xref: /linux/fs/aio.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched/signal.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <linux/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct ctx_rq_wait {
81 	struct completion comp;
82 	atomic_t count;
83 };
84 
85 struct kioctx {
86 	struct percpu_ref	users;
87 	atomic_t		dead;
88 
89 	struct percpu_ref	reqs;
90 
91 	unsigned long		user_id;
92 
93 	struct __percpu kioctx_cpu *cpu;
94 
95 	/*
96 	 * For percpu reqs_available, number of slots we move to/from global
97 	 * counter at a time:
98 	 */
99 	unsigned		req_batch;
100 	/*
101 	 * This is what userspace passed to io_setup(), it's not used for
102 	 * anything but counting against the global max_reqs quota.
103 	 *
104 	 * The real limit is nr_events - 1, which will be larger (see
105 	 * aio_setup_ring())
106 	 */
107 	unsigned		max_reqs;
108 
109 	/* Size of ringbuffer, in units of struct io_event */
110 	unsigned		nr_events;
111 
112 	unsigned long		mmap_base;
113 	unsigned long		mmap_size;
114 
115 	struct page		**ring_pages;
116 	long			nr_pages;
117 
118 	struct work_struct	free_work;
119 
120 	/*
121 	 * signals when all in-flight requests are done
122 	 */
123 	struct ctx_rq_wait	*rq_wait;
124 
125 	struct {
126 		/*
127 		 * This counts the number of available slots in the ringbuffer,
128 		 * so we avoid overflowing it: it's decremented (if positive)
129 		 * when allocating a kiocb and incremented when the resulting
130 		 * io_event is pulled off the ringbuffer.
131 		 *
132 		 * We batch accesses to it with a percpu version.
133 		 */
134 		atomic_t	reqs_available;
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		spinlock_t	ctx_lock;
139 		struct list_head active_reqs;	/* used for cancellation */
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		struct mutex	ring_lock;
144 		wait_queue_head_t wait;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		unsigned	tail;
149 		unsigned	completed_events;
150 		spinlock_t	completion_lock;
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct page		*internal_pages[AIO_RING_PAGES];
154 	struct file		*aio_ring_file;
155 
156 	unsigned		id;
157 };
158 
159 /*
160  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161  * cancelled or completed (this makes a certain amount of sense because
162  * successful cancellation - io_cancel() - does deliver the completion to
163  * userspace).
164  *
165  * And since most things don't implement kiocb cancellation and we'd really like
166  * kiocb completion to be lockless when possible, we use ki_cancel to
167  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169  */
170 #define KIOCB_CANCELLED		((void *) (~0ULL))
171 
172 struct aio_kiocb {
173 	struct kiocb		common;
174 
175 	struct kioctx		*ki_ctx;
176 	kiocb_cancel_fn		*ki_cancel;
177 
178 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
179 	__u64			ki_user_data;	/* user's data for completion */
180 
181 	struct list_head	ki_list;	/* the aio core uses this
182 						 * for cancellation */
183 
184 	/*
185 	 * If the aio_resfd field of the userspace iocb is not zero,
186 	 * this is the underlying eventfd context to deliver events to.
187 	 */
188 	struct eventfd_ctx	*ki_eventfd;
189 };
190 
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr;		/* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
196 
197 static struct kmem_cache	*kiocb_cachep;
198 static struct kmem_cache	*kioctx_cachep;
199 
200 static struct vfsmount *aio_mnt;
201 
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
204 
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206 {
207 	struct qstr this = QSTR_INIT("[aio]", 5);
208 	struct file *file;
209 	struct path path;
210 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 	if (IS_ERR(inode))
212 		return ERR_CAST(inode);
213 
214 	inode->i_mapping->a_ops = &aio_ctx_aops;
215 	inode->i_mapping->private_data = ctx;
216 	inode->i_size = PAGE_SIZE * nr_pages;
217 
218 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 	if (!path.dentry) {
220 		iput(inode);
221 		return ERR_PTR(-ENOMEM);
222 	}
223 	path.mnt = mntget(aio_mnt);
224 
225 	d_instantiate(path.dentry, inode);
226 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 	if (IS_ERR(file)) {
228 		path_put(&path);
229 		return file;
230 	}
231 
232 	file->f_flags = O_RDWR;
233 	return file;
234 }
235 
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 				int flags, const char *dev_name, void *data)
238 {
239 	static const struct dentry_operations ops = {
240 		.d_dname	= simple_dname,
241 	};
242 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
243 					   AIO_RING_MAGIC);
244 
245 	if (!IS_ERR(root))
246 		root->d_sb->s_iflags |= SB_I_NOEXEC;
247 	return root;
248 }
249 
250 /* aio_setup
251  *	Creates the slab caches used by the aio routines, panic on
252  *	failure as this is done early during the boot sequence.
253  */
254 static int __init aio_setup(void)
255 {
256 	static struct file_system_type aio_fs = {
257 		.name		= "aio",
258 		.mount		= aio_mount,
259 		.kill_sb	= kill_anon_super,
260 	};
261 	aio_mnt = kern_mount(&aio_fs);
262 	if (IS_ERR(aio_mnt))
263 		panic("Failed to create aio fs mount.");
264 
265 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
266 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
267 
268 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
269 
270 	return 0;
271 }
272 __initcall(aio_setup);
273 
274 static void put_aio_ring_file(struct kioctx *ctx)
275 {
276 	struct file *aio_ring_file = ctx->aio_ring_file;
277 	struct address_space *i_mapping;
278 
279 	if (aio_ring_file) {
280 		truncate_setsize(file_inode(aio_ring_file), 0);
281 
282 		/* Prevent further access to the kioctx from migratepages */
283 		i_mapping = aio_ring_file->f_mapping;
284 		spin_lock(&i_mapping->private_lock);
285 		i_mapping->private_data = NULL;
286 		ctx->aio_ring_file = NULL;
287 		spin_unlock(&i_mapping->private_lock);
288 
289 		fput(aio_ring_file);
290 	}
291 }
292 
293 static void aio_free_ring(struct kioctx *ctx)
294 {
295 	int i;
296 
297 	/* Disconnect the kiotx from the ring file.  This prevents future
298 	 * accesses to the kioctx from page migration.
299 	 */
300 	put_aio_ring_file(ctx);
301 
302 	for (i = 0; i < ctx->nr_pages; i++) {
303 		struct page *page;
304 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
305 				page_count(ctx->ring_pages[i]));
306 		page = ctx->ring_pages[i];
307 		if (!page)
308 			continue;
309 		ctx->ring_pages[i] = NULL;
310 		put_page(page);
311 	}
312 
313 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
314 		kfree(ctx->ring_pages);
315 		ctx->ring_pages = NULL;
316 	}
317 }
318 
319 static int aio_ring_mremap(struct vm_area_struct *vma)
320 {
321 	struct file *file = vma->vm_file;
322 	struct mm_struct *mm = vma->vm_mm;
323 	struct kioctx_table *table;
324 	int i, res = -EINVAL;
325 
326 	spin_lock(&mm->ioctx_lock);
327 	rcu_read_lock();
328 	table = rcu_dereference(mm->ioctx_table);
329 	for (i = 0; i < table->nr; i++) {
330 		struct kioctx *ctx;
331 
332 		ctx = table->table[i];
333 		if (ctx && ctx->aio_ring_file == file) {
334 			if (!atomic_read(&ctx->dead)) {
335 				ctx->user_id = ctx->mmap_base = vma->vm_start;
336 				res = 0;
337 			}
338 			break;
339 		}
340 	}
341 
342 	rcu_read_unlock();
343 	spin_unlock(&mm->ioctx_lock);
344 	return res;
345 }
346 
347 static const struct vm_operations_struct aio_ring_vm_ops = {
348 	.mremap		= aio_ring_mremap,
349 #if IS_ENABLED(CONFIG_MMU)
350 	.fault		= filemap_fault,
351 	.map_pages	= filemap_map_pages,
352 	.page_mkwrite	= filemap_page_mkwrite,
353 #endif
354 };
355 
356 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
357 {
358 	vma->vm_flags |= VM_DONTEXPAND;
359 	vma->vm_ops = &aio_ring_vm_ops;
360 	return 0;
361 }
362 
363 static const struct file_operations aio_ring_fops = {
364 	.mmap = aio_ring_mmap,
365 };
366 
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space *mapping, struct page *new,
369 			struct page *old, enum migrate_mode mode)
370 {
371 	struct kioctx *ctx;
372 	unsigned long flags;
373 	pgoff_t idx;
374 	int rc;
375 
376 	rc = 0;
377 
378 	/* mapping->private_lock here protects against the kioctx teardown.  */
379 	spin_lock(&mapping->private_lock);
380 	ctx = mapping->private_data;
381 	if (!ctx) {
382 		rc = -EINVAL;
383 		goto out;
384 	}
385 
386 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
387 	 * to the ring's head, and prevents page migration from mucking in
388 	 * a partially initialized kiotx.
389 	 */
390 	if (!mutex_trylock(&ctx->ring_lock)) {
391 		rc = -EAGAIN;
392 		goto out;
393 	}
394 
395 	idx = old->index;
396 	if (idx < (pgoff_t)ctx->nr_pages) {
397 		/* Make sure the old page hasn't already been changed */
398 		if (ctx->ring_pages[idx] != old)
399 			rc = -EAGAIN;
400 	} else
401 		rc = -EINVAL;
402 
403 	if (rc != 0)
404 		goto out_unlock;
405 
406 	/* Writeback must be complete */
407 	BUG_ON(PageWriteback(old));
408 	get_page(new);
409 
410 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
411 	if (rc != MIGRATEPAGE_SUCCESS) {
412 		put_page(new);
413 		goto out_unlock;
414 	}
415 
416 	/* Take completion_lock to prevent other writes to the ring buffer
417 	 * while the old page is copied to the new.  This prevents new
418 	 * events from being lost.
419 	 */
420 	spin_lock_irqsave(&ctx->completion_lock, flags);
421 	migrate_page_copy(new, old);
422 	BUG_ON(ctx->ring_pages[idx] != old);
423 	ctx->ring_pages[idx] = new;
424 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
425 
426 	/* The old page is no longer accessible. */
427 	put_page(old);
428 
429 out_unlock:
430 	mutex_unlock(&ctx->ring_lock);
431 out:
432 	spin_unlock(&mapping->private_lock);
433 	return rc;
434 }
435 #endif
436 
437 static const struct address_space_operations aio_ctx_aops = {
438 	.set_page_dirty = __set_page_dirty_no_writeback,
439 #if IS_ENABLED(CONFIG_MIGRATION)
440 	.migratepage	= aio_migratepage,
441 #endif
442 };
443 
444 static int aio_setup_ring(struct kioctx *ctx)
445 {
446 	struct aio_ring *ring;
447 	unsigned nr_events = ctx->max_reqs;
448 	struct mm_struct *mm = current->mm;
449 	unsigned long size, unused;
450 	int nr_pages;
451 	int i;
452 	struct file *file;
453 
454 	/* Compensate for the ring buffer's head/tail overlap entry */
455 	nr_events += 2;	/* 1 is required, 2 for good luck */
456 
457 	size = sizeof(struct aio_ring);
458 	size += sizeof(struct io_event) * nr_events;
459 
460 	nr_pages = PFN_UP(size);
461 	if (nr_pages < 0)
462 		return -EINVAL;
463 
464 	file = aio_private_file(ctx, nr_pages);
465 	if (IS_ERR(file)) {
466 		ctx->aio_ring_file = NULL;
467 		return -ENOMEM;
468 	}
469 
470 	ctx->aio_ring_file = file;
471 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
472 			/ sizeof(struct io_event);
473 
474 	ctx->ring_pages = ctx->internal_pages;
475 	if (nr_pages > AIO_RING_PAGES) {
476 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
477 					  GFP_KERNEL);
478 		if (!ctx->ring_pages) {
479 			put_aio_ring_file(ctx);
480 			return -ENOMEM;
481 		}
482 	}
483 
484 	for (i = 0; i < nr_pages; i++) {
485 		struct page *page;
486 		page = find_or_create_page(file->f_mapping,
487 					   i, GFP_HIGHUSER | __GFP_ZERO);
488 		if (!page)
489 			break;
490 		pr_debug("pid(%d) page[%d]->count=%d\n",
491 			 current->pid, i, page_count(page));
492 		SetPageUptodate(page);
493 		unlock_page(page);
494 
495 		ctx->ring_pages[i] = page;
496 	}
497 	ctx->nr_pages = i;
498 
499 	if (unlikely(i != nr_pages)) {
500 		aio_free_ring(ctx);
501 		return -ENOMEM;
502 	}
503 
504 	ctx->mmap_size = nr_pages * PAGE_SIZE;
505 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
506 
507 	if (down_write_killable(&mm->mmap_sem)) {
508 		ctx->mmap_size = 0;
509 		aio_free_ring(ctx);
510 		return -EINTR;
511 	}
512 
513 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
514 				       PROT_READ | PROT_WRITE,
515 				       MAP_SHARED, 0, &unused, NULL);
516 	up_write(&mm->mmap_sem);
517 	if (IS_ERR((void *)ctx->mmap_base)) {
518 		ctx->mmap_size = 0;
519 		aio_free_ring(ctx);
520 		return -ENOMEM;
521 	}
522 
523 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
524 
525 	ctx->user_id = ctx->mmap_base;
526 	ctx->nr_events = nr_events; /* trusted copy */
527 
528 	ring = kmap_atomic(ctx->ring_pages[0]);
529 	ring->nr = nr_events;	/* user copy */
530 	ring->id = ~0U;
531 	ring->head = ring->tail = 0;
532 	ring->magic = AIO_RING_MAGIC;
533 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
534 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
535 	ring->header_length = sizeof(struct aio_ring);
536 	kunmap_atomic(ring);
537 	flush_dcache_page(ctx->ring_pages[0]);
538 
539 	return 0;
540 }
541 
542 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
543 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
544 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
545 
546 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
547 {
548 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
549 	struct kioctx *ctx = req->ki_ctx;
550 	unsigned long flags;
551 
552 	spin_lock_irqsave(&ctx->ctx_lock, flags);
553 
554 	if (!req->ki_list.next)
555 		list_add(&req->ki_list, &ctx->active_reqs);
556 
557 	req->ki_cancel = cancel;
558 
559 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
560 }
561 EXPORT_SYMBOL(kiocb_set_cancel_fn);
562 
563 static int kiocb_cancel(struct aio_kiocb *kiocb)
564 {
565 	kiocb_cancel_fn *old, *cancel;
566 
567 	/*
568 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
569 	 * actually has a cancel function, hence the cmpxchg()
570 	 */
571 
572 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
573 	do {
574 		if (!cancel || cancel == KIOCB_CANCELLED)
575 			return -EINVAL;
576 
577 		old = cancel;
578 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
579 	} while (cancel != old);
580 
581 	return cancel(&kiocb->common);
582 }
583 
584 static void free_ioctx(struct work_struct *work)
585 {
586 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
587 
588 	pr_debug("freeing %p\n", ctx);
589 
590 	aio_free_ring(ctx);
591 	free_percpu(ctx->cpu);
592 	percpu_ref_exit(&ctx->reqs);
593 	percpu_ref_exit(&ctx->users);
594 	kmem_cache_free(kioctx_cachep, ctx);
595 }
596 
597 static void free_ioctx_reqs(struct percpu_ref *ref)
598 {
599 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600 
601 	/* At this point we know that there are no any in-flight requests */
602 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 		complete(&ctx->rq_wait->comp);
604 
605 	INIT_WORK(&ctx->free_work, free_ioctx);
606 	schedule_work(&ctx->free_work);
607 }
608 
609 /*
610  * When this function runs, the kioctx has been removed from the "hash table"
611  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
612  * now it's safe to cancel any that need to be.
613  */
614 static void free_ioctx_users(struct percpu_ref *ref)
615 {
616 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
617 	struct aio_kiocb *req;
618 
619 	spin_lock_irq(&ctx->ctx_lock);
620 
621 	while (!list_empty(&ctx->active_reqs)) {
622 		req = list_first_entry(&ctx->active_reqs,
623 				       struct aio_kiocb, ki_list);
624 
625 		list_del_init(&req->ki_list);
626 		kiocb_cancel(req);
627 	}
628 
629 	spin_unlock_irq(&ctx->ctx_lock);
630 
631 	percpu_ref_kill(&ctx->reqs);
632 	percpu_ref_put(&ctx->reqs);
633 }
634 
635 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636 {
637 	unsigned i, new_nr;
638 	struct kioctx_table *table, *old;
639 	struct aio_ring *ring;
640 
641 	spin_lock(&mm->ioctx_lock);
642 	table = rcu_dereference_raw(mm->ioctx_table);
643 
644 	while (1) {
645 		if (table)
646 			for (i = 0; i < table->nr; i++)
647 				if (!table->table[i]) {
648 					ctx->id = i;
649 					table->table[i] = ctx;
650 					spin_unlock(&mm->ioctx_lock);
651 
652 					/* While kioctx setup is in progress,
653 					 * we are protected from page migration
654 					 * changes ring_pages by ->ring_lock.
655 					 */
656 					ring = kmap_atomic(ctx->ring_pages[0]);
657 					ring->id = ctx->id;
658 					kunmap_atomic(ring);
659 					return 0;
660 				}
661 
662 		new_nr = (table ? table->nr : 1) * 4;
663 		spin_unlock(&mm->ioctx_lock);
664 
665 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 				new_nr, GFP_KERNEL);
667 		if (!table)
668 			return -ENOMEM;
669 
670 		table->nr = new_nr;
671 
672 		spin_lock(&mm->ioctx_lock);
673 		old = rcu_dereference_raw(mm->ioctx_table);
674 
675 		if (!old) {
676 			rcu_assign_pointer(mm->ioctx_table, table);
677 		} else if (table->nr > old->nr) {
678 			memcpy(table->table, old->table,
679 			       old->nr * sizeof(struct kioctx *));
680 
681 			rcu_assign_pointer(mm->ioctx_table, table);
682 			kfree_rcu(old, rcu);
683 		} else {
684 			kfree(table);
685 			table = old;
686 		}
687 	}
688 }
689 
690 static void aio_nr_sub(unsigned nr)
691 {
692 	spin_lock(&aio_nr_lock);
693 	if (WARN_ON(aio_nr - nr > aio_nr))
694 		aio_nr = 0;
695 	else
696 		aio_nr -= nr;
697 	spin_unlock(&aio_nr_lock);
698 }
699 
700 /* ioctx_alloc
701  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
702  */
703 static struct kioctx *ioctx_alloc(unsigned nr_events)
704 {
705 	struct mm_struct *mm = current->mm;
706 	struct kioctx *ctx;
707 	int err = -ENOMEM;
708 
709 	/*
710 	 * We keep track of the number of available ringbuffer slots, to prevent
711 	 * overflow (reqs_available), and we also use percpu counters for this.
712 	 *
713 	 * So since up to half the slots might be on other cpu's percpu counters
714 	 * and unavailable, double nr_events so userspace sees what they
715 	 * expected: additionally, we move req_batch slots to/from percpu
716 	 * counters at a time, so make sure that isn't 0:
717 	 */
718 	nr_events = max(nr_events, num_possible_cpus() * 4);
719 	nr_events *= 2;
720 
721 	/* Prevent overflows */
722 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
723 		pr_debug("ENOMEM: nr_events too high\n");
724 		return ERR_PTR(-EINVAL);
725 	}
726 
727 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
728 		return ERR_PTR(-EAGAIN);
729 
730 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
731 	if (!ctx)
732 		return ERR_PTR(-ENOMEM);
733 
734 	ctx->max_reqs = nr_events;
735 
736 	spin_lock_init(&ctx->ctx_lock);
737 	spin_lock_init(&ctx->completion_lock);
738 	mutex_init(&ctx->ring_lock);
739 	/* Protect against page migration throughout kiotx setup by keeping
740 	 * the ring_lock mutex held until setup is complete. */
741 	mutex_lock(&ctx->ring_lock);
742 	init_waitqueue_head(&ctx->wait);
743 
744 	INIT_LIST_HEAD(&ctx->active_reqs);
745 
746 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
747 		goto err;
748 
749 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
750 		goto err;
751 
752 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
753 	if (!ctx->cpu)
754 		goto err;
755 
756 	err = aio_setup_ring(ctx);
757 	if (err < 0)
758 		goto err;
759 
760 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
761 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
762 	if (ctx->req_batch < 1)
763 		ctx->req_batch = 1;
764 
765 	/* limit the number of system wide aios */
766 	spin_lock(&aio_nr_lock);
767 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
768 	    aio_nr + nr_events < aio_nr) {
769 		spin_unlock(&aio_nr_lock);
770 		err = -EAGAIN;
771 		goto err_ctx;
772 	}
773 	aio_nr += ctx->max_reqs;
774 	spin_unlock(&aio_nr_lock);
775 
776 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
777 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
778 
779 	err = ioctx_add_table(ctx, mm);
780 	if (err)
781 		goto err_cleanup;
782 
783 	/* Release the ring_lock mutex now that all setup is complete. */
784 	mutex_unlock(&ctx->ring_lock);
785 
786 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
787 		 ctx, ctx->user_id, mm, ctx->nr_events);
788 	return ctx;
789 
790 err_cleanup:
791 	aio_nr_sub(ctx->max_reqs);
792 err_ctx:
793 	atomic_set(&ctx->dead, 1);
794 	if (ctx->mmap_size)
795 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
796 	aio_free_ring(ctx);
797 err:
798 	mutex_unlock(&ctx->ring_lock);
799 	free_percpu(ctx->cpu);
800 	percpu_ref_exit(&ctx->reqs);
801 	percpu_ref_exit(&ctx->users);
802 	kmem_cache_free(kioctx_cachep, ctx);
803 	pr_debug("error allocating ioctx %d\n", err);
804 	return ERR_PTR(err);
805 }
806 
807 /* kill_ioctx
808  *	Cancels all outstanding aio requests on an aio context.  Used
809  *	when the processes owning a context have all exited to encourage
810  *	the rapid destruction of the kioctx.
811  */
812 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
813 		      struct ctx_rq_wait *wait)
814 {
815 	struct kioctx_table *table;
816 
817 	spin_lock(&mm->ioctx_lock);
818 	if (atomic_xchg(&ctx->dead, 1)) {
819 		spin_unlock(&mm->ioctx_lock);
820 		return -EINVAL;
821 	}
822 
823 	table = rcu_dereference_raw(mm->ioctx_table);
824 	WARN_ON(ctx != table->table[ctx->id]);
825 	table->table[ctx->id] = NULL;
826 	spin_unlock(&mm->ioctx_lock);
827 
828 	/* percpu_ref_kill() will do the necessary call_rcu() */
829 	wake_up_all(&ctx->wait);
830 
831 	/*
832 	 * It'd be more correct to do this in free_ioctx(), after all
833 	 * the outstanding kiocbs have finished - but by then io_destroy
834 	 * has already returned, so io_setup() could potentially return
835 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
836 	 *  could tell).
837 	 */
838 	aio_nr_sub(ctx->max_reqs);
839 
840 	if (ctx->mmap_size)
841 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
842 
843 	ctx->rq_wait = wait;
844 	percpu_ref_kill(&ctx->users);
845 	return 0;
846 }
847 
848 /*
849  * exit_aio: called when the last user of mm goes away.  At this point, there is
850  * no way for any new requests to be submited or any of the io_* syscalls to be
851  * called on the context.
852  *
853  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
854  * them.
855  */
856 void exit_aio(struct mm_struct *mm)
857 {
858 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
859 	struct ctx_rq_wait wait;
860 	int i, skipped;
861 
862 	if (!table)
863 		return;
864 
865 	atomic_set(&wait.count, table->nr);
866 	init_completion(&wait.comp);
867 
868 	skipped = 0;
869 	for (i = 0; i < table->nr; ++i) {
870 		struct kioctx *ctx = table->table[i];
871 
872 		if (!ctx) {
873 			skipped++;
874 			continue;
875 		}
876 
877 		/*
878 		 * We don't need to bother with munmap() here - exit_mmap(mm)
879 		 * is coming and it'll unmap everything. And we simply can't,
880 		 * this is not necessarily our ->mm.
881 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
882 		 * that it needs to unmap the area, just set it to 0.
883 		 */
884 		ctx->mmap_size = 0;
885 		kill_ioctx(mm, ctx, &wait);
886 	}
887 
888 	if (!atomic_sub_and_test(skipped, &wait.count)) {
889 		/* Wait until all IO for the context are done. */
890 		wait_for_completion(&wait.comp);
891 	}
892 
893 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
894 	kfree(table);
895 }
896 
897 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
898 {
899 	struct kioctx_cpu *kcpu;
900 	unsigned long flags;
901 
902 	local_irq_save(flags);
903 	kcpu = this_cpu_ptr(ctx->cpu);
904 	kcpu->reqs_available += nr;
905 
906 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
907 		kcpu->reqs_available -= ctx->req_batch;
908 		atomic_add(ctx->req_batch, &ctx->reqs_available);
909 	}
910 
911 	local_irq_restore(flags);
912 }
913 
914 static bool get_reqs_available(struct kioctx *ctx)
915 {
916 	struct kioctx_cpu *kcpu;
917 	bool ret = false;
918 	unsigned long flags;
919 
920 	local_irq_save(flags);
921 	kcpu = this_cpu_ptr(ctx->cpu);
922 	if (!kcpu->reqs_available) {
923 		int old, avail = atomic_read(&ctx->reqs_available);
924 
925 		do {
926 			if (avail < ctx->req_batch)
927 				goto out;
928 
929 			old = avail;
930 			avail = atomic_cmpxchg(&ctx->reqs_available,
931 					       avail, avail - ctx->req_batch);
932 		} while (avail != old);
933 
934 		kcpu->reqs_available += ctx->req_batch;
935 	}
936 
937 	ret = true;
938 	kcpu->reqs_available--;
939 out:
940 	local_irq_restore(flags);
941 	return ret;
942 }
943 
944 /* refill_reqs_available
945  *	Updates the reqs_available reference counts used for tracking the
946  *	number of free slots in the completion ring.  This can be called
947  *	from aio_complete() (to optimistically update reqs_available) or
948  *	from aio_get_req() (the we're out of events case).  It must be
949  *	called holding ctx->completion_lock.
950  */
951 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
952                                   unsigned tail)
953 {
954 	unsigned events_in_ring, completed;
955 
956 	/* Clamp head since userland can write to it. */
957 	head %= ctx->nr_events;
958 	if (head <= tail)
959 		events_in_ring = tail - head;
960 	else
961 		events_in_ring = ctx->nr_events - (head - tail);
962 
963 	completed = ctx->completed_events;
964 	if (events_in_ring < completed)
965 		completed -= events_in_ring;
966 	else
967 		completed = 0;
968 
969 	if (!completed)
970 		return;
971 
972 	ctx->completed_events -= completed;
973 	put_reqs_available(ctx, completed);
974 }
975 
976 /* user_refill_reqs_available
977  *	Called to refill reqs_available when aio_get_req() encounters an
978  *	out of space in the completion ring.
979  */
980 static void user_refill_reqs_available(struct kioctx *ctx)
981 {
982 	spin_lock_irq(&ctx->completion_lock);
983 	if (ctx->completed_events) {
984 		struct aio_ring *ring;
985 		unsigned head;
986 
987 		/* Access of ring->head may race with aio_read_events_ring()
988 		 * here, but that's okay since whether we read the old version
989 		 * or the new version, and either will be valid.  The important
990 		 * part is that head cannot pass tail since we prevent
991 		 * aio_complete() from updating tail by holding
992 		 * ctx->completion_lock.  Even if head is invalid, the check
993 		 * against ctx->completed_events below will make sure we do the
994 		 * safe/right thing.
995 		 */
996 		ring = kmap_atomic(ctx->ring_pages[0]);
997 		head = ring->head;
998 		kunmap_atomic(ring);
999 
1000 		refill_reqs_available(ctx, head, ctx->tail);
1001 	}
1002 
1003 	spin_unlock_irq(&ctx->completion_lock);
1004 }
1005 
1006 /* aio_get_req
1007  *	Allocate a slot for an aio request.
1008  * Returns NULL if no requests are free.
1009  */
1010 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1011 {
1012 	struct aio_kiocb *req;
1013 
1014 	if (!get_reqs_available(ctx)) {
1015 		user_refill_reqs_available(ctx);
1016 		if (!get_reqs_available(ctx))
1017 			return NULL;
1018 	}
1019 
1020 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1021 	if (unlikely(!req))
1022 		goto out_put;
1023 
1024 	percpu_ref_get(&ctx->reqs);
1025 
1026 	req->ki_ctx = ctx;
1027 	return req;
1028 out_put:
1029 	put_reqs_available(ctx, 1);
1030 	return NULL;
1031 }
1032 
1033 static void kiocb_free(struct aio_kiocb *req)
1034 {
1035 	if (req->common.ki_filp)
1036 		fput(req->common.ki_filp);
1037 	if (req->ki_eventfd != NULL)
1038 		eventfd_ctx_put(req->ki_eventfd);
1039 	kmem_cache_free(kiocb_cachep, req);
1040 }
1041 
1042 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1043 {
1044 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1045 	struct mm_struct *mm = current->mm;
1046 	struct kioctx *ctx, *ret = NULL;
1047 	struct kioctx_table *table;
1048 	unsigned id;
1049 
1050 	if (get_user(id, &ring->id))
1051 		return NULL;
1052 
1053 	rcu_read_lock();
1054 	table = rcu_dereference(mm->ioctx_table);
1055 
1056 	if (!table || id >= table->nr)
1057 		goto out;
1058 
1059 	ctx = table->table[id];
1060 	if (ctx && ctx->user_id == ctx_id) {
1061 		percpu_ref_get(&ctx->users);
1062 		ret = ctx;
1063 	}
1064 out:
1065 	rcu_read_unlock();
1066 	return ret;
1067 }
1068 
1069 /* aio_complete
1070  *	Called when the io request on the given iocb is complete.
1071  */
1072 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1073 {
1074 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1075 	struct kioctx	*ctx = iocb->ki_ctx;
1076 	struct aio_ring	*ring;
1077 	struct io_event	*ev_page, *event;
1078 	unsigned tail, pos, head;
1079 	unsigned long	flags;
1080 
1081 	if (kiocb->ki_flags & IOCB_WRITE) {
1082 		struct file *file = kiocb->ki_filp;
1083 
1084 		/*
1085 		 * Tell lockdep we inherited freeze protection from submission
1086 		 * thread.
1087 		 */
1088 		if (S_ISREG(file_inode(file)->i_mode))
1089 			__sb_writers_acquired(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1090 		file_end_write(file);
1091 	}
1092 
1093 	/*
1094 	 * Special case handling for sync iocbs:
1095 	 *  - events go directly into the iocb for fast handling
1096 	 *  - the sync task with the iocb in its stack holds the single iocb
1097 	 *    ref, no other paths have a way to get another ref
1098 	 *  - the sync task helpfully left a reference to itself in the iocb
1099 	 */
1100 	BUG_ON(is_sync_kiocb(kiocb));
1101 
1102 	if (iocb->ki_list.next) {
1103 		unsigned long flags;
1104 
1105 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1106 		list_del(&iocb->ki_list);
1107 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1108 	}
1109 
1110 	/*
1111 	 * Add a completion event to the ring buffer. Must be done holding
1112 	 * ctx->completion_lock to prevent other code from messing with the tail
1113 	 * pointer since we might be called from irq context.
1114 	 */
1115 	spin_lock_irqsave(&ctx->completion_lock, flags);
1116 
1117 	tail = ctx->tail;
1118 	pos = tail + AIO_EVENTS_OFFSET;
1119 
1120 	if (++tail >= ctx->nr_events)
1121 		tail = 0;
1122 
1123 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1124 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1125 
1126 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1127 	event->data = iocb->ki_user_data;
1128 	event->res = res;
1129 	event->res2 = res2;
1130 
1131 	kunmap_atomic(ev_page);
1132 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1133 
1134 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1135 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1136 		 res, res2);
1137 
1138 	/* after flagging the request as done, we
1139 	 * must never even look at it again
1140 	 */
1141 	smp_wmb();	/* make event visible before updating tail */
1142 
1143 	ctx->tail = tail;
1144 
1145 	ring = kmap_atomic(ctx->ring_pages[0]);
1146 	head = ring->head;
1147 	ring->tail = tail;
1148 	kunmap_atomic(ring);
1149 	flush_dcache_page(ctx->ring_pages[0]);
1150 
1151 	ctx->completed_events++;
1152 	if (ctx->completed_events > 1)
1153 		refill_reqs_available(ctx, head, tail);
1154 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1155 
1156 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1157 
1158 	/*
1159 	 * Check if the user asked us to deliver the result through an
1160 	 * eventfd. The eventfd_signal() function is safe to be called
1161 	 * from IRQ context.
1162 	 */
1163 	if (iocb->ki_eventfd != NULL)
1164 		eventfd_signal(iocb->ki_eventfd, 1);
1165 
1166 	/* everything turned out well, dispose of the aiocb. */
1167 	kiocb_free(iocb);
1168 
1169 	/*
1170 	 * We have to order our ring_info tail store above and test
1171 	 * of the wait list below outside the wait lock.  This is
1172 	 * like in wake_up_bit() where clearing a bit has to be
1173 	 * ordered with the unlocked test.
1174 	 */
1175 	smp_mb();
1176 
1177 	if (waitqueue_active(&ctx->wait))
1178 		wake_up(&ctx->wait);
1179 
1180 	percpu_ref_put(&ctx->reqs);
1181 }
1182 
1183 /* aio_read_events_ring
1184  *	Pull an event off of the ioctx's event ring.  Returns the number of
1185  *	events fetched
1186  */
1187 static long aio_read_events_ring(struct kioctx *ctx,
1188 				 struct io_event __user *event, long nr)
1189 {
1190 	struct aio_ring *ring;
1191 	unsigned head, tail, pos;
1192 	long ret = 0;
1193 	int copy_ret;
1194 
1195 	/*
1196 	 * The mutex can block and wake us up and that will cause
1197 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1198 	 * and repeat. This should be rare enough that it doesn't cause
1199 	 * peformance issues. See the comment in read_events() for more detail.
1200 	 */
1201 	sched_annotate_sleep();
1202 	mutex_lock(&ctx->ring_lock);
1203 
1204 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1205 	ring = kmap_atomic(ctx->ring_pages[0]);
1206 	head = ring->head;
1207 	tail = ring->tail;
1208 	kunmap_atomic(ring);
1209 
1210 	/*
1211 	 * Ensure that once we've read the current tail pointer, that
1212 	 * we also see the events that were stored up to the tail.
1213 	 */
1214 	smp_rmb();
1215 
1216 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1217 
1218 	if (head == tail)
1219 		goto out;
1220 
1221 	head %= ctx->nr_events;
1222 	tail %= ctx->nr_events;
1223 
1224 	while (ret < nr) {
1225 		long avail;
1226 		struct io_event *ev;
1227 		struct page *page;
1228 
1229 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1230 		if (head == tail)
1231 			break;
1232 
1233 		avail = min(avail, nr - ret);
1234 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1235 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1236 
1237 		pos = head + AIO_EVENTS_OFFSET;
1238 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1239 		pos %= AIO_EVENTS_PER_PAGE;
1240 
1241 		ev = kmap(page);
1242 		copy_ret = copy_to_user(event + ret, ev + pos,
1243 					sizeof(*ev) * avail);
1244 		kunmap(page);
1245 
1246 		if (unlikely(copy_ret)) {
1247 			ret = -EFAULT;
1248 			goto out;
1249 		}
1250 
1251 		ret += avail;
1252 		head += avail;
1253 		head %= ctx->nr_events;
1254 	}
1255 
1256 	ring = kmap_atomic(ctx->ring_pages[0]);
1257 	ring->head = head;
1258 	kunmap_atomic(ring);
1259 	flush_dcache_page(ctx->ring_pages[0]);
1260 
1261 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1262 out:
1263 	mutex_unlock(&ctx->ring_lock);
1264 
1265 	return ret;
1266 }
1267 
1268 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1269 			    struct io_event __user *event, long *i)
1270 {
1271 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1272 
1273 	if (ret > 0)
1274 		*i += ret;
1275 
1276 	if (unlikely(atomic_read(&ctx->dead)))
1277 		ret = -EINVAL;
1278 
1279 	if (!*i)
1280 		*i = ret;
1281 
1282 	return ret < 0 || *i >= min_nr;
1283 }
1284 
1285 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1286 			struct io_event __user *event,
1287 			struct timespec __user *timeout)
1288 {
1289 	ktime_t until = KTIME_MAX;
1290 	long ret = 0;
1291 
1292 	if (timeout) {
1293 		struct timespec	ts;
1294 
1295 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1296 			return -EFAULT;
1297 
1298 		until = timespec_to_ktime(ts);
1299 	}
1300 
1301 	/*
1302 	 * Note that aio_read_events() is being called as the conditional - i.e.
1303 	 * we're calling it after prepare_to_wait() has set task state to
1304 	 * TASK_INTERRUPTIBLE.
1305 	 *
1306 	 * But aio_read_events() can block, and if it blocks it's going to flip
1307 	 * the task state back to TASK_RUNNING.
1308 	 *
1309 	 * This should be ok, provided it doesn't flip the state back to
1310 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1311 	 * will only happen if the mutex_lock() call blocks, and we then find
1312 	 * the ringbuffer empty. So in practice we should be ok, but it's
1313 	 * something to be aware of when touching this code.
1314 	 */
1315 	if (until == 0)
1316 		aio_read_events(ctx, min_nr, nr, event, &ret);
1317 	else
1318 		wait_event_interruptible_hrtimeout(ctx->wait,
1319 				aio_read_events(ctx, min_nr, nr, event, &ret),
1320 				until);
1321 
1322 	if (!ret && signal_pending(current))
1323 		ret = -EINTR;
1324 
1325 	return ret;
1326 }
1327 
1328 /* sys_io_setup:
1329  *	Create an aio_context capable of receiving at least nr_events.
1330  *	ctxp must not point to an aio_context that already exists, and
1331  *	must be initialized to 0 prior to the call.  On successful
1332  *	creation of the aio_context, *ctxp is filled in with the resulting
1333  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1334  *	if the specified nr_events exceeds internal limits.  May fail
1335  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1336  *	of available events.  May fail with -ENOMEM if insufficient kernel
1337  *	resources are available.  May fail with -EFAULT if an invalid
1338  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1339  *	implemented.
1340  */
1341 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1342 {
1343 	struct kioctx *ioctx = NULL;
1344 	unsigned long ctx;
1345 	long ret;
1346 
1347 	ret = get_user(ctx, ctxp);
1348 	if (unlikely(ret))
1349 		goto out;
1350 
1351 	ret = -EINVAL;
1352 	if (unlikely(ctx || nr_events == 0)) {
1353 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1354 		         ctx, nr_events);
1355 		goto out;
1356 	}
1357 
1358 	ioctx = ioctx_alloc(nr_events);
1359 	ret = PTR_ERR(ioctx);
1360 	if (!IS_ERR(ioctx)) {
1361 		ret = put_user(ioctx->user_id, ctxp);
1362 		if (ret)
1363 			kill_ioctx(current->mm, ioctx, NULL);
1364 		percpu_ref_put(&ioctx->users);
1365 	}
1366 
1367 out:
1368 	return ret;
1369 }
1370 
1371 #ifdef CONFIG_COMPAT
1372 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1373 {
1374 	struct kioctx *ioctx = NULL;
1375 	unsigned long ctx;
1376 	long ret;
1377 
1378 	ret = get_user(ctx, ctx32p);
1379 	if (unlikely(ret))
1380 		goto out;
1381 
1382 	ret = -EINVAL;
1383 	if (unlikely(ctx || nr_events == 0)) {
1384 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1385 		         ctx, nr_events);
1386 		goto out;
1387 	}
1388 
1389 	ioctx = ioctx_alloc(nr_events);
1390 	ret = PTR_ERR(ioctx);
1391 	if (!IS_ERR(ioctx)) {
1392 		/* truncating is ok because it's a user address */
1393 		ret = put_user((u32)ioctx->user_id, ctx32p);
1394 		if (ret)
1395 			kill_ioctx(current->mm, ioctx, NULL);
1396 		percpu_ref_put(&ioctx->users);
1397 	}
1398 
1399 out:
1400 	return ret;
1401 }
1402 #endif
1403 
1404 /* sys_io_destroy:
1405  *	Destroy the aio_context specified.  May cancel any outstanding
1406  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1407  *	implemented.  May fail with -EINVAL if the context pointed to
1408  *	is invalid.
1409  */
1410 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1411 {
1412 	struct kioctx *ioctx = lookup_ioctx(ctx);
1413 	if (likely(NULL != ioctx)) {
1414 		struct ctx_rq_wait wait;
1415 		int ret;
1416 
1417 		init_completion(&wait.comp);
1418 		atomic_set(&wait.count, 1);
1419 
1420 		/* Pass requests_done to kill_ioctx() where it can be set
1421 		 * in a thread-safe way. If we try to set it here then we have
1422 		 * a race condition if two io_destroy() called simultaneously.
1423 		 */
1424 		ret = kill_ioctx(current->mm, ioctx, &wait);
1425 		percpu_ref_put(&ioctx->users);
1426 
1427 		/* Wait until all IO for the context are done. Otherwise kernel
1428 		 * keep using user-space buffers even if user thinks the context
1429 		 * is destroyed.
1430 		 */
1431 		if (!ret)
1432 			wait_for_completion(&wait.comp);
1433 
1434 		return ret;
1435 	}
1436 	pr_debug("EINVAL: invalid context id\n");
1437 	return -EINVAL;
1438 }
1439 
1440 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1441 		bool vectored, bool compat, struct iov_iter *iter)
1442 {
1443 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1444 	size_t len = iocb->aio_nbytes;
1445 
1446 	if (!vectored) {
1447 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1448 		*iovec = NULL;
1449 		return ret;
1450 	}
1451 #ifdef CONFIG_COMPAT
1452 	if (compat)
1453 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1454 				iter);
1455 #endif
1456 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1457 }
1458 
1459 static inline ssize_t aio_ret(struct kiocb *req, ssize_t ret)
1460 {
1461 	switch (ret) {
1462 	case -EIOCBQUEUED:
1463 		return ret;
1464 	case -ERESTARTSYS:
1465 	case -ERESTARTNOINTR:
1466 	case -ERESTARTNOHAND:
1467 	case -ERESTART_RESTARTBLOCK:
1468 		/*
1469 		 * There's no easy way to restart the syscall since other AIO's
1470 		 * may be already running. Just fail this IO with EINTR.
1471 		 */
1472 		ret = -EINTR;
1473 		/*FALLTHRU*/
1474 	default:
1475 		aio_complete(req, ret, 0);
1476 		return 0;
1477 	}
1478 }
1479 
1480 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1481 		bool compat)
1482 {
1483 	struct file *file = req->ki_filp;
1484 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1485 	struct iov_iter iter;
1486 	ssize_t ret;
1487 
1488 	if (unlikely(!(file->f_mode & FMODE_READ)))
1489 		return -EBADF;
1490 	if (unlikely(!file->f_op->read_iter))
1491 		return -EINVAL;
1492 
1493 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1494 	if (ret)
1495 		return ret;
1496 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1497 	if (!ret)
1498 		ret = aio_ret(req, call_read_iter(file, req, &iter));
1499 	kfree(iovec);
1500 	return ret;
1501 }
1502 
1503 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1504 		bool compat)
1505 {
1506 	struct file *file = req->ki_filp;
1507 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1508 	struct iov_iter iter;
1509 	ssize_t ret;
1510 
1511 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1512 		return -EBADF;
1513 	if (unlikely(!file->f_op->write_iter))
1514 		return -EINVAL;
1515 
1516 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1517 	if (ret)
1518 		return ret;
1519 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1520 	if (!ret) {
1521 		req->ki_flags |= IOCB_WRITE;
1522 		file_start_write(file);
1523 		ret = aio_ret(req, call_write_iter(file, req, &iter));
1524 		/*
1525 		 * We release freeze protection in aio_complete().  Fool lockdep
1526 		 * by telling it the lock got released so that it doesn't
1527 		 * complain about held lock when we return to userspace.
1528 		 */
1529 		if (S_ISREG(file_inode(file)->i_mode))
1530 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1531 	}
1532 	kfree(iovec);
1533 	return ret;
1534 }
1535 
1536 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1537 			 struct iocb *iocb, bool compat)
1538 {
1539 	struct aio_kiocb *req;
1540 	struct file *file;
1541 	ssize_t ret;
1542 
1543 	/* enforce forwards compatibility on users */
1544 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1545 		pr_debug("EINVAL: reserve field set\n");
1546 		return -EINVAL;
1547 	}
1548 
1549 	/* prevent overflows */
1550 	if (unlikely(
1551 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1552 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1553 	    ((ssize_t)iocb->aio_nbytes < 0)
1554 	   )) {
1555 		pr_debug("EINVAL: overflow check\n");
1556 		return -EINVAL;
1557 	}
1558 
1559 	req = aio_get_req(ctx);
1560 	if (unlikely(!req))
1561 		return -EAGAIN;
1562 
1563 	req->common.ki_filp = file = fget(iocb->aio_fildes);
1564 	if (unlikely(!req->common.ki_filp)) {
1565 		ret = -EBADF;
1566 		goto out_put_req;
1567 	}
1568 	req->common.ki_pos = iocb->aio_offset;
1569 	req->common.ki_complete = aio_complete;
1570 	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1571 
1572 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1573 		/*
1574 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1575 		 * instance of the file* now. The file descriptor must be
1576 		 * an eventfd() fd, and will be signaled for each completed
1577 		 * event using the eventfd_signal() function.
1578 		 */
1579 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1580 		if (IS_ERR(req->ki_eventfd)) {
1581 			ret = PTR_ERR(req->ki_eventfd);
1582 			req->ki_eventfd = NULL;
1583 			goto out_put_req;
1584 		}
1585 
1586 		req->common.ki_flags |= IOCB_EVENTFD;
1587 	}
1588 
1589 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1590 	if (unlikely(ret)) {
1591 		pr_debug("EFAULT: aio_key\n");
1592 		goto out_put_req;
1593 	}
1594 
1595 	req->ki_user_iocb = user_iocb;
1596 	req->ki_user_data = iocb->aio_data;
1597 
1598 	get_file(file);
1599 	switch (iocb->aio_lio_opcode) {
1600 	case IOCB_CMD_PREAD:
1601 		ret = aio_read(&req->common, iocb, false, compat);
1602 		break;
1603 	case IOCB_CMD_PWRITE:
1604 		ret = aio_write(&req->common, iocb, false, compat);
1605 		break;
1606 	case IOCB_CMD_PREADV:
1607 		ret = aio_read(&req->common, iocb, true, compat);
1608 		break;
1609 	case IOCB_CMD_PWRITEV:
1610 		ret = aio_write(&req->common, iocb, true, compat);
1611 		break;
1612 	default:
1613 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1614 		ret = -EINVAL;
1615 		break;
1616 	}
1617 	fput(file);
1618 
1619 	if (ret && ret != -EIOCBQUEUED)
1620 		goto out_put_req;
1621 	return 0;
1622 out_put_req:
1623 	put_reqs_available(ctx, 1);
1624 	percpu_ref_put(&ctx->reqs);
1625 	kiocb_free(req);
1626 	return ret;
1627 }
1628 
1629 static long do_io_submit(aio_context_t ctx_id, long nr,
1630 			  struct iocb __user *__user *iocbpp, bool compat)
1631 {
1632 	struct kioctx *ctx;
1633 	long ret = 0;
1634 	int i = 0;
1635 	struct blk_plug plug;
1636 
1637 	if (unlikely(nr < 0))
1638 		return -EINVAL;
1639 
1640 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1641 		nr = LONG_MAX/sizeof(*iocbpp);
1642 
1643 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1644 		return -EFAULT;
1645 
1646 	ctx = lookup_ioctx(ctx_id);
1647 	if (unlikely(!ctx)) {
1648 		pr_debug("EINVAL: invalid context id\n");
1649 		return -EINVAL;
1650 	}
1651 
1652 	blk_start_plug(&plug);
1653 
1654 	/*
1655 	 * AKPM: should this return a partial result if some of the IOs were
1656 	 * successfully submitted?
1657 	 */
1658 	for (i=0; i<nr; i++) {
1659 		struct iocb __user *user_iocb;
1660 		struct iocb tmp;
1661 
1662 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1663 			ret = -EFAULT;
1664 			break;
1665 		}
1666 
1667 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1668 			ret = -EFAULT;
1669 			break;
1670 		}
1671 
1672 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1673 		if (ret)
1674 			break;
1675 	}
1676 	blk_finish_plug(&plug);
1677 
1678 	percpu_ref_put(&ctx->users);
1679 	return i ? i : ret;
1680 }
1681 
1682 /* sys_io_submit:
1683  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1684  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1685  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1686  *	*iocbpp[0] is not properly initialized, if the operation specified
1687  *	is invalid for the file descriptor in the iocb.  May fail with
1688  *	-EFAULT if any of the data structures point to invalid data.  May
1689  *	fail with -EBADF if the file descriptor specified in the first
1690  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1691  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1692  *	fail with -ENOSYS if not implemented.
1693  */
1694 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1695 		struct iocb __user * __user *, iocbpp)
1696 {
1697 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1698 }
1699 
1700 #ifdef CONFIG_COMPAT
1701 static inline long
1702 copy_iocb(long nr, u32 __user *ptr32, struct iocb __user * __user *ptr64)
1703 {
1704 	compat_uptr_t uptr;
1705 	int i;
1706 
1707 	for (i = 0; i < nr; ++i) {
1708 		if (get_user(uptr, ptr32 + i))
1709 			return -EFAULT;
1710 		if (put_user(compat_ptr(uptr), ptr64 + i))
1711 			return -EFAULT;
1712 	}
1713 	return 0;
1714 }
1715 
1716 #define MAX_AIO_SUBMITS 	(PAGE_SIZE/sizeof(struct iocb *))
1717 
1718 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1719 		       int, nr, u32 __user *, iocb)
1720 {
1721 	struct iocb __user * __user *iocb64;
1722 	long ret;
1723 
1724 	if (unlikely(nr < 0))
1725 		return -EINVAL;
1726 
1727 	if (nr > MAX_AIO_SUBMITS)
1728 		nr = MAX_AIO_SUBMITS;
1729 
1730 	iocb64 = compat_alloc_user_space(nr * sizeof(*iocb64));
1731 	ret = copy_iocb(nr, iocb, iocb64);
1732 	if (!ret)
1733 		ret = do_io_submit(ctx_id, nr, iocb64, 1);
1734 	return ret;
1735 }
1736 #endif
1737 
1738 /* lookup_kiocb
1739  *	Finds a given iocb for cancellation.
1740  */
1741 static struct aio_kiocb *
1742 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1743 {
1744 	struct aio_kiocb *kiocb;
1745 
1746 	assert_spin_locked(&ctx->ctx_lock);
1747 
1748 	if (key != KIOCB_KEY)
1749 		return NULL;
1750 
1751 	/* TODO: use a hash or array, this sucks. */
1752 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1753 		if (kiocb->ki_user_iocb == iocb)
1754 			return kiocb;
1755 	}
1756 	return NULL;
1757 }
1758 
1759 /* sys_io_cancel:
1760  *	Attempts to cancel an iocb previously passed to io_submit.  If
1761  *	the operation is successfully cancelled, the resulting event is
1762  *	copied into the memory pointed to by result without being placed
1763  *	into the completion queue and 0 is returned.  May fail with
1764  *	-EFAULT if any of the data structures pointed to are invalid.
1765  *	May fail with -EINVAL if aio_context specified by ctx_id is
1766  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1767  *	cancelled.  Will fail with -ENOSYS if not implemented.
1768  */
1769 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1770 		struct io_event __user *, result)
1771 {
1772 	struct kioctx *ctx;
1773 	struct aio_kiocb *kiocb;
1774 	u32 key;
1775 	int ret;
1776 
1777 	ret = get_user(key, &iocb->aio_key);
1778 	if (unlikely(ret))
1779 		return -EFAULT;
1780 
1781 	ctx = lookup_ioctx(ctx_id);
1782 	if (unlikely(!ctx))
1783 		return -EINVAL;
1784 
1785 	spin_lock_irq(&ctx->ctx_lock);
1786 
1787 	kiocb = lookup_kiocb(ctx, iocb, key);
1788 	if (kiocb)
1789 		ret = kiocb_cancel(kiocb);
1790 	else
1791 		ret = -EINVAL;
1792 
1793 	spin_unlock_irq(&ctx->ctx_lock);
1794 
1795 	if (!ret) {
1796 		/*
1797 		 * The result argument is no longer used - the io_event is
1798 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1799 		 * cancellation is progress:
1800 		 */
1801 		ret = -EINPROGRESS;
1802 	}
1803 
1804 	percpu_ref_put(&ctx->users);
1805 
1806 	return ret;
1807 }
1808 
1809 /* io_getevents:
1810  *	Attempts to read at least min_nr events and up to nr events from
1811  *	the completion queue for the aio_context specified by ctx_id. If
1812  *	it succeeds, the number of read events is returned. May fail with
1813  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1814  *	out of range, if timeout is out of range.  May fail with -EFAULT
1815  *	if any of the memory specified is invalid.  May return 0 or
1816  *	< min_nr if the timeout specified by timeout has elapsed
1817  *	before sufficient events are available, where timeout == NULL
1818  *	specifies an infinite timeout. Note that the timeout pointed to by
1819  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1820  */
1821 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1822 		long, min_nr,
1823 		long, nr,
1824 		struct io_event __user *, events,
1825 		struct timespec __user *, timeout)
1826 {
1827 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1828 	long ret = -EINVAL;
1829 
1830 	if (likely(ioctx)) {
1831 		if (likely(min_nr <= nr && min_nr >= 0))
1832 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1833 		percpu_ref_put(&ioctx->users);
1834 	}
1835 	return ret;
1836 }
1837 
1838 #ifdef CONFIG_COMPAT
1839 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
1840 		       compat_long_t, min_nr,
1841 		       compat_long_t, nr,
1842 		       struct io_event __user *, events,
1843 		       struct compat_timespec __user *, timeout)
1844 {
1845 	struct timespec t;
1846 	struct timespec __user *ut = NULL;
1847 
1848 	if (timeout) {
1849 		if (compat_get_timespec(&t, timeout))
1850 			return -EFAULT;
1851 
1852 		ut = compat_alloc_user_space(sizeof(*ut));
1853 		if (copy_to_user(ut, &t, sizeof(t)))
1854 			return -EFAULT;
1855 	}
1856 	return sys_io_getevents(ctx_id, min_nr, nr, events, ut);
1857 }
1858 #endif
1859