xref: /linux/fs/aio.c (revision b0148a98ec5151fec82064d95f11eb9efbc628ea)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 
38 #if DEBUG > 1
39 #define dprintk		printk
40 #else
41 #define dprintk(x...)	do { ; } while (0)
42 #endif
43 
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock);
46 unsigned long aio_nr;		/* current system wide number of aio requests */
47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
49 
50 static struct kmem_cache	*kiocb_cachep;
51 static struct kmem_cache	*kioctx_cachep;
52 
53 static struct workqueue_struct *aio_wq;
54 
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(struct work_struct *);
57 static DECLARE_WORK(fput_work, aio_fput_routine);
58 
59 static DEFINE_SPINLOCK(fput_lock);
60 static LIST_HEAD(fput_head);
61 
62 static void aio_kick_handler(struct work_struct *);
63 static void aio_queue_work(struct kioctx *);
64 
65 /* aio_setup
66  *	Creates the slab caches used by the aio routines, panic on
67  *	failure as this is done early during the boot sequence.
68  */
69 static int __init aio_setup(void)
70 {
71 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75 
76 	aio_wq = create_workqueue("aio");
77 
78 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 
80 	return 0;
81 }
82 
83 static void aio_free_ring(struct kioctx *ctx)
84 {
85 	struct aio_ring_info *info = &ctx->ring_info;
86 	long i;
87 
88 	for (i=0; i<info->nr_pages; i++)
89 		put_page(info->ring_pages[i]);
90 
91 	if (info->mmap_size) {
92 		down_write(&ctx->mm->mmap_sem);
93 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 		up_write(&ctx->mm->mmap_sem);
95 	}
96 
97 	if (info->ring_pages && info->ring_pages != info->internal_pages)
98 		kfree(info->ring_pages);
99 	info->ring_pages = NULL;
100 	info->nr = 0;
101 }
102 
103 static int aio_setup_ring(struct kioctx *ctx)
104 {
105 	struct aio_ring *ring;
106 	struct aio_ring_info *info = &ctx->ring_info;
107 	unsigned nr_events = ctx->max_reqs;
108 	unsigned long size;
109 	int nr_pages;
110 
111 	/* Compensate for the ring buffer's head/tail overlap entry */
112 	nr_events += 2;	/* 1 is required, 2 for good luck */
113 
114 	size = sizeof(struct aio_ring);
115 	size += sizeof(struct io_event) * nr_events;
116 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 
118 	if (nr_pages < 0)
119 		return -EINVAL;
120 
121 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 
123 	info->nr = 0;
124 	info->ring_pages = info->internal_pages;
125 	if (nr_pages > AIO_RING_PAGES) {
126 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
127 		if (!info->ring_pages)
128 			return -ENOMEM;
129 	}
130 
131 	info->mmap_size = nr_pages * PAGE_SIZE;
132 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 	down_write(&ctx->mm->mmap_sem);
134 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 				  PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
136 				  0);
137 	if (IS_ERR((void *)info->mmap_base)) {
138 		up_write(&ctx->mm->mmap_sem);
139 		printk("mmap err: %ld\n", -info->mmap_base);
140 		info->mmap_size = 0;
141 		aio_free_ring(ctx);
142 		return -EAGAIN;
143 	}
144 
145 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
146 	info->nr_pages = get_user_pages(current, ctx->mm,
147 					info->mmap_base, nr_pages,
148 					1, 0, info->ring_pages, NULL);
149 	up_write(&ctx->mm->mmap_sem);
150 
151 	if (unlikely(info->nr_pages != nr_pages)) {
152 		aio_free_ring(ctx);
153 		return -EAGAIN;
154 	}
155 
156 	ctx->user_id = info->mmap_base;
157 
158 	info->nr = nr_events;		/* trusted copy */
159 
160 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
161 	ring->nr = nr_events;	/* user copy */
162 	ring->id = ctx->user_id;
163 	ring->head = ring->tail = 0;
164 	ring->magic = AIO_RING_MAGIC;
165 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
166 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
167 	ring->header_length = sizeof(struct aio_ring);
168 	kunmap_atomic(ring, KM_USER0);
169 
170 	return 0;
171 }
172 
173 
174 /* aio_ring_event: returns a pointer to the event at the given index from
175  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
176  */
177 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 
181 #define aio_ring_event(info, nr, km) ({					\
182 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
183 	struct io_event *__event;					\
184 	__event = kmap_atomic(						\
185 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 	__event += pos % AIO_EVENTS_PER_PAGE;				\
187 	__event;							\
188 })
189 
190 #define put_aio_ring_event(event, km) do {	\
191 	struct io_event *__event = (event);	\
192 	(void)__event;				\
193 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
194 } while(0)
195 
196 /* ioctx_alloc
197  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
198  */
199 static struct kioctx *ioctx_alloc(unsigned nr_events)
200 {
201 	struct mm_struct *mm;
202 	struct kioctx *ctx;
203 
204 	/* Prevent overflows */
205 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
206 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
207 		pr_debug("ENOMEM: nr_events too high\n");
208 		return ERR_PTR(-EINVAL);
209 	}
210 
211 	if ((unsigned long)nr_events > aio_max_nr)
212 		return ERR_PTR(-EAGAIN);
213 
214 	ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
215 	if (!ctx)
216 		return ERR_PTR(-ENOMEM);
217 
218 	memset(ctx, 0, sizeof(*ctx));
219 	ctx->max_reqs = nr_events;
220 	mm = ctx->mm = current->mm;
221 	atomic_inc(&mm->mm_count);
222 
223 	atomic_set(&ctx->users, 1);
224 	spin_lock_init(&ctx->ctx_lock);
225 	spin_lock_init(&ctx->ring_info.ring_lock);
226 	init_waitqueue_head(&ctx->wait);
227 
228 	INIT_LIST_HEAD(&ctx->active_reqs);
229 	INIT_LIST_HEAD(&ctx->run_list);
230 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
231 
232 	if (aio_setup_ring(ctx) < 0)
233 		goto out_freectx;
234 
235 	/* limit the number of system wide aios */
236 	spin_lock(&aio_nr_lock);
237 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
238 	    aio_nr + ctx->max_reqs < aio_nr)
239 		ctx->max_reqs = 0;
240 	else
241 		aio_nr += ctx->max_reqs;
242 	spin_unlock(&aio_nr_lock);
243 	if (ctx->max_reqs == 0)
244 		goto out_cleanup;
245 
246 	/* now link into global list.  kludge.  FIXME */
247 	write_lock(&mm->ioctx_list_lock);
248 	ctx->next = mm->ioctx_list;
249 	mm->ioctx_list = ctx;
250 	write_unlock(&mm->ioctx_list_lock);
251 
252 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
253 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
254 	return ctx;
255 
256 out_cleanup:
257 	__put_ioctx(ctx);
258 	return ERR_PTR(-EAGAIN);
259 
260 out_freectx:
261 	mmdrop(mm);
262 	kmem_cache_free(kioctx_cachep, ctx);
263 	ctx = ERR_PTR(-ENOMEM);
264 
265 	dprintk("aio: error allocating ioctx %p\n", ctx);
266 	return ctx;
267 }
268 
269 /* aio_cancel_all
270  *	Cancels all outstanding aio requests on an aio context.  Used
271  *	when the processes owning a context have all exited to encourage
272  *	the rapid destruction of the kioctx.
273  */
274 static void aio_cancel_all(struct kioctx *ctx)
275 {
276 	int (*cancel)(struct kiocb *, struct io_event *);
277 	struct io_event res;
278 	spin_lock_irq(&ctx->ctx_lock);
279 	ctx->dead = 1;
280 	while (!list_empty(&ctx->active_reqs)) {
281 		struct list_head *pos = ctx->active_reqs.next;
282 		struct kiocb *iocb = list_kiocb(pos);
283 		list_del_init(&iocb->ki_list);
284 		cancel = iocb->ki_cancel;
285 		kiocbSetCancelled(iocb);
286 		if (cancel) {
287 			iocb->ki_users++;
288 			spin_unlock_irq(&ctx->ctx_lock);
289 			cancel(iocb, &res);
290 			spin_lock_irq(&ctx->ctx_lock);
291 		}
292 	}
293 	spin_unlock_irq(&ctx->ctx_lock);
294 }
295 
296 static void wait_for_all_aios(struct kioctx *ctx)
297 {
298 	struct task_struct *tsk = current;
299 	DECLARE_WAITQUEUE(wait, tsk);
300 
301 	spin_lock_irq(&ctx->ctx_lock);
302 	if (!ctx->reqs_active)
303 		goto out;
304 
305 	add_wait_queue(&ctx->wait, &wait);
306 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
307 	while (ctx->reqs_active) {
308 		spin_unlock_irq(&ctx->ctx_lock);
309 		schedule();
310 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
311 		spin_lock_irq(&ctx->ctx_lock);
312 	}
313 	__set_task_state(tsk, TASK_RUNNING);
314 	remove_wait_queue(&ctx->wait, &wait);
315 
316 out:
317 	spin_unlock_irq(&ctx->ctx_lock);
318 }
319 
320 /* wait_on_sync_kiocb:
321  *	Waits on the given sync kiocb to complete.
322  */
323 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
324 {
325 	while (iocb->ki_users) {
326 		set_current_state(TASK_UNINTERRUPTIBLE);
327 		if (!iocb->ki_users)
328 			break;
329 		schedule();
330 	}
331 	__set_current_state(TASK_RUNNING);
332 	return iocb->ki_user_data;
333 }
334 
335 /* exit_aio: called when the last user of mm goes away.  At this point,
336  * there is no way for any new requests to be submited or any of the
337  * io_* syscalls to be called on the context.  However, there may be
338  * outstanding requests which hold references to the context; as they
339  * go away, they will call put_ioctx and release any pinned memory
340  * associated with the request (held via struct page * references).
341  */
342 void fastcall exit_aio(struct mm_struct *mm)
343 {
344 	struct kioctx *ctx = mm->ioctx_list;
345 	mm->ioctx_list = NULL;
346 	while (ctx) {
347 		struct kioctx *next = ctx->next;
348 		ctx->next = NULL;
349 		aio_cancel_all(ctx);
350 
351 		wait_for_all_aios(ctx);
352 		/*
353 		 * this is an overkill, but ensures we don't leave
354 		 * the ctx on the aio_wq
355 		 */
356 		flush_workqueue(aio_wq);
357 
358 		if (1 != atomic_read(&ctx->users))
359 			printk(KERN_DEBUG
360 				"exit_aio:ioctx still alive: %d %d %d\n",
361 				atomic_read(&ctx->users), ctx->dead,
362 				ctx->reqs_active);
363 		put_ioctx(ctx);
364 		ctx = next;
365 	}
366 }
367 
368 /* __put_ioctx
369  *	Called when the last user of an aio context has gone away,
370  *	and the struct needs to be freed.
371  */
372 void fastcall __put_ioctx(struct kioctx *ctx)
373 {
374 	unsigned nr_events = ctx->max_reqs;
375 
376 	BUG_ON(ctx->reqs_active);
377 
378 	cancel_delayed_work(&ctx->wq);
379 	flush_workqueue(aio_wq);
380 	aio_free_ring(ctx);
381 	mmdrop(ctx->mm);
382 	ctx->mm = NULL;
383 	pr_debug("__put_ioctx: freeing %p\n", ctx);
384 	kmem_cache_free(kioctx_cachep, ctx);
385 
386 	if (nr_events) {
387 		spin_lock(&aio_nr_lock);
388 		BUG_ON(aio_nr - nr_events > aio_nr);
389 		aio_nr -= nr_events;
390 		spin_unlock(&aio_nr_lock);
391 	}
392 }
393 
394 /* aio_get_req
395  *	Allocate a slot for an aio request.  Increments the users count
396  * of the kioctx so that the kioctx stays around until all requests are
397  * complete.  Returns NULL if no requests are free.
398  *
399  * Returns with kiocb->users set to 2.  The io submit code path holds
400  * an extra reference while submitting the i/o.
401  * This prevents races between the aio code path referencing the
402  * req (after submitting it) and aio_complete() freeing the req.
403  */
404 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
405 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
406 {
407 	struct kiocb *req = NULL;
408 	struct aio_ring *ring;
409 	int okay = 0;
410 
411 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
412 	if (unlikely(!req))
413 		return NULL;
414 
415 	req->ki_flags = 0;
416 	req->ki_users = 2;
417 	req->ki_key = 0;
418 	req->ki_ctx = ctx;
419 	req->ki_cancel = NULL;
420 	req->ki_retry = NULL;
421 	req->ki_dtor = NULL;
422 	req->private = NULL;
423 	req->ki_iovec = NULL;
424 	INIT_LIST_HEAD(&req->ki_run_list);
425 
426 	/* Check if the completion queue has enough free space to
427 	 * accept an event from this io.
428 	 */
429 	spin_lock_irq(&ctx->ctx_lock);
430 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
431 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
432 		list_add(&req->ki_list, &ctx->active_reqs);
433 		ctx->reqs_active++;
434 		okay = 1;
435 	}
436 	kunmap_atomic(ring, KM_USER0);
437 	spin_unlock_irq(&ctx->ctx_lock);
438 
439 	if (!okay) {
440 		kmem_cache_free(kiocb_cachep, req);
441 		req = NULL;
442 	}
443 
444 	return req;
445 }
446 
447 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
448 {
449 	struct kiocb *req;
450 	/* Handle a potential starvation case -- should be exceedingly rare as
451 	 * requests will be stuck on fput_head only if the aio_fput_routine is
452 	 * delayed and the requests were the last user of the struct file.
453 	 */
454 	req = __aio_get_req(ctx);
455 	if (unlikely(NULL == req)) {
456 		aio_fput_routine(NULL);
457 		req = __aio_get_req(ctx);
458 	}
459 	return req;
460 }
461 
462 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
463 {
464 	assert_spin_locked(&ctx->ctx_lock);
465 
466 	if (req->ki_dtor)
467 		req->ki_dtor(req);
468 	if (req->ki_iovec != &req->ki_inline_vec)
469 		kfree(req->ki_iovec);
470 	kmem_cache_free(kiocb_cachep, req);
471 	ctx->reqs_active--;
472 
473 	if (unlikely(!ctx->reqs_active && ctx->dead))
474 		wake_up(&ctx->wait);
475 }
476 
477 static void aio_fput_routine(struct work_struct *data)
478 {
479 	spin_lock_irq(&fput_lock);
480 	while (likely(!list_empty(&fput_head))) {
481 		struct kiocb *req = list_kiocb(fput_head.next);
482 		struct kioctx *ctx = req->ki_ctx;
483 
484 		list_del(&req->ki_list);
485 		spin_unlock_irq(&fput_lock);
486 
487 		/* Complete the fput */
488 		__fput(req->ki_filp);
489 
490 		/* Link the iocb into the context's free list */
491 		spin_lock_irq(&ctx->ctx_lock);
492 		really_put_req(ctx, req);
493 		spin_unlock_irq(&ctx->ctx_lock);
494 
495 		put_ioctx(ctx);
496 		spin_lock_irq(&fput_lock);
497 	}
498 	spin_unlock_irq(&fput_lock);
499 }
500 
501 /* __aio_put_req
502  *	Returns true if this put was the last user of the request.
503  */
504 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
505 {
506 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
507 		req, atomic_read(&req->ki_filp->f_count));
508 
509 	assert_spin_locked(&ctx->ctx_lock);
510 
511 	req->ki_users --;
512 	BUG_ON(req->ki_users < 0);
513 	if (likely(req->ki_users))
514 		return 0;
515 	list_del(&req->ki_list);		/* remove from active_reqs */
516 	req->ki_cancel = NULL;
517 	req->ki_retry = NULL;
518 
519 	/* Must be done under the lock to serialise against cancellation.
520 	 * Call this aio_fput as it duplicates fput via the fput_work.
521 	 */
522 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
523 		get_ioctx(ctx);
524 		spin_lock(&fput_lock);
525 		list_add(&req->ki_list, &fput_head);
526 		spin_unlock(&fput_lock);
527 		queue_work(aio_wq, &fput_work);
528 	} else
529 		really_put_req(ctx, req);
530 	return 1;
531 }
532 
533 /* aio_put_req
534  *	Returns true if this put was the last user of the kiocb,
535  *	false if the request is still in use.
536  */
537 int fastcall aio_put_req(struct kiocb *req)
538 {
539 	struct kioctx *ctx = req->ki_ctx;
540 	int ret;
541 	spin_lock_irq(&ctx->ctx_lock);
542 	ret = __aio_put_req(ctx, req);
543 	spin_unlock_irq(&ctx->ctx_lock);
544 	return ret;
545 }
546 
547 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
548  *	FIXME: this is O(n) and is only suitable for development.
549  */
550 struct kioctx *lookup_ioctx(unsigned long ctx_id)
551 {
552 	struct kioctx *ioctx;
553 	struct mm_struct *mm;
554 
555 	mm = current->mm;
556 	read_lock(&mm->ioctx_list_lock);
557 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
558 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
559 			get_ioctx(ioctx);
560 			break;
561 		}
562 	read_unlock(&mm->ioctx_list_lock);
563 
564 	return ioctx;
565 }
566 
567 /*
568  * use_mm
569  *	Makes the calling kernel thread take on the specified
570  *	mm context.
571  *	Called by the retry thread execute retries within the
572  *	iocb issuer's mm context, so that copy_from/to_user
573  *	operations work seamlessly for aio.
574  *	(Note: this routine is intended to be called only
575  *	from a kernel thread context)
576  */
577 static void use_mm(struct mm_struct *mm)
578 {
579 	struct mm_struct *active_mm;
580 	struct task_struct *tsk = current;
581 
582 	task_lock(tsk);
583 	tsk->flags |= PF_BORROWED_MM;
584 	active_mm = tsk->active_mm;
585 	atomic_inc(&mm->mm_count);
586 	tsk->mm = mm;
587 	tsk->active_mm = mm;
588 	/*
589 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
590 	 * it won't work. Update it accordingly if you change it here
591 	 */
592 	switch_mm(active_mm, mm, tsk);
593 	task_unlock(tsk);
594 
595 	mmdrop(active_mm);
596 }
597 
598 /*
599  * unuse_mm
600  *	Reverses the effect of use_mm, i.e. releases the
601  *	specified mm context which was earlier taken on
602  *	by the calling kernel thread
603  *	(Note: this routine is intended to be called only
604  *	from a kernel thread context)
605  */
606 static void unuse_mm(struct mm_struct *mm)
607 {
608 	struct task_struct *tsk = current;
609 
610 	task_lock(tsk);
611 	tsk->flags &= ~PF_BORROWED_MM;
612 	tsk->mm = NULL;
613 	/* active_mm is still 'mm' */
614 	enter_lazy_tlb(mm, tsk);
615 	task_unlock(tsk);
616 }
617 
618 /*
619  * Queue up a kiocb to be retried. Assumes that the kiocb
620  * has already been marked as kicked, and places it on
621  * the retry run list for the corresponding ioctx, if it
622  * isn't already queued. Returns 1 if it actually queued
623  * the kiocb (to tell the caller to activate the work
624  * queue to process it), or 0, if it found that it was
625  * already queued.
626  */
627 static inline int __queue_kicked_iocb(struct kiocb *iocb)
628 {
629 	struct kioctx *ctx = iocb->ki_ctx;
630 
631 	assert_spin_locked(&ctx->ctx_lock);
632 
633 	if (list_empty(&iocb->ki_run_list)) {
634 		list_add_tail(&iocb->ki_run_list,
635 			&ctx->run_list);
636 		return 1;
637 	}
638 	return 0;
639 }
640 
641 /* aio_run_iocb
642  *	This is the core aio execution routine. It is
643  *	invoked both for initial i/o submission and
644  *	subsequent retries via the aio_kick_handler.
645  *	Expects to be invoked with iocb->ki_ctx->lock
646  *	already held. The lock is released and reacquired
647  *	as needed during processing.
648  *
649  * Calls the iocb retry method (already setup for the
650  * iocb on initial submission) for operation specific
651  * handling, but takes care of most of common retry
652  * execution details for a given iocb. The retry method
653  * needs to be non-blocking as far as possible, to avoid
654  * holding up other iocbs waiting to be serviced by the
655  * retry kernel thread.
656  *
657  * The trickier parts in this code have to do with
658  * ensuring that only one retry instance is in progress
659  * for a given iocb at any time. Providing that guarantee
660  * simplifies the coding of individual aio operations as
661  * it avoids various potential races.
662  */
663 static ssize_t aio_run_iocb(struct kiocb *iocb)
664 {
665 	struct kioctx	*ctx = iocb->ki_ctx;
666 	ssize_t (*retry)(struct kiocb *);
667 	ssize_t ret;
668 
669 	if (!(retry = iocb->ki_retry)) {
670 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
671 		return 0;
672 	}
673 
674 	/*
675 	 * We don't want the next retry iteration for this
676 	 * operation to start until this one has returned and
677 	 * updated the iocb state. However, wait_queue functions
678 	 * can trigger a kick_iocb from interrupt context in the
679 	 * meantime, indicating that data is available for the next
680 	 * iteration. We want to remember that and enable the
681 	 * next retry iteration _after_ we are through with
682 	 * this one.
683 	 *
684 	 * So, in order to be able to register a "kick", but
685 	 * prevent it from being queued now, we clear the kick
686 	 * flag, but make the kick code *think* that the iocb is
687 	 * still on the run list until we are actually done.
688 	 * When we are done with this iteration, we check if
689 	 * the iocb was kicked in the meantime and if so, queue
690 	 * it up afresh.
691 	 */
692 
693 	kiocbClearKicked(iocb);
694 
695 	/*
696 	 * This is so that aio_complete knows it doesn't need to
697 	 * pull the iocb off the run list (We can't just call
698 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
699 	 * queue this on the run list yet)
700 	 */
701 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
702 	spin_unlock_irq(&ctx->ctx_lock);
703 
704 	/* Quit retrying if the i/o has been cancelled */
705 	if (kiocbIsCancelled(iocb)) {
706 		ret = -EINTR;
707 		aio_complete(iocb, ret, 0);
708 		/* must not access the iocb after this */
709 		goto out;
710 	}
711 
712 	/*
713 	 * Now we are all set to call the retry method in async
714 	 * context. By setting this thread's io_wait context
715 	 * to point to the wait queue entry inside the currently
716 	 * running iocb for the duration of the retry, we ensure
717 	 * that async notification wakeups are queued by the
718 	 * operation instead of blocking waits, and when notified,
719 	 * cause the iocb to be kicked for continuation (through
720 	 * the aio_wake_function callback).
721 	 */
722 	BUG_ON(current->io_wait != NULL);
723 	current->io_wait = &iocb->ki_wait;
724 	ret = retry(iocb);
725 	current->io_wait = NULL;
726 
727 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
728 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
729 		aio_complete(iocb, ret, 0);
730 	}
731 out:
732 	spin_lock_irq(&ctx->ctx_lock);
733 
734 	if (-EIOCBRETRY == ret) {
735 		/*
736 		 * OK, now that we are done with this iteration
737 		 * and know that there is more left to go,
738 		 * this is where we let go so that a subsequent
739 		 * "kick" can start the next iteration
740 		 */
741 
742 		/* will make __queue_kicked_iocb succeed from here on */
743 		INIT_LIST_HEAD(&iocb->ki_run_list);
744 		/* we must queue the next iteration ourselves, if it
745 		 * has already been kicked */
746 		if (kiocbIsKicked(iocb)) {
747 			__queue_kicked_iocb(iocb);
748 
749 			/*
750 			 * __queue_kicked_iocb will always return 1 here, because
751 			 * iocb->ki_run_list is empty at this point so it should
752 			 * be safe to unconditionally queue the context into the
753 			 * work queue.
754 			 */
755 			aio_queue_work(ctx);
756 		}
757 	}
758 	return ret;
759 }
760 
761 /*
762  * __aio_run_iocbs:
763  * 	Process all pending retries queued on the ioctx
764  * 	run list.
765  * Assumes it is operating within the aio issuer's mm
766  * context.
767  */
768 static int __aio_run_iocbs(struct kioctx *ctx)
769 {
770 	struct kiocb *iocb;
771 	struct list_head run_list;
772 
773 	assert_spin_locked(&ctx->ctx_lock);
774 
775 	list_replace_init(&ctx->run_list, &run_list);
776 	while (!list_empty(&run_list)) {
777 		iocb = list_entry(run_list.next, struct kiocb,
778 			ki_run_list);
779 		list_del(&iocb->ki_run_list);
780 		/*
781 		 * Hold an extra reference while retrying i/o.
782 		 */
783 		iocb->ki_users++;       /* grab extra reference */
784 		aio_run_iocb(iocb);
785 		__aio_put_req(ctx, iocb);
786  	}
787 	if (!list_empty(&ctx->run_list))
788 		return 1;
789 	return 0;
790 }
791 
792 static void aio_queue_work(struct kioctx * ctx)
793 {
794 	unsigned long timeout;
795 	/*
796 	 * if someone is waiting, get the work started right
797 	 * away, otherwise, use a longer delay
798 	 */
799 	smp_mb();
800 	if (waitqueue_active(&ctx->wait))
801 		timeout = 1;
802 	else
803 		timeout = HZ/10;
804 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
805 }
806 
807 
808 /*
809  * aio_run_iocbs:
810  * 	Process all pending retries queued on the ioctx
811  * 	run list.
812  * Assumes it is operating within the aio issuer's mm
813  * context.
814  */
815 static inline void aio_run_iocbs(struct kioctx *ctx)
816 {
817 	int requeue;
818 
819 	spin_lock_irq(&ctx->ctx_lock);
820 
821 	requeue = __aio_run_iocbs(ctx);
822 	spin_unlock_irq(&ctx->ctx_lock);
823 	if (requeue)
824 		aio_queue_work(ctx);
825 }
826 
827 /*
828  * just like aio_run_iocbs, but keeps running them until
829  * the list stays empty
830  */
831 static inline void aio_run_all_iocbs(struct kioctx *ctx)
832 {
833 	spin_lock_irq(&ctx->ctx_lock);
834 	while (__aio_run_iocbs(ctx))
835 		;
836 	spin_unlock_irq(&ctx->ctx_lock);
837 }
838 
839 /*
840  * aio_kick_handler:
841  * 	Work queue handler triggered to process pending
842  * 	retries on an ioctx. Takes on the aio issuer's
843  *	mm context before running the iocbs, so that
844  *	copy_xxx_user operates on the issuer's address
845  *      space.
846  * Run on aiod's context.
847  */
848 static void aio_kick_handler(struct work_struct *work)
849 {
850 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
851 	mm_segment_t oldfs = get_fs();
852 	struct mm_struct *mm;
853 	int requeue;
854 
855 	set_fs(USER_DS);
856 	use_mm(ctx->mm);
857 	spin_lock_irq(&ctx->ctx_lock);
858 	requeue =__aio_run_iocbs(ctx);
859 	mm = ctx->mm;
860 	spin_unlock_irq(&ctx->ctx_lock);
861  	unuse_mm(mm);
862 	set_fs(oldfs);
863 	/*
864 	 * we're in a worker thread already, don't use queue_delayed_work,
865 	 */
866 	if (requeue)
867 		queue_delayed_work(aio_wq, &ctx->wq, 0);
868 }
869 
870 
871 /*
872  * Called by kick_iocb to queue the kiocb for retry
873  * and if required activate the aio work queue to process
874  * it
875  */
876 static void try_queue_kicked_iocb(struct kiocb *iocb)
877 {
878  	struct kioctx	*ctx = iocb->ki_ctx;
879 	unsigned long flags;
880 	int run = 0;
881 
882 	/* We're supposed to be the only path putting the iocb back on the run
883 	 * list.  If we find that the iocb is *back* on a wait queue already
884 	 * than retry has happened before we could queue the iocb.  This also
885 	 * means that the retry could have completed and freed our iocb, no
886 	 * good. */
887 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
888 
889 	spin_lock_irqsave(&ctx->ctx_lock, flags);
890 	/* set this inside the lock so that we can't race with aio_run_iocb()
891 	 * testing it and putting the iocb on the run list under the lock */
892 	if (!kiocbTryKick(iocb))
893 		run = __queue_kicked_iocb(iocb);
894 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
895 	if (run)
896 		aio_queue_work(ctx);
897 }
898 
899 /*
900  * kick_iocb:
901  *      Called typically from a wait queue callback context
902  *      (aio_wake_function) to trigger a retry of the iocb.
903  *      The retry is usually executed by aio workqueue
904  *      threads (See aio_kick_handler).
905  */
906 void fastcall kick_iocb(struct kiocb *iocb)
907 {
908 	/* sync iocbs are easy: they can only ever be executing from a
909 	 * single context. */
910 	if (is_sync_kiocb(iocb)) {
911 		kiocbSetKicked(iocb);
912 	        wake_up_process(iocb->ki_obj.tsk);
913 		return;
914 	}
915 
916 	try_queue_kicked_iocb(iocb);
917 }
918 EXPORT_SYMBOL(kick_iocb);
919 
920 /* aio_complete
921  *	Called when the io request on the given iocb is complete.
922  *	Returns true if this is the last user of the request.  The
923  *	only other user of the request can be the cancellation code.
924  */
925 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
926 {
927 	struct kioctx	*ctx = iocb->ki_ctx;
928 	struct aio_ring_info	*info;
929 	struct aio_ring	*ring;
930 	struct io_event	*event;
931 	unsigned long	flags;
932 	unsigned long	tail;
933 	int		ret;
934 
935 	/*
936 	 * Special case handling for sync iocbs:
937 	 *  - events go directly into the iocb for fast handling
938 	 *  - the sync task with the iocb in its stack holds the single iocb
939 	 *    ref, no other paths have a way to get another ref
940 	 *  - the sync task helpfully left a reference to itself in the iocb
941 	 */
942 	if (is_sync_kiocb(iocb)) {
943 		BUG_ON(iocb->ki_users != 1);
944 		iocb->ki_user_data = res;
945 		iocb->ki_users = 0;
946 		wake_up_process(iocb->ki_obj.tsk);
947 		return 1;
948 	}
949 
950 	info = &ctx->ring_info;
951 
952 	/* add a completion event to the ring buffer.
953 	 * must be done holding ctx->ctx_lock to prevent
954 	 * other code from messing with the tail
955 	 * pointer since we might be called from irq
956 	 * context.
957 	 */
958 	spin_lock_irqsave(&ctx->ctx_lock, flags);
959 
960 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
961 		list_del_init(&iocb->ki_run_list);
962 
963 	/*
964 	 * cancelled requests don't get events, userland was given one
965 	 * when the event got cancelled.
966 	 */
967 	if (kiocbIsCancelled(iocb))
968 		goto put_rq;
969 
970 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
971 
972 	tail = info->tail;
973 	event = aio_ring_event(info, tail, KM_IRQ0);
974 	if (++tail >= info->nr)
975 		tail = 0;
976 
977 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
978 	event->data = iocb->ki_user_data;
979 	event->res = res;
980 	event->res2 = res2;
981 
982 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
983 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
984 		res, res2);
985 
986 	/* after flagging the request as done, we
987 	 * must never even look at it again
988 	 */
989 	smp_wmb();	/* make event visible before updating tail */
990 
991 	info->tail = tail;
992 	ring->tail = tail;
993 
994 	put_aio_ring_event(event, KM_IRQ0);
995 	kunmap_atomic(ring, KM_IRQ1);
996 
997 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
998 put_rq:
999 	/* everything turned out well, dispose of the aiocb. */
1000 	ret = __aio_put_req(ctx, iocb);
1001 
1002 	if (waitqueue_active(&ctx->wait))
1003 		wake_up(&ctx->wait);
1004 
1005 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1006 	return ret;
1007 }
1008 
1009 /* aio_read_evt
1010  *	Pull an event off of the ioctx's event ring.  Returns the number of
1011  *	events fetched (0 or 1 ;-)
1012  *	FIXME: make this use cmpxchg.
1013  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1014  */
1015 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1016 {
1017 	struct aio_ring_info *info = &ioctx->ring_info;
1018 	struct aio_ring *ring;
1019 	unsigned long head;
1020 	int ret = 0;
1021 
1022 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1023 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1024 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1025 		 (unsigned long)ring->nr);
1026 
1027 	if (ring->head == ring->tail)
1028 		goto out;
1029 
1030 	spin_lock(&info->ring_lock);
1031 
1032 	head = ring->head % info->nr;
1033 	if (head != ring->tail) {
1034 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1035 		*ent = *evp;
1036 		head = (head + 1) % info->nr;
1037 		smp_mb(); /* finish reading the event before updatng the head */
1038 		ring->head = head;
1039 		ret = 1;
1040 		put_aio_ring_event(evp, KM_USER1);
1041 	}
1042 	spin_unlock(&info->ring_lock);
1043 
1044 out:
1045 	kunmap_atomic(ring, KM_USER0);
1046 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1047 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1048 	return ret;
1049 }
1050 
1051 struct aio_timeout {
1052 	struct timer_list	timer;
1053 	int			timed_out;
1054 	struct task_struct	*p;
1055 };
1056 
1057 static void timeout_func(unsigned long data)
1058 {
1059 	struct aio_timeout *to = (struct aio_timeout *)data;
1060 
1061 	to->timed_out = 1;
1062 	wake_up_process(to->p);
1063 }
1064 
1065 static inline void init_timeout(struct aio_timeout *to)
1066 {
1067 	init_timer(&to->timer);
1068 	to->timer.data = (unsigned long)to;
1069 	to->timer.function = timeout_func;
1070 	to->timed_out = 0;
1071 	to->p = current;
1072 }
1073 
1074 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1075 			       const struct timespec *ts)
1076 {
1077 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1078 	if (time_after(to->timer.expires, jiffies))
1079 		add_timer(&to->timer);
1080 	else
1081 		to->timed_out = 1;
1082 }
1083 
1084 static inline void clear_timeout(struct aio_timeout *to)
1085 {
1086 	del_singleshot_timer_sync(&to->timer);
1087 }
1088 
1089 static int read_events(struct kioctx *ctx,
1090 			long min_nr, long nr,
1091 			struct io_event __user *event,
1092 			struct timespec __user *timeout)
1093 {
1094 	long			start_jiffies = jiffies;
1095 	struct task_struct	*tsk = current;
1096 	DECLARE_WAITQUEUE(wait, tsk);
1097 	int			ret;
1098 	int			i = 0;
1099 	struct io_event		ent;
1100 	struct aio_timeout	to;
1101 	int			retry = 0;
1102 
1103 	/* needed to zero any padding within an entry (there shouldn't be
1104 	 * any, but C is fun!
1105 	 */
1106 	memset(&ent, 0, sizeof(ent));
1107 retry:
1108 	ret = 0;
1109 	while (likely(i < nr)) {
1110 		ret = aio_read_evt(ctx, &ent);
1111 		if (unlikely(ret <= 0))
1112 			break;
1113 
1114 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1115 			ent.data, ent.obj, ent.res, ent.res2);
1116 
1117 		/* Could we split the check in two? */
1118 		ret = -EFAULT;
1119 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1120 			dprintk("aio: lost an event due to EFAULT.\n");
1121 			break;
1122 		}
1123 		ret = 0;
1124 
1125 		/* Good, event copied to userland, update counts. */
1126 		event ++;
1127 		i ++;
1128 	}
1129 
1130 	if (min_nr <= i)
1131 		return i;
1132 	if (ret)
1133 		return ret;
1134 
1135 	/* End fast path */
1136 
1137 	/* racey check, but it gets redone */
1138 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1139 		retry = 1;
1140 		aio_run_all_iocbs(ctx);
1141 		goto retry;
1142 	}
1143 
1144 	init_timeout(&to);
1145 	if (timeout) {
1146 		struct timespec	ts;
1147 		ret = -EFAULT;
1148 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1149 			goto out;
1150 
1151 		set_timeout(start_jiffies, &to, &ts);
1152 	}
1153 
1154 	while (likely(i < nr)) {
1155 		add_wait_queue_exclusive(&ctx->wait, &wait);
1156 		do {
1157 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1158 			ret = aio_read_evt(ctx, &ent);
1159 			if (ret)
1160 				break;
1161 			if (min_nr <= i)
1162 				break;
1163 			ret = 0;
1164 			if (to.timed_out)	/* Only check after read evt */
1165 				break;
1166 			schedule();
1167 			if (signal_pending(tsk)) {
1168 				ret = -EINTR;
1169 				break;
1170 			}
1171 			/*ret = aio_read_evt(ctx, &ent);*/
1172 		} while (1) ;
1173 
1174 		set_task_state(tsk, TASK_RUNNING);
1175 		remove_wait_queue(&ctx->wait, &wait);
1176 
1177 		if (unlikely(ret <= 0))
1178 			break;
1179 
1180 		ret = -EFAULT;
1181 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1182 			dprintk("aio: lost an event due to EFAULT.\n");
1183 			break;
1184 		}
1185 
1186 		/* Good, event copied to userland, update counts. */
1187 		event ++;
1188 		i ++;
1189 	}
1190 
1191 	if (timeout)
1192 		clear_timeout(&to);
1193 out:
1194 	return i ? i : ret;
1195 }
1196 
1197 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1198  * against races with itself via ->dead.
1199  */
1200 static void io_destroy(struct kioctx *ioctx)
1201 {
1202 	struct mm_struct *mm = current->mm;
1203 	struct kioctx **tmp;
1204 	int was_dead;
1205 
1206 	/* delete the entry from the list is someone else hasn't already */
1207 	write_lock(&mm->ioctx_list_lock);
1208 	was_dead = ioctx->dead;
1209 	ioctx->dead = 1;
1210 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1211 	     tmp = &(*tmp)->next)
1212 		;
1213 	if (*tmp)
1214 		*tmp = ioctx->next;
1215 	write_unlock(&mm->ioctx_list_lock);
1216 
1217 	dprintk("aio_release(%p)\n", ioctx);
1218 	if (likely(!was_dead))
1219 		put_ioctx(ioctx);	/* twice for the list */
1220 
1221 	aio_cancel_all(ioctx);
1222 	wait_for_all_aios(ioctx);
1223 	put_ioctx(ioctx);	/* once for the lookup */
1224 }
1225 
1226 /* sys_io_setup:
1227  *	Create an aio_context capable of receiving at least nr_events.
1228  *	ctxp must not point to an aio_context that already exists, and
1229  *	must be initialized to 0 prior to the call.  On successful
1230  *	creation of the aio_context, *ctxp is filled in with the resulting
1231  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1232  *	if the specified nr_events exceeds internal limits.  May fail
1233  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1234  *	of available events.  May fail with -ENOMEM if insufficient kernel
1235  *	resources are available.  May fail with -EFAULT if an invalid
1236  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1237  *	implemented.
1238  */
1239 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1240 {
1241 	struct kioctx *ioctx = NULL;
1242 	unsigned long ctx;
1243 	long ret;
1244 
1245 	ret = get_user(ctx, ctxp);
1246 	if (unlikely(ret))
1247 		goto out;
1248 
1249 	ret = -EINVAL;
1250 	if (unlikely(ctx || nr_events == 0)) {
1251 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1252 		         ctx, nr_events);
1253 		goto out;
1254 	}
1255 
1256 	ioctx = ioctx_alloc(nr_events);
1257 	ret = PTR_ERR(ioctx);
1258 	if (!IS_ERR(ioctx)) {
1259 		ret = put_user(ioctx->user_id, ctxp);
1260 		if (!ret)
1261 			return 0;
1262 
1263 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1264 		io_destroy(ioctx);
1265 	}
1266 
1267 out:
1268 	return ret;
1269 }
1270 
1271 /* sys_io_destroy:
1272  *	Destroy the aio_context specified.  May cancel any outstanding
1273  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1274  *	implemented.  May fail with -EFAULT if the context pointed to
1275  *	is invalid.
1276  */
1277 asmlinkage long sys_io_destroy(aio_context_t ctx)
1278 {
1279 	struct kioctx *ioctx = lookup_ioctx(ctx);
1280 	if (likely(NULL != ioctx)) {
1281 		io_destroy(ioctx);
1282 		return 0;
1283 	}
1284 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1285 	return -EINVAL;
1286 }
1287 
1288 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1289 {
1290 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1291 
1292 	BUG_ON(ret <= 0);
1293 
1294 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1295 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1296 		iov->iov_base += this;
1297 		iov->iov_len -= this;
1298 		iocb->ki_left -= this;
1299 		ret -= this;
1300 		if (iov->iov_len == 0) {
1301 			iocb->ki_cur_seg++;
1302 			iov++;
1303 		}
1304 	}
1305 
1306 	/* the caller should not have done more io than what fit in
1307 	 * the remaining iovecs */
1308 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1309 }
1310 
1311 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1312 {
1313 	struct file *file = iocb->ki_filp;
1314 	struct address_space *mapping = file->f_mapping;
1315 	struct inode *inode = mapping->host;
1316 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1317 			 unsigned long, loff_t);
1318 	ssize_t ret = 0;
1319 	unsigned short opcode;
1320 
1321 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1322 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1323 		rw_op = file->f_op->aio_read;
1324 		opcode = IOCB_CMD_PREADV;
1325 	} else {
1326 		rw_op = file->f_op->aio_write;
1327 		opcode = IOCB_CMD_PWRITEV;
1328 	}
1329 
1330 	do {
1331 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1332 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1333 			    iocb->ki_pos);
1334 		if (ret > 0)
1335 			aio_advance_iovec(iocb, ret);
1336 
1337 	/* retry all partial writes.  retry partial reads as long as its a
1338 	 * regular file. */
1339 	} while (ret > 0 && iocb->ki_left > 0 &&
1340 		 (opcode == IOCB_CMD_PWRITEV ||
1341 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1342 
1343 	/* This means we must have transferred all that we could */
1344 	/* No need to retry anymore */
1345 	if ((ret == 0) || (iocb->ki_left == 0))
1346 		ret = iocb->ki_nbytes - iocb->ki_left;
1347 
1348 	return ret;
1349 }
1350 
1351 static ssize_t aio_fdsync(struct kiocb *iocb)
1352 {
1353 	struct file *file = iocb->ki_filp;
1354 	ssize_t ret = -EINVAL;
1355 
1356 	if (file->f_op->aio_fsync)
1357 		ret = file->f_op->aio_fsync(iocb, 1);
1358 	return ret;
1359 }
1360 
1361 static ssize_t aio_fsync(struct kiocb *iocb)
1362 {
1363 	struct file *file = iocb->ki_filp;
1364 	ssize_t ret = -EINVAL;
1365 
1366 	if (file->f_op->aio_fsync)
1367 		ret = file->f_op->aio_fsync(iocb, 0);
1368 	return ret;
1369 }
1370 
1371 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1372 {
1373 	ssize_t ret;
1374 
1375 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1376 				    kiocb->ki_nbytes, 1,
1377 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1378 	if (ret < 0)
1379 		goto out;
1380 
1381 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1382 	kiocb->ki_cur_seg = 0;
1383 	/* ki_nbytes/left now reflect bytes instead of segs */
1384 	kiocb->ki_nbytes = ret;
1385 	kiocb->ki_left = ret;
1386 
1387 	ret = 0;
1388 out:
1389 	return ret;
1390 }
1391 
1392 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1393 {
1394 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1395 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1396 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1397 	kiocb->ki_nr_segs = 1;
1398 	kiocb->ki_cur_seg = 0;
1399 	return 0;
1400 }
1401 
1402 /*
1403  * aio_setup_iocb:
1404  *	Performs the initial checks and aio retry method
1405  *	setup for the kiocb at the time of io submission.
1406  */
1407 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1408 {
1409 	struct file *file = kiocb->ki_filp;
1410 	ssize_t ret = 0;
1411 
1412 	switch (kiocb->ki_opcode) {
1413 	case IOCB_CMD_PREAD:
1414 		ret = -EBADF;
1415 		if (unlikely(!(file->f_mode & FMODE_READ)))
1416 			break;
1417 		ret = -EFAULT;
1418 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1419 			kiocb->ki_left)))
1420 			break;
1421 		ret = security_file_permission(file, MAY_READ);
1422 		if (unlikely(ret))
1423 			break;
1424 		ret = aio_setup_single_vector(kiocb);
1425 		if (ret)
1426 			break;
1427 		ret = -EINVAL;
1428 		if (file->f_op->aio_read)
1429 			kiocb->ki_retry = aio_rw_vect_retry;
1430 		break;
1431 	case IOCB_CMD_PWRITE:
1432 		ret = -EBADF;
1433 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1434 			break;
1435 		ret = -EFAULT;
1436 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1437 			kiocb->ki_left)))
1438 			break;
1439 		ret = security_file_permission(file, MAY_WRITE);
1440 		if (unlikely(ret))
1441 			break;
1442 		ret = aio_setup_single_vector(kiocb);
1443 		if (ret)
1444 			break;
1445 		ret = -EINVAL;
1446 		if (file->f_op->aio_write)
1447 			kiocb->ki_retry = aio_rw_vect_retry;
1448 		break;
1449 	case IOCB_CMD_PREADV:
1450 		ret = -EBADF;
1451 		if (unlikely(!(file->f_mode & FMODE_READ)))
1452 			break;
1453 		ret = security_file_permission(file, MAY_READ);
1454 		if (unlikely(ret))
1455 			break;
1456 		ret = aio_setup_vectored_rw(READ, kiocb);
1457 		if (ret)
1458 			break;
1459 		ret = -EINVAL;
1460 		if (file->f_op->aio_read)
1461 			kiocb->ki_retry = aio_rw_vect_retry;
1462 		break;
1463 	case IOCB_CMD_PWRITEV:
1464 		ret = -EBADF;
1465 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1466 			break;
1467 		ret = security_file_permission(file, MAY_WRITE);
1468 		if (unlikely(ret))
1469 			break;
1470 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1471 		if (ret)
1472 			break;
1473 		ret = -EINVAL;
1474 		if (file->f_op->aio_write)
1475 			kiocb->ki_retry = aio_rw_vect_retry;
1476 		break;
1477 	case IOCB_CMD_FDSYNC:
1478 		ret = -EINVAL;
1479 		if (file->f_op->aio_fsync)
1480 			kiocb->ki_retry = aio_fdsync;
1481 		break;
1482 	case IOCB_CMD_FSYNC:
1483 		ret = -EINVAL;
1484 		if (file->f_op->aio_fsync)
1485 			kiocb->ki_retry = aio_fsync;
1486 		break;
1487 	default:
1488 		dprintk("EINVAL: io_submit: no operation provided\n");
1489 		ret = -EINVAL;
1490 	}
1491 
1492 	if (!kiocb->ki_retry)
1493 		return ret;
1494 
1495 	return 0;
1496 }
1497 
1498 /*
1499  * aio_wake_function:
1500  * 	wait queue callback function for aio notification,
1501  * 	Simply triggers a retry of the operation via kick_iocb.
1502  *
1503  * 	This callback is specified in the wait queue entry in
1504  *	a kiocb	(current->io_wait points to this wait queue
1505  *	entry when an aio operation executes; it is used
1506  * 	instead of a synchronous wait when an i/o blocking
1507  *	condition is encountered during aio).
1508  *
1509  * Note:
1510  * This routine is executed with the wait queue lock held.
1511  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1512  * the ioctx lock inside the wait queue lock. This is safe
1513  * because this callback isn't used for wait queues which
1514  * are nested inside ioctx lock (i.e. ctx->wait)
1515  */
1516 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1517 			     int sync, void *key)
1518 {
1519 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1520 
1521 	list_del_init(&wait->task_list);
1522 	kick_iocb(iocb);
1523 	return 1;
1524 }
1525 
1526 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1527 			 struct iocb *iocb)
1528 {
1529 	struct kiocb *req;
1530 	struct file *file;
1531 	ssize_t ret;
1532 
1533 	/* enforce forwards compatibility on users */
1534 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1535 		     iocb->aio_reserved3)) {
1536 		pr_debug("EINVAL: io_submit: reserve field set\n");
1537 		return -EINVAL;
1538 	}
1539 
1540 	/* prevent overflows */
1541 	if (unlikely(
1542 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1543 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1544 	    ((ssize_t)iocb->aio_nbytes < 0)
1545 	   )) {
1546 		pr_debug("EINVAL: io_submit: overflow check\n");
1547 		return -EINVAL;
1548 	}
1549 
1550 	file = fget(iocb->aio_fildes);
1551 	if (unlikely(!file))
1552 		return -EBADF;
1553 
1554 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1555 	if (unlikely(!req)) {
1556 		fput(file);
1557 		return -EAGAIN;
1558 	}
1559 
1560 	req->ki_filp = file;
1561 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1562 	if (unlikely(ret)) {
1563 		dprintk("EFAULT: aio_key\n");
1564 		goto out_put_req;
1565 	}
1566 
1567 	req->ki_obj.user = user_iocb;
1568 	req->ki_user_data = iocb->aio_data;
1569 	req->ki_pos = iocb->aio_offset;
1570 
1571 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1572 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1573 	req->ki_opcode = iocb->aio_lio_opcode;
1574 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1575 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1576 
1577 	ret = aio_setup_iocb(req);
1578 
1579 	if (ret)
1580 		goto out_put_req;
1581 
1582 	spin_lock_irq(&ctx->ctx_lock);
1583 	aio_run_iocb(req);
1584 	if (!list_empty(&ctx->run_list)) {
1585 		/* drain the run list */
1586 		while (__aio_run_iocbs(ctx))
1587 			;
1588 	}
1589 	spin_unlock_irq(&ctx->ctx_lock);
1590 	aio_put_req(req);	/* drop extra ref to req */
1591 	return 0;
1592 
1593 out_put_req:
1594 	aio_put_req(req);	/* drop extra ref to req */
1595 	aio_put_req(req);	/* drop i/o ref to req */
1596 	return ret;
1597 }
1598 
1599 /* sys_io_submit:
1600  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1601  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1602  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1603  *	*iocbpp[0] is not properly initialized, if the operation specified
1604  *	is invalid for the file descriptor in the iocb.  May fail with
1605  *	-EFAULT if any of the data structures point to invalid data.  May
1606  *	fail with -EBADF if the file descriptor specified in the first
1607  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1608  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1609  *	fail with -ENOSYS if not implemented.
1610  */
1611 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1612 			      struct iocb __user * __user *iocbpp)
1613 {
1614 	struct kioctx *ctx;
1615 	long ret = 0;
1616 	int i;
1617 
1618 	if (unlikely(nr < 0))
1619 		return -EINVAL;
1620 
1621 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1622 		return -EFAULT;
1623 
1624 	ctx = lookup_ioctx(ctx_id);
1625 	if (unlikely(!ctx)) {
1626 		pr_debug("EINVAL: io_submit: invalid context id\n");
1627 		return -EINVAL;
1628 	}
1629 
1630 	/*
1631 	 * AKPM: should this return a partial result if some of the IOs were
1632 	 * successfully submitted?
1633 	 */
1634 	for (i=0; i<nr; i++) {
1635 		struct iocb __user *user_iocb;
1636 		struct iocb tmp;
1637 
1638 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1639 			ret = -EFAULT;
1640 			break;
1641 		}
1642 
1643 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1644 			ret = -EFAULT;
1645 			break;
1646 		}
1647 
1648 		ret = io_submit_one(ctx, user_iocb, &tmp);
1649 		if (ret)
1650 			break;
1651 	}
1652 
1653 	put_ioctx(ctx);
1654 	return i ? i : ret;
1655 }
1656 
1657 /* lookup_kiocb
1658  *	Finds a given iocb for cancellation.
1659  */
1660 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1661 				  u32 key)
1662 {
1663 	struct list_head *pos;
1664 
1665 	assert_spin_locked(&ctx->ctx_lock);
1666 
1667 	/* TODO: use a hash or array, this sucks. */
1668 	list_for_each(pos, &ctx->active_reqs) {
1669 		struct kiocb *kiocb = list_kiocb(pos);
1670 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1671 			return kiocb;
1672 	}
1673 	return NULL;
1674 }
1675 
1676 /* sys_io_cancel:
1677  *	Attempts to cancel an iocb previously passed to io_submit.  If
1678  *	the operation is successfully cancelled, the resulting event is
1679  *	copied into the memory pointed to by result without being placed
1680  *	into the completion queue and 0 is returned.  May fail with
1681  *	-EFAULT if any of the data structures pointed to are invalid.
1682  *	May fail with -EINVAL if aio_context specified by ctx_id is
1683  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1684  *	cancelled.  Will fail with -ENOSYS if not implemented.
1685  */
1686 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1687 			      struct io_event __user *result)
1688 {
1689 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1690 	struct kioctx *ctx;
1691 	struct kiocb *kiocb;
1692 	u32 key;
1693 	int ret;
1694 
1695 	ret = get_user(key, &iocb->aio_key);
1696 	if (unlikely(ret))
1697 		return -EFAULT;
1698 
1699 	ctx = lookup_ioctx(ctx_id);
1700 	if (unlikely(!ctx))
1701 		return -EINVAL;
1702 
1703 	spin_lock_irq(&ctx->ctx_lock);
1704 	ret = -EAGAIN;
1705 	kiocb = lookup_kiocb(ctx, iocb, key);
1706 	if (kiocb && kiocb->ki_cancel) {
1707 		cancel = kiocb->ki_cancel;
1708 		kiocb->ki_users ++;
1709 		kiocbSetCancelled(kiocb);
1710 	} else
1711 		cancel = NULL;
1712 	spin_unlock_irq(&ctx->ctx_lock);
1713 
1714 	if (NULL != cancel) {
1715 		struct io_event tmp;
1716 		pr_debug("calling cancel\n");
1717 		memset(&tmp, 0, sizeof(tmp));
1718 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1719 		tmp.data = kiocb->ki_user_data;
1720 		ret = cancel(kiocb, &tmp);
1721 		if (!ret) {
1722 			/* Cancellation succeeded -- copy the result
1723 			 * into the user's buffer.
1724 			 */
1725 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1726 				ret = -EFAULT;
1727 		}
1728 	} else
1729 		ret = -EINVAL;
1730 
1731 	put_ioctx(ctx);
1732 
1733 	return ret;
1734 }
1735 
1736 /* io_getevents:
1737  *	Attempts to read at least min_nr events and up to nr events from
1738  *	the completion queue for the aio_context specified by ctx_id.  May
1739  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1740  *	if nr is out of range, if when is out of range.  May fail with
1741  *	-EFAULT if any of the memory specified to is invalid.  May return
1742  *	0 or < min_nr if no events are available and the timeout specified
1743  *	by when	has elapsed, where when == NULL specifies an infinite
1744  *	timeout.  Note that the timeout pointed to by when is relative and
1745  *	will be updated if not NULL and the operation blocks.  Will fail
1746  *	with -ENOSYS if not implemented.
1747  */
1748 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1749 				 long min_nr,
1750 				 long nr,
1751 				 struct io_event __user *events,
1752 				 struct timespec __user *timeout)
1753 {
1754 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1755 	long ret = -EINVAL;
1756 
1757 	if (likely(ioctx)) {
1758 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1759 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1760 		put_ioctx(ioctx);
1761 	}
1762 
1763 	return ret;
1764 }
1765 
1766 __initcall(aio_setup);
1767 
1768 EXPORT_SYMBOL(aio_complete);
1769 EXPORT_SYMBOL(aio_put_req);
1770 EXPORT_SYMBOL(wait_on_sync_kiocb);
1771