1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/uio.h> 19 20 #define DEBUG 0 21 22 #include <linux/sched.h> 23 #include <linux/fs.h> 24 #include <linux/file.h> 25 #include <linux/mm.h> 26 #include <linux/mman.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/aio.h> 30 #include <linux/highmem.h> 31 #include <linux/workqueue.h> 32 #include <linux/security.h> 33 34 #include <asm/kmap_types.h> 35 #include <asm/uaccess.h> 36 #include <asm/mmu_context.h> 37 38 #if DEBUG > 1 39 #define dprintk printk 40 #else 41 #define dprintk(x...) do { ; } while (0) 42 #endif 43 44 /*------ sysctl variables----*/ 45 static DEFINE_SPINLOCK(aio_nr_lock); 46 unsigned long aio_nr; /* current system wide number of aio requests */ 47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 48 /*----end sysctl variables---*/ 49 50 static struct kmem_cache *kiocb_cachep; 51 static struct kmem_cache *kioctx_cachep; 52 53 static struct workqueue_struct *aio_wq; 54 55 /* Used for rare fput completion. */ 56 static void aio_fput_routine(struct work_struct *); 57 static DECLARE_WORK(fput_work, aio_fput_routine); 58 59 static DEFINE_SPINLOCK(fput_lock); 60 static LIST_HEAD(fput_head); 61 62 static void aio_kick_handler(struct work_struct *); 63 static void aio_queue_work(struct kioctx *); 64 65 /* aio_setup 66 * Creates the slab caches used by the aio routines, panic on 67 * failure as this is done early during the boot sequence. 68 */ 69 static int __init aio_setup(void) 70 { 71 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 72 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 73 74 aio_wq = create_workqueue("aio"); 75 76 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 77 78 return 0; 79 } 80 81 static void aio_free_ring(struct kioctx *ctx) 82 { 83 struct aio_ring_info *info = &ctx->ring_info; 84 long i; 85 86 for (i=0; i<info->nr_pages; i++) 87 put_page(info->ring_pages[i]); 88 89 if (info->mmap_size) { 90 down_write(&ctx->mm->mmap_sem); 91 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 92 up_write(&ctx->mm->mmap_sem); 93 } 94 95 if (info->ring_pages && info->ring_pages != info->internal_pages) 96 kfree(info->ring_pages); 97 info->ring_pages = NULL; 98 info->nr = 0; 99 } 100 101 static int aio_setup_ring(struct kioctx *ctx) 102 { 103 struct aio_ring *ring; 104 struct aio_ring_info *info = &ctx->ring_info; 105 unsigned nr_events = ctx->max_reqs; 106 unsigned long size; 107 int nr_pages; 108 109 /* Compensate for the ring buffer's head/tail overlap entry */ 110 nr_events += 2; /* 1 is required, 2 for good luck */ 111 112 size = sizeof(struct aio_ring); 113 size += sizeof(struct io_event) * nr_events; 114 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 115 116 if (nr_pages < 0) 117 return -EINVAL; 118 119 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 120 121 info->nr = 0; 122 info->ring_pages = info->internal_pages; 123 if (nr_pages > AIO_RING_PAGES) { 124 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 125 if (!info->ring_pages) 126 return -ENOMEM; 127 } 128 129 info->mmap_size = nr_pages * PAGE_SIZE; 130 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 131 down_write(&ctx->mm->mmap_sem); 132 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 133 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 134 0); 135 if (IS_ERR((void *)info->mmap_base)) { 136 up_write(&ctx->mm->mmap_sem); 137 info->mmap_size = 0; 138 aio_free_ring(ctx); 139 return -EAGAIN; 140 } 141 142 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 143 info->nr_pages = get_user_pages(current, ctx->mm, 144 info->mmap_base, nr_pages, 145 1, 0, info->ring_pages, NULL); 146 up_write(&ctx->mm->mmap_sem); 147 148 if (unlikely(info->nr_pages != nr_pages)) { 149 aio_free_ring(ctx); 150 return -EAGAIN; 151 } 152 153 ctx->user_id = info->mmap_base; 154 155 info->nr = nr_events; /* trusted copy */ 156 157 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 158 ring->nr = nr_events; /* user copy */ 159 ring->id = ctx->user_id; 160 ring->head = ring->tail = 0; 161 ring->magic = AIO_RING_MAGIC; 162 ring->compat_features = AIO_RING_COMPAT_FEATURES; 163 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 164 ring->header_length = sizeof(struct aio_ring); 165 kunmap_atomic(ring, KM_USER0); 166 167 return 0; 168 } 169 170 171 /* aio_ring_event: returns a pointer to the event at the given index from 172 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 173 */ 174 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 175 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 176 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 177 178 #define aio_ring_event(info, nr, km) ({ \ 179 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 180 struct io_event *__event; \ 181 __event = kmap_atomic( \ 182 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 183 __event += pos % AIO_EVENTS_PER_PAGE; \ 184 __event; \ 185 }) 186 187 #define put_aio_ring_event(event, km) do { \ 188 struct io_event *__event = (event); \ 189 (void)__event; \ 190 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 191 } while(0) 192 193 /* ioctx_alloc 194 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 195 */ 196 static struct kioctx *ioctx_alloc(unsigned nr_events) 197 { 198 struct mm_struct *mm; 199 struct kioctx *ctx; 200 201 /* Prevent overflows */ 202 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 203 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 204 pr_debug("ENOMEM: nr_events too high\n"); 205 return ERR_PTR(-EINVAL); 206 } 207 208 if ((unsigned long)nr_events > aio_max_nr) 209 return ERR_PTR(-EAGAIN); 210 211 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 212 if (!ctx) 213 return ERR_PTR(-ENOMEM); 214 215 ctx->max_reqs = nr_events; 216 mm = ctx->mm = current->mm; 217 atomic_inc(&mm->mm_count); 218 219 atomic_set(&ctx->users, 1); 220 spin_lock_init(&ctx->ctx_lock); 221 spin_lock_init(&ctx->ring_info.ring_lock); 222 init_waitqueue_head(&ctx->wait); 223 224 INIT_LIST_HEAD(&ctx->active_reqs); 225 INIT_LIST_HEAD(&ctx->run_list); 226 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 227 228 if (aio_setup_ring(ctx) < 0) 229 goto out_freectx; 230 231 /* limit the number of system wide aios */ 232 spin_lock(&aio_nr_lock); 233 if (aio_nr + ctx->max_reqs > aio_max_nr || 234 aio_nr + ctx->max_reqs < aio_nr) 235 ctx->max_reqs = 0; 236 else 237 aio_nr += ctx->max_reqs; 238 spin_unlock(&aio_nr_lock); 239 if (ctx->max_reqs == 0) 240 goto out_cleanup; 241 242 /* now link into global list. kludge. FIXME */ 243 write_lock(&mm->ioctx_list_lock); 244 ctx->next = mm->ioctx_list; 245 mm->ioctx_list = ctx; 246 write_unlock(&mm->ioctx_list_lock); 247 248 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 249 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 250 return ctx; 251 252 out_cleanup: 253 __put_ioctx(ctx); 254 return ERR_PTR(-EAGAIN); 255 256 out_freectx: 257 mmdrop(mm); 258 kmem_cache_free(kioctx_cachep, ctx); 259 ctx = ERR_PTR(-ENOMEM); 260 261 dprintk("aio: error allocating ioctx %p\n", ctx); 262 return ctx; 263 } 264 265 /* aio_cancel_all 266 * Cancels all outstanding aio requests on an aio context. Used 267 * when the processes owning a context have all exited to encourage 268 * the rapid destruction of the kioctx. 269 */ 270 static void aio_cancel_all(struct kioctx *ctx) 271 { 272 int (*cancel)(struct kiocb *, struct io_event *); 273 struct io_event res; 274 spin_lock_irq(&ctx->ctx_lock); 275 ctx->dead = 1; 276 while (!list_empty(&ctx->active_reqs)) { 277 struct list_head *pos = ctx->active_reqs.next; 278 struct kiocb *iocb = list_kiocb(pos); 279 list_del_init(&iocb->ki_list); 280 cancel = iocb->ki_cancel; 281 kiocbSetCancelled(iocb); 282 if (cancel) { 283 iocb->ki_users++; 284 spin_unlock_irq(&ctx->ctx_lock); 285 cancel(iocb, &res); 286 spin_lock_irq(&ctx->ctx_lock); 287 } 288 } 289 spin_unlock_irq(&ctx->ctx_lock); 290 } 291 292 static void wait_for_all_aios(struct kioctx *ctx) 293 { 294 struct task_struct *tsk = current; 295 DECLARE_WAITQUEUE(wait, tsk); 296 297 spin_lock_irq(&ctx->ctx_lock); 298 if (!ctx->reqs_active) 299 goto out; 300 301 add_wait_queue(&ctx->wait, &wait); 302 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 303 while (ctx->reqs_active) { 304 spin_unlock_irq(&ctx->ctx_lock); 305 schedule(); 306 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 307 spin_lock_irq(&ctx->ctx_lock); 308 } 309 __set_task_state(tsk, TASK_RUNNING); 310 remove_wait_queue(&ctx->wait, &wait); 311 312 out: 313 spin_unlock_irq(&ctx->ctx_lock); 314 } 315 316 /* wait_on_sync_kiocb: 317 * Waits on the given sync kiocb to complete. 318 */ 319 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb) 320 { 321 while (iocb->ki_users) { 322 set_current_state(TASK_UNINTERRUPTIBLE); 323 if (!iocb->ki_users) 324 break; 325 schedule(); 326 } 327 __set_current_state(TASK_RUNNING); 328 return iocb->ki_user_data; 329 } 330 331 /* exit_aio: called when the last user of mm goes away. At this point, 332 * there is no way for any new requests to be submited or any of the 333 * io_* syscalls to be called on the context. However, there may be 334 * outstanding requests which hold references to the context; as they 335 * go away, they will call put_ioctx and release any pinned memory 336 * associated with the request (held via struct page * references). 337 */ 338 void fastcall exit_aio(struct mm_struct *mm) 339 { 340 struct kioctx *ctx = mm->ioctx_list; 341 mm->ioctx_list = NULL; 342 while (ctx) { 343 struct kioctx *next = ctx->next; 344 ctx->next = NULL; 345 aio_cancel_all(ctx); 346 347 wait_for_all_aios(ctx); 348 /* 349 * this is an overkill, but ensures we don't leave 350 * the ctx on the aio_wq 351 */ 352 flush_workqueue(aio_wq); 353 354 if (1 != atomic_read(&ctx->users)) 355 printk(KERN_DEBUG 356 "exit_aio:ioctx still alive: %d %d %d\n", 357 atomic_read(&ctx->users), ctx->dead, 358 ctx->reqs_active); 359 put_ioctx(ctx); 360 ctx = next; 361 } 362 } 363 364 /* __put_ioctx 365 * Called when the last user of an aio context has gone away, 366 * and the struct needs to be freed. 367 */ 368 void fastcall __put_ioctx(struct kioctx *ctx) 369 { 370 unsigned nr_events = ctx->max_reqs; 371 372 BUG_ON(ctx->reqs_active); 373 374 cancel_delayed_work(&ctx->wq); 375 flush_workqueue(aio_wq); 376 aio_free_ring(ctx); 377 mmdrop(ctx->mm); 378 ctx->mm = NULL; 379 pr_debug("__put_ioctx: freeing %p\n", ctx); 380 kmem_cache_free(kioctx_cachep, ctx); 381 382 if (nr_events) { 383 spin_lock(&aio_nr_lock); 384 BUG_ON(aio_nr - nr_events > aio_nr); 385 aio_nr -= nr_events; 386 spin_unlock(&aio_nr_lock); 387 } 388 } 389 390 /* aio_get_req 391 * Allocate a slot for an aio request. Increments the users count 392 * of the kioctx so that the kioctx stays around until all requests are 393 * complete. Returns NULL if no requests are free. 394 * 395 * Returns with kiocb->users set to 2. The io submit code path holds 396 * an extra reference while submitting the i/o. 397 * This prevents races between the aio code path referencing the 398 * req (after submitting it) and aio_complete() freeing the req. 399 */ 400 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx)); 401 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx) 402 { 403 struct kiocb *req = NULL; 404 struct aio_ring *ring; 405 int okay = 0; 406 407 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 408 if (unlikely(!req)) 409 return NULL; 410 411 req->ki_flags = 0; 412 req->ki_users = 2; 413 req->ki_key = 0; 414 req->ki_ctx = ctx; 415 req->ki_cancel = NULL; 416 req->ki_retry = NULL; 417 req->ki_dtor = NULL; 418 req->private = NULL; 419 req->ki_iovec = NULL; 420 INIT_LIST_HEAD(&req->ki_run_list); 421 422 /* Check if the completion queue has enough free space to 423 * accept an event from this io. 424 */ 425 spin_lock_irq(&ctx->ctx_lock); 426 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 427 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 428 list_add(&req->ki_list, &ctx->active_reqs); 429 ctx->reqs_active++; 430 okay = 1; 431 } 432 kunmap_atomic(ring, KM_USER0); 433 spin_unlock_irq(&ctx->ctx_lock); 434 435 if (!okay) { 436 kmem_cache_free(kiocb_cachep, req); 437 req = NULL; 438 } 439 440 return req; 441 } 442 443 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 444 { 445 struct kiocb *req; 446 /* Handle a potential starvation case -- should be exceedingly rare as 447 * requests will be stuck on fput_head only if the aio_fput_routine is 448 * delayed and the requests were the last user of the struct file. 449 */ 450 req = __aio_get_req(ctx); 451 if (unlikely(NULL == req)) { 452 aio_fput_routine(NULL); 453 req = __aio_get_req(ctx); 454 } 455 return req; 456 } 457 458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 459 { 460 assert_spin_locked(&ctx->ctx_lock); 461 462 if (req->ki_dtor) 463 req->ki_dtor(req); 464 if (req->ki_iovec != &req->ki_inline_vec) 465 kfree(req->ki_iovec); 466 kmem_cache_free(kiocb_cachep, req); 467 ctx->reqs_active--; 468 469 if (unlikely(!ctx->reqs_active && ctx->dead)) 470 wake_up(&ctx->wait); 471 } 472 473 static void aio_fput_routine(struct work_struct *data) 474 { 475 spin_lock_irq(&fput_lock); 476 while (likely(!list_empty(&fput_head))) { 477 struct kiocb *req = list_kiocb(fput_head.next); 478 struct kioctx *ctx = req->ki_ctx; 479 480 list_del(&req->ki_list); 481 spin_unlock_irq(&fput_lock); 482 483 /* Complete the fput */ 484 __fput(req->ki_filp); 485 486 /* Link the iocb into the context's free list */ 487 spin_lock_irq(&ctx->ctx_lock); 488 really_put_req(ctx, req); 489 spin_unlock_irq(&ctx->ctx_lock); 490 491 put_ioctx(ctx); 492 spin_lock_irq(&fput_lock); 493 } 494 spin_unlock_irq(&fput_lock); 495 } 496 497 /* __aio_put_req 498 * Returns true if this put was the last user of the request. 499 */ 500 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 501 { 502 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 503 req, atomic_read(&req->ki_filp->f_count)); 504 505 assert_spin_locked(&ctx->ctx_lock); 506 507 req->ki_users --; 508 BUG_ON(req->ki_users < 0); 509 if (likely(req->ki_users)) 510 return 0; 511 list_del(&req->ki_list); /* remove from active_reqs */ 512 req->ki_cancel = NULL; 513 req->ki_retry = NULL; 514 515 /* Must be done under the lock to serialise against cancellation. 516 * Call this aio_fput as it duplicates fput via the fput_work. 517 */ 518 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { 519 get_ioctx(ctx); 520 spin_lock(&fput_lock); 521 list_add(&req->ki_list, &fput_head); 522 spin_unlock(&fput_lock); 523 queue_work(aio_wq, &fput_work); 524 } else 525 really_put_req(ctx, req); 526 return 1; 527 } 528 529 /* aio_put_req 530 * Returns true if this put was the last user of the kiocb, 531 * false if the request is still in use. 532 */ 533 int fastcall aio_put_req(struct kiocb *req) 534 { 535 struct kioctx *ctx = req->ki_ctx; 536 int ret; 537 spin_lock_irq(&ctx->ctx_lock); 538 ret = __aio_put_req(ctx, req); 539 spin_unlock_irq(&ctx->ctx_lock); 540 return ret; 541 } 542 543 /* Lookup an ioctx id. ioctx_list is lockless for reads. 544 * FIXME: this is O(n) and is only suitable for development. 545 */ 546 struct kioctx *lookup_ioctx(unsigned long ctx_id) 547 { 548 struct kioctx *ioctx; 549 struct mm_struct *mm; 550 551 mm = current->mm; 552 read_lock(&mm->ioctx_list_lock); 553 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 554 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 555 get_ioctx(ioctx); 556 break; 557 } 558 read_unlock(&mm->ioctx_list_lock); 559 560 return ioctx; 561 } 562 563 /* 564 * use_mm 565 * Makes the calling kernel thread take on the specified 566 * mm context. 567 * Called by the retry thread execute retries within the 568 * iocb issuer's mm context, so that copy_from/to_user 569 * operations work seamlessly for aio. 570 * (Note: this routine is intended to be called only 571 * from a kernel thread context) 572 */ 573 static void use_mm(struct mm_struct *mm) 574 { 575 struct mm_struct *active_mm; 576 struct task_struct *tsk = current; 577 578 task_lock(tsk); 579 tsk->flags |= PF_BORROWED_MM; 580 active_mm = tsk->active_mm; 581 atomic_inc(&mm->mm_count); 582 tsk->mm = mm; 583 tsk->active_mm = mm; 584 /* 585 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise 586 * it won't work. Update it accordingly if you change it here 587 */ 588 switch_mm(active_mm, mm, tsk); 589 task_unlock(tsk); 590 591 mmdrop(active_mm); 592 } 593 594 /* 595 * unuse_mm 596 * Reverses the effect of use_mm, i.e. releases the 597 * specified mm context which was earlier taken on 598 * by the calling kernel thread 599 * (Note: this routine is intended to be called only 600 * from a kernel thread context) 601 */ 602 static void unuse_mm(struct mm_struct *mm) 603 { 604 struct task_struct *tsk = current; 605 606 task_lock(tsk); 607 tsk->flags &= ~PF_BORROWED_MM; 608 tsk->mm = NULL; 609 /* active_mm is still 'mm' */ 610 enter_lazy_tlb(mm, tsk); 611 task_unlock(tsk); 612 } 613 614 /* 615 * Queue up a kiocb to be retried. Assumes that the kiocb 616 * has already been marked as kicked, and places it on 617 * the retry run list for the corresponding ioctx, if it 618 * isn't already queued. Returns 1 if it actually queued 619 * the kiocb (to tell the caller to activate the work 620 * queue to process it), or 0, if it found that it was 621 * already queued. 622 */ 623 static inline int __queue_kicked_iocb(struct kiocb *iocb) 624 { 625 struct kioctx *ctx = iocb->ki_ctx; 626 627 assert_spin_locked(&ctx->ctx_lock); 628 629 if (list_empty(&iocb->ki_run_list)) { 630 list_add_tail(&iocb->ki_run_list, 631 &ctx->run_list); 632 return 1; 633 } 634 return 0; 635 } 636 637 /* aio_run_iocb 638 * This is the core aio execution routine. It is 639 * invoked both for initial i/o submission and 640 * subsequent retries via the aio_kick_handler. 641 * Expects to be invoked with iocb->ki_ctx->lock 642 * already held. The lock is released and reacquired 643 * as needed during processing. 644 * 645 * Calls the iocb retry method (already setup for the 646 * iocb on initial submission) for operation specific 647 * handling, but takes care of most of common retry 648 * execution details for a given iocb. The retry method 649 * needs to be non-blocking as far as possible, to avoid 650 * holding up other iocbs waiting to be serviced by the 651 * retry kernel thread. 652 * 653 * The trickier parts in this code have to do with 654 * ensuring that only one retry instance is in progress 655 * for a given iocb at any time. Providing that guarantee 656 * simplifies the coding of individual aio operations as 657 * it avoids various potential races. 658 */ 659 static ssize_t aio_run_iocb(struct kiocb *iocb) 660 { 661 struct kioctx *ctx = iocb->ki_ctx; 662 ssize_t (*retry)(struct kiocb *); 663 ssize_t ret; 664 665 if (!(retry = iocb->ki_retry)) { 666 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 667 return 0; 668 } 669 670 /* 671 * We don't want the next retry iteration for this 672 * operation to start until this one has returned and 673 * updated the iocb state. However, wait_queue functions 674 * can trigger a kick_iocb from interrupt context in the 675 * meantime, indicating that data is available for the next 676 * iteration. We want to remember that and enable the 677 * next retry iteration _after_ we are through with 678 * this one. 679 * 680 * So, in order to be able to register a "kick", but 681 * prevent it from being queued now, we clear the kick 682 * flag, but make the kick code *think* that the iocb is 683 * still on the run list until we are actually done. 684 * When we are done with this iteration, we check if 685 * the iocb was kicked in the meantime and if so, queue 686 * it up afresh. 687 */ 688 689 kiocbClearKicked(iocb); 690 691 /* 692 * This is so that aio_complete knows it doesn't need to 693 * pull the iocb off the run list (We can't just call 694 * INIT_LIST_HEAD because we don't want a kick_iocb to 695 * queue this on the run list yet) 696 */ 697 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 698 spin_unlock_irq(&ctx->ctx_lock); 699 700 /* Quit retrying if the i/o has been cancelled */ 701 if (kiocbIsCancelled(iocb)) { 702 ret = -EINTR; 703 aio_complete(iocb, ret, 0); 704 /* must not access the iocb after this */ 705 goto out; 706 } 707 708 /* 709 * Now we are all set to call the retry method in async 710 * context. By setting this thread's io_wait context 711 * to point to the wait queue entry inside the currently 712 * running iocb for the duration of the retry, we ensure 713 * that async notification wakeups are queued by the 714 * operation instead of blocking waits, and when notified, 715 * cause the iocb to be kicked for continuation (through 716 * the aio_wake_function callback). 717 */ 718 BUG_ON(current->io_wait != NULL); 719 current->io_wait = &iocb->ki_wait; 720 ret = retry(iocb); 721 current->io_wait = NULL; 722 723 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 724 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 725 aio_complete(iocb, ret, 0); 726 } 727 out: 728 spin_lock_irq(&ctx->ctx_lock); 729 730 if (-EIOCBRETRY == ret) { 731 /* 732 * OK, now that we are done with this iteration 733 * and know that there is more left to go, 734 * this is where we let go so that a subsequent 735 * "kick" can start the next iteration 736 */ 737 738 /* will make __queue_kicked_iocb succeed from here on */ 739 INIT_LIST_HEAD(&iocb->ki_run_list); 740 /* we must queue the next iteration ourselves, if it 741 * has already been kicked */ 742 if (kiocbIsKicked(iocb)) { 743 __queue_kicked_iocb(iocb); 744 745 /* 746 * __queue_kicked_iocb will always return 1 here, because 747 * iocb->ki_run_list is empty at this point so it should 748 * be safe to unconditionally queue the context into the 749 * work queue. 750 */ 751 aio_queue_work(ctx); 752 } 753 } 754 return ret; 755 } 756 757 /* 758 * __aio_run_iocbs: 759 * Process all pending retries queued on the ioctx 760 * run list. 761 * Assumes it is operating within the aio issuer's mm 762 * context. 763 */ 764 static int __aio_run_iocbs(struct kioctx *ctx) 765 { 766 struct kiocb *iocb; 767 struct list_head run_list; 768 769 assert_spin_locked(&ctx->ctx_lock); 770 771 list_replace_init(&ctx->run_list, &run_list); 772 while (!list_empty(&run_list)) { 773 iocb = list_entry(run_list.next, struct kiocb, 774 ki_run_list); 775 list_del(&iocb->ki_run_list); 776 /* 777 * Hold an extra reference while retrying i/o. 778 */ 779 iocb->ki_users++; /* grab extra reference */ 780 aio_run_iocb(iocb); 781 __aio_put_req(ctx, iocb); 782 } 783 if (!list_empty(&ctx->run_list)) 784 return 1; 785 return 0; 786 } 787 788 static void aio_queue_work(struct kioctx * ctx) 789 { 790 unsigned long timeout; 791 /* 792 * if someone is waiting, get the work started right 793 * away, otherwise, use a longer delay 794 */ 795 smp_mb(); 796 if (waitqueue_active(&ctx->wait)) 797 timeout = 1; 798 else 799 timeout = HZ/10; 800 queue_delayed_work(aio_wq, &ctx->wq, timeout); 801 } 802 803 804 /* 805 * aio_run_iocbs: 806 * Process all pending retries queued on the ioctx 807 * run list. 808 * Assumes it is operating within the aio issuer's mm 809 * context. 810 */ 811 static inline void aio_run_iocbs(struct kioctx *ctx) 812 { 813 int requeue; 814 815 spin_lock_irq(&ctx->ctx_lock); 816 817 requeue = __aio_run_iocbs(ctx); 818 spin_unlock_irq(&ctx->ctx_lock); 819 if (requeue) 820 aio_queue_work(ctx); 821 } 822 823 /* 824 * just like aio_run_iocbs, but keeps running them until 825 * the list stays empty 826 */ 827 static inline void aio_run_all_iocbs(struct kioctx *ctx) 828 { 829 spin_lock_irq(&ctx->ctx_lock); 830 while (__aio_run_iocbs(ctx)) 831 ; 832 spin_unlock_irq(&ctx->ctx_lock); 833 } 834 835 /* 836 * aio_kick_handler: 837 * Work queue handler triggered to process pending 838 * retries on an ioctx. Takes on the aio issuer's 839 * mm context before running the iocbs, so that 840 * copy_xxx_user operates on the issuer's address 841 * space. 842 * Run on aiod's context. 843 */ 844 static void aio_kick_handler(struct work_struct *work) 845 { 846 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 847 mm_segment_t oldfs = get_fs(); 848 struct mm_struct *mm; 849 int requeue; 850 851 set_fs(USER_DS); 852 use_mm(ctx->mm); 853 spin_lock_irq(&ctx->ctx_lock); 854 requeue =__aio_run_iocbs(ctx); 855 mm = ctx->mm; 856 spin_unlock_irq(&ctx->ctx_lock); 857 unuse_mm(mm); 858 set_fs(oldfs); 859 /* 860 * we're in a worker thread already, don't use queue_delayed_work, 861 */ 862 if (requeue) 863 queue_delayed_work(aio_wq, &ctx->wq, 0); 864 } 865 866 867 /* 868 * Called by kick_iocb to queue the kiocb for retry 869 * and if required activate the aio work queue to process 870 * it 871 */ 872 static void try_queue_kicked_iocb(struct kiocb *iocb) 873 { 874 struct kioctx *ctx = iocb->ki_ctx; 875 unsigned long flags; 876 int run = 0; 877 878 /* We're supposed to be the only path putting the iocb back on the run 879 * list. If we find that the iocb is *back* on a wait queue already 880 * than retry has happened before we could queue the iocb. This also 881 * means that the retry could have completed and freed our iocb, no 882 * good. */ 883 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 884 885 spin_lock_irqsave(&ctx->ctx_lock, flags); 886 /* set this inside the lock so that we can't race with aio_run_iocb() 887 * testing it and putting the iocb on the run list under the lock */ 888 if (!kiocbTryKick(iocb)) 889 run = __queue_kicked_iocb(iocb); 890 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 891 if (run) 892 aio_queue_work(ctx); 893 } 894 895 /* 896 * kick_iocb: 897 * Called typically from a wait queue callback context 898 * (aio_wake_function) to trigger a retry of the iocb. 899 * The retry is usually executed by aio workqueue 900 * threads (See aio_kick_handler). 901 */ 902 void fastcall kick_iocb(struct kiocb *iocb) 903 { 904 /* sync iocbs are easy: they can only ever be executing from a 905 * single context. */ 906 if (is_sync_kiocb(iocb)) { 907 kiocbSetKicked(iocb); 908 wake_up_process(iocb->ki_obj.tsk); 909 return; 910 } 911 912 try_queue_kicked_iocb(iocb); 913 } 914 EXPORT_SYMBOL(kick_iocb); 915 916 /* aio_complete 917 * Called when the io request on the given iocb is complete. 918 * Returns true if this is the last user of the request. The 919 * only other user of the request can be the cancellation code. 920 */ 921 int fastcall aio_complete(struct kiocb *iocb, long res, long res2) 922 { 923 struct kioctx *ctx = iocb->ki_ctx; 924 struct aio_ring_info *info; 925 struct aio_ring *ring; 926 struct io_event *event; 927 unsigned long flags; 928 unsigned long tail; 929 int ret; 930 931 /* 932 * Special case handling for sync iocbs: 933 * - events go directly into the iocb for fast handling 934 * - the sync task with the iocb in its stack holds the single iocb 935 * ref, no other paths have a way to get another ref 936 * - the sync task helpfully left a reference to itself in the iocb 937 */ 938 if (is_sync_kiocb(iocb)) { 939 BUG_ON(iocb->ki_users != 1); 940 iocb->ki_user_data = res; 941 iocb->ki_users = 0; 942 wake_up_process(iocb->ki_obj.tsk); 943 return 1; 944 } 945 946 info = &ctx->ring_info; 947 948 /* add a completion event to the ring buffer. 949 * must be done holding ctx->ctx_lock to prevent 950 * other code from messing with the tail 951 * pointer since we might be called from irq 952 * context. 953 */ 954 spin_lock_irqsave(&ctx->ctx_lock, flags); 955 956 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 957 list_del_init(&iocb->ki_run_list); 958 959 /* 960 * cancelled requests don't get events, userland was given one 961 * when the event got cancelled. 962 */ 963 if (kiocbIsCancelled(iocb)) 964 goto put_rq; 965 966 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 967 968 tail = info->tail; 969 event = aio_ring_event(info, tail, KM_IRQ0); 970 if (++tail >= info->nr) 971 tail = 0; 972 973 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 974 event->data = iocb->ki_user_data; 975 event->res = res; 976 event->res2 = res2; 977 978 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 979 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 980 res, res2); 981 982 /* after flagging the request as done, we 983 * must never even look at it again 984 */ 985 smp_wmb(); /* make event visible before updating tail */ 986 987 info->tail = tail; 988 ring->tail = tail; 989 990 put_aio_ring_event(event, KM_IRQ0); 991 kunmap_atomic(ring, KM_IRQ1); 992 993 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 994 put_rq: 995 /* everything turned out well, dispose of the aiocb. */ 996 ret = __aio_put_req(ctx, iocb); 997 998 if (waitqueue_active(&ctx->wait)) 999 wake_up(&ctx->wait); 1000 1001 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1002 return ret; 1003 } 1004 1005 /* aio_read_evt 1006 * Pull an event off of the ioctx's event ring. Returns the number of 1007 * events fetched (0 or 1 ;-) 1008 * FIXME: make this use cmpxchg. 1009 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1010 */ 1011 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1012 { 1013 struct aio_ring_info *info = &ioctx->ring_info; 1014 struct aio_ring *ring; 1015 unsigned long head; 1016 int ret = 0; 1017 1018 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1019 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1020 (unsigned long)ring->head, (unsigned long)ring->tail, 1021 (unsigned long)ring->nr); 1022 1023 if (ring->head == ring->tail) 1024 goto out; 1025 1026 spin_lock(&info->ring_lock); 1027 1028 head = ring->head % info->nr; 1029 if (head != ring->tail) { 1030 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1031 *ent = *evp; 1032 head = (head + 1) % info->nr; 1033 smp_mb(); /* finish reading the event before updatng the head */ 1034 ring->head = head; 1035 ret = 1; 1036 put_aio_ring_event(evp, KM_USER1); 1037 } 1038 spin_unlock(&info->ring_lock); 1039 1040 out: 1041 kunmap_atomic(ring, KM_USER0); 1042 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1043 (unsigned long)ring->head, (unsigned long)ring->tail); 1044 return ret; 1045 } 1046 1047 struct aio_timeout { 1048 struct timer_list timer; 1049 int timed_out; 1050 struct task_struct *p; 1051 }; 1052 1053 static void timeout_func(unsigned long data) 1054 { 1055 struct aio_timeout *to = (struct aio_timeout *)data; 1056 1057 to->timed_out = 1; 1058 wake_up_process(to->p); 1059 } 1060 1061 static inline void init_timeout(struct aio_timeout *to) 1062 { 1063 init_timer(&to->timer); 1064 to->timer.data = (unsigned long)to; 1065 to->timer.function = timeout_func; 1066 to->timed_out = 0; 1067 to->p = current; 1068 } 1069 1070 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1071 const struct timespec *ts) 1072 { 1073 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1074 if (time_after(to->timer.expires, jiffies)) 1075 add_timer(&to->timer); 1076 else 1077 to->timed_out = 1; 1078 } 1079 1080 static inline void clear_timeout(struct aio_timeout *to) 1081 { 1082 del_singleshot_timer_sync(&to->timer); 1083 } 1084 1085 static int read_events(struct kioctx *ctx, 1086 long min_nr, long nr, 1087 struct io_event __user *event, 1088 struct timespec __user *timeout) 1089 { 1090 long start_jiffies = jiffies; 1091 struct task_struct *tsk = current; 1092 DECLARE_WAITQUEUE(wait, tsk); 1093 int ret; 1094 int i = 0; 1095 struct io_event ent; 1096 struct aio_timeout to; 1097 int retry = 0; 1098 1099 /* needed to zero any padding within an entry (there shouldn't be 1100 * any, but C is fun! 1101 */ 1102 memset(&ent, 0, sizeof(ent)); 1103 retry: 1104 ret = 0; 1105 while (likely(i < nr)) { 1106 ret = aio_read_evt(ctx, &ent); 1107 if (unlikely(ret <= 0)) 1108 break; 1109 1110 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1111 ent.data, ent.obj, ent.res, ent.res2); 1112 1113 /* Could we split the check in two? */ 1114 ret = -EFAULT; 1115 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1116 dprintk("aio: lost an event due to EFAULT.\n"); 1117 break; 1118 } 1119 ret = 0; 1120 1121 /* Good, event copied to userland, update counts. */ 1122 event ++; 1123 i ++; 1124 } 1125 1126 if (min_nr <= i) 1127 return i; 1128 if (ret) 1129 return ret; 1130 1131 /* End fast path */ 1132 1133 /* racey check, but it gets redone */ 1134 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1135 retry = 1; 1136 aio_run_all_iocbs(ctx); 1137 goto retry; 1138 } 1139 1140 init_timeout(&to); 1141 if (timeout) { 1142 struct timespec ts; 1143 ret = -EFAULT; 1144 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1145 goto out; 1146 1147 set_timeout(start_jiffies, &to, &ts); 1148 } 1149 1150 while (likely(i < nr)) { 1151 add_wait_queue_exclusive(&ctx->wait, &wait); 1152 do { 1153 set_task_state(tsk, TASK_INTERRUPTIBLE); 1154 ret = aio_read_evt(ctx, &ent); 1155 if (ret) 1156 break; 1157 if (min_nr <= i) 1158 break; 1159 ret = 0; 1160 if (to.timed_out) /* Only check after read evt */ 1161 break; 1162 schedule(); 1163 if (signal_pending(tsk)) { 1164 ret = -EINTR; 1165 break; 1166 } 1167 /*ret = aio_read_evt(ctx, &ent);*/ 1168 } while (1) ; 1169 1170 set_task_state(tsk, TASK_RUNNING); 1171 remove_wait_queue(&ctx->wait, &wait); 1172 1173 if (unlikely(ret <= 0)) 1174 break; 1175 1176 ret = -EFAULT; 1177 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1178 dprintk("aio: lost an event due to EFAULT.\n"); 1179 break; 1180 } 1181 1182 /* Good, event copied to userland, update counts. */ 1183 event ++; 1184 i ++; 1185 } 1186 1187 if (timeout) 1188 clear_timeout(&to); 1189 out: 1190 return i ? i : ret; 1191 } 1192 1193 /* Take an ioctx and remove it from the list of ioctx's. Protects 1194 * against races with itself via ->dead. 1195 */ 1196 static void io_destroy(struct kioctx *ioctx) 1197 { 1198 struct mm_struct *mm = current->mm; 1199 struct kioctx **tmp; 1200 int was_dead; 1201 1202 /* delete the entry from the list is someone else hasn't already */ 1203 write_lock(&mm->ioctx_list_lock); 1204 was_dead = ioctx->dead; 1205 ioctx->dead = 1; 1206 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1207 tmp = &(*tmp)->next) 1208 ; 1209 if (*tmp) 1210 *tmp = ioctx->next; 1211 write_unlock(&mm->ioctx_list_lock); 1212 1213 dprintk("aio_release(%p)\n", ioctx); 1214 if (likely(!was_dead)) 1215 put_ioctx(ioctx); /* twice for the list */ 1216 1217 aio_cancel_all(ioctx); 1218 wait_for_all_aios(ioctx); 1219 put_ioctx(ioctx); /* once for the lookup */ 1220 } 1221 1222 /* sys_io_setup: 1223 * Create an aio_context capable of receiving at least nr_events. 1224 * ctxp must not point to an aio_context that already exists, and 1225 * must be initialized to 0 prior to the call. On successful 1226 * creation of the aio_context, *ctxp is filled in with the resulting 1227 * handle. May fail with -EINVAL if *ctxp is not initialized, 1228 * if the specified nr_events exceeds internal limits. May fail 1229 * with -EAGAIN if the specified nr_events exceeds the user's limit 1230 * of available events. May fail with -ENOMEM if insufficient kernel 1231 * resources are available. May fail with -EFAULT if an invalid 1232 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1233 * implemented. 1234 */ 1235 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1236 { 1237 struct kioctx *ioctx = NULL; 1238 unsigned long ctx; 1239 long ret; 1240 1241 ret = get_user(ctx, ctxp); 1242 if (unlikely(ret)) 1243 goto out; 1244 1245 ret = -EINVAL; 1246 if (unlikely(ctx || nr_events == 0)) { 1247 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1248 ctx, nr_events); 1249 goto out; 1250 } 1251 1252 ioctx = ioctx_alloc(nr_events); 1253 ret = PTR_ERR(ioctx); 1254 if (!IS_ERR(ioctx)) { 1255 ret = put_user(ioctx->user_id, ctxp); 1256 if (!ret) 1257 return 0; 1258 1259 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1260 io_destroy(ioctx); 1261 } 1262 1263 out: 1264 return ret; 1265 } 1266 1267 /* sys_io_destroy: 1268 * Destroy the aio_context specified. May cancel any outstanding 1269 * AIOs and block on completion. Will fail with -ENOSYS if not 1270 * implemented. May fail with -EFAULT if the context pointed to 1271 * is invalid. 1272 */ 1273 asmlinkage long sys_io_destroy(aio_context_t ctx) 1274 { 1275 struct kioctx *ioctx = lookup_ioctx(ctx); 1276 if (likely(NULL != ioctx)) { 1277 io_destroy(ioctx); 1278 return 0; 1279 } 1280 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1281 return -EINVAL; 1282 } 1283 1284 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1285 { 1286 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1287 1288 BUG_ON(ret <= 0); 1289 1290 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1291 ssize_t this = min((ssize_t)iov->iov_len, ret); 1292 iov->iov_base += this; 1293 iov->iov_len -= this; 1294 iocb->ki_left -= this; 1295 ret -= this; 1296 if (iov->iov_len == 0) { 1297 iocb->ki_cur_seg++; 1298 iov++; 1299 } 1300 } 1301 1302 /* the caller should not have done more io than what fit in 1303 * the remaining iovecs */ 1304 BUG_ON(ret > 0 && iocb->ki_left == 0); 1305 } 1306 1307 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1308 { 1309 struct file *file = iocb->ki_filp; 1310 struct address_space *mapping = file->f_mapping; 1311 struct inode *inode = mapping->host; 1312 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1313 unsigned long, loff_t); 1314 ssize_t ret = 0; 1315 unsigned short opcode; 1316 1317 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1318 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1319 rw_op = file->f_op->aio_read; 1320 opcode = IOCB_CMD_PREADV; 1321 } else { 1322 rw_op = file->f_op->aio_write; 1323 opcode = IOCB_CMD_PWRITEV; 1324 } 1325 1326 do { 1327 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1328 iocb->ki_nr_segs - iocb->ki_cur_seg, 1329 iocb->ki_pos); 1330 if (ret > 0) 1331 aio_advance_iovec(iocb, ret); 1332 1333 /* retry all partial writes. retry partial reads as long as its a 1334 * regular file. */ 1335 } while (ret > 0 && iocb->ki_left > 0 && 1336 (opcode == IOCB_CMD_PWRITEV || 1337 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1338 1339 /* This means we must have transferred all that we could */ 1340 /* No need to retry anymore */ 1341 if ((ret == 0) || (iocb->ki_left == 0)) 1342 ret = iocb->ki_nbytes - iocb->ki_left; 1343 1344 return ret; 1345 } 1346 1347 static ssize_t aio_fdsync(struct kiocb *iocb) 1348 { 1349 struct file *file = iocb->ki_filp; 1350 ssize_t ret = -EINVAL; 1351 1352 if (file->f_op->aio_fsync) 1353 ret = file->f_op->aio_fsync(iocb, 1); 1354 return ret; 1355 } 1356 1357 static ssize_t aio_fsync(struct kiocb *iocb) 1358 { 1359 struct file *file = iocb->ki_filp; 1360 ssize_t ret = -EINVAL; 1361 1362 if (file->f_op->aio_fsync) 1363 ret = file->f_op->aio_fsync(iocb, 0); 1364 return ret; 1365 } 1366 1367 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1368 { 1369 ssize_t ret; 1370 1371 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1372 kiocb->ki_nbytes, 1, 1373 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1374 if (ret < 0) 1375 goto out; 1376 1377 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1378 kiocb->ki_cur_seg = 0; 1379 /* ki_nbytes/left now reflect bytes instead of segs */ 1380 kiocb->ki_nbytes = ret; 1381 kiocb->ki_left = ret; 1382 1383 ret = 0; 1384 out: 1385 return ret; 1386 } 1387 1388 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1389 { 1390 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1391 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1392 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1393 kiocb->ki_nr_segs = 1; 1394 kiocb->ki_cur_seg = 0; 1395 return 0; 1396 } 1397 1398 /* 1399 * aio_setup_iocb: 1400 * Performs the initial checks and aio retry method 1401 * setup for the kiocb at the time of io submission. 1402 */ 1403 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1404 { 1405 struct file *file = kiocb->ki_filp; 1406 ssize_t ret = 0; 1407 1408 switch (kiocb->ki_opcode) { 1409 case IOCB_CMD_PREAD: 1410 ret = -EBADF; 1411 if (unlikely(!(file->f_mode & FMODE_READ))) 1412 break; 1413 ret = -EFAULT; 1414 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1415 kiocb->ki_left))) 1416 break; 1417 ret = security_file_permission(file, MAY_READ); 1418 if (unlikely(ret)) 1419 break; 1420 ret = aio_setup_single_vector(kiocb); 1421 if (ret) 1422 break; 1423 ret = -EINVAL; 1424 if (file->f_op->aio_read) 1425 kiocb->ki_retry = aio_rw_vect_retry; 1426 break; 1427 case IOCB_CMD_PWRITE: 1428 ret = -EBADF; 1429 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1430 break; 1431 ret = -EFAULT; 1432 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1433 kiocb->ki_left))) 1434 break; 1435 ret = security_file_permission(file, MAY_WRITE); 1436 if (unlikely(ret)) 1437 break; 1438 ret = aio_setup_single_vector(kiocb); 1439 if (ret) 1440 break; 1441 ret = -EINVAL; 1442 if (file->f_op->aio_write) 1443 kiocb->ki_retry = aio_rw_vect_retry; 1444 break; 1445 case IOCB_CMD_PREADV: 1446 ret = -EBADF; 1447 if (unlikely(!(file->f_mode & FMODE_READ))) 1448 break; 1449 ret = security_file_permission(file, MAY_READ); 1450 if (unlikely(ret)) 1451 break; 1452 ret = aio_setup_vectored_rw(READ, kiocb); 1453 if (ret) 1454 break; 1455 ret = -EINVAL; 1456 if (file->f_op->aio_read) 1457 kiocb->ki_retry = aio_rw_vect_retry; 1458 break; 1459 case IOCB_CMD_PWRITEV: 1460 ret = -EBADF; 1461 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1462 break; 1463 ret = security_file_permission(file, MAY_WRITE); 1464 if (unlikely(ret)) 1465 break; 1466 ret = aio_setup_vectored_rw(WRITE, kiocb); 1467 if (ret) 1468 break; 1469 ret = -EINVAL; 1470 if (file->f_op->aio_write) 1471 kiocb->ki_retry = aio_rw_vect_retry; 1472 break; 1473 case IOCB_CMD_FDSYNC: 1474 ret = -EINVAL; 1475 if (file->f_op->aio_fsync) 1476 kiocb->ki_retry = aio_fdsync; 1477 break; 1478 case IOCB_CMD_FSYNC: 1479 ret = -EINVAL; 1480 if (file->f_op->aio_fsync) 1481 kiocb->ki_retry = aio_fsync; 1482 break; 1483 default: 1484 dprintk("EINVAL: io_submit: no operation provided\n"); 1485 ret = -EINVAL; 1486 } 1487 1488 if (!kiocb->ki_retry) 1489 return ret; 1490 1491 return 0; 1492 } 1493 1494 /* 1495 * aio_wake_function: 1496 * wait queue callback function for aio notification, 1497 * Simply triggers a retry of the operation via kick_iocb. 1498 * 1499 * This callback is specified in the wait queue entry in 1500 * a kiocb (current->io_wait points to this wait queue 1501 * entry when an aio operation executes; it is used 1502 * instead of a synchronous wait when an i/o blocking 1503 * condition is encountered during aio). 1504 * 1505 * Note: 1506 * This routine is executed with the wait queue lock held. 1507 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1508 * the ioctx lock inside the wait queue lock. This is safe 1509 * because this callback isn't used for wait queues which 1510 * are nested inside ioctx lock (i.e. ctx->wait) 1511 */ 1512 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1513 int sync, void *key) 1514 { 1515 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1516 1517 list_del_init(&wait->task_list); 1518 kick_iocb(iocb); 1519 return 1; 1520 } 1521 1522 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1523 struct iocb *iocb) 1524 { 1525 struct kiocb *req; 1526 struct file *file; 1527 ssize_t ret; 1528 1529 /* enforce forwards compatibility on users */ 1530 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 || 1531 iocb->aio_reserved3)) { 1532 pr_debug("EINVAL: io_submit: reserve field set\n"); 1533 return -EINVAL; 1534 } 1535 1536 /* prevent overflows */ 1537 if (unlikely( 1538 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1539 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1540 ((ssize_t)iocb->aio_nbytes < 0) 1541 )) { 1542 pr_debug("EINVAL: io_submit: overflow check\n"); 1543 return -EINVAL; 1544 } 1545 1546 file = fget(iocb->aio_fildes); 1547 if (unlikely(!file)) 1548 return -EBADF; 1549 1550 req = aio_get_req(ctx); /* returns with 2 references to req */ 1551 if (unlikely(!req)) { 1552 fput(file); 1553 return -EAGAIN; 1554 } 1555 1556 req->ki_filp = file; 1557 ret = put_user(req->ki_key, &user_iocb->aio_key); 1558 if (unlikely(ret)) { 1559 dprintk("EFAULT: aio_key\n"); 1560 goto out_put_req; 1561 } 1562 1563 req->ki_obj.user = user_iocb; 1564 req->ki_user_data = iocb->aio_data; 1565 req->ki_pos = iocb->aio_offset; 1566 1567 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1568 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1569 req->ki_opcode = iocb->aio_lio_opcode; 1570 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1571 INIT_LIST_HEAD(&req->ki_wait.task_list); 1572 1573 ret = aio_setup_iocb(req); 1574 1575 if (ret) 1576 goto out_put_req; 1577 1578 spin_lock_irq(&ctx->ctx_lock); 1579 aio_run_iocb(req); 1580 if (!list_empty(&ctx->run_list)) { 1581 /* drain the run list */ 1582 while (__aio_run_iocbs(ctx)) 1583 ; 1584 } 1585 spin_unlock_irq(&ctx->ctx_lock); 1586 aio_put_req(req); /* drop extra ref to req */ 1587 return 0; 1588 1589 out_put_req: 1590 aio_put_req(req); /* drop extra ref to req */ 1591 aio_put_req(req); /* drop i/o ref to req */ 1592 return ret; 1593 } 1594 1595 /* sys_io_submit: 1596 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1597 * the number of iocbs queued. May return -EINVAL if the aio_context 1598 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1599 * *iocbpp[0] is not properly initialized, if the operation specified 1600 * is invalid for the file descriptor in the iocb. May fail with 1601 * -EFAULT if any of the data structures point to invalid data. May 1602 * fail with -EBADF if the file descriptor specified in the first 1603 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1604 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1605 * fail with -ENOSYS if not implemented. 1606 */ 1607 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1608 struct iocb __user * __user *iocbpp) 1609 { 1610 struct kioctx *ctx; 1611 long ret = 0; 1612 int i; 1613 1614 if (unlikely(nr < 0)) 1615 return -EINVAL; 1616 1617 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1618 return -EFAULT; 1619 1620 ctx = lookup_ioctx(ctx_id); 1621 if (unlikely(!ctx)) { 1622 pr_debug("EINVAL: io_submit: invalid context id\n"); 1623 return -EINVAL; 1624 } 1625 1626 /* 1627 * AKPM: should this return a partial result if some of the IOs were 1628 * successfully submitted? 1629 */ 1630 for (i=0; i<nr; i++) { 1631 struct iocb __user *user_iocb; 1632 struct iocb tmp; 1633 1634 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1635 ret = -EFAULT; 1636 break; 1637 } 1638 1639 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1640 ret = -EFAULT; 1641 break; 1642 } 1643 1644 ret = io_submit_one(ctx, user_iocb, &tmp); 1645 if (ret) 1646 break; 1647 } 1648 1649 put_ioctx(ctx); 1650 return i ? i : ret; 1651 } 1652 1653 /* lookup_kiocb 1654 * Finds a given iocb for cancellation. 1655 */ 1656 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1657 u32 key) 1658 { 1659 struct list_head *pos; 1660 1661 assert_spin_locked(&ctx->ctx_lock); 1662 1663 /* TODO: use a hash or array, this sucks. */ 1664 list_for_each(pos, &ctx->active_reqs) { 1665 struct kiocb *kiocb = list_kiocb(pos); 1666 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1667 return kiocb; 1668 } 1669 return NULL; 1670 } 1671 1672 /* sys_io_cancel: 1673 * Attempts to cancel an iocb previously passed to io_submit. If 1674 * the operation is successfully cancelled, the resulting event is 1675 * copied into the memory pointed to by result without being placed 1676 * into the completion queue and 0 is returned. May fail with 1677 * -EFAULT if any of the data structures pointed to are invalid. 1678 * May fail with -EINVAL if aio_context specified by ctx_id is 1679 * invalid. May fail with -EAGAIN if the iocb specified was not 1680 * cancelled. Will fail with -ENOSYS if not implemented. 1681 */ 1682 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1683 struct io_event __user *result) 1684 { 1685 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1686 struct kioctx *ctx; 1687 struct kiocb *kiocb; 1688 u32 key; 1689 int ret; 1690 1691 ret = get_user(key, &iocb->aio_key); 1692 if (unlikely(ret)) 1693 return -EFAULT; 1694 1695 ctx = lookup_ioctx(ctx_id); 1696 if (unlikely(!ctx)) 1697 return -EINVAL; 1698 1699 spin_lock_irq(&ctx->ctx_lock); 1700 ret = -EAGAIN; 1701 kiocb = lookup_kiocb(ctx, iocb, key); 1702 if (kiocb && kiocb->ki_cancel) { 1703 cancel = kiocb->ki_cancel; 1704 kiocb->ki_users ++; 1705 kiocbSetCancelled(kiocb); 1706 } else 1707 cancel = NULL; 1708 spin_unlock_irq(&ctx->ctx_lock); 1709 1710 if (NULL != cancel) { 1711 struct io_event tmp; 1712 pr_debug("calling cancel\n"); 1713 memset(&tmp, 0, sizeof(tmp)); 1714 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1715 tmp.data = kiocb->ki_user_data; 1716 ret = cancel(kiocb, &tmp); 1717 if (!ret) { 1718 /* Cancellation succeeded -- copy the result 1719 * into the user's buffer. 1720 */ 1721 if (copy_to_user(result, &tmp, sizeof(tmp))) 1722 ret = -EFAULT; 1723 } 1724 } else 1725 ret = -EINVAL; 1726 1727 put_ioctx(ctx); 1728 1729 return ret; 1730 } 1731 1732 /* io_getevents: 1733 * Attempts to read at least min_nr events and up to nr events from 1734 * the completion queue for the aio_context specified by ctx_id. May 1735 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1736 * if nr is out of range, if when is out of range. May fail with 1737 * -EFAULT if any of the memory specified to is invalid. May return 1738 * 0 or < min_nr if no events are available and the timeout specified 1739 * by when has elapsed, where when == NULL specifies an infinite 1740 * timeout. Note that the timeout pointed to by when is relative and 1741 * will be updated if not NULL and the operation blocks. Will fail 1742 * with -ENOSYS if not implemented. 1743 */ 1744 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1745 long min_nr, 1746 long nr, 1747 struct io_event __user *events, 1748 struct timespec __user *timeout) 1749 { 1750 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1751 long ret = -EINVAL; 1752 1753 if (likely(ioctx)) { 1754 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1755 ret = read_events(ioctx, min_nr, nr, events, timeout); 1756 put_ioctx(ioctx); 1757 } 1758 1759 return ret; 1760 } 1761 1762 __initcall(aio_setup); 1763 1764 EXPORT_SYMBOL(aio_complete); 1765 EXPORT_SYMBOL(aio_put_req); 1766 EXPORT_SYMBOL(wait_on_sync_kiocb); 1767