xref: /linux/fs/aio.c (revision 9d796e66230205cd3366f5660387bd9ecca9d336)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct kioctx {
81 	struct percpu_ref	users;
82 	atomic_t		dead;
83 
84 	struct percpu_ref	reqs;
85 
86 	unsigned long		user_id;
87 
88 	struct __percpu kioctx_cpu *cpu;
89 
90 	/*
91 	 * For percpu reqs_available, number of slots we move to/from global
92 	 * counter at a time:
93 	 */
94 	unsigned		req_batch;
95 	/*
96 	 * This is what userspace passed to io_setup(), it's not used for
97 	 * anything but counting against the global max_reqs quota.
98 	 *
99 	 * The real limit is nr_events - 1, which will be larger (see
100 	 * aio_setup_ring())
101 	 */
102 	unsigned		max_reqs;
103 
104 	/* Size of ringbuffer, in units of struct io_event */
105 	unsigned		nr_events;
106 
107 	unsigned long		mmap_base;
108 	unsigned long		mmap_size;
109 
110 	struct page		**ring_pages;
111 	long			nr_pages;
112 
113 	struct work_struct	free_work;
114 
115 	/*
116 	 * signals when all in-flight requests are done
117 	 */
118 	struct completion *requests_done;
119 
120 	struct {
121 		/*
122 		 * This counts the number of available slots in the ringbuffer,
123 		 * so we avoid overflowing it: it's decremented (if positive)
124 		 * when allocating a kiocb and incremented when the resulting
125 		 * io_event is pulled off the ringbuffer.
126 		 *
127 		 * We batch accesses to it with a percpu version.
128 		 */
129 		atomic_t	reqs_available;
130 	} ____cacheline_aligned_in_smp;
131 
132 	struct {
133 		spinlock_t	ctx_lock;
134 		struct list_head active_reqs;	/* used for cancellation */
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		struct mutex	ring_lock;
139 		wait_queue_head_t wait;
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		unsigned	tail;
144 		unsigned	completed_events;
145 		spinlock_t	completion_lock;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct page		*internal_pages[AIO_RING_PAGES];
149 	struct file		*aio_ring_file;
150 
151 	unsigned		id;
152 };
153 
154 /*
155  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
156  * cancelled or completed (this makes a certain amount of sense because
157  * successful cancellation - io_cancel() - does deliver the completion to
158  * userspace).
159  *
160  * And since most things don't implement kiocb cancellation and we'd really like
161  * kiocb completion to be lockless when possible, we use ki_cancel to
162  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
163  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
164  */
165 #define KIOCB_CANCELLED		((void *) (~0ULL))
166 
167 struct aio_kiocb {
168 	struct kiocb		common;
169 
170 	struct kioctx		*ki_ctx;
171 	kiocb_cancel_fn		*ki_cancel;
172 
173 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
174 	__u64			ki_user_data;	/* user's data for completion */
175 
176 	struct list_head	ki_list;	/* the aio core uses this
177 						 * for cancellation */
178 
179 	/*
180 	 * If the aio_resfd field of the userspace iocb is not zero,
181 	 * this is the underlying eventfd context to deliver events to.
182 	 */
183 	struct eventfd_ctx	*ki_eventfd;
184 };
185 
186 /*------ sysctl variables----*/
187 static DEFINE_SPINLOCK(aio_nr_lock);
188 unsigned long aio_nr;		/* current system wide number of aio requests */
189 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
190 /*----end sysctl variables---*/
191 
192 static struct kmem_cache	*kiocb_cachep;
193 static struct kmem_cache	*kioctx_cachep;
194 
195 static struct vfsmount *aio_mnt;
196 
197 static const struct file_operations aio_ring_fops;
198 static const struct address_space_operations aio_ctx_aops;
199 
200 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
201 {
202 	struct qstr this = QSTR_INIT("[aio]", 5);
203 	struct file *file;
204 	struct path path;
205 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
206 	if (IS_ERR(inode))
207 		return ERR_CAST(inode);
208 
209 	inode->i_mapping->a_ops = &aio_ctx_aops;
210 	inode->i_mapping->private_data = ctx;
211 	inode->i_size = PAGE_SIZE * nr_pages;
212 
213 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
214 	if (!path.dentry) {
215 		iput(inode);
216 		return ERR_PTR(-ENOMEM);
217 	}
218 	path.mnt = mntget(aio_mnt);
219 
220 	d_instantiate(path.dentry, inode);
221 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
222 	if (IS_ERR(file)) {
223 		path_put(&path);
224 		return file;
225 	}
226 
227 	file->f_flags = O_RDWR;
228 	return file;
229 }
230 
231 static struct dentry *aio_mount(struct file_system_type *fs_type,
232 				int flags, const char *dev_name, void *data)
233 {
234 	static const struct dentry_operations ops = {
235 		.d_dname	= simple_dname,
236 	};
237 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
238 }
239 
240 /* aio_setup
241  *	Creates the slab caches used by the aio routines, panic on
242  *	failure as this is done early during the boot sequence.
243  */
244 static int __init aio_setup(void)
245 {
246 	static struct file_system_type aio_fs = {
247 		.name		= "aio",
248 		.mount		= aio_mount,
249 		.kill_sb	= kill_anon_super,
250 	};
251 	aio_mnt = kern_mount(&aio_fs);
252 	if (IS_ERR(aio_mnt))
253 		panic("Failed to create aio fs mount.");
254 
255 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
256 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
257 
258 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
259 
260 	return 0;
261 }
262 __initcall(aio_setup);
263 
264 static void put_aio_ring_file(struct kioctx *ctx)
265 {
266 	struct file *aio_ring_file = ctx->aio_ring_file;
267 	if (aio_ring_file) {
268 		truncate_setsize(aio_ring_file->f_inode, 0);
269 
270 		/* Prevent further access to the kioctx from migratepages */
271 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
272 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
273 		ctx->aio_ring_file = NULL;
274 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
275 
276 		fput(aio_ring_file);
277 	}
278 }
279 
280 static void aio_free_ring(struct kioctx *ctx)
281 {
282 	int i;
283 
284 	/* Disconnect the kiotx from the ring file.  This prevents future
285 	 * accesses to the kioctx from page migration.
286 	 */
287 	put_aio_ring_file(ctx);
288 
289 	for (i = 0; i < ctx->nr_pages; i++) {
290 		struct page *page;
291 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
292 				page_count(ctx->ring_pages[i]));
293 		page = ctx->ring_pages[i];
294 		if (!page)
295 			continue;
296 		ctx->ring_pages[i] = NULL;
297 		put_page(page);
298 	}
299 
300 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
301 		kfree(ctx->ring_pages);
302 		ctx->ring_pages = NULL;
303 	}
304 }
305 
306 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
307 {
308 	vma->vm_flags |= VM_DONTEXPAND;
309 	vma->vm_ops = &generic_file_vm_ops;
310 	return 0;
311 }
312 
313 static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
314 {
315 	struct mm_struct *mm = vma->vm_mm;
316 	struct kioctx_table *table;
317 	int i, res = -EINVAL;
318 
319 	spin_lock(&mm->ioctx_lock);
320 	rcu_read_lock();
321 	table = rcu_dereference(mm->ioctx_table);
322 	for (i = 0; i < table->nr; i++) {
323 		struct kioctx *ctx;
324 
325 		ctx = table->table[i];
326 		if (ctx && ctx->aio_ring_file == file) {
327 			if (!atomic_read(&ctx->dead)) {
328 				ctx->user_id = ctx->mmap_base = vma->vm_start;
329 				res = 0;
330 			}
331 			break;
332 		}
333 	}
334 
335 	rcu_read_unlock();
336 	spin_unlock(&mm->ioctx_lock);
337 	return res;
338 }
339 
340 static const struct file_operations aio_ring_fops = {
341 	.mmap = aio_ring_mmap,
342 	.mremap = aio_ring_remap,
343 };
344 
345 #if IS_ENABLED(CONFIG_MIGRATION)
346 static int aio_migratepage(struct address_space *mapping, struct page *new,
347 			struct page *old, enum migrate_mode mode)
348 {
349 	struct kioctx *ctx;
350 	unsigned long flags;
351 	pgoff_t idx;
352 	int rc;
353 
354 	rc = 0;
355 
356 	/* mapping->private_lock here protects against the kioctx teardown.  */
357 	spin_lock(&mapping->private_lock);
358 	ctx = mapping->private_data;
359 	if (!ctx) {
360 		rc = -EINVAL;
361 		goto out;
362 	}
363 
364 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
365 	 * to the ring's head, and prevents page migration from mucking in
366 	 * a partially initialized kiotx.
367 	 */
368 	if (!mutex_trylock(&ctx->ring_lock)) {
369 		rc = -EAGAIN;
370 		goto out;
371 	}
372 
373 	idx = old->index;
374 	if (idx < (pgoff_t)ctx->nr_pages) {
375 		/* Make sure the old page hasn't already been changed */
376 		if (ctx->ring_pages[idx] != old)
377 			rc = -EAGAIN;
378 	} else
379 		rc = -EINVAL;
380 
381 	if (rc != 0)
382 		goto out_unlock;
383 
384 	/* Writeback must be complete */
385 	BUG_ON(PageWriteback(old));
386 	get_page(new);
387 
388 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
389 	if (rc != MIGRATEPAGE_SUCCESS) {
390 		put_page(new);
391 		goto out_unlock;
392 	}
393 
394 	/* Take completion_lock to prevent other writes to the ring buffer
395 	 * while the old page is copied to the new.  This prevents new
396 	 * events from being lost.
397 	 */
398 	spin_lock_irqsave(&ctx->completion_lock, flags);
399 	migrate_page_copy(new, old);
400 	BUG_ON(ctx->ring_pages[idx] != old);
401 	ctx->ring_pages[idx] = new;
402 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
403 
404 	/* The old page is no longer accessible. */
405 	put_page(old);
406 
407 out_unlock:
408 	mutex_unlock(&ctx->ring_lock);
409 out:
410 	spin_unlock(&mapping->private_lock);
411 	return rc;
412 }
413 #endif
414 
415 static const struct address_space_operations aio_ctx_aops = {
416 	.set_page_dirty = __set_page_dirty_no_writeback,
417 #if IS_ENABLED(CONFIG_MIGRATION)
418 	.migratepage	= aio_migratepage,
419 #endif
420 };
421 
422 static int aio_setup_ring(struct kioctx *ctx)
423 {
424 	struct aio_ring *ring;
425 	unsigned nr_events = ctx->max_reqs;
426 	struct mm_struct *mm = current->mm;
427 	unsigned long size, unused;
428 	int nr_pages;
429 	int i;
430 	struct file *file;
431 
432 	/* Compensate for the ring buffer's head/tail overlap entry */
433 	nr_events += 2;	/* 1 is required, 2 for good luck */
434 
435 	size = sizeof(struct aio_ring);
436 	size += sizeof(struct io_event) * nr_events;
437 
438 	nr_pages = PFN_UP(size);
439 	if (nr_pages < 0)
440 		return -EINVAL;
441 
442 	file = aio_private_file(ctx, nr_pages);
443 	if (IS_ERR(file)) {
444 		ctx->aio_ring_file = NULL;
445 		return -ENOMEM;
446 	}
447 
448 	ctx->aio_ring_file = file;
449 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
450 			/ sizeof(struct io_event);
451 
452 	ctx->ring_pages = ctx->internal_pages;
453 	if (nr_pages > AIO_RING_PAGES) {
454 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
455 					  GFP_KERNEL);
456 		if (!ctx->ring_pages) {
457 			put_aio_ring_file(ctx);
458 			return -ENOMEM;
459 		}
460 	}
461 
462 	for (i = 0; i < nr_pages; i++) {
463 		struct page *page;
464 		page = find_or_create_page(file->f_inode->i_mapping,
465 					   i, GFP_HIGHUSER | __GFP_ZERO);
466 		if (!page)
467 			break;
468 		pr_debug("pid(%d) page[%d]->count=%d\n",
469 			 current->pid, i, page_count(page));
470 		SetPageUptodate(page);
471 		unlock_page(page);
472 
473 		ctx->ring_pages[i] = page;
474 	}
475 	ctx->nr_pages = i;
476 
477 	if (unlikely(i != nr_pages)) {
478 		aio_free_ring(ctx);
479 		return -ENOMEM;
480 	}
481 
482 	ctx->mmap_size = nr_pages * PAGE_SIZE;
483 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
484 
485 	down_write(&mm->mmap_sem);
486 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
487 				       PROT_READ | PROT_WRITE,
488 				       MAP_SHARED, 0, &unused);
489 	up_write(&mm->mmap_sem);
490 	if (IS_ERR((void *)ctx->mmap_base)) {
491 		ctx->mmap_size = 0;
492 		aio_free_ring(ctx);
493 		return -ENOMEM;
494 	}
495 
496 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
497 
498 	ctx->user_id = ctx->mmap_base;
499 	ctx->nr_events = nr_events; /* trusted copy */
500 
501 	ring = kmap_atomic(ctx->ring_pages[0]);
502 	ring->nr = nr_events;	/* user copy */
503 	ring->id = ~0U;
504 	ring->head = ring->tail = 0;
505 	ring->magic = AIO_RING_MAGIC;
506 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
507 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
508 	ring->header_length = sizeof(struct aio_ring);
509 	kunmap_atomic(ring);
510 	flush_dcache_page(ctx->ring_pages[0]);
511 
512 	return 0;
513 }
514 
515 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
516 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
517 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
518 
519 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
520 {
521 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
522 	struct kioctx *ctx = req->ki_ctx;
523 	unsigned long flags;
524 
525 	spin_lock_irqsave(&ctx->ctx_lock, flags);
526 
527 	if (!req->ki_list.next)
528 		list_add(&req->ki_list, &ctx->active_reqs);
529 
530 	req->ki_cancel = cancel;
531 
532 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
533 }
534 EXPORT_SYMBOL(kiocb_set_cancel_fn);
535 
536 static int kiocb_cancel(struct aio_kiocb *kiocb)
537 {
538 	kiocb_cancel_fn *old, *cancel;
539 
540 	/*
541 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
542 	 * actually has a cancel function, hence the cmpxchg()
543 	 */
544 
545 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
546 	do {
547 		if (!cancel || cancel == KIOCB_CANCELLED)
548 			return -EINVAL;
549 
550 		old = cancel;
551 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
552 	} while (cancel != old);
553 
554 	return cancel(&kiocb->common);
555 }
556 
557 static void free_ioctx(struct work_struct *work)
558 {
559 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
560 
561 	pr_debug("freeing %p\n", ctx);
562 
563 	aio_free_ring(ctx);
564 	free_percpu(ctx->cpu);
565 	percpu_ref_exit(&ctx->reqs);
566 	percpu_ref_exit(&ctx->users);
567 	kmem_cache_free(kioctx_cachep, ctx);
568 }
569 
570 static void free_ioctx_reqs(struct percpu_ref *ref)
571 {
572 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
573 
574 	/* At this point we know that there are no any in-flight requests */
575 	if (ctx->requests_done)
576 		complete(ctx->requests_done);
577 
578 	INIT_WORK(&ctx->free_work, free_ioctx);
579 	schedule_work(&ctx->free_work);
580 }
581 
582 /*
583  * When this function runs, the kioctx has been removed from the "hash table"
584  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
585  * now it's safe to cancel any that need to be.
586  */
587 static void free_ioctx_users(struct percpu_ref *ref)
588 {
589 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
590 	struct aio_kiocb *req;
591 
592 	spin_lock_irq(&ctx->ctx_lock);
593 
594 	while (!list_empty(&ctx->active_reqs)) {
595 		req = list_first_entry(&ctx->active_reqs,
596 				       struct aio_kiocb, ki_list);
597 
598 		list_del_init(&req->ki_list);
599 		kiocb_cancel(req);
600 	}
601 
602 	spin_unlock_irq(&ctx->ctx_lock);
603 
604 	percpu_ref_kill(&ctx->reqs);
605 	percpu_ref_put(&ctx->reqs);
606 }
607 
608 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
609 {
610 	unsigned i, new_nr;
611 	struct kioctx_table *table, *old;
612 	struct aio_ring *ring;
613 
614 	spin_lock(&mm->ioctx_lock);
615 	table = rcu_dereference_raw(mm->ioctx_table);
616 
617 	while (1) {
618 		if (table)
619 			for (i = 0; i < table->nr; i++)
620 				if (!table->table[i]) {
621 					ctx->id = i;
622 					table->table[i] = ctx;
623 					spin_unlock(&mm->ioctx_lock);
624 
625 					/* While kioctx setup is in progress,
626 					 * we are protected from page migration
627 					 * changes ring_pages by ->ring_lock.
628 					 */
629 					ring = kmap_atomic(ctx->ring_pages[0]);
630 					ring->id = ctx->id;
631 					kunmap_atomic(ring);
632 					return 0;
633 				}
634 
635 		new_nr = (table ? table->nr : 1) * 4;
636 		spin_unlock(&mm->ioctx_lock);
637 
638 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
639 				new_nr, GFP_KERNEL);
640 		if (!table)
641 			return -ENOMEM;
642 
643 		table->nr = new_nr;
644 
645 		spin_lock(&mm->ioctx_lock);
646 		old = rcu_dereference_raw(mm->ioctx_table);
647 
648 		if (!old) {
649 			rcu_assign_pointer(mm->ioctx_table, table);
650 		} else if (table->nr > old->nr) {
651 			memcpy(table->table, old->table,
652 			       old->nr * sizeof(struct kioctx *));
653 
654 			rcu_assign_pointer(mm->ioctx_table, table);
655 			kfree_rcu(old, rcu);
656 		} else {
657 			kfree(table);
658 			table = old;
659 		}
660 	}
661 }
662 
663 static void aio_nr_sub(unsigned nr)
664 {
665 	spin_lock(&aio_nr_lock);
666 	if (WARN_ON(aio_nr - nr > aio_nr))
667 		aio_nr = 0;
668 	else
669 		aio_nr -= nr;
670 	spin_unlock(&aio_nr_lock);
671 }
672 
673 /* ioctx_alloc
674  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
675  */
676 static struct kioctx *ioctx_alloc(unsigned nr_events)
677 {
678 	struct mm_struct *mm = current->mm;
679 	struct kioctx *ctx;
680 	int err = -ENOMEM;
681 
682 	/*
683 	 * We keep track of the number of available ringbuffer slots, to prevent
684 	 * overflow (reqs_available), and we also use percpu counters for this.
685 	 *
686 	 * So since up to half the slots might be on other cpu's percpu counters
687 	 * and unavailable, double nr_events so userspace sees what they
688 	 * expected: additionally, we move req_batch slots to/from percpu
689 	 * counters at a time, so make sure that isn't 0:
690 	 */
691 	nr_events = max(nr_events, num_possible_cpus() * 4);
692 	nr_events *= 2;
693 
694 	/* Prevent overflows */
695 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
696 		pr_debug("ENOMEM: nr_events too high\n");
697 		return ERR_PTR(-EINVAL);
698 	}
699 
700 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
701 		return ERR_PTR(-EAGAIN);
702 
703 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
704 	if (!ctx)
705 		return ERR_PTR(-ENOMEM);
706 
707 	ctx->max_reqs = nr_events;
708 
709 	spin_lock_init(&ctx->ctx_lock);
710 	spin_lock_init(&ctx->completion_lock);
711 	mutex_init(&ctx->ring_lock);
712 	/* Protect against page migration throughout kiotx setup by keeping
713 	 * the ring_lock mutex held until setup is complete. */
714 	mutex_lock(&ctx->ring_lock);
715 	init_waitqueue_head(&ctx->wait);
716 
717 	INIT_LIST_HEAD(&ctx->active_reqs);
718 
719 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
720 		goto err;
721 
722 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
723 		goto err;
724 
725 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
726 	if (!ctx->cpu)
727 		goto err;
728 
729 	err = aio_setup_ring(ctx);
730 	if (err < 0)
731 		goto err;
732 
733 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
734 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
735 	if (ctx->req_batch < 1)
736 		ctx->req_batch = 1;
737 
738 	/* limit the number of system wide aios */
739 	spin_lock(&aio_nr_lock);
740 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
741 	    aio_nr + nr_events < aio_nr) {
742 		spin_unlock(&aio_nr_lock);
743 		err = -EAGAIN;
744 		goto err_ctx;
745 	}
746 	aio_nr += ctx->max_reqs;
747 	spin_unlock(&aio_nr_lock);
748 
749 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
750 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
751 
752 	err = ioctx_add_table(ctx, mm);
753 	if (err)
754 		goto err_cleanup;
755 
756 	/* Release the ring_lock mutex now that all setup is complete. */
757 	mutex_unlock(&ctx->ring_lock);
758 
759 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
760 		 ctx, ctx->user_id, mm, ctx->nr_events);
761 	return ctx;
762 
763 err_cleanup:
764 	aio_nr_sub(ctx->max_reqs);
765 err_ctx:
766 	atomic_set(&ctx->dead, 1);
767 	if (ctx->mmap_size)
768 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
769 	aio_free_ring(ctx);
770 err:
771 	mutex_unlock(&ctx->ring_lock);
772 	free_percpu(ctx->cpu);
773 	percpu_ref_exit(&ctx->reqs);
774 	percpu_ref_exit(&ctx->users);
775 	kmem_cache_free(kioctx_cachep, ctx);
776 	pr_debug("error allocating ioctx %d\n", err);
777 	return ERR_PTR(err);
778 }
779 
780 /* kill_ioctx
781  *	Cancels all outstanding aio requests on an aio context.  Used
782  *	when the processes owning a context have all exited to encourage
783  *	the rapid destruction of the kioctx.
784  */
785 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
786 		struct completion *requests_done)
787 {
788 	struct kioctx_table *table;
789 
790 	spin_lock(&mm->ioctx_lock);
791 	if (atomic_xchg(&ctx->dead, 1)) {
792 		spin_unlock(&mm->ioctx_lock);
793 		return -EINVAL;
794 	}
795 
796 	table = rcu_dereference_raw(mm->ioctx_table);
797 	WARN_ON(ctx != table->table[ctx->id]);
798 	table->table[ctx->id] = NULL;
799 	spin_unlock(&mm->ioctx_lock);
800 
801 	/* percpu_ref_kill() will do the necessary call_rcu() */
802 	wake_up_all(&ctx->wait);
803 
804 	/*
805 	 * It'd be more correct to do this in free_ioctx(), after all
806 	 * the outstanding kiocbs have finished - but by then io_destroy
807 	 * has already returned, so io_setup() could potentially return
808 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
809 	 *  could tell).
810 	 */
811 	aio_nr_sub(ctx->max_reqs);
812 
813 	if (ctx->mmap_size)
814 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
815 
816 	ctx->requests_done = requests_done;
817 	percpu_ref_kill(&ctx->users);
818 	return 0;
819 }
820 
821 /*
822  * exit_aio: called when the last user of mm goes away.  At this point, there is
823  * no way for any new requests to be submited or any of the io_* syscalls to be
824  * called on the context.
825  *
826  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
827  * them.
828  */
829 void exit_aio(struct mm_struct *mm)
830 {
831 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
832 	int i;
833 
834 	if (!table)
835 		return;
836 
837 	for (i = 0; i < table->nr; ++i) {
838 		struct kioctx *ctx = table->table[i];
839 		struct completion requests_done =
840 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
841 
842 		if (!ctx)
843 			continue;
844 		/*
845 		 * We don't need to bother with munmap() here - exit_mmap(mm)
846 		 * is coming and it'll unmap everything. And we simply can't,
847 		 * this is not necessarily our ->mm.
848 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
849 		 * that it needs to unmap the area, just set it to 0.
850 		 */
851 		ctx->mmap_size = 0;
852 		kill_ioctx(mm, ctx, &requests_done);
853 
854 		/* Wait until all IO for the context are done. */
855 		wait_for_completion(&requests_done);
856 	}
857 
858 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
859 	kfree(table);
860 }
861 
862 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
863 {
864 	struct kioctx_cpu *kcpu;
865 	unsigned long flags;
866 
867 	local_irq_save(flags);
868 	kcpu = this_cpu_ptr(ctx->cpu);
869 	kcpu->reqs_available += nr;
870 
871 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
872 		kcpu->reqs_available -= ctx->req_batch;
873 		atomic_add(ctx->req_batch, &ctx->reqs_available);
874 	}
875 
876 	local_irq_restore(flags);
877 }
878 
879 static bool get_reqs_available(struct kioctx *ctx)
880 {
881 	struct kioctx_cpu *kcpu;
882 	bool ret = false;
883 	unsigned long flags;
884 
885 	local_irq_save(flags);
886 	kcpu = this_cpu_ptr(ctx->cpu);
887 	if (!kcpu->reqs_available) {
888 		int old, avail = atomic_read(&ctx->reqs_available);
889 
890 		do {
891 			if (avail < ctx->req_batch)
892 				goto out;
893 
894 			old = avail;
895 			avail = atomic_cmpxchg(&ctx->reqs_available,
896 					       avail, avail - ctx->req_batch);
897 		} while (avail != old);
898 
899 		kcpu->reqs_available += ctx->req_batch;
900 	}
901 
902 	ret = true;
903 	kcpu->reqs_available--;
904 out:
905 	local_irq_restore(flags);
906 	return ret;
907 }
908 
909 /* refill_reqs_available
910  *	Updates the reqs_available reference counts used for tracking the
911  *	number of free slots in the completion ring.  This can be called
912  *	from aio_complete() (to optimistically update reqs_available) or
913  *	from aio_get_req() (the we're out of events case).  It must be
914  *	called holding ctx->completion_lock.
915  */
916 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
917                                   unsigned tail)
918 {
919 	unsigned events_in_ring, completed;
920 
921 	/* Clamp head since userland can write to it. */
922 	head %= ctx->nr_events;
923 	if (head <= tail)
924 		events_in_ring = tail - head;
925 	else
926 		events_in_ring = ctx->nr_events - (head - tail);
927 
928 	completed = ctx->completed_events;
929 	if (events_in_ring < completed)
930 		completed -= events_in_ring;
931 	else
932 		completed = 0;
933 
934 	if (!completed)
935 		return;
936 
937 	ctx->completed_events -= completed;
938 	put_reqs_available(ctx, completed);
939 }
940 
941 /* user_refill_reqs_available
942  *	Called to refill reqs_available when aio_get_req() encounters an
943  *	out of space in the completion ring.
944  */
945 static void user_refill_reqs_available(struct kioctx *ctx)
946 {
947 	spin_lock_irq(&ctx->completion_lock);
948 	if (ctx->completed_events) {
949 		struct aio_ring *ring;
950 		unsigned head;
951 
952 		/* Access of ring->head may race with aio_read_events_ring()
953 		 * here, but that's okay since whether we read the old version
954 		 * or the new version, and either will be valid.  The important
955 		 * part is that head cannot pass tail since we prevent
956 		 * aio_complete() from updating tail by holding
957 		 * ctx->completion_lock.  Even if head is invalid, the check
958 		 * against ctx->completed_events below will make sure we do the
959 		 * safe/right thing.
960 		 */
961 		ring = kmap_atomic(ctx->ring_pages[0]);
962 		head = ring->head;
963 		kunmap_atomic(ring);
964 
965 		refill_reqs_available(ctx, head, ctx->tail);
966 	}
967 
968 	spin_unlock_irq(&ctx->completion_lock);
969 }
970 
971 /* aio_get_req
972  *	Allocate a slot for an aio request.
973  * Returns NULL if no requests are free.
974  */
975 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
976 {
977 	struct aio_kiocb *req;
978 
979 	if (!get_reqs_available(ctx)) {
980 		user_refill_reqs_available(ctx);
981 		if (!get_reqs_available(ctx))
982 			return NULL;
983 	}
984 
985 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
986 	if (unlikely(!req))
987 		goto out_put;
988 
989 	percpu_ref_get(&ctx->reqs);
990 
991 	req->ki_ctx = ctx;
992 	return req;
993 out_put:
994 	put_reqs_available(ctx, 1);
995 	return NULL;
996 }
997 
998 static void kiocb_free(struct aio_kiocb *req)
999 {
1000 	if (req->common.ki_filp)
1001 		fput(req->common.ki_filp);
1002 	if (req->ki_eventfd != NULL)
1003 		eventfd_ctx_put(req->ki_eventfd);
1004 	kmem_cache_free(kiocb_cachep, req);
1005 }
1006 
1007 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1008 {
1009 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1010 	struct mm_struct *mm = current->mm;
1011 	struct kioctx *ctx, *ret = NULL;
1012 	struct kioctx_table *table;
1013 	unsigned id;
1014 
1015 	if (get_user(id, &ring->id))
1016 		return NULL;
1017 
1018 	rcu_read_lock();
1019 	table = rcu_dereference(mm->ioctx_table);
1020 
1021 	if (!table || id >= table->nr)
1022 		goto out;
1023 
1024 	ctx = table->table[id];
1025 	if (ctx && ctx->user_id == ctx_id) {
1026 		percpu_ref_get(&ctx->users);
1027 		ret = ctx;
1028 	}
1029 out:
1030 	rcu_read_unlock();
1031 	return ret;
1032 }
1033 
1034 /* aio_complete
1035  *	Called when the io request on the given iocb is complete.
1036  */
1037 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1038 {
1039 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1040 	struct kioctx	*ctx = iocb->ki_ctx;
1041 	struct aio_ring	*ring;
1042 	struct io_event	*ev_page, *event;
1043 	unsigned tail, pos, head;
1044 	unsigned long	flags;
1045 
1046 	/*
1047 	 * Special case handling for sync iocbs:
1048 	 *  - events go directly into the iocb for fast handling
1049 	 *  - the sync task with the iocb in its stack holds the single iocb
1050 	 *    ref, no other paths have a way to get another ref
1051 	 *  - the sync task helpfully left a reference to itself in the iocb
1052 	 */
1053 	BUG_ON(is_sync_kiocb(kiocb));
1054 
1055 	if (iocb->ki_list.next) {
1056 		unsigned long flags;
1057 
1058 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1059 		list_del(&iocb->ki_list);
1060 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1061 	}
1062 
1063 	/*
1064 	 * Add a completion event to the ring buffer. Must be done holding
1065 	 * ctx->completion_lock to prevent other code from messing with the tail
1066 	 * pointer since we might be called from irq context.
1067 	 */
1068 	spin_lock_irqsave(&ctx->completion_lock, flags);
1069 
1070 	tail = ctx->tail;
1071 	pos = tail + AIO_EVENTS_OFFSET;
1072 
1073 	if (++tail >= ctx->nr_events)
1074 		tail = 0;
1075 
1076 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1077 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1078 
1079 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1080 	event->data = iocb->ki_user_data;
1081 	event->res = res;
1082 	event->res2 = res2;
1083 
1084 	kunmap_atomic(ev_page);
1085 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1086 
1087 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1088 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1089 		 res, res2);
1090 
1091 	/* after flagging the request as done, we
1092 	 * must never even look at it again
1093 	 */
1094 	smp_wmb();	/* make event visible before updating tail */
1095 
1096 	ctx->tail = tail;
1097 
1098 	ring = kmap_atomic(ctx->ring_pages[0]);
1099 	head = ring->head;
1100 	ring->tail = tail;
1101 	kunmap_atomic(ring);
1102 	flush_dcache_page(ctx->ring_pages[0]);
1103 
1104 	ctx->completed_events++;
1105 	if (ctx->completed_events > 1)
1106 		refill_reqs_available(ctx, head, tail);
1107 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1108 
1109 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1110 
1111 	/*
1112 	 * Check if the user asked us to deliver the result through an
1113 	 * eventfd. The eventfd_signal() function is safe to be called
1114 	 * from IRQ context.
1115 	 */
1116 	if (iocb->ki_eventfd != NULL)
1117 		eventfd_signal(iocb->ki_eventfd, 1);
1118 
1119 	/* everything turned out well, dispose of the aiocb. */
1120 	kiocb_free(iocb);
1121 
1122 	/*
1123 	 * We have to order our ring_info tail store above and test
1124 	 * of the wait list below outside the wait lock.  This is
1125 	 * like in wake_up_bit() where clearing a bit has to be
1126 	 * ordered with the unlocked test.
1127 	 */
1128 	smp_mb();
1129 
1130 	if (waitqueue_active(&ctx->wait))
1131 		wake_up(&ctx->wait);
1132 
1133 	percpu_ref_put(&ctx->reqs);
1134 }
1135 
1136 /* aio_read_events_ring
1137  *	Pull an event off of the ioctx's event ring.  Returns the number of
1138  *	events fetched
1139  */
1140 static long aio_read_events_ring(struct kioctx *ctx,
1141 				 struct io_event __user *event, long nr)
1142 {
1143 	struct aio_ring *ring;
1144 	unsigned head, tail, pos;
1145 	long ret = 0;
1146 	int copy_ret;
1147 
1148 	/*
1149 	 * The mutex can block and wake us up and that will cause
1150 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1151 	 * and repeat. This should be rare enough that it doesn't cause
1152 	 * peformance issues. See the comment in read_events() for more detail.
1153 	 */
1154 	sched_annotate_sleep();
1155 	mutex_lock(&ctx->ring_lock);
1156 
1157 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1158 	ring = kmap_atomic(ctx->ring_pages[0]);
1159 	head = ring->head;
1160 	tail = ring->tail;
1161 	kunmap_atomic(ring);
1162 
1163 	/*
1164 	 * Ensure that once we've read the current tail pointer, that
1165 	 * we also see the events that were stored up to the tail.
1166 	 */
1167 	smp_rmb();
1168 
1169 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1170 
1171 	if (head == tail)
1172 		goto out;
1173 
1174 	head %= ctx->nr_events;
1175 	tail %= ctx->nr_events;
1176 
1177 	while (ret < nr) {
1178 		long avail;
1179 		struct io_event *ev;
1180 		struct page *page;
1181 
1182 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1183 		if (head == tail)
1184 			break;
1185 
1186 		avail = min(avail, nr - ret);
1187 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1188 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1189 
1190 		pos = head + AIO_EVENTS_OFFSET;
1191 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1192 		pos %= AIO_EVENTS_PER_PAGE;
1193 
1194 		ev = kmap(page);
1195 		copy_ret = copy_to_user(event + ret, ev + pos,
1196 					sizeof(*ev) * avail);
1197 		kunmap(page);
1198 
1199 		if (unlikely(copy_ret)) {
1200 			ret = -EFAULT;
1201 			goto out;
1202 		}
1203 
1204 		ret += avail;
1205 		head += avail;
1206 		head %= ctx->nr_events;
1207 	}
1208 
1209 	ring = kmap_atomic(ctx->ring_pages[0]);
1210 	ring->head = head;
1211 	kunmap_atomic(ring);
1212 	flush_dcache_page(ctx->ring_pages[0]);
1213 
1214 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1215 out:
1216 	mutex_unlock(&ctx->ring_lock);
1217 
1218 	return ret;
1219 }
1220 
1221 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1222 			    struct io_event __user *event, long *i)
1223 {
1224 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1225 
1226 	if (ret > 0)
1227 		*i += ret;
1228 
1229 	if (unlikely(atomic_read(&ctx->dead)))
1230 		ret = -EINVAL;
1231 
1232 	if (!*i)
1233 		*i = ret;
1234 
1235 	return ret < 0 || *i >= min_nr;
1236 }
1237 
1238 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1239 			struct io_event __user *event,
1240 			struct timespec __user *timeout)
1241 {
1242 	ktime_t until = { .tv64 = KTIME_MAX };
1243 	long ret = 0;
1244 
1245 	if (timeout) {
1246 		struct timespec	ts;
1247 
1248 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1249 			return -EFAULT;
1250 
1251 		until = timespec_to_ktime(ts);
1252 	}
1253 
1254 	/*
1255 	 * Note that aio_read_events() is being called as the conditional - i.e.
1256 	 * we're calling it after prepare_to_wait() has set task state to
1257 	 * TASK_INTERRUPTIBLE.
1258 	 *
1259 	 * But aio_read_events() can block, and if it blocks it's going to flip
1260 	 * the task state back to TASK_RUNNING.
1261 	 *
1262 	 * This should be ok, provided it doesn't flip the state back to
1263 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1264 	 * will only happen if the mutex_lock() call blocks, and we then find
1265 	 * the ringbuffer empty. So in practice we should be ok, but it's
1266 	 * something to be aware of when touching this code.
1267 	 */
1268 	if (until.tv64 == 0)
1269 		aio_read_events(ctx, min_nr, nr, event, &ret);
1270 	else
1271 		wait_event_interruptible_hrtimeout(ctx->wait,
1272 				aio_read_events(ctx, min_nr, nr, event, &ret),
1273 				until);
1274 
1275 	if (!ret && signal_pending(current))
1276 		ret = -EINTR;
1277 
1278 	return ret;
1279 }
1280 
1281 /* sys_io_setup:
1282  *	Create an aio_context capable of receiving at least nr_events.
1283  *	ctxp must not point to an aio_context that already exists, and
1284  *	must be initialized to 0 prior to the call.  On successful
1285  *	creation of the aio_context, *ctxp is filled in with the resulting
1286  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1287  *	if the specified nr_events exceeds internal limits.  May fail
1288  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1289  *	of available events.  May fail with -ENOMEM if insufficient kernel
1290  *	resources are available.  May fail with -EFAULT if an invalid
1291  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1292  *	implemented.
1293  */
1294 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1295 {
1296 	struct kioctx *ioctx = NULL;
1297 	unsigned long ctx;
1298 	long ret;
1299 
1300 	ret = get_user(ctx, ctxp);
1301 	if (unlikely(ret))
1302 		goto out;
1303 
1304 	ret = -EINVAL;
1305 	if (unlikely(ctx || nr_events == 0)) {
1306 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1307 		         ctx, nr_events);
1308 		goto out;
1309 	}
1310 
1311 	ioctx = ioctx_alloc(nr_events);
1312 	ret = PTR_ERR(ioctx);
1313 	if (!IS_ERR(ioctx)) {
1314 		ret = put_user(ioctx->user_id, ctxp);
1315 		if (ret)
1316 			kill_ioctx(current->mm, ioctx, NULL);
1317 		percpu_ref_put(&ioctx->users);
1318 	}
1319 
1320 out:
1321 	return ret;
1322 }
1323 
1324 /* sys_io_destroy:
1325  *	Destroy the aio_context specified.  May cancel any outstanding
1326  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1327  *	implemented.  May fail with -EINVAL if the context pointed to
1328  *	is invalid.
1329  */
1330 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1331 {
1332 	struct kioctx *ioctx = lookup_ioctx(ctx);
1333 	if (likely(NULL != ioctx)) {
1334 		struct completion requests_done =
1335 			COMPLETION_INITIALIZER_ONSTACK(requests_done);
1336 		int ret;
1337 
1338 		/* Pass requests_done to kill_ioctx() where it can be set
1339 		 * in a thread-safe way. If we try to set it here then we have
1340 		 * a race condition if two io_destroy() called simultaneously.
1341 		 */
1342 		ret = kill_ioctx(current->mm, ioctx, &requests_done);
1343 		percpu_ref_put(&ioctx->users);
1344 
1345 		/* Wait until all IO for the context are done. Otherwise kernel
1346 		 * keep using user-space buffers even if user thinks the context
1347 		 * is destroyed.
1348 		 */
1349 		if (!ret)
1350 			wait_for_completion(&requests_done);
1351 
1352 		return ret;
1353 	}
1354 	pr_debug("EINVAL: invalid context id\n");
1355 	return -EINVAL;
1356 }
1357 
1358 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1359 
1360 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1361 				 struct iovec **iovec,
1362 				 bool compat,
1363 				 struct iov_iter *iter)
1364 {
1365 #ifdef CONFIG_COMPAT
1366 	if (compat)
1367 		return compat_import_iovec(rw,
1368 				(struct compat_iovec __user *)buf,
1369 				len, UIO_FASTIOV, iovec, iter);
1370 #endif
1371 	return import_iovec(rw, (struct iovec __user *)buf,
1372 				len, UIO_FASTIOV, iovec, iter);
1373 }
1374 
1375 /*
1376  * aio_run_iocb:
1377  *	Performs the initial checks and io submission.
1378  */
1379 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1380 			    char __user *buf, size_t len, bool compat)
1381 {
1382 	struct file *file = req->ki_filp;
1383 	ssize_t ret;
1384 	int rw;
1385 	fmode_t mode;
1386 	rw_iter_op *iter_op;
1387 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1388 	struct iov_iter iter;
1389 
1390 	switch (opcode) {
1391 	case IOCB_CMD_PREAD:
1392 	case IOCB_CMD_PREADV:
1393 		mode	= FMODE_READ;
1394 		rw	= READ;
1395 		iter_op	= file->f_op->read_iter;
1396 		goto rw_common;
1397 
1398 	case IOCB_CMD_PWRITE:
1399 	case IOCB_CMD_PWRITEV:
1400 		mode	= FMODE_WRITE;
1401 		rw	= WRITE;
1402 		iter_op	= file->f_op->write_iter;
1403 		goto rw_common;
1404 rw_common:
1405 		if (unlikely(!(file->f_mode & mode)))
1406 			return -EBADF;
1407 
1408 		if (!iter_op)
1409 			return -EINVAL;
1410 
1411 		if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1412 			ret = aio_setup_vectored_rw(rw, buf, len,
1413 						&iovec, compat, &iter);
1414 		else {
1415 			ret = import_single_range(rw, buf, len, iovec, &iter);
1416 			iovec = NULL;
1417 		}
1418 		if (!ret)
1419 			ret = rw_verify_area(rw, file, &req->ki_pos,
1420 					     iov_iter_count(&iter));
1421 		if (ret < 0) {
1422 			kfree(iovec);
1423 			return ret;
1424 		}
1425 
1426 		len = ret;
1427 
1428 		if (rw == WRITE)
1429 			file_start_write(file);
1430 
1431 		ret = iter_op(req, &iter);
1432 
1433 		if (rw == WRITE)
1434 			file_end_write(file);
1435 		kfree(iovec);
1436 		break;
1437 
1438 	case IOCB_CMD_FDSYNC:
1439 		if (!file->f_op->aio_fsync)
1440 			return -EINVAL;
1441 
1442 		ret = file->f_op->aio_fsync(req, 1);
1443 		break;
1444 
1445 	case IOCB_CMD_FSYNC:
1446 		if (!file->f_op->aio_fsync)
1447 			return -EINVAL;
1448 
1449 		ret = file->f_op->aio_fsync(req, 0);
1450 		break;
1451 
1452 	default:
1453 		pr_debug("EINVAL: no operation provided\n");
1454 		return -EINVAL;
1455 	}
1456 
1457 	if (ret != -EIOCBQUEUED) {
1458 		/*
1459 		 * There's no easy way to restart the syscall since other AIO's
1460 		 * may be already running. Just fail this IO with EINTR.
1461 		 */
1462 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1463 			     ret == -ERESTARTNOHAND ||
1464 			     ret == -ERESTART_RESTARTBLOCK))
1465 			ret = -EINTR;
1466 		aio_complete(req, ret, 0);
1467 	}
1468 
1469 	return 0;
1470 }
1471 
1472 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1473 			 struct iocb *iocb, bool compat)
1474 {
1475 	struct aio_kiocb *req;
1476 	ssize_t ret;
1477 
1478 	/* enforce forwards compatibility on users */
1479 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1480 		pr_debug("EINVAL: reserve field set\n");
1481 		return -EINVAL;
1482 	}
1483 
1484 	/* prevent overflows */
1485 	if (unlikely(
1486 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1487 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1488 	    ((ssize_t)iocb->aio_nbytes < 0)
1489 	   )) {
1490 		pr_debug("EINVAL: overflow check\n");
1491 		return -EINVAL;
1492 	}
1493 
1494 	req = aio_get_req(ctx);
1495 	if (unlikely(!req))
1496 		return -EAGAIN;
1497 
1498 	req->common.ki_filp = fget(iocb->aio_fildes);
1499 	if (unlikely(!req->common.ki_filp)) {
1500 		ret = -EBADF;
1501 		goto out_put_req;
1502 	}
1503 	req->common.ki_pos = iocb->aio_offset;
1504 	req->common.ki_complete = aio_complete;
1505 	req->common.ki_flags = 0;
1506 
1507 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1508 		/*
1509 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1510 		 * instance of the file* now. The file descriptor must be
1511 		 * an eventfd() fd, and will be signaled for each completed
1512 		 * event using the eventfd_signal() function.
1513 		 */
1514 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1515 		if (IS_ERR(req->ki_eventfd)) {
1516 			ret = PTR_ERR(req->ki_eventfd);
1517 			req->ki_eventfd = NULL;
1518 			goto out_put_req;
1519 		}
1520 
1521 		req->common.ki_flags |= IOCB_EVENTFD;
1522 	}
1523 
1524 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1525 	if (unlikely(ret)) {
1526 		pr_debug("EFAULT: aio_key\n");
1527 		goto out_put_req;
1528 	}
1529 
1530 	req->ki_user_iocb = user_iocb;
1531 	req->ki_user_data = iocb->aio_data;
1532 
1533 	ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1534 			   (char __user *)(unsigned long)iocb->aio_buf,
1535 			   iocb->aio_nbytes,
1536 			   compat);
1537 	if (ret)
1538 		goto out_put_req;
1539 
1540 	return 0;
1541 out_put_req:
1542 	put_reqs_available(ctx, 1);
1543 	percpu_ref_put(&ctx->reqs);
1544 	kiocb_free(req);
1545 	return ret;
1546 }
1547 
1548 long do_io_submit(aio_context_t ctx_id, long nr,
1549 		  struct iocb __user *__user *iocbpp, bool compat)
1550 {
1551 	struct kioctx *ctx;
1552 	long ret = 0;
1553 	int i = 0;
1554 	struct blk_plug plug;
1555 
1556 	if (unlikely(nr < 0))
1557 		return -EINVAL;
1558 
1559 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1560 		nr = LONG_MAX/sizeof(*iocbpp);
1561 
1562 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1563 		return -EFAULT;
1564 
1565 	ctx = lookup_ioctx(ctx_id);
1566 	if (unlikely(!ctx)) {
1567 		pr_debug("EINVAL: invalid context id\n");
1568 		return -EINVAL;
1569 	}
1570 
1571 	blk_start_plug(&plug);
1572 
1573 	/*
1574 	 * AKPM: should this return a partial result if some of the IOs were
1575 	 * successfully submitted?
1576 	 */
1577 	for (i=0; i<nr; i++) {
1578 		struct iocb __user *user_iocb;
1579 		struct iocb tmp;
1580 
1581 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1582 			ret = -EFAULT;
1583 			break;
1584 		}
1585 
1586 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1587 			ret = -EFAULT;
1588 			break;
1589 		}
1590 
1591 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1592 		if (ret)
1593 			break;
1594 	}
1595 	blk_finish_plug(&plug);
1596 
1597 	percpu_ref_put(&ctx->users);
1598 	return i ? i : ret;
1599 }
1600 
1601 /* sys_io_submit:
1602  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1603  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1604  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1605  *	*iocbpp[0] is not properly initialized, if the operation specified
1606  *	is invalid for the file descriptor in the iocb.  May fail with
1607  *	-EFAULT if any of the data structures point to invalid data.  May
1608  *	fail with -EBADF if the file descriptor specified in the first
1609  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1610  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1611  *	fail with -ENOSYS if not implemented.
1612  */
1613 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1614 		struct iocb __user * __user *, iocbpp)
1615 {
1616 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1617 }
1618 
1619 /* lookup_kiocb
1620  *	Finds a given iocb for cancellation.
1621  */
1622 static struct aio_kiocb *
1623 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1624 {
1625 	struct aio_kiocb *kiocb;
1626 
1627 	assert_spin_locked(&ctx->ctx_lock);
1628 
1629 	if (key != KIOCB_KEY)
1630 		return NULL;
1631 
1632 	/* TODO: use a hash or array, this sucks. */
1633 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1634 		if (kiocb->ki_user_iocb == iocb)
1635 			return kiocb;
1636 	}
1637 	return NULL;
1638 }
1639 
1640 /* sys_io_cancel:
1641  *	Attempts to cancel an iocb previously passed to io_submit.  If
1642  *	the operation is successfully cancelled, the resulting event is
1643  *	copied into the memory pointed to by result without being placed
1644  *	into the completion queue and 0 is returned.  May fail with
1645  *	-EFAULT if any of the data structures pointed to are invalid.
1646  *	May fail with -EINVAL if aio_context specified by ctx_id is
1647  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1648  *	cancelled.  Will fail with -ENOSYS if not implemented.
1649  */
1650 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1651 		struct io_event __user *, result)
1652 {
1653 	struct kioctx *ctx;
1654 	struct aio_kiocb *kiocb;
1655 	u32 key;
1656 	int ret;
1657 
1658 	ret = get_user(key, &iocb->aio_key);
1659 	if (unlikely(ret))
1660 		return -EFAULT;
1661 
1662 	ctx = lookup_ioctx(ctx_id);
1663 	if (unlikely(!ctx))
1664 		return -EINVAL;
1665 
1666 	spin_lock_irq(&ctx->ctx_lock);
1667 
1668 	kiocb = lookup_kiocb(ctx, iocb, key);
1669 	if (kiocb)
1670 		ret = kiocb_cancel(kiocb);
1671 	else
1672 		ret = -EINVAL;
1673 
1674 	spin_unlock_irq(&ctx->ctx_lock);
1675 
1676 	if (!ret) {
1677 		/*
1678 		 * The result argument is no longer used - the io_event is
1679 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1680 		 * cancellation is progress:
1681 		 */
1682 		ret = -EINPROGRESS;
1683 	}
1684 
1685 	percpu_ref_put(&ctx->users);
1686 
1687 	return ret;
1688 }
1689 
1690 /* io_getevents:
1691  *	Attempts to read at least min_nr events and up to nr events from
1692  *	the completion queue for the aio_context specified by ctx_id. If
1693  *	it succeeds, the number of read events is returned. May fail with
1694  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1695  *	out of range, if timeout is out of range.  May fail with -EFAULT
1696  *	if any of the memory specified is invalid.  May return 0 or
1697  *	< min_nr if the timeout specified by timeout has elapsed
1698  *	before sufficient events are available, where timeout == NULL
1699  *	specifies an infinite timeout. Note that the timeout pointed to by
1700  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1701  */
1702 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1703 		long, min_nr,
1704 		long, nr,
1705 		struct io_event __user *, events,
1706 		struct timespec __user *, timeout)
1707 {
1708 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1709 	long ret = -EINVAL;
1710 
1711 	if (likely(ioctx)) {
1712 		if (likely(min_nr <= nr && min_nr >= 0))
1713 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1714 		percpu_ref_put(&ioctx->users);
1715 	}
1716 	return ret;
1717 }
1718