xref: /linux/fs/aio.c (revision ba6e8564f459211117ce300eae2c7fdd23befe34)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 
38 #if DEBUG > 1
39 #define dprintk		printk
40 #else
41 #define dprintk(x...)	do { ; } while (0)
42 #endif
43 
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock);
46 unsigned long aio_nr;		/* current system wide number of aio requests */
47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
49 
50 static struct kmem_cache	*kiocb_cachep;
51 static struct kmem_cache	*kioctx_cachep;
52 
53 static struct workqueue_struct *aio_wq;
54 
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(struct work_struct *);
57 static DECLARE_WORK(fput_work, aio_fput_routine);
58 
59 static DEFINE_SPINLOCK(fput_lock);
60 static LIST_HEAD(fput_head);
61 
62 static void aio_kick_handler(struct work_struct *);
63 static void aio_queue_work(struct kioctx *);
64 
65 /* aio_setup
66  *	Creates the slab caches used by the aio routines, panic on
67  *	failure as this is done early during the boot sequence.
68  */
69 static int __init aio_setup(void)
70 {
71 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75 
76 	aio_wq = create_workqueue("aio");
77 
78 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 
80 	return 0;
81 }
82 
83 static void aio_free_ring(struct kioctx *ctx)
84 {
85 	struct aio_ring_info *info = &ctx->ring_info;
86 	long i;
87 
88 	for (i=0; i<info->nr_pages; i++)
89 		put_page(info->ring_pages[i]);
90 
91 	if (info->mmap_size) {
92 		down_write(&ctx->mm->mmap_sem);
93 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 		up_write(&ctx->mm->mmap_sem);
95 	}
96 
97 	if (info->ring_pages && info->ring_pages != info->internal_pages)
98 		kfree(info->ring_pages);
99 	info->ring_pages = NULL;
100 	info->nr = 0;
101 }
102 
103 static int aio_setup_ring(struct kioctx *ctx)
104 {
105 	struct aio_ring *ring;
106 	struct aio_ring_info *info = &ctx->ring_info;
107 	unsigned nr_events = ctx->max_reqs;
108 	unsigned long size;
109 	int nr_pages;
110 
111 	/* Compensate for the ring buffer's head/tail overlap entry */
112 	nr_events += 2;	/* 1 is required, 2 for good luck */
113 
114 	size = sizeof(struct aio_ring);
115 	size += sizeof(struct io_event) * nr_events;
116 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 
118 	if (nr_pages < 0)
119 		return -EINVAL;
120 
121 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 
123 	info->nr = 0;
124 	info->ring_pages = info->internal_pages;
125 	if (nr_pages > AIO_RING_PAGES) {
126 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
127 		if (!info->ring_pages)
128 			return -ENOMEM;
129 	}
130 
131 	info->mmap_size = nr_pages * PAGE_SIZE;
132 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 	down_write(&ctx->mm->mmap_sem);
134 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
136 				  0);
137 	if (IS_ERR((void *)info->mmap_base)) {
138 		up_write(&ctx->mm->mmap_sem);
139 		info->mmap_size = 0;
140 		aio_free_ring(ctx);
141 		return -EAGAIN;
142 	}
143 
144 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
145 	info->nr_pages = get_user_pages(current, ctx->mm,
146 					info->mmap_base, nr_pages,
147 					1, 0, info->ring_pages, NULL);
148 	up_write(&ctx->mm->mmap_sem);
149 
150 	if (unlikely(info->nr_pages != nr_pages)) {
151 		aio_free_ring(ctx);
152 		return -EAGAIN;
153 	}
154 
155 	ctx->user_id = info->mmap_base;
156 
157 	info->nr = nr_events;		/* trusted copy */
158 
159 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
160 	ring->nr = nr_events;	/* user copy */
161 	ring->id = ctx->user_id;
162 	ring->head = ring->tail = 0;
163 	ring->magic = AIO_RING_MAGIC;
164 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
165 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
166 	ring->header_length = sizeof(struct aio_ring);
167 	kunmap_atomic(ring, KM_USER0);
168 
169 	return 0;
170 }
171 
172 
173 /* aio_ring_event: returns a pointer to the event at the given index from
174  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
175  */
176 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
177 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
178 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
179 
180 #define aio_ring_event(info, nr, km) ({					\
181 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
182 	struct io_event *__event;					\
183 	__event = kmap_atomic(						\
184 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
185 	__event += pos % AIO_EVENTS_PER_PAGE;				\
186 	__event;							\
187 })
188 
189 #define put_aio_ring_event(event, km) do {	\
190 	struct io_event *__event = (event);	\
191 	(void)__event;				\
192 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
193 } while(0)
194 
195 /* ioctx_alloc
196  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
197  */
198 static struct kioctx *ioctx_alloc(unsigned nr_events)
199 {
200 	struct mm_struct *mm;
201 	struct kioctx *ctx;
202 
203 	/* Prevent overflows */
204 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
205 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
206 		pr_debug("ENOMEM: nr_events too high\n");
207 		return ERR_PTR(-EINVAL);
208 	}
209 
210 	if ((unsigned long)nr_events > aio_max_nr)
211 		return ERR_PTR(-EAGAIN);
212 
213 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
214 	if (!ctx)
215 		return ERR_PTR(-ENOMEM);
216 
217 	ctx->max_reqs = nr_events;
218 	mm = ctx->mm = current->mm;
219 	atomic_inc(&mm->mm_count);
220 
221 	atomic_set(&ctx->users, 1);
222 	spin_lock_init(&ctx->ctx_lock);
223 	spin_lock_init(&ctx->ring_info.ring_lock);
224 	init_waitqueue_head(&ctx->wait);
225 
226 	INIT_LIST_HEAD(&ctx->active_reqs);
227 	INIT_LIST_HEAD(&ctx->run_list);
228 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
229 
230 	if (aio_setup_ring(ctx) < 0)
231 		goto out_freectx;
232 
233 	/* limit the number of system wide aios */
234 	spin_lock(&aio_nr_lock);
235 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
236 	    aio_nr + ctx->max_reqs < aio_nr)
237 		ctx->max_reqs = 0;
238 	else
239 		aio_nr += ctx->max_reqs;
240 	spin_unlock(&aio_nr_lock);
241 	if (ctx->max_reqs == 0)
242 		goto out_cleanup;
243 
244 	/* now link into global list.  kludge.  FIXME */
245 	write_lock(&mm->ioctx_list_lock);
246 	ctx->next = mm->ioctx_list;
247 	mm->ioctx_list = ctx;
248 	write_unlock(&mm->ioctx_list_lock);
249 
250 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
251 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
252 	return ctx;
253 
254 out_cleanup:
255 	__put_ioctx(ctx);
256 	return ERR_PTR(-EAGAIN);
257 
258 out_freectx:
259 	mmdrop(mm);
260 	kmem_cache_free(kioctx_cachep, ctx);
261 	ctx = ERR_PTR(-ENOMEM);
262 
263 	dprintk("aio: error allocating ioctx %p\n", ctx);
264 	return ctx;
265 }
266 
267 /* aio_cancel_all
268  *	Cancels all outstanding aio requests on an aio context.  Used
269  *	when the processes owning a context have all exited to encourage
270  *	the rapid destruction of the kioctx.
271  */
272 static void aio_cancel_all(struct kioctx *ctx)
273 {
274 	int (*cancel)(struct kiocb *, struct io_event *);
275 	struct io_event res;
276 	spin_lock_irq(&ctx->ctx_lock);
277 	ctx->dead = 1;
278 	while (!list_empty(&ctx->active_reqs)) {
279 		struct list_head *pos = ctx->active_reqs.next;
280 		struct kiocb *iocb = list_kiocb(pos);
281 		list_del_init(&iocb->ki_list);
282 		cancel = iocb->ki_cancel;
283 		kiocbSetCancelled(iocb);
284 		if (cancel) {
285 			iocb->ki_users++;
286 			spin_unlock_irq(&ctx->ctx_lock);
287 			cancel(iocb, &res);
288 			spin_lock_irq(&ctx->ctx_lock);
289 		}
290 	}
291 	spin_unlock_irq(&ctx->ctx_lock);
292 }
293 
294 static void wait_for_all_aios(struct kioctx *ctx)
295 {
296 	struct task_struct *tsk = current;
297 	DECLARE_WAITQUEUE(wait, tsk);
298 
299 	spin_lock_irq(&ctx->ctx_lock);
300 	if (!ctx->reqs_active)
301 		goto out;
302 
303 	add_wait_queue(&ctx->wait, &wait);
304 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
305 	while (ctx->reqs_active) {
306 		spin_unlock_irq(&ctx->ctx_lock);
307 		schedule();
308 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
309 		spin_lock_irq(&ctx->ctx_lock);
310 	}
311 	__set_task_state(tsk, TASK_RUNNING);
312 	remove_wait_queue(&ctx->wait, &wait);
313 
314 out:
315 	spin_unlock_irq(&ctx->ctx_lock);
316 }
317 
318 /* wait_on_sync_kiocb:
319  *	Waits on the given sync kiocb to complete.
320  */
321 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
322 {
323 	while (iocb->ki_users) {
324 		set_current_state(TASK_UNINTERRUPTIBLE);
325 		if (!iocb->ki_users)
326 			break;
327 		schedule();
328 	}
329 	__set_current_state(TASK_RUNNING);
330 	return iocb->ki_user_data;
331 }
332 
333 /* exit_aio: called when the last user of mm goes away.  At this point,
334  * there is no way for any new requests to be submited or any of the
335  * io_* syscalls to be called on the context.  However, there may be
336  * outstanding requests which hold references to the context; as they
337  * go away, they will call put_ioctx and release any pinned memory
338  * associated with the request (held via struct page * references).
339  */
340 void fastcall exit_aio(struct mm_struct *mm)
341 {
342 	struct kioctx *ctx = mm->ioctx_list;
343 	mm->ioctx_list = NULL;
344 	while (ctx) {
345 		struct kioctx *next = ctx->next;
346 		ctx->next = NULL;
347 		aio_cancel_all(ctx);
348 
349 		wait_for_all_aios(ctx);
350 		/*
351 		 * this is an overkill, but ensures we don't leave
352 		 * the ctx on the aio_wq
353 		 */
354 		flush_workqueue(aio_wq);
355 
356 		if (1 != atomic_read(&ctx->users))
357 			printk(KERN_DEBUG
358 				"exit_aio:ioctx still alive: %d %d %d\n",
359 				atomic_read(&ctx->users), ctx->dead,
360 				ctx->reqs_active);
361 		put_ioctx(ctx);
362 		ctx = next;
363 	}
364 }
365 
366 /* __put_ioctx
367  *	Called when the last user of an aio context has gone away,
368  *	and the struct needs to be freed.
369  */
370 void fastcall __put_ioctx(struct kioctx *ctx)
371 {
372 	unsigned nr_events = ctx->max_reqs;
373 
374 	BUG_ON(ctx->reqs_active);
375 
376 	cancel_delayed_work(&ctx->wq);
377 	flush_workqueue(aio_wq);
378 	aio_free_ring(ctx);
379 	mmdrop(ctx->mm);
380 	ctx->mm = NULL;
381 	pr_debug("__put_ioctx: freeing %p\n", ctx);
382 	kmem_cache_free(kioctx_cachep, ctx);
383 
384 	if (nr_events) {
385 		spin_lock(&aio_nr_lock);
386 		BUG_ON(aio_nr - nr_events > aio_nr);
387 		aio_nr -= nr_events;
388 		spin_unlock(&aio_nr_lock);
389 	}
390 }
391 
392 /* aio_get_req
393  *	Allocate a slot for an aio request.  Increments the users count
394  * of the kioctx so that the kioctx stays around until all requests are
395  * complete.  Returns NULL if no requests are free.
396  *
397  * Returns with kiocb->users set to 2.  The io submit code path holds
398  * an extra reference while submitting the i/o.
399  * This prevents races between the aio code path referencing the
400  * req (after submitting it) and aio_complete() freeing the req.
401  */
402 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
403 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
404 {
405 	struct kiocb *req = NULL;
406 	struct aio_ring *ring;
407 	int okay = 0;
408 
409 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
410 	if (unlikely(!req))
411 		return NULL;
412 
413 	req->ki_flags = 0;
414 	req->ki_users = 2;
415 	req->ki_key = 0;
416 	req->ki_ctx = ctx;
417 	req->ki_cancel = NULL;
418 	req->ki_retry = NULL;
419 	req->ki_dtor = NULL;
420 	req->private = NULL;
421 	req->ki_iovec = NULL;
422 	INIT_LIST_HEAD(&req->ki_run_list);
423 
424 	/* Check if the completion queue has enough free space to
425 	 * accept an event from this io.
426 	 */
427 	spin_lock_irq(&ctx->ctx_lock);
428 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
429 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
430 		list_add(&req->ki_list, &ctx->active_reqs);
431 		ctx->reqs_active++;
432 		okay = 1;
433 	}
434 	kunmap_atomic(ring, KM_USER0);
435 	spin_unlock_irq(&ctx->ctx_lock);
436 
437 	if (!okay) {
438 		kmem_cache_free(kiocb_cachep, req);
439 		req = NULL;
440 	}
441 
442 	return req;
443 }
444 
445 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
446 {
447 	struct kiocb *req;
448 	/* Handle a potential starvation case -- should be exceedingly rare as
449 	 * requests will be stuck on fput_head only if the aio_fput_routine is
450 	 * delayed and the requests were the last user of the struct file.
451 	 */
452 	req = __aio_get_req(ctx);
453 	if (unlikely(NULL == req)) {
454 		aio_fput_routine(NULL);
455 		req = __aio_get_req(ctx);
456 	}
457 	return req;
458 }
459 
460 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
461 {
462 	assert_spin_locked(&ctx->ctx_lock);
463 
464 	if (req->ki_dtor)
465 		req->ki_dtor(req);
466 	if (req->ki_iovec != &req->ki_inline_vec)
467 		kfree(req->ki_iovec);
468 	kmem_cache_free(kiocb_cachep, req);
469 	ctx->reqs_active--;
470 
471 	if (unlikely(!ctx->reqs_active && ctx->dead))
472 		wake_up(&ctx->wait);
473 }
474 
475 static void aio_fput_routine(struct work_struct *data)
476 {
477 	spin_lock_irq(&fput_lock);
478 	while (likely(!list_empty(&fput_head))) {
479 		struct kiocb *req = list_kiocb(fput_head.next);
480 		struct kioctx *ctx = req->ki_ctx;
481 
482 		list_del(&req->ki_list);
483 		spin_unlock_irq(&fput_lock);
484 
485 		/* Complete the fput */
486 		__fput(req->ki_filp);
487 
488 		/* Link the iocb into the context's free list */
489 		spin_lock_irq(&ctx->ctx_lock);
490 		really_put_req(ctx, req);
491 		spin_unlock_irq(&ctx->ctx_lock);
492 
493 		put_ioctx(ctx);
494 		spin_lock_irq(&fput_lock);
495 	}
496 	spin_unlock_irq(&fput_lock);
497 }
498 
499 /* __aio_put_req
500  *	Returns true if this put was the last user of the request.
501  */
502 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
503 {
504 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
505 		req, atomic_read(&req->ki_filp->f_count));
506 
507 	assert_spin_locked(&ctx->ctx_lock);
508 
509 	req->ki_users --;
510 	BUG_ON(req->ki_users < 0);
511 	if (likely(req->ki_users))
512 		return 0;
513 	list_del(&req->ki_list);		/* remove from active_reqs */
514 	req->ki_cancel = NULL;
515 	req->ki_retry = NULL;
516 
517 	/* Must be done under the lock to serialise against cancellation.
518 	 * Call this aio_fput as it duplicates fput via the fput_work.
519 	 */
520 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
521 		get_ioctx(ctx);
522 		spin_lock(&fput_lock);
523 		list_add(&req->ki_list, &fput_head);
524 		spin_unlock(&fput_lock);
525 		queue_work(aio_wq, &fput_work);
526 	} else
527 		really_put_req(ctx, req);
528 	return 1;
529 }
530 
531 /* aio_put_req
532  *	Returns true if this put was the last user of the kiocb,
533  *	false if the request is still in use.
534  */
535 int fastcall aio_put_req(struct kiocb *req)
536 {
537 	struct kioctx *ctx = req->ki_ctx;
538 	int ret;
539 	spin_lock_irq(&ctx->ctx_lock);
540 	ret = __aio_put_req(ctx, req);
541 	spin_unlock_irq(&ctx->ctx_lock);
542 	return ret;
543 }
544 
545 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
546  *	FIXME: this is O(n) and is only suitable for development.
547  */
548 struct kioctx *lookup_ioctx(unsigned long ctx_id)
549 {
550 	struct kioctx *ioctx;
551 	struct mm_struct *mm;
552 
553 	mm = current->mm;
554 	read_lock(&mm->ioctx_list_lock);
555 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
556 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
557 			get_ioctx(ioctx);
558 			break;
559 		}
560 	read_unlock(&mm->ioctx_list_lock);
561 
562 	return ioctx;
563 }
564 
565 /*
566  * use_mm
567  *	Makes the calling kernel thread take on the specified
568  *	mm context.
569  *	Called by the retry thread execute retries within the
570  *	iocb issuer's mm context, so that copy_from/to_user
571  *	operations work seamlessly for aio.
572  *	(Note: this routine is intended to be called only
573  *	from a kernel thread context)
574  */
575 static void use_mm(struct mm_struct *mm)
576 {
577 	struct mm_struct *active_mm;
578 	struct task_struct *tsk = current;
579 
580 	task_lock(tsk);
581 	tsk->flags |= PF_BORROWED_MM;
582 	active_mm = tsk->active_mm;
583 	atomic_inc(&mm->mm_count);
584 	tsk->mm = mm;
585 	tsk->active_mm = mm;
586 	/*
587 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
588 	 * it won't work. Update it accordingly if you change it here
589 	 */
590 	switch_mm(active_mm, mm, tsk);
591 	task_unlock(tsk);
592 
593 	mmdrop(active_mm);
594 }
595 
596 /*
597  * unuse_mm
598  *	Reverses the effect of use_mm, i.e. releases the
599  *	specified mm context which was earlier taken on
600  *	by the calling kernel thread
601  *	(Note: this routine is intended to be called only
602  *	from a kernel thread context)
603  */
604 static void unuse_mm(struct mm_struct *mm)
605 {
606 	struct task_struct *tsk = current;
607 
608 	task_lock(tsk);
609 	tsk->flags &= ~PF_BORROWED_MM;
610 	tsk->mm = NULL;
611 	/* active_mm is still 'mm' */
612 	enter_lazy_tlb(mm, tsk);
613 	task_unlock(tsk);
614 }
615 
616 /*
617  * Queue up a kiocb to be retried. Assumes that the kiocb
618  * has already been marked as kicked, and places it on
619  * the retry run list for the corresponding ioctx, if it
620  * isn't already queued. Returns 1 if it actually queued
621  * the kiocb (to tell the caller to activate the work
622  * queue to process it), or 0, if it found that it was
623  * already queued.
624  */
625 static inline int __queue_kicked_iocb(struct kiocb *iocb)
626 {
627 	struct kioctx *ctx = iocb->ki_ctx;
628 
629 	assert_spin_locked(&ctx->ctx_lock);
630 
631 	if (list_empty(&iocb->ki_run_list)) {
632 		list_add_tail(&iocb->ki_run_list,
633 			&ctx->run_list);
634 		return 1;
635 	}
636 	return 0;
637 }
638 
639 /* aio_run_iocb
640  *	This is the core aio execution routine. It is
641  *	invoked both for initial i/o submission and
642  *	subsequent retries via the aio_kick_handler.
643  *	Expects to be invoked with iocb->ki_ctx->lock
644  *	already held. The lock is released and reacquired
645  *	as needed during processing.
646  *
647  * Calls the iocb retry method (already setup for the
648  * iocb on initial submission) for operation specific
649  * handling, but takes care of most of common retry
650  * execution details for a given iocb. The retry method
651  * needs to be non-blocking as far as possible, to avoid
652  * holding up other iocbs waiting to be serviced by the
653  * retry kernel thread.
654  *
655  * The trickier parts in this code have to do with
656  * ensuring that only one retry instance is in progress
657  * for a given iocb at any time. Providing that guarantee
658  * simplifies the coding of individual aio operations as
659  * it avoids various potential races.
660  */
661 static ssize_t aio_run_iocb(struct kiocb *iocb)
662 {
663 	struct kioctx	*ctx = iocb->ki_ctx;
664 	ssize_t (*retry)(struct kiocb *);
665 	ssize_t ret;
666 
667 	if (!(retry = iocb->ki_retry)) {
668 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
669 		return 0;
670 	}
671 
672 	/*
673 	 * We don't want the next retry iteration for this
674 	 * operation to start until this one has returned and
675 	 * updated the iocb state. However, wait_queue functions
676 	 * can trigger a kick_iocb from interrupt context in the
677 	 * meantime, indicating that data is available for the next
678 	 * iteration. We want to remember that and enable the
679 	 * next retry iteration _after_ we are through with
680 	 * this one.
681 	 *
682 	 * So, in order to be able to register a "kick", but
683 	 * prevent it from being queued now, we clear the kick
684 	 * flag, but make the kick code *think* that the iocb is
685 	 * still on the run list until we are actually done.
686 	 * When we are done with this iteration, we check if
687 	 * the iocb was kicked in the meantime and if so, queue
688 	 * it up afresh.
689 	 */
690 
691 	kiocbClearKicked(iocb);
692 
693 	/*
694 	 * This is so that aio_complete knows it doesn't need to
695 	 * pull the iocb off the run list (We can't just call
696 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
697 	 * queue this on the run list yet)
698 	 */
699 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
700 	spin_unlock_irq(&ctx->ctx_lock);
701 
702 	/* Quit retrying if the i/o has been cancelled */
703 	if (kiocbIsCancelled(iocb)) {
704 		ret = -EINTR;
705 		aio_complete(iocb, ret, 0);
706 		/* must not access the iocb after this */
707 		goto out;
708 	}
709 
710 	/*
711 	 * Now we are all set to call the retry method in async
712 	 * context. By setting this thread's io_wait context
713 	 * to point to the wait queue entry inside the currently
714 	 * running iocb for the duration of the retry, we ensure
715 	 * that async notification wakeups are queued by the
716 	 * operation instead of blocking waits, and when notified,
717 	 * cause the iocb to be kicked for continuation (through
718 	 * the aio_wake_function callback).
719 	 */
720 	BUG_ON(current->io_wait != NULL);
721 	current->io_wait = &iocb->ki_wait;
722 	ret = retry(iocb);
723 	current->io_wait = NULL;
724 
725 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
726 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
727 		aio_complete(iocb, ret, 0);
728 	}
729 out:
730 	spin_lock_irq(&ctx->ctx_lock);
731 
732 	if (-EIOCBRETRY == ret) {
733 		/*
734 		 * OK, now that we are done with this iteration
735 		 * and know that there is more left to go,
736 		 * this is where we let go so that a subsequent
737 		 * "kick" can start the next iteration
738 		 */
739 
740 		/* will make __queue_kicked_iocb succeed from here on */
741 		INIT_LIST_HEAD(&iocb->ki_run_list);
742 		/* we must queue the next iteration ourselves, if it
743 		 * has already been kicked */
744 		if (kiocbIsKicked(iocb)) {
745 			__queue_kicked_iocb(iocb);
746 
747 			/*
748 			 * __queue_kicked_iocb will always return 1 here, because
749 			 * iocb->ki_run_list is empty at this point so it should
750 			 * be safe to unconditionally queue the context into the
751 			 * work queue.
752 			 */
753 			aio_queue_work(ctx);
754 		}
755 	}
756 	return ret;
757 }
758 
759 /*
760  * __aio_run_iocbs:
761  * 	Process all pending retries queued on the ioctx
762  * 	run list.
763  * Assumes it is operating within the aio issuer's mm
764  * context.
765  */
766 static int __aio_run_iocbs(struct kioctx *ctx)
767 {
768 	struct kiocb *iocb;
769 	struct list_head run_list;
770 
771 	assert_spin_locked(&ctx->ctx_lock);
772 
773 	list_replace_init(&ctx->run_list, &run_list);
774 	while (!list_empty(&run_list)) {
775 		iocb = list_entry(run_list.next, struct kiocb,
776 			ki_run_list);
777 		list_del(&iocb->ki_run_list);
778 		/*
779 		 * Hold an extra reference while retrying i/o.
780 		 */
781 		iocb->ki_users++;       /* grab extra reference */
782 		aio_run_iocb(iocb);
783 		__aio_put_req(ctx, iocb);
784  	}
785 	if (!list_empty(&ctx->run_list))
786 		return 1;
787 	return 0;
788 }
789 
790 static void aio_queue_work(struct kioctx * ctx)
791 {
792 	unsigned long timeout;
793 	/*
794 	 * if someone is waiting, get the work started right
795 	 * away, otherwise, use a longer delay
796 	 */
797 	smp_mb();
798 	if (waitqueue_active(&ctx->wait))
799 		timeout = 1;
800 	else
801 		timeout = HZ/10;
802 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
803 }
804 
805 
806 /*
807  * aio_run_iocbs:
808  * 	Process all pending retries queued on the ioctx
809  * 	run list.
810  * Assumes it is operating within the aio issuer's mm
811  * context.
812  */
813 static inline void aio_run_iocbs(struct kioctx *ctx)
814 {
815 	int requeue;
816 
817 	spin_lock_irq(&ctx->ctx_lock);
818 
819 	requeue = __aio_run_iocbs(ctx);
820 	spin_unlock_irq(&ctx->ctx_lock);
821 	if (requeue)
822 		aio_queue_work(ctx);
823 }
824 
825 /*
826  * just like aio_run_iocbs, but keeps running them until
827  * the list stays empty
828  */
829 static inline void aio_run_all_iocbs(struct kioctx *ctx)
830 {
831 	spin_lock_irq(&ctx->ctx_lock);
832 	while (__aio_run_iocbs(ctx))
833 		;
834 	spin_unlock_irq(&ctx->ctx_lock);
835 }
836 
837 /*
838  * aio_kick_handler:
839  * 	Work queue handler triggered to process pending
840  * 	retries on an ioctx. Takes on the aio issuer's
841  *	mm context before running the iocbs, so that
842  *	copy_xxx_user operates on the issuer's address
843  *      space.
844  * Run on aiod's context.
845  */
846 static void aio_kick_handler(struct work_struct *work)
847 {
848 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
849 	mm_segment_t oldfs = get_fs();
850 	struct mm_struct *mm;
851 	int requeue;
852 
853 	set_fs(USER_DS);
854 	use_mm(ctx->mm);
855 	spin_lock_irq(&ctx->ctx_lock);
856 	requeue =__aio_run_iocbs(ctx);
857 	mm = ctx->mm;
858 	spin_unlock_irq(&ctx->ctx_lock);
859  	unuse_mm(mm);
860 	set_fs(oldfs);
861 	/*
862 	 * we're in a worker thread already, don't use queue_delayed_work,
863 	 */
864 	if (requeue)
865 		queue_delayed_work(aio_wq, &ctx->wq, 0);
866 }
867 
868 
869 /*
870  * Called by kick_iocb to queue the kiocb for retry
871  * and if required activate the aio work queue to process
872  * it
873  */
874 static void try_queue_kicked_iocb(struct kiocb *iocb)
875 {
876  	struct kioctx	*ctx = iocb->ki_ctx;
877 	unsigned long flags;
878 	int run = 0;
879 
880 	/* We're supposed to be the only path putting the iocb back on the run
881 	 * list.  If we find that the iocb is *back* on a wait queue already
882 	 * than retry has happened before we could queue the iocb.  This also
883 	 * means that the retry could have completed and freed our iocb, no
884 	 * good. */
885 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
886 
887 	spin_lock_irqsave(&ctx->ctx_lock, flags);
888 	/* set this inside the lock so that we can't race with aio_run_iocb()
889 	 * testing it and putting the iocb on the run list under the lock */
890 	if (!kiocbTryKick(iocb))
891 		run = __queue_kicked_iocb(iocb);
892 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
893 	if (run)
894 		aio_queue_work(ctx);
895 }
896 
897 /*
898  * kick_iocb:
899  *      Called typically from a wait queue callback context
900  *      (aio_wake_function) to trigger a retry of the iocb.
901  *      The retry is usually executed by aio workqueue
902  *      threads (See aio_kick_handler).
903  */
904 void fastcall kick_iocb(struct kiocb *iocb)
905 {
906 	/* sync iocbs are easy: they can only ever be executing from a
907 	 * single context. */
908 	if (is_sync_kiocb(iocb)) {
909 		kiocbSetKicked(iocb);
910 	        wake_up_process(iocb->ki_obj.tsk);
911 		return;
912 	}
913 
914 	try_queue_kicked_iocb(iocb);
915 }
916 EXPORT_SYMBOL(kick_iocb);
917 
918 /* aio_complete
919  *	Called when the io request on the given iocb is complete.
920  *	Returns true if this is the last user of the request.  The
921  *	only other user of the request can be the cancellation code.
922  */
923 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
924 {
925 	struct kioctx	*ctx = iocb->ki_ctx;
926 	struct aio_ring_info	*info;
927 	struct aio_ring	*ring;
928 	struct io_event	*event;
929 	unsigned long	flags;
930 	unsigned long	tail;
931 	int		ret;
932 
933 	/*
934 	 * Special case handling for sync iocbs:
935 	 *  - events go directly into the iocb for fast handling
936 	 *  - the sync task with the iocb in its stack holds the single iocb
937 	 *    ref, no other paths have a way to get another ref
938 	 *  - the sync task helpfully left a reference to itself in the iocb
939 	 */
940 	if (is_sync_kiocb(iocb)) {
941 		BUG_ON(iocb->ki_users != 1);
942 		iocb->ki_user_data = res;
943 		iocb->ki_users = 0;
944 		wake_up_process(iocb->ki_obj.tsk);
945 		return 1;
946 	}
947 
948 	info = &ctx->ring_info;
949 
950 	/* add a completion event to the ring buffer.
951 	 * must be done holding ctx->ctx_lock to prevent
952 	 * other code from messing with the tail
953 	 * pointer since we might be called from irq
954 	 * context.
955 	 */
956 	spin_lock_irqsave(&ctx->ctx_lock, flags);
957 
958 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
959 		list_del_init(&iocb->ki_run_list);
960 
961 	/*
962 	 * cancelled requests don't get events, userland was given one
963 	 * when the event got cancelled.
964 	 */
965 	if (kiocbIsCancelled(iocb))
966 		goto put_rq;
967 
968 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
969 
970 	tail = info->tail;
971 	event = aio_ring_event(info, tail, KM_IRQ0);
972 	if (++tail >= info->nr)
973 		tail = 0;
974 
975 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
976 	event->data = iocb->ki_user_data;
977 	event->res = res;
978 	event->res2 = res2;
979 
980 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
981 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
982 		res, res2);
983 
984 	/* after flagging the request as done, we
985 	 * must never even look at it again
986 	 */
987 	smp_wmb();	/* make event visible before updating tail */
988 
989 	info->tail = tail;
990 	ring->tail = tail;
991 
992 	put_aio_ring_event(event, KM_IRQ0);
993 	kunmap_atomic(ring, KM_IRQ1);
994 
995 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
996 put_rq:
997 	/* everything turned out well, dispose of the aiocb. */
998 	ret = __aio_put_req(ctx, iocb);
999 
1000 	if (waitqueue_active(&ctx->wait))
1001 		wake_up(&ctx->wait);
1002 
1003 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1004 	return ret;
1005 }
1006 
1007 /* aio_read_evt
1008  *	Pull an event off of the ioctx's event ring.  Returns the number of
1009  *	events fetched (0 or 1 ;-)
1010  *	FIXME: make this use cmpxchg.
1011  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1012  */
1013 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1014 {
1015 	struct aio_ring_info *info = &ioctx->ring_info;
1016 	struct aio_ring *ring;
1017 	unsigned long head;
1018 	int ret = 0;
1019 
1020 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1021 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1022 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1023 		 (unsigned long)ring->nr);
1024 
1025 	if (ring->head == ring->tail)
1026 		goto out;
1027 
1028 	spin_lock(&info->ring_lock);
1029 
1030 	head = ring->head % info->nr;
1031 	if (head != ring->tail) {
1032 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1033 		*ent = *evp;
1034 		head = (head + 1) % info->nr;
1035 		smp_mb(); /* finish reading the event before updatng the head */
1036 		ring->head = head;
1037 		ret = 1;
1038 		put_aio_ring_event(evp, KM_USER1);
1039 	}
1040 	spin_unlock(&info->ring_lock);
1041 
1042 out:
1043 	kunmap_atomic(ring, KM_USER0);
1044 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1045 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1046 	return ret;
1047 }
1048 
1049 struct aio_timeout {
1050 	struct timer_list	timer;
1051 	int			timed_out;
1052 	struct task_struct	*p;
1053 };
1054 
1055 static void timeout_func(unsigned long data)
1056 {
1057 	struct aio_timeout *to = (struct aio_timeout *)data;
1058 
1059 	to->timed_out = 1;
1060 	wake_up_process(to->p);
1061 }
1062 
1063 static inline void init_timeout(struct aio_timeout *to)
1064 {
1065 	init_timer(&to->timer);
1066 	to->timer.data = (unsigned long)to;
1067 	to->timer.function = timeout_func;
1068 	to->timed_out = 0;
1069 	to->p = current;
1070 }
1071 
1072 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1073 			       const struct timespec *ts)
1074 {
1075 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1076 	if (time_after(to->timer.expires, jiffies))
1077 		add_timer(&to->timer);
1078 	else
1079 		to->timed_out = 1;
1080 }
1081 
1082 static inline void clear_timeout(struct aio_timeout *to)
1083 {
1084 	del_singleshot_timer_sync(&to->timer);
1085 }
1086 
1087 static int read_events(struct kioctx *ctx,
1088 			long min_nr, long nr,
1089 			struct io_event __user *event,
1090 			struct timespec __user *timeout)
1091 {
1092 	long			start_jiffies = jiffies;
1093 	struct task_struct	*tsk = current;
1094 	DECLARE_WAITQUEUE(wait, tsk);
1095 	int			ret;
1096 	int			i = 0;
1097 	struct io_event		ent;
1098 	struct aio_timeout	to;
1099 	int			retry = 0;
1100 
1101 	/* needed to zero any padding within an entry (there shouldn't be
1102 	 * any, but C is fun!
1103 	 */
1104 	memset(&ent, 0, sizeof(ent));
1105 retry:
1106 	ret = 0;
1107 	while (likely(i < nr)) {
1108 		ret = aio_read_evt(ctx, &ent);
1109 		if (unlikely(ret <= 0))
1110 			break;
1111 
1112 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1113 			ent.data, ent.obj, ent.res, ent.res2);
1114 
1115 		/* Could we split the check in two? */
1116 		ret = -EFAULT;
1117 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1118 			dprintk("aio: lost an event due to EFAULT.\n");
1119 			break;
1120 		}
1121 		ret = 0;
1122 
1123 		/* Good, event copied to userland, update counts. */
1124 		event ++;
1125 		i ++;
1126 	}
1127 
1128 	if (min_nr <= i)
1129 		return i;
1130 	if (ret)
1131 		return ret;
1132 
1133 	/* End fast path */
1134 
1135 	/* racey check, but it gets redone */
1136 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1137 		retry = 1;
1138 		aio_run_all_iocbs(ctx);
1139 		goto retry;
1140 	}
1141 
1142 	init_timeout(&to);
1143 	if (timeout) {
1144 		struct timespec	ts;
1145 		ret = -EFAULT;
1146 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1147 			goto out;
1148 
1149 		set_timeout(start_jiffies, &to, &ts);
1150 	}
1151 
1152 	while (likely(i < nr)) {
1153 		add_wait_queue_exclusive(&ctx->wait, &wait);
1154 		do {
1155 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1156 			ret = aio_read_evt(ctx, &ent);
1157 			if (ret)
1158 				break;
1159 			if (min_nr <= i)
1160 				break;
1161 			ret = 0;
1162 			if (to.timed_out)	/* Only check after read evt */
1163 				break;
1164 			schedule();
1165 			if (signal_pending(tsk)) {
1166 				ret = -EINTR;
1167 				break;
1168 			}
1169 			/*ret = aio_read_evt(ctx, &ent);*/
1170 		} while (1) ;
1171 
1172 		set_task_state(tsk, TASK_RUNNING);
1173 		remove_wait_queue(&ctx->wait, &wait);
1174 
1175 		if (unlikely(ret <= 0))
1176 			break;
1177 
1178 		ret = -EFAULT;
1179 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1180 			dprintk("aio: lost an event due to EFAULT.\n");
1181 			break;
1182 		}
1183 
1184 		/* Good, event copied to userland, update counts. */
1185 		event ++;
1186 		i ++;
1187 	}
1188 
1189 	if (timeout)
1190 		clear_timeout(&to);
1191 out:
1192 	return i ? i : ret;
1193 }
1194 
1195 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1196  * against races with itself via ->dead.
1197  */
1198 static void io_destroy(struct kioctx *ioctx)
1199 {
1200 	struct mm_struct *mm = current->mm;
1201 	struct kioctx **tmp;
1202 	int was_dead;
1203 
1204 	/* delete the entry from the list is someone else hasn't already */
1205 	write_lock(&mm->ioctx_list_lock);
1206 	was_dead = ioctx->dead;
1207 	ioctx->dead = 1;
1208 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1209 	     tmp = &(*tmp)->next)
1210 		;
1211 	if (*tmp)
1212 		*tmp = ioctx->next;
1213 	write_unlock(&mm->ioctx_list_lock);
1214 
1215 	dprintk("aio_release(%p)\n", ioctx);
1216 	if (likely(!was_dead))
1217 		put_ioctx(ioctx);	/* twice for the list */
1218 
1219 	aio_cancel_all(ioctx);
1220 	wait_for_all_aios(ioctx);
1221 	put_ioctx(ioctx);	/* once for the lookup */
1222 }
1223 
1224 /* sys_io_setup:
1225  *	Create an aio_context capable of receiving at least nr_events.
1226  *	ctxp must not point to an aio_context that already exists, and
1227  *	must be initialized to 0 prior to the call.  On successful
1228  *	creation of the aio_context, *ctxp is filled in with the resulting
1229  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1230  *	if the specified nr_events exceeds internal limits.  May fail
1231  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1232  *	of available events.  May fail with -ENOMEM if insufficient kernel
1233  *	resources are available.  May fail with -EFAULT if an invalid
1234  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1235  *	implemented.
1236  */
1237 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1238 {
1239 	struct kioctx *ioctx = NULL;
1240 	unsigned long ctx;
1241 	long ret;
1242 
1243 	ret = get_user(ctx, ctxp);
1244 	if (unlikely(ret))
1245 		goto out;
1246 
1247 	ret = -EINVAL;
1248 	if (unlikely(ctx || nr_events == 0)) {
1249 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1250 		         ctx, nr_events);
1251 		goto out;
1252 	}
1253 
1254 	ioctx = ioctx_alloc(nr_events);
1255 	ret = PTR_ERR(ioctx);
1256 	if (!IS_ERR(ioctx)) {
1257 		ret = put_user(ioctx->user_id, ctxp);
1258 		if (!ret)
1259 			return 0;
1260 
1261 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1262 		io_destroy(ioctx);
1263 	}
1264 
1265 out:
1266 	return ret;
1267 }
1268 
1269 /* sys_io_destroy:
1270  *	Destroy the aio_context specified.  May cancel any outstanding
1271  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1272  *	implemented.  May fail with -EFAULT if the context pointed to
1273  *	is invalid.
1274  */
1275 asmlinkage long sys_io_destroy(aio_context_t ctx)
1276 {
1277 	struct kioctx *ioctx = lookup_ioctx(ctx);
1278 	if (likely(NULL != ioctx)) {
1279 		io_destroy(ioctx);
1280 		return 0;
1281 	}
1282 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1283 	return -EINVAL;
1284 }
1285 
1286 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1287 {
1288 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1289 
1290 	BUG_ON(ret <= 0);
1291 
1292 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1293 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1294 		iov->iov_base += this;
1295 		iov->iov_len -= this;
1296 		iocb->ki_left -= this;
1297 		ret -= this;
1298 		if (iov->iov_len == 0) {
1299 			iocb->ki_cur_seg++;
1300 			iov++;
1301 		}
1302 	}
1303 
1304 	/* the caller should not have done more io than what fit in
1305 	 * the remaining iovecs */
1306 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1307 }
1308 
1309 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1310 {
1311 	struct file *file = iocb->ki_filp;
1312 	struct address_space *mapping = file->f_mapping;
1313 	struct inode *inode = mapping->host;
1314 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1315 			 unsigned long, loff_t);
1316 	ssize_t ret = 0;
1317 	unsigned short opcode;
1318 
1319 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1320 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1321 		rw_op = file->f_op->aio_read;
1322 		opcode = IOCB_CMD_PREADV;
1323 	} else {
1324 		rw_op = file->f_op->aio_write;
1325 		opcode = IOCB_CMD_PWRITEV;
1326 	}
1327 
1328 	do {
1329 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1330 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1331 			    iocb->ki_pos);
1332 		if (ret > 0)
1333 			aio_advance_iovec(iocb, ret);
1334 
1335 	/* retry all partial writes.  retry partial reads as long as its a
1336 	 * regular file. */
1337 	} while (ret > 0 && iocb->ki_left > 0 &&
1338 		 (opcode == IOCB_CMD_PWRITEV ||
1339 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1340 
1341 	/* This means we must have transferred all that we could */
1342 	/* No need to retry anymore */
1343 	if ((ret == 0) || (iocb->ki_left == 0))
1344 		ret = iocb->ki_nbytes - iocb->ki_left;
1345 
1346 	return ret;
1347 }
1348 
1349 static ssize_t aio_fdsync(struct kiocb *iocb)
1350 {
1351 	struct file *file = iocb->ki_filp;
1352 	ssize_t ret = -EINVAL;
1353 
1354 	if (file->f_op->aio_fsync)
1355 		ret = file->f_op->aio_fsync(iocb, 1);
1356 	return ret;
1357 }
1358 
1359 static ssize_t aio_fsync(struct kiocb *iocb)
1360 {
1361 	struct file *file = iocb->ki_filp;
1362 	ssize_t ret = -EINVAL;
1363 
1364 	if (file->f_op->aio_fsync)
1365 		ret = file->f_op->aio_fsync(iocb, 0);
1366 	return ret;
1367 }
1368 
1369 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1370 {
1371 	ssize_t ret;
1372 
1373 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1374 				    kiocb->ki_nbytes, 1,
1375 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1376 	if (ret < 0)
1377 		goto out;
1378 
1379 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1380 	kiocb->ki_cur_seg = 0;
1381 	/* ki_nbytes/left now reflect bytes instead of segs */
1382 	kiocb->ki_nbytes = ret;
1383 	kiocb->ki_left = ret;
1384 
1385 	ret = 0;
1386 out:
1387 	return ret;
1388 }
1389 
1390 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1391 {
1392 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1393 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1394 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1395 	kiocb->ki_nr_segs = 1;
1396 	kiocb->ki_cur_seg = 0;
1397 	return 0;
1398 }
1399 
1400 /*
1401  * aio_setup_iocb:
1402  *	Performs the initial checks and aio retry method
1403  *	setup for the kiocb at the time of io submission.
1404  */
1405 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1406 {
1407 	struct file *file = kiocb->ki_filp;
1408 	ssize_t ret = 0;
1409 
1410 	switch (kiocb->ki_opcode) {
1411 	case IOCB_CMD_PREAD:
1412 		ret = -EBADF;
1413 		if (unlikely(!(file->f_mode & FMODE_READ)))
1414 			break;
1415 		ret = -EFAULT;
1416 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1417 			kiocb->ki_left)))
1418 			break;
1419 		ret = security_file_permission(file, MAY_READ);
1420 		if (unlikely(ret))
1421 			break;
1422 		ret = aio_setup_single_vector(kiocb);
1423 		if (ret)
1424 			break;
1425 		ret = -EINVAL;
1426 		if (file->f_op->aio_read)
1427 			kiocb->ki_retry = aio_rw_vect_retry;
1428 		break;
1429 	case IOCB_CMD_PWRITE:
1430 		ret = -EBADF;
1431 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1432 			break;
1433 		ret = -EFAULT;
1434 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1435 			kiocb->ki_left)))
1436 			break;
1437 		ret = security_file_permission(file, MAY_WRITE);
1438 		if (unlikely(ret))
1439 			break;
1440 		ret = aio_setup_single_vector(kiocb);
1441 		if (ret)
1442 			break;
1443 		ret = -EINVAL;
1444 		if (file->f_op->aio_write)
1445 			kiocb->ki_retry = aio_rw_vect_retry;
1446 		break;
1447 	case IOCB_CMD_PREADV:
1448 		ret = -EBADF;
1449 		if (unlikely(!(file->f_mode & FMODE_READ)))
1450 			break;
1451 		ret = security_file_permission(file, MAY_READ);
1452 		if (unlikely(ret))
1453 			break;
1454 		ret = aio_setup_vectored_rw(READ, kiocb);
1455 		if (ret)
1456 			break;
1457 		ret = -EINVAL;
1458 		if (file->f_op->aio_read)
1459 			kiocb->ki_retry = aio_rw_vect_retry;
1460 		break;
1461 	case IOCB_CMD_PWRITEV:
1462 		ret = -EBADF;
1463 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1464 			break;
1465 		ret = security_file_permission(file, MAY_WRITE);
1466 		if (unlikely(ret))
1467 			break;
1468 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1469 		if (ret)
1470 			break;
1471 		ret = -EINVAL;
1472 		if (file->f_op->aio_write)
1473 			kiocb->ki_retry = aio_rw_vect_retry;
1474 		break;
1475 	case IOCB_CMD_FDSYNC:
1476 		ret = -EINVAL;
1477 		if (file->f_op->aio_fsync)
1478 			kiocb->ki_retry = aio_fdsync;
1479 		break;
1480 	case IOCB_CMD_FSYNC:
1481 		ret = -EINVAL;
1482 		if (file->f_op->aio_fsync)
1483 			kiocb->ki_retry = aio_fsync;
1484 		break;
1485 	default:
1486 		dprintk("EINVAL: io_submit: no operation provided\n");
1487 		ret = -EINVAL;
1488 	}
1489 
1490 	if (!kiocb->ki_retry)
1491 		return ret;
1492 
1493 	return 0;
1494 }
1495 
1496 /*
1497  * aio_wake_function:
1498  * 	wait queue callback function for aio notification,
1499  * 	Simply triggers a retry of the operation via kick_iocb.
1500  *
1501  * 	This callback is specified in the wait queue entry in
1502  *	a kiocb	(current->io_wait points to this wait queue
1503  *	entry when an aio operation executes; it is used
1504  * 	instead of a synchronous wait when an i/o blocking
1505  *	condition is encountered during aio).
1506  *
1507  * Note:
1508  * This routine is executed with the wait queue lock held.
1509  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1510  * the ioctx lock inside the wait queue lock. This is safe
1511  * because this callback isn't used for wait queues which
1512  * are nested inside ioctx lock (i.e. ctx->wait)
1513  */
1514 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1515 			     int sync, void *key)
1516 {
1517 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1518 
1519 	list_del_init(&wait->task_list);
1520 	kick_iocb(iocb);
1521 	return 1;
1522 }
1523 
1524 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1525 			 struct iocb *iocb)
1526 {
1527 	struct kiocb *req;
1528 	struct file *file;
1529 	ssize_t ret;
1530 
1531 	/* enforce forwards compatibility on users */
1532 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1533 		     iocb->aio_reserved3)) {
1534 		pr_debug("EINVAL: io_submit: reserve field set\n");
1535 		return -EINVAL;
1536 	}
1537 
1538 	/* prevent overflows */
1539 	if (unlikely(
1540 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1541 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1542 	    ((ssize_t)iocb->aio_nbytes < 0)
1543 	   )) {
1544 		pr_debug("EINVAL: io_submit: overflow check\n");
1545 		return -EINVAL;
1546 	}
1547 
1548 	file = fget(iocb->aio_fildes);
1549 	if (unlikely(!file))
1550 		return -EBADF;
1551 
1552 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1553 	if (unlikely(!req)) {
1554 		fput(file);
1555 		return -EAGAIN;
1556 	}
1557 
1558 	req->ki_filp = file;
1559 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1560 	if (unlikely(ret)) {
1561 		dprintk("EFAULT: aio_key\n");
1562 		goto out_put_req;
1563 	}
1564 
1565 	req->ki_obj.user = user_iocb;
1566 	req->ki_user_data = iocb->aio_data;
1567 	req->ki_pos = iocb->aio_offset;
1568 
1569 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1570 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1571 	req->ki_opcode = iocb->aio_lio_opcode;
1572 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1573 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1574 
1575 	ret = aio_setup_iocb(req);
1576 
1577 	if (ret)
1578 		goto out_put_req;
1579 
1580 	spin_lock_irq(&ctx->ctx_lock);
1581 	aio_run_iocb(req);
1582 	if (!list_empty(&ctx->run_list)) {
1583 		/* drain the run list */
1584 		while (__aio_run_iocbs(ctx))
1585 			;
1586 	}
1587 	spin_unlock_irq(&ctx->ctx_lock);
1588 	aio_put_req(req);	/* drop extra ref to req */
1589 	return 0;
1590 
1591 out_put_req:
1592 	aio_put_req(req);	/* drop extra ref to req */
1593 	aio_put_req(req);	/* drop i/o ref to req */
1594 	return ret;
1595 }
1596 
1597 /* sys_io_submit:
1598  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1599  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1600  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1601  *	*iocbpp[0] is not properly initialized, if the operation specified
1602  *	is invalid for the file descriptor in the iocb.  May fail with
1603  *	-EFAULT if any of the data structures point to invalid data.  May
1604  *	fail with -EBADF if the file descriptor specified in the first
1605  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1606  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1607  *	fail with -ENOSYS if not implemented.
1608  */
1609 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1610 			      struct iocb __user * __user *iocbpp)
1611 {
1612 	struct kioctx *ctx;
1613 	long ret = 0;
1614 	int i;
1615 
1616 	if (unlikely(nr < 0))
1617 		return -EINVAL;
1618 
1619 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1620 		return -EFAULT;
1621 
1622 	ctx = lookup_ioctx(ctx_id);
1623 	if (unlikely(!ctx)) {
1624 		pr_debug("EINVAL: io_submit: invalid context id\n");
1625 		return -EINVAL;
1626 	}
1627 
1628 	/*
1629 	 * AKPM: should this return a partial result if some of the IOs were
1630 	 * successfully submitted?
1631 	 */
1632 	for (i=0; i<nr; i++) {
1633 		struct iocb __user *user_iocb;
1634 		struct iocb tmp;
1635 
1636 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1637 			ret = -EFAULT;
1638 			break;
1639 		}
1640 
1641 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1642 			ret = -EFAULT;
1643 			break;
1644 		}
1645 
1646 		ret = io_submit_one(ctx, user_iocb, &tmp);
1647 		if (ret)
1648 			break;
1649 	}
1650 
1651 	put_ioctx(ctx);
1652 	return i ? i : ret;
1653 }
1654 
1655 /* lookup_kiocb
1656  *	Finds a given iocb for cancellation.
1657  */
1658 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1659 				  u32 key)
1660 {
1661 	struct list_head *pos;
1662 
1663 	assert_spin_locked(&ctx->ctx_lock);
1664 
1665 	/* TODO: use a hash or array, this sucks. */
1666 	list_for_each(pos, &ctx->active_reqs) {
1667 		struct kiocb *kiocb = list_kiocb(pos);
1668 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1669 			return kiocb;
1670 	}
1671 	return NULL;
1672 }
1673 
1674 /* sys_io_cancel:
1675  *	Attempts to cancel an iocb previously passed to io_submit.  If
1676  *	the operation is successfully cancelled, the resulting event is
1677  *	copied into the memory pointed to by result without being placed
1678  *	into the completion queue and 0 is returned.  May fail with
1679  *	-EFAULT if any of the data structures pointed to are invalid.
1680  *	May fail with -EINVAL if aio_context specified by ctx_id is
1681  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1682  *	cancelled.  Will fail with -ENOSYS if not implemented.
1683  */
1684 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1685 			      struct io_event __user *result)
1686 {
1687 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1688 	struct kioctx *ctx;
1689 	struct kiocb *kiocb;
1690 	u32 key;
1691 	int ret;
1692 
1693 	ret = get_user(key, &iocb->aio_key);
1694 	if (unlikely(ret))
1695 		return -EFAULT;
1696 
1697 	ctx = lookup_ioctx(ctx_id);
1698 	if (unlikely(!ctx))
1699 		return -EINVAL;
1700 
1701 	spin_lock_irq(&ctx->ctx_lock);
1702 	ret = -EAGAIN;
1703 	kiocb = lookup_kiocb(ctx, iocb, key);
1704 	if (kiocb && kiocb->ki_cancel) {
1705 		cancel = kiocb->ki_cancel;
1706 		kiocb->ki_users ++;
1707 		kiocbSetCancelled(kiocb);
1708 	} else
1709 		cancel = NULL;
1710 	spin_unlock_irq(&ctx->ctx_lock);
1711 
1712 	if (NULL != cancel) {
1713 		struct io_event tmp;
1714 		pr_debug("calling cancel\n");
1715 		memset(&tmp, 0, sizeof(tmp));
1716 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1717 		tmp.data = kiocb->ki_user_data;
1718 		ret = cancel(kiocb, &tmp);
1719 		if (!ret) {
1720 			/* Cancellation succeeded -- copy the result
1721 			 * into the user's buffer.
1722 			 */
1723 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1724 				ret = -EFAULT;
1725 		}
1726 	} else
1727 		ret = -EINVAL;
1728 
1729 	put_ioctx(ctx);
1730 
1731 	return ret;
1732 }
1733 
1734 /* io_getevents:
1735  *	Attempts to read at least min_nr events and up to nr events from
1736  *	the completion queue for the aio_context specified by ctx_id.  May
1737  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1738  *	if nr is out of range, if when is out of range.  May fail with
1739  *	-EFAULT if any of the memory specified to is invalid.  May return
1740  *	0 or < min_nr if no events are available and the timeout specified
1741  *	by when	has elapsed, where when == NULL specifies an infinite
1742  *	timeout.  Note that the timeout pointed to by when is relative and
1743  *	will be updated if not NULL and the operation blocks.  Will fail
1744  *	with -ENOSYS if not implemented.
1745  */
1746 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1747 				 long min_nr,
1748 				 long nr,
1749 				 struct io_event __user *events,
1750 				 struct timespec __user *timeout)
1751 {
1752 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1753 	long ret = -EINVAL;
1754 
1755 	if (likely(ioctx)) {
1756 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1757 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1758 		put_ioctx(ioctx);
1759 	}
1760 
1761 	return ret;
1762 }
1763 
1764 __initcall(aio_setup);
1765 
1766 EXPORT_SYMBOL(aio_complete);
1767 EXPORT_SYMBOL(aio_put_req);
1768 EXPORT_SYMBOL(wait_on_sync_kiocb);
1769