xref: /linux/fs/aio.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 
19 #define DEBUG 0
20 
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 #include <linux/rcuref.h>
33 
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 
38 #if DEBUG > 1
39 #define dprintk		printk
40 #else
41 #define dprintk(x...)	do { ; } while (0)
42 #endif
43 
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock);
46 unsigned long aio_nr;		/* current system wide number of aio requests */
47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
49 
50 static kmem_cache_t	*kiocb_cachep;
51 static kmem_cache_t	*kioctx_cachep;
52 
53 static struct workqueue_struct *aio_wq;
54 
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(void *);
57 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
58 
59 static DEFINE_SPINLOCK(fput_lock);
60 static LIST_HEAD(fput_head);
61 
62 static void aio_kick_handler(void *);
63 static void aio_queue_work(struct kioctx *);
64 
65 /* aio_setup
66  *	Creates the slab caches used by the aio routines, panic on
67  *	failure as this is done early during the boot sequence.
68  */
69 static int __init aio_setup(void)
70 {
71 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75 
76 	aio_wq = create_workqueue("aio");
77 
78 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 
80 	return 0;
81 }
82 
83 static void aio_free_ring(struct kioctx *ctx)
84 {
85 	struct aio_ring_info *info = &ctx->ring_info;
86 	long i;
87 
88 	for (i=0; i<info->nr_pages; i++)
89 		put_page(info->ring_pages[i]);
90 
91 	if (info->mmap_size) {
92 		down_write(&ctx->mm->mmap_sem);
93 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 		up_write(&ctx->mm->mmap_sem);
95 	}
96 
97 	if (info->ring_pages && info->ring_pages != info->internal_pages)
98 		kfree(info->ring_pages);
99 	info->ring_pages = NULL;
100 	info->nr = 0;
101 }
102 
103 static int aio_setup_ring(struct kioctx *ctx)
104 {
105 	struct aio_ring *ring;
106 	struct aio_ring_info *info = &ctx->ring_info;
107 	unsigned nr_events = ctx->max_reqs;
108 	unsigned long size;
109 	int nr_pages;
110 
111 	/* Compensate for the ring buffer's head/tail overlap entry */
112 	nr_events += 2;	/* 1 is required, 2 for good luck */
113 
114 	size = sizeof(struct aio_ring);
115 	size += sizeof(struct io_event) * nr_events;
116 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 
118 	if (nr_pages < 0)
119 		return -EINVAL;
120 
121 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 
123 	info->nr = 0;
124 	info->ring_pages = info->internal_pages;
125 	if (nr_pages > AIO_RING_PAGES) {
126 		info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
127 		if (!info->ring_pages)
128 			return -ENOMEM;
129 		memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
130 	}
131 
132 	info->mmap_size = nr_pages * PAGE_SIZE;
133 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
134 	down_write(&ctx->mm->mmap_sem);
135 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
136 				  PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
137 				  0);
138 	if (IS_ERR((void *)info->mmap_base)) {
139 		up_write(&ctx->mm->mmap_sem);
140 		printk("mmap err: %ld\n", -info->mmap_base);
141 		info->mmap_size = 0;
142 		aio_free_ring(ctx);
143 		return -EAGAIN;
144 	}
145 
146 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
147 	info->nr_pages = get_user_pages(current, ctx->mm,
148 					info->mmap_base, nr_pages,
149 					1, 0, info->ring_pages, NULL);
150 	up_write(&ctx->mm->mmap_sem);
151 
152 	if (unlikely(info->nr_pages != nr_pages)) {
153 		aio_free_ring(ctx);
154 		return -EAGAIN;
155 	}
156 
157 	ctx->user_id = info->mmap_base;
158 
159 	info->nr = nr_events;		/* trusted copy */
160 
161 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
162 	ring->nr = nr_events;	/* user copy */
163 	ring->id = ctx->user_id;
164 	ring->head = ring->tail = 0;
165 	ring->magic = AIO_RING_MAGIC;
166 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
167 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
168 	ring->header_length = sizeof(struct aio_ring);
169 	kunmap_atomic(ring, KM_USER0);
170 
171 	return 0;
172 }
173 
174 
175 /* aio_ring_event: returns a pointer to the event at the given index from
176  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
177  */
178 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
179 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
180 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 
182 #define aio_ring_event(info, nr, km) ({					\
183 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
184 	struct io_event *__event;					\
185 	__event = kmap_atomic(						\
186 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
187 	__event += pos % AIO_EVENTS_PER_PAGE;				\
188 	__event;							\
189 })
190 
191 #define put_aio_ring_event(event, km) do {	\
192 	struct io_event *__event = (event);	\
193 	(void)__event;				\
194 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
195 } while(0)
196 
197 /* ioctx_alloc
198  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
199  */
200 static struct kioctx *ioctx_alloc(unsigned nr_events)
201 {
202 	struct mm_struct *mm;
203 	struct kioctx *ctx;
204 
205 	/* Prevent overflows */
206 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
207 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
208 		pr_debug("ENOMEM: nr_events too high\n");
209 		return ERR_PTR(-EINVAL);
210 	}
211 
212 	if ((unsigned long)nr_events > aio_max_nr)
213 		return ERR_PTR(-EAGAIN);
214 
215 	ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
216 	if (!ctx)
217 		return ERR_PTR(-ENOMEM);
218 
219 	memset(ctx, 0, sizeof(*ctx));
220 	ctx->max_reqs = nr_events;
221 	mm = ctx->mm = current->mm;
222 	atomic_inc(&mm->mm_count);
223 
224 	atomic_set(&ctx->users, 1);
225 	spin_lock_init(&ctx->ctx_lock);
226 	spin_lock_init(&ctx->ring_info.ring_lock);
227 	init_waitqueue_head(&ctx->wait);
228 
229 	INIT_LIST_HEAD(&ctx->active_reqs);
230 	INIT_LIST_HEAD(&ctx->run_list);
231 	INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
232 
233 	if (aio_setup_ring(ctx) < 0)
234 		goto out_freectx;
235 
236 	/* limit the number of system wide aios */
237 	spin_lock(&aio_nr_lock);
238 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
239 	    aio_nr + ctx->max_reqs < aio_nr)
240 		ctx->max_reqs = 0;
241 	else
242 		aio_nr += ctx->max_reqs;
243 	spin_unlock(&aio_nr_lock);
244 	if (ctx->max_reqs == 0)
245 		goto out_cleanup;
246 
247 	/* now link into global list.  kludge.  FIXME */
248 	write_lock(&mm->ioctx_list_lock);
249 	ctx->next = mm->ioctx_list;
250 	mm->ioctx_list = ctx;
251 	write_unlock(&mm->ioctx_list_lock);
252 
253 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
254 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
255 	return ctx;
256 
257 out_cleanup:
258 	__put_ioctx(ctx);
259 	return ERR_PTR(-EAGAIN);
260 
261 out_freectx:
262 	mmdrop(mm);
263 	kmem_cache_free(kioctx_cachep, ctx);
264 	ctx = ERR_PTR(-ENOMEM);
265 
266 	dprintk("aio: error allocating ioctx %p\n", ctx);
267 	return ctx;
268 }
269 
270 /* aio_cancel_all
271  *	Cancels all outstanding aio requests on an aio context.  Used
272  *	when the processes owning a context have all exited to encourage
273  *	the rapid destruction of the kioctx.
274  */
275 static void aio_cancel_all(struct kioctx *ctx)
276 {
277 	int (*cancel)(struct kiocb *, struct io_event *);
278 	struct io_event res;
279 	spin_lock_irq(&ctx->ctx_lock);
280 	ctx->dead = 1;
281 	while (!list_empty(&ctx->active_reqs)) {
282 		struct list_head *pos = ctx->active_reqs.next;
283 		struct kiocb *iocb = list_kiocb(pos);
284 		list_del_init(&iocb->ki_list);
285 		cancel = iocb->ki_cancel;
286 		kiocbSetCancelled(iocb);
287 		if (cancel) {
288 			iocb->ki_users++;
289 			spin_unlock_irq(&ctx->ctx_lock);
290 			cancel(iocb, &res);
291 			spin_lock_irq(&ctx->ctx_lock);
292 		}
293 	}
294 	spin_unlock_irq(&ctx->ctx_lock);
295 }
296 
297 static void wait_for_all_aios(struct kioctx *ctx)
298 {
299 	struct task_struct *tsk = current;
300 	DECLARE_WAITQUEUE(wait, tsk);
301 
302 	if (!ctx->reqs_active)
303 		return;
304 
305 	add_wait_queue(&ctx->wait, &wait);
306 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
307 	while (ctx->reqs_active) {
308 		schedule();
309 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
310 	}
311 	__set_task_state(tsk, TASK_RUNNING);
312 	remove_wait_queue(&ctx->wait, &wait);
313 }
314 
315 /* wait_on_sync_kiocb:
316  *	Waits on the given sync kiocb to complete.
317  */
318 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
319 {
320 	while (iocb->ki_users) {
321 		set_current_state(TASK_UNINTERRUPTIBLE);
322 		if (!iocb->ki_users)
323 			break;
324 		schedule();
325 	}
326 	__set_current_state(TASK_RUNNING);
327 	return iocb->ki_user_data;
328 }
329 
330 /* exit_aio: called when the last user of mm goes away.  At this point,
331  * there is no way for any new requests to be submited or any of the
332  * io_* syscalls to be called on the context.  However, there may be
333  * outstanding requests which hold references to the context; as they
334  * go away, they will call put_ioctx and release any pinned memory
335  * associated with the request (held via struct page * references).
336  */
337 void fastcall exit_aio(struct mm_struct *mm)
338 {
339 	struct kioctx *ctx = mm->ioctx_list;
340 	mm->ioctx_list = NULL;
341 	while (ctx) {
342 		struct kioctx *next = ctx->next;
343 		ctx->next = NULL;
344 		aio_cancel_all(ctx);
345 
346 		wait_for_all_aios(ctx);
347 		/*
348 		 * this is an overkill, but ensures we don't leave
349 		 * the ctx on the aio_wq
350 		 */
351 		flush_workqueue(aio_wq);
352 
353 		if (1 != atomic_read(&ctx->users))
354 			printk(KERN_DEBUG
355 				"exit_aio:ioctx still alive: %d %d %d\n",
356 				atomic_read(&ctx->users), ctx->dead,
357 				ctx->reqs_active);
358 		put_ioctx(ctx);
359 		ctx = next;
360 	}
361 }
362 
363 /* __put_ioctx
364  *	Called when the last user of an aio context has gone away,
365  *	and the struct needs to be freed.
366  */
367 void fastcall __put_ioctx(struct kioctx *ctx)
368 {
369 	unsigned nr_events = ctx->max_reqs;
370 
371 	if (unlikely(ctx->reqs_active))
372 		BUG();
373 
374 	cancel_delayed_work(&ctx->wq);
375 	flush_workqueue(aio_wq);
376 	aio_free_ring(ctx);
377 	mmdrop(ctx->mm);
378 	ctx->mm = NULL;
379 	pr_debug("__put_ioctx: freeing %p\n", ctx);
380 	kmem_cache_free(kioctx_cachep, ctx);
381 
382 	if (nr_events) {
383 		spin_lock(&aio_nr_lock);
384 		BUG_ON(aio_nr - nr_events > aio_nr);
385 		aio_nr -= nr_events;
386 		spin_unlock(&aio_nr_lock);
387 	}
388 }
389 
390 /* aio_get_req
391  *	Allocate a slot for an aio request.  Increments the users count
392  * of the kioctx so that the kioctx stays around until all requests are
393  * complete.  Returns NULL if no requests are free.
394  *
395  * Returns with kiocb->users set to 2.  The io submit code path holds
396  * an extra reference while submitting the i/o.
397  * This prevents races between the aio code path referencing the
398  * req (after submitting it) and aio_complete() freeing the req.
399  */
400 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
401 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
402 {
403 	struct kiocb *req = NULL;
404 	struct aio_ring *ring;
405 	int okay = 0;
406 
407 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
408 	if (unlikely(!req))
409 		return NULL;
410 
411 	req->ki_flags = 0;
412 	req->ki_users = 2;
413 	req->ki_key = 0;
414 	req->ki_ctx = ctx;
415 	req->ki_cancel = NULL;
416 	req->ki_retry = NULL;
417 	req->ki_dtor = NULL;
418 	req->private = NULL;
419 	INIT_LIST_HEAD(&req->ki_run_list);
420 
421 	/* Check if the completion queue has enough free space to
422 	 * accept an event from this io.
423 	 */
424 	spin_lock_irq(&ctx->ctx_lock);
425 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
426 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
427 		list_add(&req->ki_list, &ctx->active_reqs);
428 		get_ioctx(ctx);
429 		ctx->reqs_active++;
430 		okay = 1;
431 	}
432 	kunmap_atomic(ring, KM_USER0);
433 	spin_unlock_irq(&ctx->ctx_lock);
434 
435 	if (!okay) {
436 		kmem_cache_free(kiocb_cachep, req);
437 		req = NULL;
438 	}
439 
440 	return req;
441 }
442 
443 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
444 {
445 	struct kiocb *req;
446 	/* Handle a potential starvation case -- should be exceedingly rare as
447 	 * requests will be stuck on fput_head only if the aio_fput_routine is
448 	 * delayed and the requests were the last user of the struct file.
449 	 */
450 	req = __aio_get_req(ctx);
451 	if (unlikely(NULL == req)) {
452 		aio_fput_routine(NULL);
453 		req = __aio_get_req(ctx);
454 	}
455 	return req;
456 }
457 
458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
459 {
460 	assert_spin_locked(&ctx->ctx_lock);
461 
462 	if (req->ki_dtor)
463 		req->ki_dtor(req);
464 	kmem_cache_free(kiocb_cachep, req);
465 	ctx->reqs_active--;
466 
467 	if (unlikely(!ctx->reqs_active && ctx->dead))
468 		wake_up(&ctx->wait);
469 }
470 
471 static void aio_fput_routine(void *data)
472 {
473 	spin_lock_irq(&fput_lock);
474 	while (likely(!list_empty(&fput_head))) {
475 		struct kiocb *req = list_kiocb(fput_head.next);
476 		struct kioctx *ctx = req->ki_ctx;
477 
478 		list_del(&req->ki_list);
479 		spin_unlock_irq(&fput_lock);
480 
481 		/* Complete the fput */
482 		__fput(req->ki_filp);
483 
484 		/* Link the iocb into the context's free list */
485 		spin_lock_irq(&ctx->ctx_lock);
486 		really_put_req(ctx, req);
487 		spin_unlock_irq(&ctx->ctx_lock);
488 
489 		put_ioctx(ctx);
490 		spin_lock_irq(&fput_lock);
491 	}
492 	spin_unlock_irq(&fput_lock);
493 }
494 
495 /* __aio_put_req
496  *	Returns true if this put was the last user of the request.
497  */
498 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
499 {
500 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
501 		req, atomic_read(&req->ki_filp->f_count));
502 
503 	assert_spin_locked(&ctx->ctx_lock);
504 
505 	req->ki_users --;
506 	if (unlikely(req->ki_users < 0))
507 		BUG();
508 	if (likely(req->ki_users))
509 		return 0;
510 	list_del(&req->ki_list);		/* remove from active_reqs */
511 	req->ki_cancel = NULL;
512 	req->ki_retry = NULL;
513 
514 	/* Must be done under the lock to serialise against cancellation.
515 	 * Call this aio_fput as it duplicates fput via the fput_work.
516 	 */
517 	if (unlikely(rcuref_dec_and_test(&req->ki_filp->f_count))) {
518 		get_ioctx(ctx);
519 		spin_lock(&fput_lock);
520 		list_add(&req->ki_list, &fput_head);
521 		spin_unlock(&fput_lock);
522 		queue_work(aio_wq, &fput_work);
523 	} else
524 		really_put_req(ctx, req);
525 	return 1;
526 }
527 
528 /* aio_put_req
529  *	Returns true if this put was the last user of the kiocb,
530  *	false if the request is still in use.
531  */
532 int fastcall aio_put_req(struct kiocb *req)
533 {
534 	struct kioctx *ctx = req->ki_ctx;
535 	int ret;
536 	spin_lock_irq(&ctx->ctx_lock);
537 	ret = __aio_put_req(ctx, req);
538 	spin_unlock_irq(&ctx->ctx_lock);
539 	if (ret)
540 		put_ioctx(ctx);
541 	return ret;
542 }
543 
544 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
545  *	FIXME: this is O(n) and is only suitable for development.
546  */
547 struct kioctx *lookup_ioctx(unsigned long ctx_id)
548 {
549 	struct kioctx *ioctx;
550 	struct mm_struct *mm;
551 
552 	mm = current->mm;
553 	read_lock(&mm->ioctx_list_lock);
554 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
555 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
556 			get_ioctx(ioctx);
557 			break;
558 		}
559 	read_unlock(&mm->ioctx_list_lock);
560 
561 	return ioctx;
562 }
563 
564 /*
565  * use_mm
566  *	Makes the calling kernel thread take on the specified
567  *	mm context.
568  *	Called by the retry thread execute retries within the
569  *	iocb issuer's mm context, so that copy_from/to_user
570  *	operations work seamlessly for aio.
571  *	(Note: this routine is intended to be called only
572  *	from a kernel thread context)
573  */
574 static void use_mm(struct mm_struct *mm)
575 {
576 	struct mm_struct *active_mm;
577 	struct task_struct *tsk = current;
578 
579 	task_lock(tsk);
580 	tsk->flags |= PF_BORROWED_MM;
581 	active_mm = tsk->active_mm;
582 	atomic_inc(&mm->mm_count);
583 	tsk->mm = mm;
584 	tsk->active_mm = mm;
585 	/*
586 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
587 	 * it won't work. Update it accordingly if you change it here
588 	 */
589 	activate_mm(active_mm, mm);
590 	task_unlock(tsk);
591 
592 	mmdrop(active_mm);
593 }
594 
595 /*
596  * unuse_mm
597  *	Reverses the effect of use_mm, i.e. releases the
598  *	specified mm context which was earlier taken on
599  *	by the calling kernel thread
600  *	(Note: this routine is intended to be called only
601  *	from a kernel thread context)
602  *
603  * Comments: Called with ctx->ctx_lock held. This nests
604  * task_lock instead ctx_lock.
605  */
606 static void unuse_mm(struct mm_struct *mm)
607 {
608 	struct task_struct *tsk = current;
609 
610 	task_lock(tsk);
611 	tsk->flags &= ~PF_BORROWED_MM;
612 	tsk->mm = NULL;
613 	/* active_mm is still 'mm' */
614 	enter_lazy_tlb(mm, tsk);
615 	task_unlock(tsk);
616 }
617 
618 /*
619  * Queue up a kiocb to be retried. Assumes that the kiocb
620  * has already been marked as kicked, and places it on
621  * the retry run list for the corresponding ioctx, if it
622  * isn't already queued. Returns 1 if it actually queued
623  * the kiocb (to tell the caller to activate the work
624  * queue to process it), or 0, if it found that it was
625  * already queued.
626  */
627 static inline int __queue_kicked_iocb(struct kiocb *iocb)
628 {
629 	struct kioctx *ctx = iocb->ki_ctx;
630 
631 	assert_spin_locked(&ctx->ctx_lock);
632 
633 	if (list_empty(&iocb->ki_run_list)) {
634 		list_add_tail(&iocb->ki_run_list,
635 			&ctx->run_list);
636 		return 1;
637 	}
638 	return 0;
639 }
640 
641 /* aio_run_iocb
642  *	This is the core aio execution routine. It is
643  *	invoked both for initial i/o submission and
644  *	subsequent retries via the aio_kick_handler.
645  *	Expects to be invoked with iocb->ki_ctx->lock
646  *	already held. The lock is released and reaquired
647  *	as needed during processing.
648  *
649  * Calls the iocb retry method (already setup for the
650  * iocb on initial submission) for operation specific
651  * handling, but takes care of most of common retry
652  * execution details for a given iocb. The retry method
653  * needs to be non-blocking as far as possible, to avoid
654  * holding up other iocbs waiting to be serviced by the
655  * retry kernel thread.
656  *
657  * The trickier parts in this code have to do with
658  * ensuring that only one retry instance is in progress
659  * for a given iocb at any time. Providing that guarantee
660  * simplifies the coding of individual aio operations as
661  * it avoids various potential races.
662  */
663 static ssize_t aio_run_iocb(struct kiocb *iocb)
664 {
665 	struct kioctx	*ctx = iocb->ki_ctx;
666 	ssize_t (*retry)(struct kiocb *);
667 	ssize_t ret;
668 
669 	if (iocb->ki_retried++ > 1024*1024) {
670 		printk("Maximal retry count.  Bytes done %Zd\n",
671 			iocb->ki_nbytes - iocb->ki_left);
672 		return -EAGAIN;
673 	}
674 
675 	if (!(iocb->ki_retried & 0xff)) {
676 		pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
677 			iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
678 	}
679 
680 	if (!(retry = iocb->ki_retry)) {
681 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
682 		return 0;
683 	}
684 
685 	/*
686 	 * We don't want the next retry iteration for this
687 	 * operation to start until this one has returned and
688 	 * updated the iocb state. However, wait_queue functions
689 	 * can trigger a kick_iocb from interrupt context in the
690 	 * meantime, indicating that data is available for the next
691 	 * iteration. We want to remember that and enable the
692 	 * next retry iteration _after_ we are through with
693 	 * this one.
694 	 *
695 	 * So, in order to be able to register a "kick", but
696 	 * prevent it from being queued now, we clear the kick
697 	 * flag, but make the kick code *think* that the iocb is
698 	 * still on the run list until we are actually done.
699 	 * When we are done with this iteration, we check if
700 	 * the iocb was kicked in the meantime and if so, queue
701 	 * it up afresh.
702 	 */
703 
704 	kiocbClearKicked(iocb);
705 
706 	/*
707 	 * This is so that aio_complete knows it doesn't need to
708 	 * pull the iocb off the run list (We can't just call
709 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
710 	 * queue this on the run list yet)
711 	 */
712 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
713 	spin_unlock_irq(&ctx->ctx_lock);
714 
715 	/* Quit retrying if the i/o has been cancelled */
716 	if (kiocbIsCancelled(iocb)) {
717 		ret = -EINTR;
718 		aio_complete(iocb, ret, 0);
719 		/* must not access the iocb after this */
720 		goto out;
721 	}
722 
723 	/*
724 	 * Now we are all set to call the retry method in async
725 	 * context. By setting this thread's io_wait context
726 	 * to point to the wait queue entry inside the currently
727 	 * running iocb for the duration of the retry, we ensure
728 	 * that async notification wakeups are queued by the
729 	 * operation instead of blocking waits, and when notified,
730 	 * cause the iocb to be kicked for continuation (through
731 	 * the aio_wake_function callback).
732 	 */
733 	BUG_ON(current->io_wait != NULL);
734 	current->io_wait = &iocb->ki_wait;
735 	ret = retry(iocb);
736 	current->io_wait = NULL;
737 
738 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
739 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
740 		aio_complete(iocb, ret, 0);
741 	}
742 out:
743 	spin_lock_irq(&ctx->ctx_lock);
744 
745 	if (-EIOCBRETRY == ret) {
746 		/*
747 		 * OK, now that we are done with this iteration
748 		 * and know that there is more left to go,
749 		 * this is where we let go so that a subsequent
750 		 * "kick" can start the next iteration
751 		 */
752 
753 		/* will make __queue_kicked_iocb succeed from here on */
754 		INIT_LIST_HEAD(&iocb->ki_run_list);
755 		/* we must queue the next iteration ourselves, if it
756 		 * has already been kicked */
757 		if (kiocbIsKicked(iocb)) {
758 			__queue_kicked_iocb(iocb);
759 
760 			/*
761 			 * __queue_kicked_iocb will always return 1 here, because
762 			 * iocb->ki_run_list is empty at this point so it should
763 			 * be safe to unconditionally queue the context into the
764 			 * work queue.
765 			 */
766 			aio_queue_work(ctx);
767 		}
768 	}
769 	return ret;
770 }
771 
772 /*
773  * __aio_run_iocbs:
774  * 	Process all pending retries queued on the ioctx
775  * 	run list.
776  * Assumes it is operating within the aio issuer's mm
777  * context.
778  */
779 static int __aio_run_iocbs(struct kioctx *ctx)
780 {
781 	struct kiocb *iocb;
782 	LIST_HEAD(run_list);
783 
784 	assert_spin_locked(&ctx->ctx_lock);
785 
786 	list_splice_init(&ctx->run_list, &run_list);
787 	while (!list_empty(&run_list)) {
788 		iocb = list_entry(run_list.next, struct kiocb,
789 			ki_run_list);
790 		list_del(&iocb->ki_run_list);
791 		/*
792 		 * Hold an extra reference while retrying i/o.
793 		 */
794 		iocb->ki_users++;       /* grab extra reference */
795 		aio_run_iocb(iocb);
796 		if (__aio_put_req(ctx, iocb))  /* drop extra ref */
797 			put_ioctx(ctx);
798  	}
799 	if (!list_empty(&ctx->run_list))
800 		return 1;
801 	return 0;
802 }
803 
804 static void aio_queue_work(struct kioctx * ctx)
805 {
806 	unsigned long timeout;
807 	/*
808 	 * if someone is waiting, get the work started right
809 	 * away, otherwise, use a longer delay
810 	 */
811 	smp_mb();
812 	if (waitqueue_active(&ctx->wait))
813 		timeout = 1;
814 	else
815 		timeout = HZ/10;
816 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
817 }
818 
819 
820 /*
821  * aio_run_iocbs:
822  * 	Process all pending retries queued on the ioctx
823  * 	run list.
824  * Assumes it is operating within the aio issuer's mm
825  * context.
826  */
827 static inline void aio_run_iocbs(struct kioctx *ctx)
828 {
829 	int requeue;
830 
831 	spin_lock_irq(&ctx->ctx_lock);
832 
833 	requeue = __aio_run_iocbs(ctx);
834 	spin_unlock_irq(&ctx->ctx_lock);
835 	if (requeue)
836 		aio_queue_work(ctx);
837 }
838 
839 /*
840  * just like aio_run_iocbs, but keeps running them until
841  * the list stays empty
842  */
843 static inline void aio_run_all_iocbs(struct kioctx *ctx)
844 {
845 	spin_lock_irq(&ctx->ctx_lock);
846 	while (__aio_run_iocbs(ctx))
847 		;
848 	spin_unlock_irq(&ctx->ctx_lock);
849 }
850 
851 /*
852  * aio_kick_handler:
853  * 	Work queue handler triggered to process pending
854  * 	retries on an ioctx. Takes on the aio issuer's
855  *	mm context before running the iocbs, so that
856  *	copy_xxx_user operates on the issuer's address
857  *      space.
858  * Run on aiod's context.
859  */
860 static void aio_kick_handler(void *data)
861 {
862 	struct kioctx *ctx = data;
863 	mm_segment_t oldfs = get_fs();
864 	int requeue;
865 
866 	set_fs(USER_DS);
867 	use_mm(ctx->mm);
868 	spin_lock_irq(&ctx->ctx_lock);
869 	requeue =__aio_run_iocbs(ctx);
870  	unuse_mm(ctx->mm);
871 	spin_unlock_irq(&ctx->ctx_lock);
872 	set_fs(oldfs);
873 	/*
874 	 * we're in a worker thread already, don't use queue_delayed_work,
875 	 */
876 	if (requeue)
877 		queue_work(aio_wq, &ctx->wq);
878 }
879 
880 
881 /*
882  * Called by kick_iocb to queue the kiocb for retry
883  * and if required activate the aio work queue to process
884  * it
885  */
886 static void try_queue_kicked_iocb(struct kiocb *iocb)
887 {
888  	struct kioctx	*ctx = iocb->ki_ctx;
889 	unsigned long flags;
890 	int run = 0;
891 
892 	/* We're supposed to be the only path putting the iocb back on the run
893 	 * list.  If we find that the iocb is *back* on a wait queue already
894 	 * than retry has happened before we could queue the iocb.  This also
895 	 * means that the retry could have completed and freed our iocb, no
896 	 * good. */
897 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
898 
899 	spin_lock_irqsave(&ctx->ctx_lock, flags);
900 	/* set this inside the lock so that we can't race with aio_run_iocb()
901 	 * testing it and putting the iocb on the run list under the lock */
902 	if (!kiocbTryKick(iocb))
903 		run = __queue_kicked_iocb(iocb);
904 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
905 	if (run)
906 		aio_queue_work(ctx);
907 }
908 
909 /*
910  * kick_iocb:
911  *      Called typically from a wait queue callback context
912  *      (aio_wake_function) to trigger a retry of the iocb.
913  *      The retry is usually executed by aio workqueue
914  *      threads (See aio_kick_handler).
915  */
916 void fastcall kick_iocb(struct kiocb *iocb)
917 {
918 	/* sync iocbs are easy: they can only ever be executing from a
919 	 * single context. */
920 	if (is_sync_kiocb(iocb)) {
921 		kiocbSetKicked(iocb);
922 	        wake_up_process(iocb->ki_obj.tsk);
923 		return;
924 	}
925 
926 	try_queue_kicked_iocb(iocb);
927 }
928 EXPORT_SYMBOL(kick_iocb);
929 
930 /* aio_complete
931  *	Called when the io request on the given iocb is complete.
932  *	Returns true if this is the last user of the request.  The
933  *	only other user of the request can be the cancellation code.
934  */
935 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
936 {
937 	struct kioctx	*ctx = iocb->ki_ctx;
938 	struct aio_ring_info	*info;
939 	struct aio_ring	*ring;
940 	struct io_event	*event;
941 	unsigned long	flags;
942 	unsigned long	tail;
943 	int		ret;
944 
945 	/*
946 	 * Special case handling for sync iocbs:
947 	 *  - events go directly into the iocb for fast handling
948 	 *  - the sync task with the iocb in its stack holds the single iocb
949 	 *    ref, no other paths have a way to get another ref
950 	 *  - the sync task helpfully left a reference to itself in the iocb
951 	 */
952 	if (is_sync_kiocb(iocb)) {
953 		BUG_ON(iocb->ki_users != 1);
954 		iocb->ki_user_data = res;
955 		iocb->ki_users = 0;
956 		wake_up_process(iocb->ki_obj.tsk);
957 		return 1;
958 	}
959 
960 	info = &ctx->ring_info;
961 
962 	/* add a completion event to the ring buffer.
963 	 * must be done holding ctx->ctx_lock to prevent
964 	 * other code from messing with the tail
965 	 * pointer since we might be called from irq
966 	 * context.
967 	 */
968 	spin_lock_irqsave(&ctx->ctx_lock, flags);
969 
970 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
971 		list_del_init(&iocb->ki_run_list);
972 
973 	/*
974 	 * cancelled requests don't get events, userland was given one
975 	 * when the event got cancelled.
976 	 */
977 	if (kiocbIsCancelled(iocb))
978 		goto put_rq;
979 
980 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
981 
982 	tail = info->tail;
983 	event = aio_ring_event(info, tail, KM_IRQ0);
984 	if (++tail >= info->nr)
985 		tail = 0;
986 
987 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
988 	event->data = iocb->ki_user_data;
989 	event->res = res;
990 	event->res2 = res2;
991 
992 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
993 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
994 		res, res2);
995 
996 	/* after flagging the request as done, we
997 	 * must never even look at it again
998 	 */
999 	smp_wmb();	/* make event visible before updating tail */
1000 
1001 	info->tail = tail;
1002 	ring->tail = tail;
1003 
1004 	put_aio_ring_event(event, KM_IRQ0);
1005 	kunmap_atomic(ring, KM_IRQ1);
1006 
1007 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1008 
1009 	pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
1010 		iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
1011 put_rq:
1012 	/* everything turned out well, dispose of the aiocb. */
1013 	ret = __aio_put_req(ctx, iocb);
1014 
1015 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1016 
1017 	if (waitqueue_active(&ctx->wait))
1018 		wake_up(&ctx->wait);
1019 
1020 	if (ret)
1021 		put_ioctx(ctx);
1022 
1023 	return ret;
1024 }
1025 
1026 /* aio_read_evt
1027  *	Pull an event off of the ioctx's event ring.  Returns the number of
1028  *	events fetched (0 or 1 ;-)
1029  *	FIXME: make this use cmpxchg.
1030  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1031  */
1032 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1033 {
1034 	struct aio_ring_info *info = &ioctx->ring_info;
1035 	struct aio_ring *ring;
1036 	unsigned long head;
1037 	int ret = 0;
1038 
1039 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1040 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1041 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1042 		 (unsigned long)ring->nr);
1043 
1044 	if (ring->head == ring->tail)
1045 		goto out;
1046 
1047 	spin_lock(&info->ring_lock);
1048 
1049 	head = ring->head % info->nr;
1050 	if (head != ring->tail) {
1051 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1052 		*ent = *evp;
1053 		head = (head + 1) % info->nr;
1054 		smp_mb(); /* finish reading the event before updatng the head */
1055 		ring->head = head;
1056 		ret = 1;
1057 		put_aio_ring_event(evp, KM_USER1);
1058 	}
1059 	spin_unlock(&info->ring_lock);
1060 
1061 out:
1062 	kunmap_atomic(ring, KM_USER0);
1063 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1064 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1065 	return ret;
1066 }
1067 
1068 struct aio_timeout {
1069 	struct timer_list	timer;
1070 	int			timed_out;
1071 	struct task_struct	*p;
1072 };
1073 
1074 static void timeout_func(unsigned long data)
1075 {
1076 	struct aio_timeout *to = (struct aio_timeout *)data;
1077 
1078 	to->timed_out = 1;
1079 	wake_up_process(to->p);
1080 }
1081 
1082 static inline void init_timeout(struct aio_timeout *to)
1083 {
1084 	init_timer(&to->timer);
1085 	to->timer.data = (unsigned long)to;
1086 	to->timer.function = timeout_func;
1087 	to->timed_out = 0;
1088 	to->p = current;
1089 }
1090 
1091 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1092 			       const struct timespec *ts)
1093 {
1094 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1095 	if (time_after(to->timer.expires, jiffies))
1096 		add_timer(&to->timer);
1097 	else
1098 		to->timed_out = 1;
1099 }
1100 
1101 static inline void clear_timeout(struct aio_timeout *to)
1102 {
1103 	del_singleshot_timer_sync(&to->timer);
1104 }
1105 
1106 static int read_events(struct kioctx *ctx,
1107 			long min_nr, long nr,
1108 			struct io_event __user *event,
1109 			struct timespec __user *timeout)
1110 {
1111 	long			start_jiffies = jiffies;
1112 	struct task_struct	*tsk = current;
1113 	DECLARE_WAITQUEUE(wait, tsk);
1114 	int			ret;
1115 	int			i = 0;
1116 	struct io_event		ent;
1117 	struct aio_timeout	to;
1118 	int			retry = 0;
1119 
1120 	/* needed to zero any padding within an entry (there shouldn't be
1121 	 * any, but C is fun!
1122 	 */
1123 	memset(&ent, 0, sizeof(ent));
1124 retry:
1125 	ret = 0;
1126 	while (likely(i < nr)) {
1127 		ret = aio_read_evt(ctx, &ent);
1128 		if (unlikely(ret <= 0))
1129 			break;
1130 
1131 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1132 			ent.data, ent.obj, ent.res, ent.res2);
1133 
1134 		/* Could we split the check in two? */
1135 		ret = -EFAULT;
1136 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1137 			dprintk("aio: lost an event due to EFAULT.\n");
1138 			break;
1139 		}
1140 		ret = 0;
1141 
1142 		/* Good, event copied to userland, update counts. */
1143 		event ++;
1144 		i ++;
1145 	}
1146 
1147 	if (min_nr <= i)
1148 		return i;
1149 	if (ret)
1150 		return ret;
1151 
1152 	/* End fast path */
1153 
1154 	/* racey check, but it gets redone */
1155 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1156 		retry = 1;
1157 		aio_run_all_iocbs(ctx);
1158 		goto retry;
1159 	}
1160 
1161 	init_timeout(&to);
1162 	if (timeout) {
1163 		struct timespec	ts;
1164 		ret = -EFAULT;
1165 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1166 			goto out;
1167 
1168 		set_timeout(start_jiffies, &to, &ts);
1169 	}
1170 
1171 	while (likely(i < nr)) {
1172 		add_wait_queue_exclusive(&ctx->wait, &wait);
1173 		do {
1174 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1175 			ret = aio_read_evt(ctx, &ent);
1176 			if (ret)
1177 				break;
1178 			if (min_nr <= i)
1179 				break;
1180 			ret = 0;
1181 			if (to.timed_out)	/* Only check after read evt */
1182 				break;
1183 			schedule();
1184 			if (signal_pending(tsk)) {
1185 				ret = -EINTR;
1186 				break;
1187 			}
1188 			/*ret = aio_read_evt(ctx, &ent);*/
1189 		} while (1) ;
1190 
1191 		set_task_state(tsk, TASK_RUNNING);
1192 		remove_wait_queue(&ctx->wait, &wait);
1193 
1194 		if (unlikely(ret <= 0))
1195 			break;
1196 
1197 		ret = -EFAULT;
1198 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1199 			dprintk("aio: lost an event due to EFAULT.\n");
1200 			break;
1201 		}
1202 
1203 		/* Good, event copied to userland, update counts. */
1204 		event ++;
1205 		i ++;
1206 	}
1207 
1208 	if (timeout)
1209 		clear_timeout(&to);
1210 out:
1211 	return i ? i : ret;
1212 }
1213 
1214 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1215  * against races with itself via ->dead.
1216  */
1217 static void io_destroy(struct kioctx *ioctx)
1218 {
1219 	struct mm_struct *mm = current->mm;
1220 	struct kioctx **tmp;
1221 	int was_dead;
1222 
1223 	/* delete the entry from the list is someone else hasn't already */
1224 	write_lock(&mm->ioctx_list_lock);
1225 	was_dead = ioctx->dead;
1226 	ioctx->dead = 1;
1227 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1228 	     tmp = &(*tmp)->next)
1229 		;
1230 	if (*tmp)
1231 		*tmp = ioctx->next;
1232 	write_unlock(&mm->ioctx_list_lock);
1233 
1234 	dprintk("aio_release(%p)\n", ioctx);
1235 	if (likely(!was_dead))
1236 		put_ioctx(ioctx);	/* twice for the list */
1237 
1238 	aio_cancel_all(ioctx);
1239 	wait_for_all_aios(ioctx);
1240 	put_ioctx(ioctx);	/* once for the lookup */
1241 }
1242 
1243 /* sys_io_setup:
1244  *	Create an aio_context capable of receiving at least nr_events.
1245  *	ctxp must not point to an aio_context that already exists, and
1246  *	must be initialized to 0 prior to the call.  On successful
1247  *	creation of the aio_context, *ctxp is filled in with the resulting
1248  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1249  *	if the specified nr_events exceeds internal limits.  May fail
1250  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1251  *	of available events.  May fail with -ENOMEM if insufficient kernel
1252  *	resources are available.  May fail with -EFAULT if an invalid
1253  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1254  *	implemented.
1255  */
1256 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1257 {
1258 	struct kioctx *ioctx = NULL;
1259 	unsigned long ctx;
1260 	long ret;
1261 
1262 	ret = get_user(ctx, ctxp);
1263 	if (unlikely(ret))
1264 		goto out;
1265 
1266 	ret = -EINVAL;
1267 	if (unlikely(ctx || nr_events == 0)) {
1268 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1269 		         ctx, nr_events);
1270 		goto out;
1271 	}
1272 
1273 	ioctx = ioctx_alloc(nr_events);
1274 	ret = PTR_ERR(ioctx);
1275 	if (!IS_ERR(ioctx)) {
1276 		ret = put_user(ioctx->user_id, ctxp);
1277 		if (!ret)
1278 			return 0;
1279 
1280 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1281 		io_destroy(ioctx);
1282 	}
1283 
1284 out:
1285 	return ret;
1286 }
1287 
1288 /* sys_io_destroy:
1289  *	Destroy the aio_context specified.  May cancel any outstanding
1290  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1291  *	implemented.  May fail with -EFAULT if the context pointed to
1292  *	is invalid.
1293  */
1294 asmlinkage long sys_io_destroy(aio_context_t ctx)
1295 {
1296 	struct kioctx *ioctx = lookup_ioctx(ctx);
1297 	if (likely(NULL != ioctx)) {
1298 		io_destroy(ioctx);
1299 		return 0;
1300 	}
1301 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1302 	return -EINVAL;
1303 }
1304 
1305 /*
1306  * aio_p{read,write} are the default  ki_retry methods for
1307  * IO_CMD_P{READ,WRITE}.  They maintains kiocb retry state around potentially
1308  * multiple calls to f_op->aio_read().  They loop around partial progress
1309  * instead of returning -EIOCBRETRY because they don't have the means to call
1310  * kick_iocb().
1311  */
1312 static ssize_t aio_pread(struct kiocb *iocb)
1313 {
1314 	struct file *file = iocb->ki_filp;
1315 	struct address_space *mapping = file->f_mapping;
1316 	struct inode *inode = mapping->host;
1317 	ssize_t ret = 0;
1318 
1319 	do {
1320 		ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1321 			iocb->ki_left, iocb->ki_pos);
1322 		/*
1323 		 * Can't just depend on iocb->ki_left to determine
1324 		 * whether we are done. This may have been a short read.
1325 		 */
1326 		if (ret > 0) {
1327 			iocb->ki_buf += ret;
1328 			iocb->ki_left -= ret;
1329 		}
1330 
1331 		/*
1332 		 * For pipes and sockets we return once we have some data; for
1333 		 * regular files we retry till we complete the entire read or
1334 		 * find that we can't read any more data (e.g short reads).
1335 		 */
1336 	} while (ret > 0 && iocb->ki_left > 0 &&
1337 		 !S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode));
1338 
1339 	/* This means we must have transferred all that we could */
1340 	/* No need to retry anymore */
1341 	if ((ret == 0) || (iocb->ki_left == 0))
1342 		ret = iocb->ki_nbytes - iocb->ki_left;
1343 
1344 	return ret;
1345 }
1346 
1347 /* see aio_pread() */
1348 static ssize_t aio_pwrite(struct kiocb *iocb)
1349 {
1350 	struct file *file = iocb->ki_filp;
1351 	ssize_t ret = 0;
1352 
1353 	do {
1354 		ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1355 			iocb->ki_left, iocb->ki_pos);
1356 		if (ret > 0) {
1357 			iocb->ki_buf += ret;
1358 			iocb->ki_left -= ret;
1359 		}
1360 	} while (ret > 0 && iocb->ki_left > 0);
1361 
1362 	if ((ret == 0) || (iocb->ki_left == 0))
1363 		ret = iocb->ki_nbytes - iocb->ki_left;
1364 
1365 	return ret;
1366 }
1367 
1368 static ssize_t aio_fdsync(struct kiocb *iocb)
1369 {
1370 	struct file *file = iocb->ki_filp;
1371 	ssize_t ret = -EINVAL;
1372 
1373 	if (file->f_op->aio_fsync)
1374 		ret = file->f_op->aio_fsync(iocb, 1);
1375 	return ret;
1376 }
1377 
1378 static ssize_t aio_fsync(struct kiocb *iocb)
1379 {
1380 	struct file *file = iocb->ki_filp;
1381 	ssize_t ret = -EINVAL;
1382 
1383 	if (file->f_op->aio_fsync)
1384 		ret = file->f_op->aio_fsync(iocb, 0);
1385 	return ret;
1386 }
1387 
1388 /*
1389  * aio_setup_iocb:
1390  *	Performs the initial checks and aio retry method
1391  *	setup for the kiocb at the time of io submission.
1392  */
1393 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1394 {
1395 	struct file *file = kiocb->ki_filp;
1396 	ssize_t ret = 0;
1397 
1398 	switch (kiocb->ki_opcode) {
1399 	case IOCB_CMD_PREAD:
1400 		ret = -EBADF;
1401 		if (unlikely(!(file->f_mode & FMODE_READ)))
1402 			break;
1403 		ret = -EFAULT;
1404 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1405 			kiocb->ki_left)))
1406 			break;
1407 		ret = security_file_permission(file, MAY_READ);
1408 		if (unlikely(ret))
1409 			break;
1410 		ret = -EINVAL;
1411 		if (file->f_op->aio_read)
1412 			kiocb->ki_retry = aio_pread;
1413 		break;
1414 	case IOCB_CMD_PWRITE:
1415 		ret = -EBADF;
1416 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1417 			break;
1418 		ret = -EFAULT;
1419 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1420 			kiocb->ki_left)))
1421 			break;
1422 		ret = security_file_permission(file, MAY_WRITE);
1423 		if (unlikely(ret))
1424 			break;
1425 		ret = -EINVAL;
1426 		if (file->f_op->aio_write)
1427 			kiocb->ki_retry = aio_pwrite;
1428 		break;
1429 	case IOCB_CMD_FDSYNC:
1430 		ret = -EINVAL;
1431 		if (file->f_op->aio_fsync)
1432 			kiocb->ki_retry = aio_fdsync;
1433 		break;
1434 	case IOCB_CMD_FSYNC:
1435 		ret = -EINVAL;
1436 		if (file->f_op->aio_fsync)
1437 			kiocb->ki_retry = aio_fsync;
1438 		break;
1439 	default:
1440 		dprintk("EINVAL: io_submit: no operation provided\n");
1441 		ret = -EINVAL;
1442 	}
1443 
1444 	if (!kiocb->ki_retry)
1445 		return ret;
1446 
1447 	return 0;
1448 }
1449 
1450 /*
1451  * aio_wake_function:
1452  * 	wait queue callback function for aio notification,
1453  * 	Simply triggers a retry of the operation via kick_iocb.
1454  *
1455  * 	This callback is specified in the wait queue entry in
1456  *	a kiocb	(current->io_wait points to this wait queue
1457  *	entry when an aio operation executes; it is used
1458  * 	instead of a synchronous wait when an i/o blocking
1459  *	condition is encountered during aio).
1460  *
1461  * Note:
1462  * This routine is executed with the wait queue lock held.
1463  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1464  * the ioctx lock inside the wait queue lock. This is safe
1465  * because this callback isn't used for wait queues which
1466  * are nested inside ioctx lock (i.e. ctx->wait)
1467  */
1468 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1469 			     int sync, void *key)
1470 {
1471 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1472 
1473 	list_del_init(&wait->task_list);
1474 	kick_iocb(iocb);
1475 	return 1;
1476 }
1477 
1478 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1479 			 struct iocb *iocb)
1480 {
1481 	struct kiocb *req;
1482 	struct file *file;
1483 	ssize_t ret;
1484 
1485 	/* enforce forwards compatibility on users */
1486 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1487 		     iocb->aio_reserved3)) {
1488 		pr_debug("EINVAL: io_submit: reserve field set\n");
1489 		return -EINVAL;
1490 	}
1491 
1492 	/* prevent overflows */
1493 	if (unlikely(
1494 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1495 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1496 	    ((ssize_t)iocb->aio_nbytes < 0)
1497 	   )) {
1498 		pr_debug("EINVAL: io_submit: overflow check\n");
1499 		return -EINVAL;
1500 	}
1501 
1502 	file = fget(iocb->aio_fildes);
1503 	if (unlikely(!file))
1504 		return -EBADF;
1505 
1506 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1507 	if (unlikely(!req)) {
1508 		fput(file);
1509 		return -EAGAIN;
1510 	}
1511 
1512 	req->ki_filp = file;
1513 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1514 	if (unlikely(ret)) {
1515 		dprintk("EFAULT: aio_key\n");
1516 		goto out_put_req;
1517 	}
1518 
1519 	req->ki_obj.user = user_iocb;
1520 	req->ki_user_data = iocb->aio_data;
1521 	req->ki_pos = iocb->aio_offset;
1522 
1523 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1524 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1525 	req->ki_opcode = iocb->aio_lio_opcode;
1526 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1527 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1528 	req->ki_retried = 0;
1529 
1530 	ret = aio_setup_iocb(req);
1531 
1532 	if (ret)
1533 		goto out_put_req;
1534 
1535 	spin_lock_irq(&ctx->ctx_lock);
1536 	aio_run_iocb(req);
1537 	if (!list_empty(&ctx->run_list)) {
1538 		/* drain the run list */
1539 		while (__aio_run_iocbs(ctx))
1540 			;
1541 	}
1542 	spin_unlock_irq(&ctx->ctx_lock);
1543 	aio_put_req(req);	/* drop extra ref to req */
1544 	return 0;
1545 
1546 out_put_req:
1547 	aio_put_req(req);	/* drop extra ref to req */
1548 	aio_put_req(req);	/* drop i/o ref to req */
1549 	return ret;
1550 }
1551 
1552 /* sys_io_submit:
1553  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1554  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1555  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1556  *	*iocbpp[0] is not properly initialized, if the operation specified
1557  *	is invalid for the file descriptor in the iocb.  May fail with
1558  *	-EFAULT if any of the data structures point to invalid data.  May
1559  *	fail with -EBADF if the file descriptor specified in the first
1560  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1561  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1562  *	fail with -ENOSYS if not implemented.
1563  */
1564 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1565 			      struct iocb __user * __user *iocbpp)
1566 {
1567 	struct kioctx *ctx;
1568 	long ret = 0;
1569 	int i;
1570 
1571 	if (unlikely(nr < 0))
1572 		return -EINVAL;
1573 
1574 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1575 		return -EFAULT;
1576 
1577 	ctx = lookup_ioctx(ctx_id);
1578 	if (unlikely(!ctx)) {
1579 		pr_debug("EINVAL: io_submit: invalid context id\n");
1580 		return -EINVAL;
1581 	}
1582 
1583 	/*
1584 	 * AKPM: should this return a partial result if some of the IOs were
1585 	 * successfully submitted?
1586 	 */
1587 	for (i=0; i<nr; i++) {
1588 		struct iocb __user *user_iocb;
1589 		struct iocb tmp;
1590 
1591 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1592 			ret = -EFAULT;
1593 			break;
1594 		}
1595 
1596 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1597 			ret = -EFAULT;
1598 			break;
1599 		}
1600 
1601 		ret = io_submit_one(ctx, user_iocb, &tmp);
1602 		if (ret)
1603 			break;
1604 	}
1605 
1606 	put_ioctx(ctx);
1607 	return i ? i : ret;
1608 }
1609 
1610 /* lookup_kiocb
1611  *	Finds a given iocb for cancellation.
1612  */
1613 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1614 				  u32 key)
1615 {
1616 	struct list_head *pos;
1617 
1618 	assert_spin_locked(&ctx->ctx_lock);
1619 
1620 	/* TODO: use a hash or array, this sucks. */
1621 	list_for_each(pos, &ctx->active_reqs) {
1622 		struct kiocb *kiocb = list_kiocb(pos);
1623 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1624 			return kiocb;
1625 	}
1626 	return NULL;
1627 }
1628 
1629 /* sys_io_cancel:
1630  *	Attempts to cancel an iocb previously passed to io_submit.  If
1631  *	the operation is successfully cancelled, the resulting event is
1632  *	copied into the memory pointed to by result without being placed
1633  *	into the completion queue and 0 is returned.  May fail with
1634  *	-EFAULT if any of the data structures pointed to are invalid.
1635  *	May fail with -EINVAL if aio_context specified by ctx_id is
1636  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1637  *	cancelled.  Will fail with -ENOSYS if not implemented.
1638  */
1639 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1640 			      struct io_event __user *result)
1641 {
1642 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1643 	struct kioctx *ctx;
1644 	struct kiocb *kiocb;
1645 	u32 key;
1646 	int ret;
1647 
1648 	ret = get_user(key, &iocb->aio_key);
1649 	if (unlikely(ret))
1650 		return -EFAULT;
1651 
1652 	ctx = lookup_ioctx(ctx_id);
1653 	if (unlikely(!ctx))
1654 		return -EINVAL;
1655 
1656 	spin_lock_irq(&ctx->ctx_lock);
1657 	ret = -EAGAIN;
1658 	kiocb = lookup_kiocb(ctx, iocb, key);
1659 	if (kiocb && kiocb->ki_cancel) {
1660 		cancel = kiocb->ki_cancel;
1661 		kiocb->ki_users ++;
1662 		kiocbSetCancelled(kiocb);
1663 	} else
1664 		cancel = NULL;
1665 	spin_unlock_irq(&ctx->ctx_lock);
1666 
1667 	if (NULL != cancel) {
1668 		struct io_event tmp;
1669 		pr_debug("calling cancel\n");
1670 		memset(&tmp, 0, sizeof(tmp));
1671 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1672 		tmp.data = kiocb->ki_user_data;
1673 		ret = cancel(kiocb, &tmp);
1674 		if (!ret) {
1675 			/* Cancellation succeeded -- copy the result
1676 			 * into the user's buffer.
1677 			 */
1678 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1679 				ret = -EFAULT;
1680 		}
1681 	} else
1682 		ret = -EINVAL;
1683 
1684 	put_ioctx(ctx);
1685 
1686 	return ret;
1687 }
1688 
1689 /* io_getevents:
1690  *	Attempts to read at least min_nr events and up to nr events from
1691  *	the completion queue for the aio_context specified by ctx_id.  May
1692  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1693  *	if nr is out of range, if when is out of range.  May fail with
1694  *	-EFAULT if any of the memory specified to is invalid.  May return
1695  *	0 or < min_nr if no events are available and the timeout specified
1696  *	by when	has elapsed, where when == NULL specifies an infinite
1697  *	timeout.  Note that the timeout pointed to by when is relative and
1698  *	will be updated if not NULL and the operation blocks.  Will fail
1699  *	with -ENOSYS if not implemented.
1700  */
1701 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1702 				 long min_nr,
1703 				 long nr,
1704 				 struct io_event __user *events,
1705 				 struct timespec __user *timeout)
1706 {
1707 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1708 	long ret = -EINVAL;
1709 
1710 	if (likely(ioctx)) {
1711 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1712 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1713 		put_ioctx(ioctx);
1714 	}
1715 
1716 	return ret;
1717 }
1718 
1719 __initcall(aio_setup);
1720 
1721 EXPORT_SYMBOL(aio_complete);
1722 EXPORT_SYMBOL(aio_put_req);
1723 EXPORT_SYMBOL(wait_on_sync_kiocb);
1724