointed to by result without being placed
1676  *	into the completion queue and 0 is returned.  May fail with
1677  *	-EFAULT if any of the data structures pointed to are invalid.
1678  *	May fail with -EINVAL if aio_context specified by ctx_id is
1679  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1680  *	cancelled.  Will fail with -ENOSYS if not implemented.
1681  */
1682 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1683 			      struct io_event __user *result)
1684 {
1685 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1686 	struct kioctx *ctx;
1687 	struct kiocb *kiocb;
1688 	u32 key;
1689 	int ret;
1690 
1691 	ret = get_user(key, &iocb->aio_key);
1692 	if (unlikely(ret))
1693 		return -EFAULT;
1694 
1695 	ctx = lookup_ioctx(ctx_id);
1696 	if (unlikely(!ctx))
1697 		return -EINVAL;
1698 
1699 	spin_lock_irq(&ctx->ctx_lock);
1700 	ret = -EAGAIN;
1701 	kiocb = lookup_kiocb(ctx, iocb, key);
1702 	if (kiocb && kiocb->ki_cancel) {
1703 		cancel = kiocb->ki_cancel;
1704 		kiocb->ki_users ++;
1705 		kiocbSetCancelled(kiocb);
1706 	} else
1707 		cancel = NULL;
1708 	spin_unlock_irq(&ctx->ctx_lock);
1709 
1710 	if (NULL != cancel) {
1711 		struct io_event tmp;
1712 		pr_debug("calling cancel\n");
1713 		memset(&tmp, 0, sizeof(tmp));
1714 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1715 		tmp.data = kiocb->ki_user_data;
1716 		ret = cancel(kiocb, &tmp);
1717 		if (!ret) {
1718 			/* Cancellation succeeded -- copy the result
1719 			 * into the user's buffer.
1720 			 */
1721 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1722 				ret = -EFAULT;
1723 		}
1724 	} else
1725 		ret = -EINVAL;
1726 
1727 	put_ioctx(ctx);
1728 
1729 	return ret;
1730 }
1731 
1732 /* io_getevents:
1733  *	Attempts to read at least min_nr events and up to nr events from
1734  *	the completion queue for the aio_context specified by ctx_id.  May
1735  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1736  *	if nr is out of range, if when is out of range.  May fail with
1737  *	-EFAULT if any of the memory specified to is invalid.  May return
1738  *	0 or < min_nr if no events are available and the timeout specified
1739  *	by when	has elapsed, where when == NULL specifies an infinite
1740  *	timeout.  Note that the timeout pointed to by when is relative and
1741  *	will be updated if not NULL and the operation blocks.  Will fail
1742  *	with -ENOSYS if not implemented.
1743  */
1744 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1745 				 long min_nr,
1746 				 long nr,
1747 				 struct io_event __user *events,
1748 				 struct timespec __user *timeout)
1749 {
1750 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1751 	long ret = -EINVAL;
1752 
1753 	if (likely(ioctx)) {
1754 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1755 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1756 		put_ioctx(ioctx);
1757 	}
1758 
1759 	return ret;
1760 }
1761 
1762 __initcall(aio_setup);
1763 
1764 EXPORT_SYMBOL(aio_complete);
1765 EXPORT_SYMBOL(aio_put_req);
1766 EXPORT_SYMBOL(wait_on_sync_kiocb);
1767