xref: /linux/fs/aio.c (revision a64917bc2e9b1e0aa716b783c4ec879fdd280300)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 unsigned long aio_nr;		/* current system wide number of aio requests */
224 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 
227 static struct kmem_cache	*kiocb_cachep;
228 static struct kmem_cache	*kioctx_cachep;
229 
230 static struct vfsmount *aio_mnt;
231 
232 static const struct file_operations aio_ring_fops;
233 static const struct address_space_operations aio_ctx_aops;
234 
235 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236 {
237 	struct file *file;
238 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
239 	if (IS_ERR(inode))
240 		return ERR_CAST(inode);
241 
242 	inode->i_mapping->a_ops = &aio_ctx_aops;
243 	inode->i_mapping->private_data = ctx;
244 	inode->i_size = PAGE_SIZE * nr_pages;
245 
246 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 				O_RDWR, &aio_ring_fops);
248 	if (IS_ERR(file))
249 		iput(inode);
250 	return file;
251 }
252 
253 static int aio_init_fs_context(struct fs_context *fc)
254 {
255 	if (!init_pseudo(fc, AIO_RING_MAGIC))
256 		return -ENOMEM;
257 	fc->s_iflags |= SB_I_NOEXEC;
258 	return 0;
259 }
260 
261 /* aio_setup
262  *	Creates the slab caches used by the aio routines, panic on
263  *	failure as this is done early during the boot sequence.
264  */
265 static int __init aio_setup(void)
266 {
267 	static struct file_system_type aio_fs = {
268 		.name		= "aio",
269 		.init_fs_context = aio_init_fs_context,
270 		.kill_sb	= kill_anon_super,
271 	};
272 	aio_mnt = kern_mount(&aio_fs);
273 	if (IS_ERR(aio_mnt))
274 		panic("Failed to create aio fs mount.");
275 
276 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
278 	return 0;
279 }
280 __initcall(aio_setup);
281 
282 static void put_aio_ring_file(struct kioctx *ctx)
283 {
284 	struct file *aio_ring_file = ctx->aio_ring_file;
285 	struct address_space *i_mapping;
286 
287 	if (aio_ring_file) {
288 		truncate_setsize(file_inode(aio_ring_file), 0);
289 
290 		/* Prevent further access to the kioctx from migratepages */
291 		i_mapping = aio_ring_file->f_mapping;
292 		spin_lock(&i_mapping->private_lock);
293 		i_mapping->private_data = NULL;
294 		ctx->aio_ring_file = NULL;
295 		spin_unlock(&i_mapping->private_lock);
296 
297 		fput(aio_ring_file);
298 	}
299 }
300 
301 static void aio_free_ring(struct kioctx *ctx)
302 {
303 	int i;
304 
305 	/* Disconnect the kiotx from the ring file.  This prevents future
306 	 * accesses to the kioctx from page migration.
307 	 */
308 	put_aio_ring_file(ctx);
309 
310 	for (i = 0; i < ctx->nr_pages; i++) {
311 		struct page *page;
312 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 				page_count(ctx->ring_pages[i]));
314 		page = ctx->ring_pages[i];
315 		if (!page)
316 			continue;
317 		ctx->ring_pages[i] = NULL;
318 		put_page(page);
319 	}
320 
321 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
322 		kfree(ctx->ring_pages);
323 		ctx->ring_pages = NULL;
324 	}
325 }
326 
327 static int aio_ring_mremap(struct vm_area_struct *vma)
328 {
329 	struct file *file = vma->vm_file;
330 	struct mm_struct *mm = vma->vm_mm;
331 	struct kioctx_table *table;
332 	int i, res = -EINVAL;
333 
334 	spin_lock(&mm->ioctx_lock);
335 	rcu_read_lock();
336 	table = rcu_dereference(mm->ioctx_table);
337 	for (i = 0; i < table->nr; i++) {
338 		struct kioctx *ctx;
339 
340 		ctx = rcu_dereference(table->table[i]);
341 		if (ctx && ctx->aio_ring_file == file) {
342 			if (!atomic_read(&ctx->dead)) {
343 				ctx->user_id = ctx->mmap_base = vma->vm_start;
344 				res = 0;
345 			}
346 			break;
347 		}
348 	}
349 
350 	rcu_read_unlock();
351 	spin_unlock(&mm->ioctx_lock);
352 	return res;
353 }
354 
355 static const struct vm_operations_struct aio_ring_vm_ops = {
356 	.mremap		= aio_ring_mremap,
357 #if IS_ENABLED(CONFIG_MMU)
358 	.fault		= filemap_fault,
359 	.map_pages	= filemap_map_pages,
360 	.page_mkwrite	= filemap_page_mkwrite,
361 #endif
362 };
363 
364 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365 {
366 	vma->vm_flags |= VM_DONTEXPAND;
367 	vma->vm_ops = &aio_ring_vm_ops;
368 	return 0;
369 }
370 
371 static const struct file_operations aio_ring_fops = {
372 	.mmap = aio_ring_mmap,
373 };
374 
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space *mapping, struct page *new,
377 			struct page *old, enum migrate_mode mode)
378 {
379 	struct kioctx *ctx;
380 	unsigned long flags;
381 	pgoff_t idx;
382 	int rc;
383 
384 	/*
385 	 * We cannot support the _NO_COPY case here, because copy needs to
386 	 * happen under the ctx->completion_lock. That does not work with the
387 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 	 */
389 	if (mode == MIGRATE_SYNC_NO_COPY)
390 		return -EINVAL;
391 
392 	rc = 0;
393 
394 	/* mapping->private_lock here protects against the kioctx teardown.  */
395 	spin_lock(&mapping->private_lock);
396 	ctx = mapping->private_data;
397 	if (!ctx) {
398 		rc = -EINVAL;
399 		goto out;
400 	}
401 
402 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
403 	 * to the ring's head, and prevents page migration from mucking in
404 	 * a partially initialized kiotx.
405 	 */
406 	if (!mutex_trylock(&ctx->ring_lock)) {
407 		rc = -EAGAIN;
408 		goto out;
409 	}
410 
411 	idx = old->index;
412 	if (idx < (pgoff_t)ctx->nr_pages) {
413 		/* Make sure the old page hasn't already been changed */
414 		if (ctx->ring_pages[idx] != old)
415 			rc = -EAGAIN;
416 	} else
417 		rc = -EINVAL;
418 
419 	if (rc != 0)
420 		goto out_unlock;
421 
422 	/* Writeback must be complete */
423 	BUG_ON(PageWriteback(old));
424 	get_page(new);
425 
426 	rc = migrate_page_move_mapping(mapping, new, old, 1);
427 	if (rc != MIGRATEPAGE_SUCCESS) {
428 		put_page(new);
429 		goto out_unlock;
430 	}
431 
432 	/* Take completion_lock to prevent other writes to the ring buffer
433 	 * while the old page is copied to the new.  This prevents new
434 	 * events from being lost.
435 	 */
436 	spin_lock_irqsave(&ctx->completion_lock, flags);
437 	migrate_page_copy(new, old);
438 	BUG_ON(ctx->ring_pages[idx] != old);
439 	ctx->ring_pages[idx] = new;
440 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
441 
442 	/* The old page is no longer accessible. */
443 	put_page(old);
444 
445 out_unlock:
446 	mutex_unlock(&ctx->ring_lock);
447 out:
448 	spin_unlock(&mapping->private_lock);
449 	return rc;
450 }
451 #endif
452 
453 static const struct address_space_operations aio_ctx_aops = {
454 	.set_page_dirty = __set_page_dirty_no_writeback,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 	.migratepage	= aio_migratepage,
457 #endif
458 };
459 
460 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
461 {
462 	struct aio_ring *ring;
463 	struct mm_struct *mm = current->mm;
464 	unsigned long size, unused;
465 	int nr_pages;
466 	int i;
467 	struct file *file;
468 
469 	/* Compensate for the ring buffer's head/tail overlap entry */
470 	nr_events += 2;	/* 1 is required, 2 for good luck */
471 
472 	size = sizeof(struct aio_ring);
473 	size += sizeof(struct io_event) * nr_events;
474 
475 	nr_pages = PFN_UP(size);
476 	if (nr_pages < 0)
477 		return -EINVAL;
478 
479 	file = aio_private_file(ctx, nr_pages);
480 	if (IS_ERR(file)) {
481 		ctx->aio_ring_file = NULL;
482 		return -ENOMEM;
483 	}
484 
485 	ctx->aio_ring_file = file;
486 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 			/ sizeof(struct io_event);
488 
489 	ctx->ring_pages = ctx->internal_pages;
490 	if (nr_pages > AIO_RING_PAGES) {
491 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 					  GFP_KERNEL);
493 		if (!ctx->ring_pages) {
494 			put_aio_ring_file(ctx);
495 			return -ENOMEM;
496 		}
497 	}
498 
499 	for (i = 0; i < nr_pages; i++) {
500 		struct page *page;
501 		page = find_or_create_page(file->f_mapping,
502 					   i, GFP_HIGHUSER | __GFP_ZERO);
503 		if (!page)
504 			break;
505 		pr_debug("pid(%d) page[%d]->count=%d\n",
506 			 current->pid, i, page_count(page));
507 		SetPageUptodate(page);
508 		unlock_page(page);
509 
510 		ctx->ring_pages[i] = page;
511 	}
512 	ctx->nr_pages = i;
513 
514 	if (unlikely(i != nr_pages)) {
515 		aio_free_ring(ctx);
516 		return -ENOMEM;
517 	}
518 
519 	ctx->mmap_size = nr_pages * PAGE_SIZE;
520 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
521 
522 	if (mmap_write_lock_killable(mm)) {
523 		ctx->mmap_size = 0;
524 		aio_free_ring(ctx);
525 		return -EINTR;
526 	}
527 
528 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
529 				 PROT_READ | PROT_WRITE,
530 				 MAP_SHARED, 0, &unused, NULL);
531 	mmap_write_unlock(mm);
532 	if (IS_ERR((void *)ctx->mmap_base)) {
533 		ctx->mmap_size = 0;
534 		aio_free_ring(ctx);
535 		return -ENOMEM;
536 	}
537 
538 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
539 
540 	ctx->user_id = ctx->mmap_base;
541 	ctx->nr_events = nr_events; /* trusted copy */
542 
543 	ring = kmap_atomic(ctx->ring_pages[0]);
544 	ring->nr = nr_events;	/* user copy */
545 	ring->id = ~0U;
546 	ring->head = ring->tail = 0;
547 	ring->magic = AIO_RING_MAGIC;
548 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 	ring->header_length = sizeof(struct aio_ring);
551 	kunmap_atomic(ring);
552 	flush_dcache_page(ctx->ring_pages[0]);
553 
554 	return 0;
555 }
556 
557 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560 
561 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
562 {
563 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
564 	struct kioctx *ctx = req->ki_ctx;
565 	unsigned long flags;
566 
567 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 		return;
569 
570 	spin_lock_irqsave(&ctx->ctx_lock, flags);
571 	list_add_tail(&req->ki_list, &ctx->active_reqs);
572 	req->ki_cancel = cancel;
573 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574 }
575 EXPORT_SYMBOL(kiocb_set_cancel_fn);
576 
577 /*
578  * free_ioctx() should be RCU delayed to synchronize against the RCU
579  * protected lookup_ioctx() and also needs process context to call
580  * aio_free_ring().  Use rcu_work.
581  */
582 static void free_ioctx(struct work_struct *work)
583 {
584 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 					  free_rwork);
586 	pr_debug("freeing %p\n", ctx);
587 
588 	aio_free_ring(ctx);
589 	free_percpu(ctx->cpu);
590 	percpu_ref_exit(&ctx->reqs);
591 	percpu_ref_exit(&ctx->users);
592 	kmem_cache_free(kioctx_cachep, ctx);
593 }
594 
595 static void free_ioctx_reqs(struct percpu_ref *ref)
596 {
597 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598 
599 	/* At this point we know that there are no any in-flight requests */
600 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 		complete(&ctx->rq_wait->comp);
602 
603 	/* Synchronize against RCU protected table->table[] dereferences */
604 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 	queue_rcu_work(system_wq, &ctx->free_rwork);
606 }
607 
608 /*
609  * When this function runs, the kioctx has been removed from the "hash table"
610  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611  * now it's safe to cancel any that need to be.
612  */
613 static void free_ioctx_users(struct percpu_ref *ref)
614 {
615 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
616 	struct aio_kiocb *req;
617 
618 	spin_lock_irq(&ctx->ctx_lock);
619 
620 	while (!list_empty(&ctx->active_reqs)) {
621 		req = list_first_entry(&ctx->active_reqs,
622 				       struct aio_kiocb, ki_list);
623 		req->ki_cancel(&req->rw);
624 		list_del_init(&req->ki_list);
625 	}
626 
627 	spin_unlock_irq(&ctx->ctx_lock);
628 
629 	percpu_ref_kill(&ctx->reqs);
630 	percpu_ref_put(&ctx->reqs);
631 }
632 
633 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634 {
635 	unsigned i, new_nr;
636 	struct kioctx_table *table, *old;
637 	struct aio_ring *ring;
638 
639 	spin_lock(&mm->ioctx_lock);
640 	table = rcu_dereference_raw(mm->ioctx_table);
641 
642 	while (1) {
643 		if (table)
644 			for (i = 0; i < table->nr; i++)
645 				if (!rcu_access_pointer(table->table[i])) {
646 					ctx->id = i;
647 					rcu_assign_pointer(table->table[i], ctx);
648 					spin_unlock(&mm->ioctx_lock);
649 
650 					/* While kioctx setup is in progress,
651 					 * we are protected from page migration
652 					 * changes ring_pages by ->ring_lock.
653 					 */
654 					ring = kmap_atomic(ctx->ring_pages[0]);
655 					ring->id = ctx->id;
656 					kunmap_atomic(ring);
657 					return 0;
658 				}
659 
660 		new_nr = (table ? table->nr : 1) * 4;
661 		spin_unlock(&mm->ioctx_lock);
662 
663 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
664 		if (!table)
665 			return -ENOMEM;
666 
667 		table->nr = new_nr;
668 
669 		spin_lock(&mm->ioctx_lock);
670 		old = rcu_dereference_raw(mm->ioctx_table);
671 
672 		if (!old) {
673 			rcu_assign_pointer(mm->ioctx_table, table);
674 		} else if (table->nr > old->nr) {
675 			memcpy(table->table, old->table,
676 			       old->nr * sizeof(struct kioctx *));
677 
678 			rcu_assign_pointer(mm->ioctx_table, table);
679 			kfree_rcu(old, rcu);
680 		} else {
681 			kfree(table);
682 			table = old;
683 		}
684 	}
685 }
686 
687 static void aio_nr_sub(unsigned nr)
688 {
689 	spin_lock(&aio_nr_lock);
690 	if (WARN_ON(aio_nr - nr > aio_nr))
691 		aio_nr = 0;
692 	else
693 		aio_nr -= nr;
694 	spin_unlock(&aio_nr_lock);
695 }
696 
697 /* ioctx_alloc
698  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
699  */
700 static struct kioctx *ioctx_alloc(unsigned nr_events)
701 {
702 	struct mm_struct *mm = current->mm;
703 	struct kioctx *ctx;
704 	int err = -ENOMEM;
705 
706 	/*
707 	 * Store the original nr_events -- what userspace passed to io_setup(),
708 	 * for counting against the global limit -- before it changes.
709 	 */
710 	unsigned int max_reqs = nr_events;
711 
712 	/*
713 	 * We keep track of the number of available ringbuffer slots, to prevent
714 	 * overflow (reqs_available), and we also use percpu counters for this.
715 	 *
716 	 * So since up to half the slots might be on other cpu's percpu counters
717 	 * and unavailable, double nr_events so userspace sees what they
718 	 * expected: additionally, we move req_batch slots to/from percpu
719 	 * counters at a time, so make sure that isn't 0:
720 	 */
721 	nr_events = max(nr_events, num_possible_cpus() * 4);
722 	nr_events *= 2;
723 
724 	/* Prevent overflows */
725 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
726 		pr_debug("ENOMEM: nr_events too high\n");
727 		return ERR_PTR(-EINVAL);
728 	}
729 
730 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
731 		return ERR_PTR(-EAGAIN);
732 
733 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
734 	if (!ctx)
735 		return ERR_PTR(-ENOMEM);
736 
737 	ctx->max_reqs = max_reqs;
738 
739 	spin_lock_init(&ctx->ctx_lock);
740 	spin_lock_init(&ctx->completion_lock);
741 	mutex_init(&ctx->ring_lock);
742 	/* Protect against page migration throughout kiotx setup by keeping
743 	 * the ring_lock mutex held until setup is complete. */
744 	mutex_lock(&ctx->ring_lock);
745 	init_waitqueue_head(&ctx->wait);
746 
747 	INIT_LIST_HEAD(&ctx->active_reqs);
748 
749 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
750 		goto err;
751 
752 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
753 		goto err;
754 
755 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
756 	if (!ctx->cpu)
757 		goto err;
758 
759 	err = aio_setup_ring(ctx, nr_events);
760 	if (err < 0)
761 		goto err;
762 
763 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
764 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
765 	if (ctx->req_batch < 1)
766 		ctx->req_batch = 1;
767 
768 	/* limit the number of system wide aios */
769 	spin_lock(&aio_nr_lock);
770 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
771 	    aio_nr + ctx->max_reqs < aio_nr) {
772 		spin_unlock(&aio_nr_lock);
773 		err = -EAGAIN;
774 		goto err_ctx;
775 	}
776 	aio_nr += ctx->max_reqs;
777 	spin_unlock(&aio_nr_lock);
778 
779 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
780 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
781 
782 	err = ioctx_add_table(ctx, mm);
783 	if (err)
784 		goto err_cleanup;
785 
786 	/* Release the ring_lock mutex now that all setup is complete. */
787 	mutex_unlock(&ctx->ring_lock);
788 
789 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
790 		 ctx, ctx->user_id, mm, ctx->nr_events);
791 	return ctx;
792 
793 err_cleanup:
794 	aio_nr_sub(ctx->max_reqs);
795 err_ctx:
796 	atomic_set(&ctx->dead, 1);
797 	if (ctx->mmap_size)
798 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
799 	aio_free_ring(ctx);
800 err:
801 	mutex_unlock(&ctx->ring_lock);
802 	free_percpu(ctx->cpu);
803 	percpu_ref_exit(&ctx->reqs);
804 	percpu_ref_exit(&ctx->users);
805 	kmem_cache_free(kioctx_cachep, ctx);
806 	pr_debug("error allocating ioctx %d\n", err);
807 	return ERR_PTR(err);
808 }
809 
810 /* kill_ioctx
811  *	Cancels all outstanding aio requests on an aio context.  Used
812  *	when the processes owning a context have all exited to encourage
813  *	the rapid destruction of the kioctx.
814  */
815 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
816 		      struct ctx_rq_wait *wait)
817 {
818 	struct kioctx_table *table;
819 
820 	spin_lock(&mm->ioctx_lock);
821 	if (atomic_xchg(&ctx->dead, 1)) {
822 		spin_unlock(&mm->ioctx_lock);
823 		return -EINVAL;
824 	}
825 
826 	table = rcu_dereference_raw(mm->ioctx_table);
827 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
828 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
829 	spin_unlock(&mm->ioctx_lock);
830 
831 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
832 	wake_up_all(&ctx->wait);
833 
834 	/*
835 	 * It'd be more correct to do this in free_ioctx(), after all
836 	 * the outstanding kiocbs have finished - but by then io_destroy
837 	 * has already returned, so io_setup() could potentially return
838 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
839 	 *  could tell).
840 	 */
841 	aio_nr_sub(ctx->max_reqs);
842 
843 	if (ctx->mmap_size)
844 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
845 
846 	ctx->rq_wait = wait;
847 	percpu_ref_kill(&ctx->users);
848 	return 0;
849 }
850 
851 /*
852  * exit_aio: called when the last user of mm goes away.  At this point, there is
853  * no way for any new requests to be submited or any of the io_* syscalls to be
854  * called on the context.
855  *
856  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
857  * them.
858  */
859 void exit_aio(struct mm_struct *mm)
860 {
861 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
862 	struct ctx_rq_wait wait;
863 	int i, skipped;
864 
865 	if (!table)
866 		return;
867 
868 	atomic_set(&wait.count, table->nr);
869 	init_completion(&wait.comp);
870 
871 	skipped = 0;
872 	for (i = 0; i < table->nr; ++i) {
873 		struct kioctx *ctx =
874 			rcu_dereference_protected(table->table[i], true);
875 
876 		if (!ctx) {
877 			skipped++;
878 			continue;
879 		}
880 
881 		/*
882 		 * We don't need to bother with munmap() here - exit_mmap(mm)
883 		 * is coming and it'll unmap everything. And we simply can't,
884 		 * this is not necessarily our ->mm.
885 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
886 		 * that it needs to unmap the area, just set it to 0.
887 		 */
888 		ctx->mmap_size = 0;
889 		kill_ioctx(mm, ctx, &wait);
890 	}
891 
892 	if (!atomic_sub_and_test(skipped, &wait.count)) {
893 		/* Wait until all IO for the context are done. */
894 		wait_for_completion(&wait.comp);
895 	}
896 
897 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
898 	kfree(table);
899 }
900 
901 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
902 {
903 	struct kioctx_cpu *kcpu;
904 	unsigned long flags;
905 
906 	local_irq_save(flags);
907 	kcpu = this_cpu_ptr(ctx->cpu);
908 	kcpu->reqs_available += nr;
909 
910 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
911 		kcpu->reqs_available -= ctx->req_batch;
912 		atomic_add(ctx->req_batch, &ctx->reqs_available);
913 	}
914 
915 	local_irq_restore(flags);
916 }
917 
918 static bool __get_reqs_available(struct kioctx *ctx)
919 {
920 	struct kioctx_cpu *kcpu;
921 	bool ret = false;
922 	unsigned long flags;
923 
924 	local_irq_save(flags);
925 	kcpu = this_cpu_ptr(ctx->cpu);
926 	if (!kcpu->reqs_available) {
927 		int old, avail = atomic_read(&ctx->reqs_available);
928 
929 		do {
930 			if (avail < ctx->req_batch)
931 				goto out;
932 
933 			old = avail;
934 			avail = atomic_cmpxchg(&ctx->reqs_available,
935 					       avail, avail - ctx->req_batch);
936 		} while (avail != old);
937 
938 		kcpu->reqs_available += ctx->req_batch;
939 	}
940 
941 	ret = true;
942 	kcpu->reqs_available--;
943 out:
944 	local_irq_restore(flags);
945 	return ret;
946 }
947 
948 /* refill_reqs_available
949  *	Updates the reqs_available reference counts used for tracking the
950  *	number of free slots in the completion ring.  This can be called
951  *	from aio_complete() (to optimistically update reqs_available) or
952  *	from aio_get_req() (the we're out of events case).  It must be
953  *	called holding ctx->completion_lock.
954  */
955 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
956                                   unsigned tail)
957 {
958 	unsigned events_in_ring, completed;
959 
960 	/* Clamp head since userland can write to it. */
961 	head %= ctx->nr_events;
962 	if (head <= tail)
963 		events_in_ring = tail - head;
964 	else
965 		events_in_ring = ctx->nr_events - (head - tail);
966 
967 	completed = ctx->completed_events;
968 	if (events_in_ring < completed)
969 		completed -= events_in_ring;
970 	else
971 		completed = 0;
972 
973 	if (!completed)
974 		return;
975 
976 	ctx->completed_events -= completed;
977 	put_reqs_available(ctx, completed);
978 }
979 
980 /* user_refill_reqs_available
981  *	Called to refill reqs_available when aio_get_req() encounters an
982  *	out of space in the completion ring.
983  */
984 static void user_refill_reqs_available(struct kioctx *ctx)
985 {
986 	spin_lock_irq(&ctx->completion_lock);
987 	if (ctx->completed_events) {
988 		struct aio_ring *ring;
989 		unsigned head;
990 
991 		/* Access of ring->head may race with aio_read_events_ring()
992 		 * here, but that's okay since whether we read the old version
993 		 * or the new version, and either will be valid.  The important
994 		 * part is that head cannot pass tail since we prevent
995 		 * aio_complete() from updating tail by holding
996 		 * ctx->completion_lock.  Even if head is invalid, the check
997 		 * against ctx->completed_events below will make sure we do the
998 		 * safe/right thing.
999 		 */
1000 		ring = kmap_atomic(ctx->ring_pages[0]);
1001 		head = ring->head;
1002 		kunmap_atomic(ring);
1003 
1004 		refill_reqs_available(ctx, head, ctx->tail);
1005 	}
1006 
1007 	spin_unlock_irq(&ctx->completion_lock);
1008 }
1009 
1010 static bool get_reqs_available(struct kioctx *ctx)
1011 {
1012 	if (__get_reqs_available(ctx))
1013 		return true;
1014 	user_refill_reqs_available(ctx);
1015 	return __get_reqs_available(ctx);
1016 }
1017 
1018 /* aio_get_req
1019  *	Allocate a slot for an aio request.
1020  * Returns NULL if no requests are free.
1021  *
1022  * The refcount is initialized to 2 - one for the async op completion,
1023  * one for the synchronous code that does this.
1024  */
1025 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1026 {
1027 	struct aio_kiocb *req;
1028 
1029 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1030 	if (unlikely(!req))
1031 		return NULL;
1032 
1033 	if (unlikely(!get_reqs_available(ctx))) {
1034 		kmem_cache_free(kiocb_cachep, req);
1035 		return NULL;
1036 	}
1037 
1038 	percpu_ref_get(&ctx->reqs);
1039 	req->ki_ctx = ctx;
1040 	INIT_LIST_HEAD(&req->ki_list);
1041 	refcount_set(&req->ki_refcnt, 2);
1042 	req->ki_eventfd = NULL;
1043 	return req;
1044 }
1045 
1046 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1047 {
1048 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1049 	struct mm_struct *mm = current->mm;
1050 	struct kioctx *ctx, *ret = NULL;
1051 	struct kioctx_table *table;
1052 	unsigned id;
1053 
1054 	if (get_user(id, &ring->id))
1055 		return NULL;
1056 
1057 	rcu_read_lock();
1058 	table = rcu_dereference(mm->ioctx_table);
1059 
1060 	if (!table || id >= table->nr)
1061 		goto out;
1062 
1063 	id = array_index_nospec(id, table->nr);
1064 	ctx = rcu_dereference(table->table[id]);
1065 	if (ctx && ctx->user_id == ctx_id) {
1066 		if (percpu_ref_tryget_live(&ctx->users))
1067 			ret = ctx;
1068 	}
1069 out:
1070 	rcu_read_unlock();
1071 	return ret;
1072 }
1073 
1074 static inline void iocb_destroy(struct aio_kiocb *iocb)
1075 {
1076 	if (iocb->ki_eventfd)
1077 		eventfd_ctx_put(iocb->ki_eventfd);
1078 	if (iocb->ki_filp)
1079 		fput(iocb->ki_filp);
1080 	percpu_ref_put(&iocb->ki_ctx->reqs);
1081 	kmem_cache_free(kiocb_cachep, iocb);
1082 }
1083 
1084 /* aio_complete
1085  *	Called when the io request on the given iocb is complete.
1086  */
1087 static void aio_complete(struct aio_kiocb *iocb)
1088 {
1089 	struct kioctx	*ctx = iocb->ki_ctx;
1090 	struct aio_ring	*ring;
1091 	struct io_event	*ev_page, *event;
1092 	unsigned tail, pos, head;
1093 	unsigned long	flags;
1094 
1095 	/*
1096 	 * Add a completion event to the ring buffer. Must be done holding
1097 	 * ctx->completion_lock to prevent other code from messing with the tail
1098 	 * pointer since we might be called from irq context.
1099 	 */
1100 	spin_lock_irqsave(&ctx->completion_lock, flags);
1101 
1102 	tail = ctx->tail;
1103 	pos = tail + AIO_EVENTS_OFFSET;
1104 
1105 	if (++tail >= ctx->nr_events)
1106 		tail = 0;
1107 
1108 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1109 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1110 
1111 	*event = iocb->ki_res;
1112 
1113 	kunmap_atomic(ev_page);
1114 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1115 
1116 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1117 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1118 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1119 
1120 	/* after flagging the request as done, we
1121 	 * must never even look at it again
1122 	 */
1123 	smp_wmb();	/* make event visible before updating tail */
1124 
1125 	ctx->tail = tail;
1126 
1127 	ring = kmap_atomic(ctx->ring_pages[0]);
1128 	head = ring->head;
1129 	ring->tail = tail;
1130 	kunmap_atomic(ring);
1131 	flush_dcache_page(ctx->ring_pages[0]);
1132 
1133 	ctx->completed_events++;
1134 	if (ctx->completed_events > 1)
1135 		refill_reqs_available(ctx, head, tail);
1136 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1137 
1138 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1139 
1140 	/*
1141 	 * Check if the user asked us to deliver the result through an
1142 	 * eventfd. The eventfd_signal() function is safe to be called
1143 	 * from IRQ context.
1144 	 */
1145 	if (iocb->ki_eventfd)
1146 		eventfd_signal(iocb->ki_eventfd, 1);
1147 
1148 	/*
1149 	 * We have to order our ring_info tail store above and test
1150 	 * of the wait list below outside the wait lock.  This is
1151 	 * like in wake_up_bit() where clearing a bit has to be
1152 	 * ordered with the unlocked test.
1153 	 */
1154 	smp_mb();
1155 
1156 	if (waitqueue_active(&ctx->wait))
1157 		wake_up(&ctx->wait);
1158 }
1159 
1160 static inline void iocb_put(struct aio_kiocb *iocb)
1161 {
1162 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1163 		aio_complete(iocb);
1164 		iocb_destroy(iocb);
1165 	}
1166 }
1167 
1168 /* aio_read_events_ring
1169  *	Pull an event off of the ioctx's event ring.  Returns the number of
1170  *	events fetched
1171  */
1172 static long aio_read_events_ring(struct kioctx *ctx,
1173 				 struct io_event __user *event, long nr)
1174 {
1175 	struct aio_ring *ring;
1176 	unsigned head, tail, pos;
1177 	long ret = 0;
1178 	int copy_ret;
1179 
1180 	/*
1181 	 * The mutex can block and wake us up and that will cause
1182 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183 	 * and repeat. This should be rare enough that it doesn't cause
1184 	 * peformance issues. See the comment in read_events() for more detail.
1185 	 */
1186 	sched_annotate_sleep();
1187 	mutex_lock(&ctx->ring_lock);
1188 
1189 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1190 	ring = kmap_atomic(ctx->ring_pages[0]);
1191 	head = ring->head;
1192 	tail = ring->tail;
1193 	kunmap_atomic(ring);
1194 
1195 	/*
1196 	 * Ensure that once we've read the current tail pointer, that
1197 	 * we also see the events that were stored up to the tail.
1198 	 */
1199 	smp_rmb();
1200 
1201 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1202 
1203 	if (head == tail)
1204 		goto out;
1205 
1206 	head %= ctx->nr_events;
1207 	tail %= ctx->nr_events;
1208 
1209 	while (ret < nr) {
1210 		long avail;
1211 		struct io_event *ev;
1212 		struct page *page;
1213 
1214 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1215 		if (head == tail)
1216 			break;
1217 
1218 		pos = head + AIO_EVENTS_OFFSET;
1219 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1220 		pos %= AIO_EVENTS_PER_PAGE;
1221 
1222 		avail = min(avail, nr - ret);
1223 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1224 
1225 		ev = kmap(page);
1226 		copy_ret = copy_to_user(event + ret, ev + pos,
1227 					sizeof(*ev) * avail);
1228 		kunmap(page);
1229 
1230 		if (unlikely(copy_ret)) {
1231 			ret = -EFAULT;
1232 			goto out;
1233 		}
1234 
1235 		ret += avail;
1236 		head += avail;
1237 		head %= ctx->nr_events;
1238 	}
1239 
1240 	ring = kmap_atomic(ctx->ring_pages[0]);
1241 	ring->head = head;
1242 	kunmap_atomic(ring);
1243 	flush_dcache_page(ctx->ring_pages[0]);
1244 
1245 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1246 out:
1247 	mutex_unlock(&ctx->ring_lock);
1248 
1249 	return ret;
1250 }
1251 
1252 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1253 			    struct io_event __user *event, long *i)
1254 {
1255 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1256 
1257 	if (ret > 0)
1258 		*i += ret;
1259 
1260 	if (unlikely(atomic_read(&ctx->dead)))
1261 		ret = -EINVAL;
1262 
1263 	if (!*i)
1264 		*i = ret;
1265 
1266 	return ret < 0 || *i >= min_nr;
1267 }
1268 
1269 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1270 			struct io_event __user *event,
1271 			ktime_t until)
1272 {
1273 	long ret = 0;
1274 
1275 	/*
1276 	 * Note that aio_read_events() is being called as the conditional - i.e.
1277 	 * we're calling it after prepare_to_wait() has set task state to
1278 	 * TASK_INTERRUPTIBLE.
1279 	 *
1280 	 * But aio_read_events() can block, and if it blocks it's going to flip
1281 	 * the task state back to TASK_RUNNING.
1282 	 *
1283 	 * This should be ok, provided it doesn't flip the state back to
1284 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1285 	 * will only happen if the mutex_lock() call blocks, and we then find
1286 	 * the ringbuffer empty. So in practice we should be ok, but it's
1287 	 * something to be aware of when touching this code.
1288 	 */
1289 	if (until == 0)
1290 		aio_read_events(ctx, min_nr, nr, event, &ret);
1291 	else
1292 		wait_event_interruptible_hrtimeout(ctx->wait,
1293 				aio_read_events(ctx, min_nr, nr, event, &ret),
1294 				until);
1295 	return ret;
1296 }
1297 
1298 /* sys_io_setup:
1299  *	Create an aio_context capable of receiving at least nr_events.
1300  *	ctxp must not point to an aio_context that already exists, and
1301  *	must be initialized to 0 prior to the call.  On successful
1302  *	creation of the aio_context, *ctxp is filled in with the resulting
1303  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1304  *	if the specified nr_events exceeds internal limits.  May fail
1305  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1306  *	of available events.  May fail with -ENOMEM if insufficient kernel
1307  *	resources are available.  May fail with -EFAULT if an invalid
1308  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1309  *	implemented.
1310  */
1311 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1312 {
1313 	struct kioctx *ioctx = NULL;
1314 	unsigned long ctx;
1315 	long ret;
1316 
1317 	ret = get_user(ctx, ctxp);
1318 	if (unlikely(ret))
1319 		goto out;
1320 
1321 	ret = -EINVAL;
1322 	if (unlikely(ctx || nr_events == 0)) {
1323 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1324 		         ctx, nr_events);
1325 		goto out;
1326 	}
1327 
1328 	ioctx = ioctx_alloc(nr_events);
1329 	ret = PTR_ERR(ioctx);
1330 	if (!IS_ERR(ioctx)) {
1331 		ret = put_user(ioctx->user_id, ctxp);
1332 		if (ret)
1333 			kill_ioctx(current->mm, ioctx, NULL);
1334 		percpu_ref_put(&ioctx->users);
1335 	}
1336 
1337 out:
1338 	return ret;
1339 }
1340 
1341 #ifdef CONFIG_COMPAT
1342 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1343 {
1344 	struct kioctx *ioctx = NULL;
1345 	unsigned long ctx;
1346 	long ret;
1347 
1348 	ret = get_user(ctx, ctx32p);
1349 	if (unlikely(ret))
1350 		goto out;
1351 
1352 	ret = -EINVAL;
1353 	if (unlikely(ctx || nr_events == 0)) {
1354 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1355 		         ctx, nr_events);
1356 		goto out;
1357 	}
1358 
1359 	ioctx = ioctx_alloc(nr_events);
1360 	ret = PTR_ERR(ioctx);
1361 	if (!IS_ERR(ioctx)) {
1362 		/* truncating is ok because it's a user address */
1363 		ret = put_user((u32)ioctx->user_id, ctx32p);
1364 		if (ret)
1365 			kill_ioctx(current->mm, ioctx, NULL);
1366 		percpu_ref_put(&ioctx->users);
1367 	}
1368 
1369 out:
1370 	return ret;
1371 }
1372 #endif
1373 
1374 /* sys_io_destroy:
1375  *	Destroy the aio_context specified.  May cancel any outstanding
1376  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1377  *	implemented.  May fail with -EINVAL if the context pointed to
1378  *	is invalid.
1379  */
1380 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1381 {
1382 	struct kioctx *ioctx = lookup_ioctx(ctx);
1383 	if (likely(NULL != ioctx)) {
1384 		struct ctx_rq_wait wait;
1385 		int ret;
1386 
1387 		init_completion(&wait.comp);
1388 		atomic_set(&wait.count, 1);
1389 
1390 		/* Pass requests_done to kill_ioctx() where it can be set
1391 		 * in a thread-safe way. If we try to set it here then we have
1392 		 * a race condition if two io_destroy() called simultaneously.
1393 		 */
1394 		ret = kill_ioctx(current->mm, ioctx, &wait);
1395 		percpu_ref_put(&ioctx->users);
1396 
1397 		/* Wait until all IO for the context are done. Otherwise kernel
1398 		 * keep using user-space buffers even if user thinks the context
1399 		 * is destroyed.
1400 		 */
1401 		if (!ret)
1402 			wait_for_completion(&wait.comp);
1403 
1404 		return ret;
1405 	}
1406 	pr_debug("EINVAL: invalid context id\n");
1407 	return -EINVAL;
1408 }
1409 
1410 static void aio_remove_iocb(struct aio_kiocb *iocb)
1411 {
1412 	struct kioctx *ctx = iocb->ki_ctx;
1413 	unsigned long flags;
1414 
1415 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1416 	list_del(&iocb->ki_list);
1417 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1418 }
1419 
1420 static void aio_complete_rw(struct kiocb *kiocb, long res)
1421 {
1422 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1423 
1424 	if (!list_empty_careful(&iocb->ki_list))
1425 		aio_remove_iocb(iocb);
1426 
1427 	if (kiocb->ki_flags & IOCB_WRITE) {
1428 		struct inode *inode = file_inode(kiocb->ki_filp);
1429 
1430 		/*
1431 		 * Tell lockdep we inherited freeze protection from submission
1432 		 * thread.
1433 		 */
1434 		if (S_ISREG(inode->i_mode))
1435 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1436 		file_end_write(kiocb->ki_filp);
1437 	}
1438 
1439 	iocb->ki_res.res = res;
1440 	iocb->ki_res.res2 = 0;
1441 	iocb_put(iocb);
1442 }
1443 
1444 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1445 {
1446 	int ret;
1447 
1448 	req->ki_complete = aio_complete_rw;
1449 	req->private = NULL;
1450 	req->ki_pos = iocb->aio_offset;
1451 	req->ki_flags = iocb_flags(req->ki_filp);
1452 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1453 		req->ki_flags |= IOCB_EVENTFD;
1454 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1455 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1456 		/*
1457 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1458 		 * aio_reqprio is interpreted as an I/O scheduling
1459 		 * class and priority.
1460 		 */
1461 		ret = ioprio_check_cap(iocb->aio_reqprio);
1462 		if (ret) {
1463 			pr_debug("aio ioprio check cap error: %d\n", ret);
1464 			return ret;
1465 		}
1466 
1467 		req->ki_ioprio = iocb->aio_reqprio;
1468 	} else
1469 		req->ki_ioprio = get_current_ioprio();
1470 
1471 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1472 	if (unlikely(ret))
1473 		return ret;
1474 
1475 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1476 	return 0;
1477 }
1478 
1479 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1480 		struct iovec **iovec, bool vectored, bool compat,
1481 		struct iov_iter *iter)
1482 {
1483 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1484 	size_t len = iocb->aio_nbytes;
1485 
1486 	if (!vectored) {
1487 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1488 		*iovec = NULL;
1489 		return ret;
1490 	}
1491 
1492 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1493 }
1494 
1495 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1496 {
1497 	switch (ret) {
1498 	case -EIOCBQUEUED:
1499 		break;
1500 	case -ERESTARTSYS:
1501 	case -ERESTARTNOINTR:
1502 	case -ERESTARTNOHAND:
1503 	case -ERESTART_RESTARTBLOCK:
1504 		/*
1505 		 * There's no easy way to restart the syscall since other AIO's
1506 		 * may be already running. Just fail this IO with EINTR.
1507 		 */
1508 		ret = -EINTR;
1509 		fallthrough;
1510 	default:
1511 		req->ki_complete(req, ret);
1512 	}
1513 }
1514 
1515 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1516 			bool vectored, bool compat)
1517 {
1518 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1519 	struct iov_iter iter;
1520 	struct file *file;
1521 	int ret;
1522 
1523 	ret = aio_prep_rw(req, iocb);
1524 	if (ret)
1525 		return ret;
1526 	file = req->ki_filp;
1527 	if (unlikely(!(file->f_mode & FMODE_READ)))
1528 		return -EBADF;
1529 	ret = -EINVAL;
1530 	if (unlikely(!file->f_op->read_iter))
1531 		return -EINVAL;
1532 
1533 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1534 	if (ret < 0)
1535 		return ret;
1536 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1537 	if (!ret)
1538 		aio_rw_done(req, call_read_iter(file, req, &iter));
1539 	kfree(iovec);
1540 	return ret;
1541 }
1542 
1543 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1544 			 bool vectored, bool compat)
1545 {
1546 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1547 	struct iov_iter iter;
1548 	struct file *file;
1549 	int ret;
1550 
1551 	ret = aio_prep_rw(req, iocb);
1552 	if (ret)
1553 		return ret;
1554 	file = req->ki_filp;
1555 
1556 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1557 		return -EBADF;
1558 	if (unlikely(!file->f_op->write_iter))
1559 		return -EINVAL;
1560 
1561 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1562 	if (ret < 0)
1563 		return ret;
1564 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1565 	if (!ret) {
1566 		/*
1567 		 * Open-code file_start_write here to grab freeze protection,
1568 		 * which will be released by another thread in
1569 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1570 		 * released so that it doesn't complain about the held lock when
1571 		 * we return to userspace.
1572 		 */
1573 		if (S_ISREG(file_inode(file)->i_mode)) {
1574 			sb_start_write(file_inode(file)->i_sb);
1575 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1576 		}
1577 		req->ki_flags |= IOCB_WRITE;
1578 		aio_rw_done(req, call_write_iter(file, req, &iter));
1579 	}
1580 	kfree(iovec);
1581 	return ret;
1582 }
1583 
1584 static void aio_fsync_work(struct work_struct *work)
1585 {
1586 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1587 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1588 
1589 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1590 	revert_creds(old_cred);
1591 	put_cred(iocb->fsync.creds);
1592 	iocb_put(iocb);
1593 }
1594 
1595 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1596 		     bool datasync)
1597 {
1598 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 			iocb->aio_rw_flags))
1600 		return -EINVAL;
1601 
1602 	if (unlikely(!req->file->f_op->fsync))
1603 		return -EINVAL;
1604 
1605 	req->creds = prepare_creds();
1606 	if (!req->creds)
1607 		return -ENOMEM;
1608 
1609 	req->datasync = datasync;
1610 	INIT_WORK(&req->work, aio_fsync_work);
1611 	schedule_work(&req->work);
1612 	return 0;
1613 }
1614 
1615 static void aio_poll_put_work(struct work_struct *work)
1616 {
1617 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1619 
1620 	iocb_put(iocb);
1621 }
1622 
1623 /*
1624  * Safely lock the waitqueue which the request is on, synchronizing with the
1625  * case where the ->poll() provider decides to free its waitqueue early.
1626  *
1627  * Returns true on success, meaning that req->head->lock was locked, req->wait
1628  * is on req->head, and an RCU read lock was taken.  Returns false if the
1629  * request was already removed from its waitqueue (which might no longer exist).
1630  */
1631 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1632 {
1633 	wait_queue_head_t *head;
1634 
1635 	/*
1636 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1637 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1638 	 * lock in the first place can race with the waitqueue being freed.
1639 	 *
1640 	 * We solve this as eventpoll does: by taking advantage of the fact that
1641 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1642 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1643 	 * non-NULL, we can then lock it without the memory being freed out from
1644 	 * under us, then check whether the request is still on the queue.
1645 	 *
1646 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1647 	 * case the caller deletes the entry from the queue, leaving it empty.
1648 	 * In that case, only RCU prevents the queue memory from being freed.
1649 	 */
1650 	rcu_read_lock();
1651 	head = smp_load_acquire(&req->head);
1652 	if (head) {
1653 		spin_lock(&head->lock);
1654 		if (!list_empty(&req->wait.entry))
1655 			return true;
1656 		spin_unlock(&head->lock);
1657 	}
1658 	rcu_read_unlock();
1659 	return false;
1660 }
1661 
1662 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1663 {
1664 	spin_unlock(&req->head->lock);
1665 	rcu_read_unlock();
1666 }
1667 
1668 static void aio_poll_complete_work(struct work_struct *work)
1669 {
1670 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1671 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1672 	struct poll_table_struct pt = { ._key = req->events };
1673 	struct kioctx *ctx = iocb->ki_ctx;
1674 	__poll_t mask = 0;
1675 
1676 	if (!READ_ONCE(req->cancelled))
1677 		mask = vfs_poll(req->file, &pt) & req->events;
1678 
1679 	/*
1680 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1681 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1682 	 * synchronize with them.  In the cancellation case the list_del_init
1683 	 * itself is not actually needed, but harmless so we keep it in to
1684 	 * avoid further branches in the fast path.
1685 	 */
1686 	spin_lock_irq(&ctx->ctx_lock);
1687 	if (poll_iocb_lock_wq(req)) {
1688 		if (!mask && !READ_ONCE(req->cancelled)) {
1689 			/*
1690 			 * The request isn't actually ready to be completed yet.
1691 			 * Reschedule completion if another wakeup came in.
1692 			 */
1693 			if (req->work_need_resched) {
1694 				schedule_work(&req->work);
1695 				req->work_need_resched = false;
1696 			} else {
1697 				req->work_scheduled = false;
1698 			}
1699 			poll_iocb_unlock_wq(req);
1700 			spin_unlock_irq(&ctx->ctx_lock);
1701 			return;
1702 		}
1703 		list_del_init(&req->wait.entry);
1704 		poll_iocb_unlock_wq(req);
1705 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1706 	list_del_init(&iocb->ki_list);
1707 	iocb->ki_res.res = mangle_poll(mask);
1708 	spin_unlock_irq(&ctx->ctx_lock);
1709 
1710 	iocb_put(iocb);
1711 }
1712 
1713 /* assumes we are called with irqs disabled */
1714 static int aio_poll_cancel(struct kiocb *iocb)
1715 {
1716 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1717 	struct poll_iocb *req = &aiocb->poll;
1718 
1719 	if (poll_iocb_lock_wq(req)) {
1720 		WRITE_ONCE(req->cancelled, true);
1721 		if (!req->work_scheduled) {
1722 			schedule_work(&aiocb->poll.work);
1723 			req->work_scheduled = true;
1724 		}
1725 		poll_iocb_unlock_wq(req);
1726 	} /* else, the request was force-cancelled by POLLFREE already */
1727 
1728 	return 0;
1729 }
1730 
1731 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1732 		void *key)
1733 {
1734 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1735 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1736 	__poll_t mask = key_to_poll(key);
1737 	unsigned long flags;
1738 
1739 	/* for instances that support it check for an event match first: */
1740 	if (mask && !(mask & req->events))
1741 		return 0;
1742 
1743 	/*
1744 	 * Complete the request inline if possible.  This requires that three
1745 	 * conditions be met:
1746 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1747 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1748 	 *	the events, so inline completion isn't possible.
1749 	 *   2. The completion work must not have already been scheduled.
1750 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1751 	 *	already hold the waitqueue lock, so this inverts the normal
1752 	 *	locking order.  Use irqsave/irqrestore because not all
1753 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1754 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1755 	 */
1756 	if (mask && !req->work_scheduled &&
1757 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1758 		struct kioctx *ctx = iocb->ki_ctx;
1759 
1760 		list_del_init(&req->wait.entry);
1761 		list_del(&iocb->ki_list);
1762 		iocb->ki_res.res = mangle_poll(mask);
1763 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1764 			iocb = NULL;
1765 			INIT_WORK(&req->work, aio_poll_put_work);
1766 			schedule_work(&req->work);
1767 		}
1768 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1769 		if (iocb)
1770 			iocb_put(iocb);
1771 	} else {
1772 		/*
1773 		 * Schedule the completion work if needed.  If it was already
1774 		 * scheduled, record that another wakeup came in.
1775 		 *
1776 		 * Don't remove the request from the waitqueue here, as it might
1777 		 * not actually be complete yet (we won't know until vfs_poll()
1778 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1779 		 * exception to this; see below.
1780 		 */
1781 		if (req->work_scheduled) {
1782 			req->work_need_resched = true;
1783 		} else {
1784 			schedule_work(&req->work);
1785 			req->work_scheduled = true;
1786 		}
1787 
1788 		/*
1789 		 * If the waitqueue is being freed early but we can't complete
1790 		 * the request inline, we have to tear down the request as best
1791 		 * we can.  That means immediately removing the request from its
1792 		 * waitqueue and preventing all further accesses to the
1793 		 * waitqueue via the request.  We also need to schedule the
1794 		 * completion work (done above).  Also mark the request as
1795 		 * cancelled, to potentially skip an unneeded call to ->poll().
1796 		 */
1797 		if (mask & POLLFREE) {
1798 			WRITE_ONCE(req->cancelled, true);
1799 			list_del_init(&req->wait.entry);
1800 
1801 			/*
1802 			 * Careful: this *must* be the last step, since as soon
1803 			 * as req->head is NULL'ed out, the request can be
1804 			 * completed and freed, since aio_poll_complete_work()
1805 			 * will no longer need to take the waitqueue lock.
1806 			 */
1807 			smp_store_release(&req->head, NULL);
1808 		}
1809 	}
1810 	return 1;
1811 }
1812 
1813 struct aio_poll_table {
1814 	struct poll_table_struct	pt;
1815 	struct aio_kiocb		*iocb;
1816 	bool				queued;
1817 	int				error;
1818 };
1819 
1820 static void
1821 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1822 		struct poll_table_struct *p)
1823 {
1824 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1825 
1826 	/* multiple wait queues per file are not supported */
1827 	if (unlikely(pt->queued)) {
1828 		pt->error = -EINVAL;
1829 		return;
1830 	}
1831 
1832 	pt->queued = true;
1833 	pt->error = 0;
1834 	pt->iocb->poll.head = head;
1835 	add_wait_queue(head, &pt->iocb->poll.wait);
1836 }
1837 
1838 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1839 {
1840 	struct kioctx *ctx = aiocb->ki_ctx;
1841 	struct poll_iocb *req = &aiocb->poll;
1842 	struct aio_poll_table apt;
1843 	bool cancel = false;
1844 	__poll_t mask;
1845 
1846 	/* reject any unknown events outside the normal event mask. */
1847 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1848 		return -EINVAL;
1849 	/* reject fields that are not defined for poll */
1850 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1851 		return -EINVAL;
1852 
1853 	INIT_WORK(&req->work, aio_poll_complete_work);
1854 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1855 
1856 	req->head = NULL;
1857 	req->cancelled = false;
1858 	req->work_scheduled = false;
1859 	req->work_need_resched = false;
1860 
1861 	apt.pt._qproc = aio_poll_queue_proc;
1862 	apt.pt._key = req->events;
1863 	apt.iocb = aiocb;
1864 	apt.queued = false;
1865 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1866 
1867 	/* initialized the list so that we can do list_empty checks */
1868 	INIT_LIST_HEAD(&req->wait.entry);
1869 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1870 
1871 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1872 	spin_lock_irq(&ctx->ctx_lock);
1873 	if (likely(apt.queued)) {
1874 		bool on_queue = poll_iocb_lock_wq(req);
1875 
1876 		if (!on_queue || req->work_scheduled) {
1877 			/*
1878 			 * aio_poll_wake() already either scheduled the async
1879 			 * completion work, or completed the request inline.
1880 			 */
1881 			if (apt.error) /* unsupported case: multiple queues */
1882 				cancel = true;
1883 			apt.error = 0;
1884 			mask = 0;
1885 		}
1886 		if (mask || apt.error) {
1887 			/* Steal to complete synchronously. */
1888 			list_del_init(&req->wait.entry);
1889 		} else if (cancel) {
1890 			/* Cancel if possible (may be too late though). */
1891 			WRITE_ONCE(req->cancelled, true);
1892 		} else if (on_queue) {
1893 			/*
1894 			 * Actually waiting for an event, so add the request to
1895 			 * active_reqs so that it can be cancelled if needed.
1896 			 */
1897 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1898 			aiocb->ki_cancel = aio_poll_cancel;
1899 		}
1900 		if (on_queue)
1901 			poll_iocb_unlock_wq(req);
1902 	}
1903 	if (mask) { /* no async, we'd stolen it */
1904 		aiocb->ki_res.res = mangle_poll(mask);
1905 		apt.error = 0;
1906 	}
1907 	spin_unlock_irq(&ctx->ctx_lock);
1908 	if (mask)
1909 		iocb_put(aiocb);
1910 	return apt.error;
1911 }
1912 
1913 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1914 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1915 			   bool compat)
1916 {
1917 	req->ki_filp = fget(iocb->aio_fildes);
1918 	if (unlikely(!req->ki_filp))
1919 		return -EBADF;
1920 
1921 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1922 		struct eventfd_ctx *eventfd;
1923 		/*
1924 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1925 		 * instance of the file* now. The file descriptor must be
1926 		 * an eventfd() fd, and will be signaled for each completed
1927 		 * event using the eventfd_signal() function.
1928 		 */
1929 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1930 		if (IS_ERR(eventfd))
1931 			return PTR_ERR(eventfd);
1932 
1933 		req->ki_eventfd = eventfd;
1934 	}
1935 
1936 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1937 		pr_debug("EFAULT: aio_key\n");
1938 		return -EFAULT;
1939 	}
1940 
1941 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1942 	req->ki_res.data = iocb->aio_data;
1943 	req->ki_res.res = 0;
1944 	req->ki_res.res2 = 0;
1945 
1946 	switch (iocb->aio_lio_opcode) {
1947 	case IOCB_CMD_PREAD:
1948 		return aio_read(&req->rw, iocb, false, compat);
1949 	case IOCB_CMD_PWRITE:
1950 		return aio_write(&req->rw, iocb, false, compat);
1951 	case IOCB_CMD_PREADV:
1952 		return aio_read(&req->rw, iocb, true, compat);
1953 	case IOCB_CMD_PWRITEV:
1954 		return aio_write(&req->rw, iocb, true, compat);
1955 	case IOCB_CMD_FSYNC:
1956 		return aio_fsync(&req->fsync, iocb, false);
1957 	case IOCB_CMD_FDSYNC:
1958 		return aio_fsync(&req->fsync, iocb, true);
1959 	case IOCB_CMD_POLL:
1960 		return aio_poll(req, iocb);
1961 	default:
1962 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1963 		return -EINVAL;
1964 	}
1965 }
1966 
1967 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1968 			 bool compat)
1969 {
1970 	struct aio_kiocb *req;
1971 	struct iocb iocb;
1972 	int err;
1973 
1974 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1975 		return -EFAULT;
1976 
1977 	/* enforce forwards compatibility on users */
1978 	if (unlikely(iocb.aio_reserved2)) {
1979 		pr_debug("EINVAL: reserve field set\n");
1980 		return -EINVAL;
1981 	}
1982 
1983 	/* prevent overflows */
1984 	if (unlikely(
1985 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1986 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1987 	    ((ssize_t)iocb.aio_nbytes < 0)
1988 	   )) {
1989 		pr_debug("EINVAL: overflow check\n");
1990 		return -EINVAL;
1991 	}
1992 
1993 	req = aio_get_req(ctx);
1994 	if (unlikely(!req))
1995 		return -EAGAIN;
1996 
1997 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1998 
1999 	/* Done with the synchronous reference */
2000 	iocb_put(req);
2001 
2002 	/*
2003 	 * If err is 0, we'd either done aio_complete() ourselves or have
2004 	 * arranged for that to be done asynchronously.  Anything non-zero
2005 	 * means that we need to destroy req ourselves.
2006 	 */
2007 	if (unlikely(err)) {
2008 		iocb_destroy(req);
2009 		put_reqs_available(ctx, 1);
2010 	}
2011 	return err;
2012 }
2013 
2014 /* sys_io_submit:
2015  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2016  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2017  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2018  *	*iocbpp[0] is not properly initialized, if the operation specified
2019  *	is invalid for the file descriptor in the iocb.  May fail with
2020  *	-EFAULT if any of the data structures point to invalid data.  May
2021  *	fail with -EBADF if the file descriptor specified in the first
2022  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2023  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2024  *	fail with -ENOSYS if not implemented.
2025  */
2026 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2027 		struct iocb __user * __user *, iocbpp)
2028 {
2029 	struct kioctx *ctx;
2030 	long ret = 0;
2031 	int i = 0;
2032 	struct blk_plug plug;
2033 
2034 	if (unlikely(nr < 0))
2035 		return -EINVAL;
2036 
2037 	ctx = lookup_ioctx(ctx_id);
2038 	if (unlikely(!ctx)) {
2039 		pr_debug("EINVAL: invalid context id\n");
2040 		return -EINVAL;
2041 	}
2042 
2043 	if (nr > ctx->nr_events)
2044 		nr = ctx->nr_events;
2045 
2046 	if (nr > AIO_PLUG_THRESHOLD)
2047 		blk_start_plug(&plug);
2048 	for (i = 0; i < nr; i++) {
2049 		struct iocb __user *user_iocb;
2050 
2051 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2052 			ret = -EFAULT;
2053 			break;
2054 		}
2055 
2056 		ret = io_submit_one(ctx, user_iocb, false);
2057 		if (ret)
2058 			break;
2059 	}
2060 	if (nr > AIO_PLUG_THRESHOLD)
2061 		blk_finish_plug(&plug);
2062 
2063 	percpu_ref_put(&ctx->users);
2064 	return i ? i : ret;
2065 }
2066 
2067 #ifdef CONFIG_COMPAT
2068 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2069 		       int, nr, compat_uptr_t __user *, iocbpp)
2070 {
2071 	struct kioctx *ctx;
2072 	long ret = 0;
2073 	int i = 0;
2074 	struct blk_plug plug;
2075 
2076 	if (unlikely(nr < 0))
2077 		return -EINVAL;
2078 
2079 	ctx = lookup_ioctx(ctx_id);
2080 	if (unlikely(!ctx)) {
2081 		pr_debug("EINVAL: invalid context id\n");
2082 		return -EINVAL;
2083 	}
2084 
2085 	if (nr > ctx->nr_events)
2086 		nr = ctx->nr_events;
2087 
2088 	if (nr > AIO_PLUG_THRESHOLD)
2089 		blk_start_plug(&plug);
2090 	for (i = 0; i < nr; i++) {
2091 		compat_uptr_t user_iocb;
2092 
2093 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2094 			ret = -EFAULT;
2095 			break;
2096 		}
2097 
2098 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2099 		if (ret)
2100 			break;
2101 	}
2102 	if (nr > AIO_PLUG_THRESHOLD)
2103 		blk_finish_plug(&plug);
2104 
2105 	percpu_ref_put(&ctx->users);
2106 	return i ? i : ret;
2107 }
2108 #endif
2109 
2110 /* sys_io_cancel:
2111  *	Attempts to cancel an iocb previously passed to io_submit.  If
2112  *	the operation is successfully cancelled, the resulting event is
2113  *	copied into the memory pointed to by result without being placed
2114  *	into the completion queue and 0 is returned.  May fail with
2115  *	-EFAULT if any of the data structures pointed to are invalid.
2116  *	May fail with -EINVAL if aio_context specified by ctx_id is
2117  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2118  *	cancelled.  Will fail with -ENOSYS if not implemented.
2119  */
2120 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2121 		struct io_event __user *, result)
2122 {
2123 	struct kioctx *ctx;
2124 	struct aio_kiocb *kiocb;
2125 	int ret = -EINVAL;
2126 	u32 key;
2127 	u64 obj = (u64)(unsigned long)iocb;
2128 
2129 	if (unlikely(get_user(key, &iocb->aio_key)))
2130 		return -EFAULT;
2131 	if (unlikely(key != KIOCB_KEY))
2132 		return -EINVAL;
2133 
2134 	ctx = lookup_ioctx(ctx_id);
2135 	if (unlikely(!ctx))
2136 		return -EINVAL;
2137 
2138 	spin_lock_irq(&ctx->ctx_lock);
2139 	/* TODO: use a hash or array, this sucks. */
2140 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2141 		if (kiocb->ki_res.obj == obj) {
2142 			ret = kiocb->ki_cancel(&kiocb->rw);
2143 			list_del_init(&kiocb->ki_list);
2144 			break;
2145 		}
2146 	}
2147 	spin_unlock_irq(&ctx->ctx_lock);
2148 
2149 	if (!ret) {
2150 		/*
2151 		 * The result argument is no longer used - the io_event is
2152 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2153 		 * cancellation is progress:
2154 		 */
2155 		ret = -EINPROGRESS;
2156 	}
2157 
2158 	percpu_ref_put(&ctx->users);
2159 
2160 	return ret;
2161 }
2162 
2163 static long do_io_getevents(aio_context_t ctx_id,
2164 		long min_nr,
2165 		long nr,
2166 		struct io_event __user *events,
2167 		struct timespec64 *ts)
2168 {
2169 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2170 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2171 	long ret = -EINVAL;
2172 
2173 	if (likely(ioctx)) {
2174 		if (likely(min_nr <= nr && min_nr >= 0))
2175 			ret = read_events(ioctx, min_nr, nr, events, until);
2176 		percpu_ref_put(&ioctx->users);
2177 	}
2178 
2179 	return ret;
2180 }
2181 
2182 /* io_getevents:
2183  *	Attempts to read at least min_nr events and up to nr events from
2184  *	the completion queue for the aio_context specified by ctx_id. If
2185  *	it succeeds, the number of read events is returned. May fail with
2186  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2187  *	out of range, if timeout is out of range.  May fail with -EFAULT
2188  *	if any of the memory specified is invalid.  May return 0 or
2189  *	< min_nr if the timeout specified by timeout has elapsed
2190  *	before sufficient events are available, where timeout == NULL
2191  *	specifies an infinite timeout. Note that the timeout pointed to by
2192  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2193  */
2194 #ifdef CONFIG_64BIT
2195 
2196 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2197 		long, min_nr,
2198 		long, nr,
2199 		struct io_event __user *, events,
2200 		struct __kernel_timespec __user *, timeout)
2201 {
2202 	struct timespec64	ts;
2203 	int			ret;
2204 
2205 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2206 		return -EFAULT;
2207 
2208 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2209 	if (!ret && signal_pending(current))
2210 		ret = -EINTR;
2211 	return ret;
2212 }
2213 
2214 #endif
2215 
2216 struct __aio_sigset {
2217 	const sigset_t __user	*sigmask;
2218 	size_t		sigsetsize;
2219 };
2220 
2221 SYSCALL_DEFINE6(io_pgetevents,
2222 		aio_context_t, ctx_id,
2223 		long, min_nr,
2224 		long, nr,
2225 		struct io_event __user *, events,
2226 		struct __kernel_timespec __user *, timeout,
2227 		const struct __aio_sigset __user *, usig)
2228 {
2229 	struct __aio_sigset	ksig = { NULL, };
2230 	struct timespec64	ts;
2231 	bool interrupted;
2232 	int ret;
2233 
2234 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2235 		return -EFAULT;
2236 
2237 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2238 		return -EFAULT;
2239 
2240 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2241 	if (ret)
2242 		return ret;
2243 
2244 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2245 
2246 	interrupted = signal_pending(current);
2247 	restore_saved_sigmask_unless(interrupted);
2248 	if (interrupted && !ret)
2249 		ret = -ERESTARTNOHAND;
2250 
2251 	return ret;
2252 }
2253 
2254 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2255 
2256 SYSCALL_DEFINE6(io_pgetevents_time32,
2257 		aio_context_t, ctx_id,
2258 		long, min_nr,
2259 		long, nr,
2260 		struct io_event __user *, events,
2261 		struct old_timespec32 __user *, timeout,
2262 		const struct __aio_sigset __user *, usig)
2263 {
2264 	struct __aio_sigset	ksig = { NULL, };
2265 	struct timespec64	ts;
2266 	bool interrupted;
2267 	int ret;
2268 
2269 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2270 		return -EFAULT;
2271 
2272 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2273 		return -EFAULT;
2274 
2275 
2276 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2277 	if (ret)
2278 		return ret;
2279 
2280 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2281 
2282 	interrupted = signal_pending(current);
2283 	restore_saved_sigmask_unless(interrupted);
2284 	if (interrupted && !ret)
2285 		ret = -ERESTARTNOHAND;
2286 
2287 	return ret;
2288 }
2289 
2290 #endif
2291 
2292 #if defined(CONFIG_COMPAT_32BIT_TIME)
2293 
2294 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2295 		__s32, min_nr,
2296 		__s32, nr,
2297 		struct io_event __user *, events,
2298 		struct old_timespec32 __user *, timeout)
2299 {
2300 	struct timespec64 t;
2301 	int ret;
2302 
2303 	if (timeout && get_old_timespec32(&t, timeout))
2304 		return -EFAULT;
2305 
2306 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2307 	if (!ret && signal_pending(current))
2308 		ret = -EINTR;
2309 	return ret;
2310 }
2311 
2312 #endif
2313 
2314 #ifdef CONFIG_COMPAT
2315 
2316 struct __compat_aio_sigset {
2317 	compat_uptr_t		sigmask;
2318 	compat_size_t		sigsetsize;
2319 };
2320 
2321 #if defined(CONFIG_COMPAT_32BIT_TIME)
2322 
2323 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2324 		compat_aio_context_t, ctx_id,
2325 		compat_long_t, min_nr,
2326 		compat_long_t, nr,
2327 		struct io_event __user *, events,
2328 		struct old_timespec32 __user *, timeout,
2329 		const struct __compat_aio_sigset __user *, usig)
2330 {
2331 	struct __compat_aio_sigset ksig = { 0, };
2332 	struct timespec64 t;
2333 	bool interrupted;
2334 	int ret;
2335 
2336 	if (timeout && get_old_timespec32(&t, timeout))
2337 		return -EFAULT;
2338 
2339 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2340 		return -EFAULT;
2341 
2342 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2343 	if (ret)
2344 		return ret;
2345 
2346 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2347 
2348 	interrupted = signal_pending(current);
2349 	restore_saved_sigmask_unless(interrupted);
2350 	if (interrupted && !ret)
2351 		ret = -ERESTARTNOHAND;
2352 
2353 	return ret;
2354 }
2355 
2356 #endif
2357 
2358 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2359 		compat_aio_context_t, ctx_id,
2360 		compat_long_t, min_nr,
2361 		compat_long_t, nr,
2362 		struct io_event __user *, events,
2363 		struct __kernel_timespec __user *, timeout,
2364 		const struct __compat_aio_sigset __user *, usig)
2365 {
2366 	struct __compat_aio_sigset ksig = { 0, };
2367 	struct timespec64 t;
2368 	bool interrupted;
2369 	int ret;
2370 
2371 	if (timeout && get_timespec64(&t, timeout))
2372 		return -EFAULT;
2373 
2374 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2375 		return -EFAULT;
2376 
2377 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2378 	if (ret)
2379 		return ret;
2380 
2381 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2382 
2383 	interrupted = signal_pending(current);
2384 	restore_saved_sigmask_unless(interrupted);
2385 	if (interrupted && !ret)
2386 		ret = -ERESTARTNOHAND;
2387 
2388 	return ret;
2389 }
2390 #endif
2391