1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 19 #define DEBUG 0 20 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/mm.h> 25 #include <linux/mman.h> 26 #include <linux/slab.h> 27 #include <linux/timer.h> 28 #include <linux/aio.h> 29 #include <linux/highmem.h> 30 #include <linux/workqueue.h> 31 #include <linux/security.h> 32 #include <linux/rcuref.h> 33 34 #include <asm/kmap_types.h> 35 #include <asm/uaccess.h> 36 #include <asm/mmu_context.h> 37 38 #if DEBUG > 1 39 #define dprintk printk 40 #else 41 #define dprintk(x...) do { ; } while (0) 42 #endif 43 44 /*------ sysctl variables----*/ 45 static DEFINE_SPINLOCK(aio_nr_lock); 46 unsigned long aio_nr; /* current system wide number of aio requests */ 47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 48 /*----end sysctl variables---*/ 49 50 static kmem_cache_t *kiocb_cachep; 51 static kmem_cache_t *kioctx_cachep; 52 53 static struct workqueue_struct *aio_wq; 54 55 /* Used for rare fput completion. */ 56 static void aio_fput_routine(void *); 57 static DECLARE_WORK(fput_work, aio_fput_routine, NULL); 58 59 static DEFINE_SPINLOCK(fput_lock); 60 static LIST_HEAD(fput_head); 61 62 static void aio_kick_handler(void *); 63 static void aio_queue_work(struct kioctx *); 64 65 /* aio_setup 66 * Creates the slab caches used by the aio routines, panic on 67 * failure as this is done early during the boot sequence. 68 */ 69 static int __init aio_setup(void) 70 { 71 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb), 72 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 73 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx), 74 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 75 76 aio_wq = create_workqueue("aio"); 77 78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 79 80 return 0; 81 } 82 83 static void aio_free_ring(struct kioctx *ctx) 84 { 85 struct aio_ring_info *info = &ctx->ring_info; 86 long i; 87 88 for (i=0; i<info->nr_pages; i++) 89 put_page(info->ring_pages[i]); 90 91 if (info->mmap_size) { 92 down_write(&ctx->mm->mmap_sem); 93 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 94 up_write(&ctx->mm->mmap_sem); 95 } 96 97 if (info->ring_pages && info->ring_pages != info->internal_pages) 98 kfree(info->ring_pages); 99 info->ring_pages = NULL; 100 info->nr = 0; 101 } 102 103 static int aio_setup_ring(struct kioctx *ctx) 104 { 105 struct aio_ring *ring; 106 struct aio_ring_info *info = &ctx->ring_info; 107 unsigned nr_events = ctx->max_reqs; 108 unsigned long size; 109 int nr_pages; 110 111 /* Compensate for the ring buffer's head/tail overlap entry */ 112 nr_events += 2; /* 1 is required, 2 for good luck */ 113 114 size = sizeof(struct aio_ring); 115 size += sizeof(struct io_event) * nr_events; 116 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 117 118 if (nr_pages < 0) 119 return -EINVAL; 120 121 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 122 123 info->nr = 0; 124 info->ring_pages = info->internal_pages; 125 if (nr_pages > AIO_RING_PAGES) { 126 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL); 127 if (!info->ring_pages) 128 return -ENOMEM; 129 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages); 130 } 131 132 info->mmap_size = nr_pages * PAGE_SIZE; 133 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 134 down_write(&ctx->mm->mmap_sem); 135 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 136 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 137 0); 138 if (IS_ERR((void *)info->mmap_base)) { 139 up_write(&ctx->mm->mmap_sem); 140 printk("mmap err: %ld\n", -info->mmap_base); 141 info->mmap_size = 0; 142 aio_free_ring(ctx); 143 return -EAGAIN; 144 } 145 146 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 147 info->nr_pages = get_user_pages(current, ctx->mm, 148 info->mmap_base, nr_pages, 149 1, 0, info->ring_pages, NULL); 150 up_write(&ctx->mm->mmap_sem); 151 152 if (unlikely(info->nr_pages != nr_pages)) { 153 aio_free_ring(ctx); 154 return -EAGAIN; 155 } 156 157 ctx->user_id = info->mmap_base; 158 159 info->nr = nr_events; /* trusted copy */ 160 161 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 162 ring->nr = nr_events; /* user copy */ 163 ring->id = ctx->user_id; 164 ring->head = ring->tail = 0; 165 ring->magic = AIO_RING_MAGIC; 166 ring->compat_features = AIO_RING_COMPAT_FEATURES; 167 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 168 ring->header_length = sizeof(struct aio_ring); 169 kunmap_atomic(ring, KM_USER0); 170 171 return 0; 172 } 173 174 175 /* aio_ring_event: returns a pointer to the event at the given index from 176 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 177 */ 178 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 179 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 180 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 181 182 #define aio_ring_event(info, nr, km) ({ \ 183 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 184 struct io_event *__event; \ 185 __event = kmap_atomic( \ 186 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 187 __event += pos % AIO_EVENTS_PER_PAGE; \ 188 __event; \ 189 }) 190 191 #define put_aio_ring_event(event, km) do { \ 192 struct io_event *__event = (event); \ 193 (void)__event; \ 194 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 195 } while(0) 196 197 /* ioctx_alloc 198 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 199 */ 200 static struct kioctx *ioctx_alloc(unsigned nr_events) 201 { 202 struct mm_struct *mm; 203 struct kioctx *ctx; 204 205 /* Prevent overflows */ 206 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 207 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 208 pr_debug("ENOMEM: nr_events too high\n"); 209 return ERR_PTR(-EINVAL); 210 } 211 212 if ((unsigned long)nr_events > aio_max_nr) 213 return ERR_PTR(-EAGAIN); 214 215 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL); 216 if (!ctx) 217 return ERR_PTR(-ENOMEM); 218 219 memset(ctx, 0, sizeof(*ctx)); 220 ctx->max_reqs = nr_events; 221 mm = ctx->mm = current->mm; 222 atomic_inc(&mm->mm_count); 223 224 atomic_set(&ctx->users, 1); 225 spin_lock_init(&ctx->ctx_lock); 226 spin_lock_init(&ctx->ring_info.ring_lock); 227 init_waitqueue_head(&ctx->wait); 228 229 INIT_LIST_HEAD(&ctx->active_reqs); 230 INIT_LIST_HEAD(&ctx->run_list); 231 INIT_WORK(&ctx->wq, aio_kick_handler, ctx); 232 233 if (aio_setup_ring(ctx) < 0) 234 goto out_freectx; 235 236 /* limit the number of system wide aios */ 237 spin_lock(&aio_nr_lock); 238 if (aio_nr + ctx->max_reqs > aio_max_nr || 239 aio_nr + ctx->max_reqs < aio_nr) 240 ctx->max_reqs = 0; 241 else 242 aio_nr += ctx->max_reqs; 243 spin_unlock(&aio_nr_lock); 244 if (ctx->max_reqs == 0) 245 goto out_cleanup; 246 247 /* now link into global list. kludge. FIXME */ 248 write_lock(&mm->ioctx_list_lock); 249 ctx->next = mm->ioctx_list; 250 mm->ioctx_list = ctx; 251 write_unlock(&mm->ioctx_list_lock); 252 253 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 254 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 255 return ctx; 256 257 out_cleanup: 258 __put_ioctx(ctx); 259 return ERR_PTR(-EAGAIN); 260 261 out_freectx: 262 mmdrop(mm); 263 kmem_cache_free(kioctx_cachep, ctx); 264 ctx = ERR_PTR(-ENOMEM); 265 266 dprintk("aio: error allocating ioctx %p\n", ctx); 267 return ctx; 268 } 269 270 /* aio_cancel_all 271 * Cancels all outstanding aio requests on an aio context. Used 272 * when the processes owning a context have all exited to encourage 273 * the rapid destruction of the kioctx. 274 */ 275 static void aio_cancel_all(struct kioctx *ctx) 276 { 277 int (*cancel)(struct kiocb *, struct io_event *); 278 struct io_event res; 279 spin_lock_irq(&ctx->ctx_lock); 280 ctx->dead = 1; 281 while (!list_empty(&ctx->active_reqs)) { 282 struct list_head *pos = ctx->active_reqs.next; 283 struct kiocb *iocb = list_kiocb(pos); 284 list_del_init(&iocb->ki_list); 285 cancel = iocb->ki_cancel; 286 kiocbSetCancelled(iocb); 287 if (cancel) { 288 iocb->ki_users++; 289 spin_unlock_irq(&ctx->ctx_lock); 290 cancel(iocb, &res); 291 spin_lock_irq(&ctx->ctx_lock); 292 } 293 } 294 spin_unlock_irq(&ctx->ctx_lock); 295 } 296 297 static void wait_for_all_aios(struct kioctx *ctx) 298 { 299 struct task_struct *tsk = current; 300 DECLARE_WAITQUEUE(wait, tsk); 301 302 if (!ctx->reqs_active) 303 return; 304 305 add_wait_queue(&ctx->wait, &wait); 306 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 307 while (ctx->reqs_active) { 308 schedule(); 309 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 310 } 311 __set_task_state(tsk, TASK_RUNNING); 312 remove_wait_queue(&ctx->wait, &wait); 313 } 314 315 /* wait_on_sync_kiocb: 316 * Waits on the given sync kiocb to complete. 317 */ 318 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb) 319 { 320 while (iocb->ki_users) { 321 set_current_state(TASK_UNINTERRUPTIBLE); 322 if (!iocb->ki_users) 323 break; 324 schedule(); 325 } 326 __set_current_state(TASK_RUNNING); 327 return iocb->ki_user_data; 328 } 329 330 /* exit_aio: called when the last user of mm goes away. At this point, 331 * there is no way for any new requests to be submited or any of the 332 * io_* syscalls to be called on the context. However, there may be 333 * outstanding requests which hold references to the context; as they 334 * go away, they will call put_ioctx and release any pinned memory 335 * associated with the request (held via struct page * references). 336 */ 337 void fastcall exit_aio(struct mm_struct *mm) 338 { 339 struct kioctx *ctx = mm->ioctx_list; 340 mm->ioctx_list = NULL; 341 while (ctx) { 342 struct kioctx *next = ctx->next; 343 ctx->next = NULL; 344 aio_cancel_all(ctx); 345 346 wait_for_all_aios(ctx); 347 /* 348 * this is an overkill, but ensures we don't leave 349 * the ctx on the aio_wq 350 */ 351 flush_workqueue(aio_wq); 352 353 if (1 != atomic_read(&ctx->users)) 354 printk(KERN_DEBUG 355 "exit_aio:ioctx still alive: %d %d %d\n", 356 atomic_read(&ctx->users), ctx->dead, 357 ctx->reqs_active); 358 put_ioctx(ctx); 359 ctx = next; 360 } 361 } 362 363 /* __put_ioctx 364 * Called when the last user of an aio context has gone away, 365 * and the struct needs to be freed. 366 */ 367 void fastcall __put_ioctx(struct kioctx *ctx) 368 { 369 unsigned nr_events = ctx->max_reqs; 370 371 if (unlikely(ctx->reqs_active)) 372 BUG(); 373 374 cancel_delayed_work(&ctx->wq); 375 flush_workqueue(aio_wq); 376 aio_free_ring(ctx); 377 mmdrop(ctx->mm); 378 ctx->mm = NULL; 379 pr_debug("__put_ioctx: freeing %p\n", ctx); 380 kmem_cache_free(kioctx_cachep, ctx); 381 382 if (nr_events) { 383 spin_lock(&aio_nr_lock); 384 BUG_ON(aio_nr - nr_events > aio_nr); 385 aio_nr -= nr_events; 386 spin_unlock(&aio_nr_lock); 387 } 388 } 389 390 /* aio_get_req 391 * Allocate a slot for an aio request. Increments the users count 392 * of the kioctx so that the kioctx stays around until all requests are 393 * complete. Returns NULL if no requests are free. 394 * 395 * Returns with kiocb->users set to 2. The io submit code path holds 396 * an extra reference while submitting the i/o. 397 * This prevents races between the aio code path referencing the 398 * req (after submitting it) and aio_complete() freeing the req. 399 */ 400 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx)); 401 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx) 402 { 403 struct kiocb *req = NULL; 404 struct aio_ring *ring; 405 int okay = 0; 406 407 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 408 if (unlikely(!req)) 409 return NULL; 410 411 req->ki_flags = 0; 412 req->ki_users = 2; 413 req->ki_key = 0; 414 req->ki_ctx = ctx; 415 req->ki_cancel = NULL; 416 req->ki_retry = NULL; 417 req->ki_dtor = NULL; 418 req->private = NULL; 419 INIT_LIST_HEAD(&req->ki_run_list); 420 421 /* Check if the completion queue has enough free space to 422 * accept an event from this io. 423 */ 424 spin_lock_irq(&ctx->ctx_lock); 425 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 426 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 427 list_add(&req->ki_list, &ctx->active_reqs); 428 get_ioctx(ctx); 429 ctx->reqs_active++; 430 okay = 1; 431 } 432 kunmap_atomic(ring, KM_USER0); 433 spin_unlock_irq(&ctx->ctx_lock); 434 435 if (!okay) { 436 kmem_cache_free(kiocb_cachep, req); 437 req = NULL; 438 } 439 440 return req; 441 } 442 443 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 444 { 445 struct kiocb *req; 446 /* Handle a potential starvation case -- should be exceedingly rare as 447 * requests will be stuck on fput_head only if the aio_fput_routine is 448 * delayed and the requests were the last user of the struct file. 449 */ 450 req = __aio_get_req(ctx); 451 if (unlikely(NULL == req)) { 452 aio_fput_routine(NULL); 453 req = __aio_get_req(ctx); 454 } 455 return req; 456 } 457 458 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 459 { 460 assert_spin_locked(&ctx->ctx_lock); 461 462 if (req->ki_dtor) 463 req->ki_dtor(req); 464 kmem_cache_free(kiocb_cachep, req); 465 ctx->reqs_active--; 466 467 if (unlikely(!ctx->reqs_active && ctx->dead)) 468 wake_up(&ctx->wait); 469 } 470 471 static void aio_fput_routine(void *data) 472 { 473 spin_lock_irq(&fput_lock); 474 while (likely(!list_empty(&fput_head))) { 475 struct kiocb *req = list_kiocb(fput_head.next); 476 struct kioctx *ctx = req->ki_ctx; 477 478 list_del(&req->ki_list); 479 spin_unlock_irq(&fput_lock); 480 481 /* Complete the fput */ 482 __fput(req->ki_filp); 483 484 /* Link the iocb into the context's free list */ 485 spin_lock_irq(&ctx->ctx_lock); 486 really_put_req(ctx, req); 487 spin_unlock_irq(&ctx->ctx_lock); 488 489 put_ioctx(ctx); 490 spin_lock_irq(&fput_lock); 491 } 492 spin_unlock_irq(&fput_lock); 493 } 494 495 /* __aio_put_req 496 * Returns true if this put was the last user of the request. 497 */ 498 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 499 { 500 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 501 req, atomic_read(&req->ki_filp->f_count)); 502 503 assert_spin_locked(&ctx->ctx_lock); 504 505 req->ki_users --; 506 if (unlikely(req->ki_users < 0)) 507 BUG(); 508 if (likely(req->ki_users)) 509 return 0; 510 list_del(&req->ki_list); /* remove from active_reqs */ 511 req->ki_cancel = NULL; 512 req->ki_retry = NULL; 513 514 /* Must be done under the lock to serialise against cancellation. 515 * Call this aio_fput as it duplicates fput via the fput_work. 516 */ 517 if (unlikely(rcuref_dec_and_test(&req->ki_filp->f_count))) { 518 get_ioctx(ctx); 519 spin_lock(&fput_lock); 520 list_add(&req->ki_list, &fput_head); 521 spin_unlock(&fput_lock); 522 queue_work(aio_wq, &fput_work); 523 } else 524 really_put_req(ctx, req); 525 return 1; 526 } 527 528 /* aio_put_req 529 * Returns true if this put was the last user of the kiocb, 530 * false if the request is still in use. 531 */ 532 int fastcall aio_put_req(struct kiocb *req) 533 { 534 struct kioctx *ctx = req->ki_ctx; 535 int ret; 536 spin_lock_irq(&ctx->ctx_lock); 537 ret = __aio_put_req(ctx, req); 538 spin_unlock_irq(&ctx->ctx_lock); 539 if (ret) 540 put_ioctx(ctx); 541 return ret; 542 } 543 544 /* Lookup an ioctx id. ioctx_list is lockless for reads. 545 * FIXME: this is O(n) and is only suitable for development. 546 */ 547 struct kioctx *lookup_ioctx(unsigned long ctx_id) 548 { 549 struct kioctx *ioctx; 550 struct mm_struct *mm; 551 552 mm = current->mm; 553 read_lock(&mm->ioctx_list_lock); 554 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 555 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 556 get_ioctx(ioctx); 557 break; 558 } 559 read_unlock(&mm->ioctx_list_lock); 560 561 return ioctx; 562 } 563 564 /* 565 * use_mm 566 * Makes the calling kernel thread take on the specified 567 * mm context. 568 * Called by the retry thread execute retries within the 569 * iocb issuer's mm context, so that copy_from/to_user 570 * operations work seamlessly for aio. 571 * (Note: this routine is intended to be called only 572 * from a kernel thread context) 573 */ 574 static void use_mm(struct mm_struct *mm) 575 { 576 struct mm_struct *active_mm; 577 struct task_struct *tsk = current; 578 579 task_lock(tsk); 580 tsk->flags |= PF_BORROWED_MM; 581 active_mm = tsk->active_mm; 582 atomic_inc(&mm->mm_count); 583 tsk->mm = mm; 584 tsk->active_mm = mm; 585 /* 586 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise 587 * it won't work. Update it accordingly if you change it here 588 */ 589 activate_mm(active_mm, mm); 590 task_unlock(tsk); 591 592 mmdrop(active_mm); 593 } 594 595 /* 596 * unuse_mm 597 * Reverses the effect of use_mm, i.e. releases the 598 * specified mm context which was earlier taken on 599 * by the calling kernel thread 600 * (Note: this routine is intended to be called only 601 * from a kernel thread context) 602 * 603 * Comments: Called with ctx->ctx_lock held. This nests 604 * task_lock instead ctx_lock. 605 */ 606 static void unuse_mm(struct mm_struct *mm) 607 { 608 struct task_struct *tsk = current; 609 610 task_lock(tsk); 611 tsk->flags &= ~PF_BORROWED_MM; 612 tsk->mm = NULL; 613 /* active_mm is still 'mm' */ 614 enter_lazy_tlb(mm, tsk); 615 task_unlock(tsk); 616 } 617 618 /* 619 * Queue up a kiocb to be retried. Assumes that the kiocb 620 * has already been marked as kicked, and places it on 621 * the retry run list for the corresponding ioctx, if it 622 * isn't already queued. Returns 1 if it actually queued 623 * the kiocb (to tell the caller to activate the work 624 * queue to process it), or 0, if it found that it was 625 * already queued. 626 */ 627 static inline int __queue_kicked_iocb(struct kiocb *iocb) 628 { 629 struct kioctx *ctx = iocb->ki_ctx; 630 631 assert_spin_locked(&ctx->ctx_lock); 632 633 if (list_empty(&iocb->ki_run_list)) { 634 list_add_tail(&iocb->ki_run_list, 635 &ctx->run_list); 636 return 1; 637 } 638 return 0; 639 } 640 641 /* aio_run_iocb 642 * This is the core aio execution routine. It is 643 * invoked both for initial i/o submission and 644 * subsequent retries via the aio_kick_handler. 645 * Expects to be invoked with iocb->ki_ctx->lock 646 * already held. The lock is released and reaquired 647 * as needed during processing. 648 * 649 * Calls the iocb retry method (already setup for the 650 * iocb on initial submission) for operation specific 651 * handling, but takes care of most of common retry 652 * execution details for a given iocb. The retry method 653 * needs to be non-blocking as far as possible, to avoid 654 * holding up other iocbs waiting to be serviced by the 655 * retry kernel thread. 656 * 657 * The trickier parts in this code have to do with 658 * ensuring that only one retry instance is in progress 659 * for a given iocb at any time. Providing that guarantee 660 * simplifies the coding of individual aio operations as 661 * it avoids various potential races. 662 */ 663 static ssize_t aio_run_iocb(struct kiocb *iocb) 664 { 665 struct kioctx *ctx = iocb->ki_ctx; 666 ssize_t (*retry)(struct kiocb *); 667 ssize_t ret; 668 669 if (iocb->ki_retried++ > 1024*1024) { 670 printk("Maximal retry count. Bytes done %Zd\n", 671 iocb->ki_nbytes - iocb->ki_left); 672 return -EAGAIN; 673 } 674 675 if (!(iocb->ki_retried & 0xff)) { 676 pr_debug("%ld retry: %d of %d\n", iocb->ki_retried, 677 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes); 678 } 679 680 if (!(retry = iocb->ki_retry)) { 681 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 682 return 0; 683 } 684 685 /* 686 * We don't want the next retry iteration for this 687 * operation to start until this one has returned and 688 * updated the iocb state. However, wait_queue functions 689 * can trigger a kick_iocb from interrupt context in the 690 * meantime, indicating that data is available for the next 691 * iteration. We want to remember that and enable the 692 * next retry iteration _after_ we are through with 693 * this one. 694 * 695 * So, in order to be able to register a "kick", but 696 * prevent it from being queued now, we clear the kick 697 * flag, but make the kick code *think* that the iocb is 698 * still on the run list until we are actually done. 699 * When we are done with this iteration, we check if 700 * the iocb was kicked in the meantime and if so, queue 701 * it up afresh. 702 */ 703 704 kiocbClearKicked(iocb); 705 706 /* 707 * This is so that aio_complete knows it doesn't need to 708 * pull the iocb off the run list (We can't just call 709 * INIT_LIST_HEAD because we don't want a kick_iocb to 710 * queue this on the run list yet) 711 */ 712 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 713 spin_unlock_irq(&ctx->ctx_lock); 714 715 /* Quit retrying if the i/o has been cancelled */ 716 if (kiocbIsCancelled(iocb)) { 717 ret = -EINTR; 718 aio_complete(iocb, ret, 0); 719 /* must not access the iocb after this */ 720 goto out; 721 } 722 723 /* 724 * Now we are all set to call the retry method in async 725 * context. By setting this thread's io_wait context 726 * to point to the wait queue entry inside the currently 727 * running iocb for the duration of the retry, we ensure 728 * that async notification wakeups are queued by the 729 * operation instead of blocking waits, and when notified, 730 * cause the iocb to be kicked for continuation (through 731 * the aio_wake_function callback). 732 */ 733 BUG_ON(current->io_wait != NULL); 734 current->io_wait = &iocb->ki_wait; 735 ret = retry(iocb); 736 current->io_wait = NULL; 737 738 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 739 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 740 aio_complete(iocb, ret, 0); 741 } 742 out: 743 spin_lock_irq(&ctx->ctx_lock); 744 745 if (-EIOCBRETRY == ret) { 746 /* 747 * OK, now that we are done with this iteration 748 * and know that there is more left to go, 749 * this is where we let go so that a subsequent 750 * "kick" can start the next iteration 751 */ 752 753 /* will make __queue_kicked_iocb succeed from here on */ 754 INIT_LIST_HEAD(&iocb->ki_run_list); 755 /* we must queue the next iteration ourselves, if it 756 * has already been kicked */ 757 if (kiocbIsKicked(iocb)) { 758 __queue_kicked_iocb(iocb); 759 760 /* 761 * __queue_kicked_iocb will always return 1 here, because 762 * iocb->ki_run_list is empty at this point so it should 763 * be safe to unconditionally queue the context into the 764 * work queue. 765 */ 766 aio_queue_work(ctx); 767 } 768 } 769 return ret; 770 } 771 772 /* 773 * __aio_run_iocbs: 774 * Process all pending retries queued on the ioctx 775 * run list. 776 * Assumes it is operating within the aio issuer's mm 777 * context. 778 */ 779 static int __aio_run_iocbs(struct kioctx *ctx) 780 { 781 struct kiocb *iocb; 782 LIST_HEAD(run_list); 783 784 assert_spin_locked(&ctx->ctx_lock); 785 786 list_splice_init(&ctx->run_list, &run_list); 787 while (!list_empty(&run_list)) { 788 iocb = list_entry(run_list.next, struct kiocb, 789 ki_run_list); 790 list_del(&iocb->ki_run_list); 791 /* 792 * Hold an extra reference while retrying i/o. 793 */ 794 iocb->ki_users++; /* grab extra reference */ 795 aio_run_iocb(iocb); 796 if (__aio_put_req(ctx, iocb)) /* drop extra ref */ 797 put_ioctx(ctx); 798 } 799 if (!list_empty(&ctx->run_list)) 800 return 1; 801 return 0; 802 } 803 804 static void aio_queue_work(struct kioctx * ctx) 805 { 806 unsigned long timeout; 807 /* 808 * if someone is waiting, get the work started right 809 * away, otherwise, use a longer delay 810 */ 811 smp_mb(); 812 if (waitqueue_active(&ctx->wait)) 813 timeout = 1; 814 else 815 timeout = HZ/10; 816 queue_delayed_work(aio_wq, &ctx->wq, timeout); 817 } 818 819 820 /* 821 * aio_run_iocbs: 822 * Process all pending retries queued on the ioctx 823 * run list. 824 * Assumes it is operating within the aio issuer's mm 825 * context. 826 */ 827 static inline void aio_run_iocbs(struct kioctx *ctx) 828 { 829 int requeue; 830 831 spin_lock_irq(&ctx->ctx_lock); 832 833 requeue = __aio_run_iocbs(ctx); 834 spin_unlock_irq(&ctx->ctx_lock); 835 if (requeue) 836 aio_queue_work(ctx); 837 } 838 839 /* 840 * just like aio_run_iocbs, but keeps running them until 841 * the list stays empty 842 */ 843 static inline void aio_run_all_iocbs(struct kioctx *ctx) 844 { 845 spin_lock_irq(&ctx->ctx_lock); 846 while (__aio_run_iocbs(ctx)) 847 ; 848 spin_unlock_irq(&ctx->ctx_lock); 849 } 850 851 /* 852 * aio_kick_handler: 853 * Work queue handler triggered to process pending 854 * retries on an ioctx. Takes on the aio issuer's 855 * mm context before running the iocbs, so that 856 * copy_xxx_user operates on the issuer's address 857 * space. 858 * Run on aiod's context. 859 */ 860 static void aio_kick_handler(void *data) 861 { 862 struct kioctx *ctx = data; 863 mm_segment_t oldfs = get_fs(); 864 int requeue; 865 866 set_fs(USER_DS); 867 use_mm(ctx->mm); 868 spin_lock_irq(&ctx->ctx_lock); 869 requeue =__aio_run_iocbs(ctx); 870 unuse_mm(ctx->mm); 871 spin_unlock_irq(&ctx->ctx_lock); 872 set_fs(oldfs); 873 /* 874 * we're in a worker thread already, don't use queue_delayed_work, 875 */ 876 if (requeue) 877 queue_work(aio_wq, &ctx->wq); 878 } 879 880 881 /* 882 * Called by kick_iocb to queue the kiocb for retry 883 * and if required activate the aio work queue to process 884 * it 885 */ 886 static void try_queue_kicked_iocb(struct kiocb *iocb) 887 { 888 struct kioctx *ctx = iocb->ki_ctx; 889 unsigned long flags; 890 int run = 0; 891 892 /* We're supposed to be the only path putting the iocb back on the run 893 * list. If we find that the iocb is *back* on a wait queue already 894 * than retry has happened before we could queue the iocb. This also 895 * means that the retry could have completed and freed our iocb, no 896 * good. */ 897 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 898 899 spin_lock_irqsave(&ctx->ctx_lock, flags); 900 /* set this inside the lock so that we can't race with aio_run_iocb() 901 * testing it and putting the iocb on the run list under the lock */ 902 if (!kiocbTryKick(iocb)) 903 run = __queue_kicked_iocb(iocb); 904 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 905 if (run) 906 aio_queue_work(ctx); 907 } 908 909 /* 910 * kick_iocb: 911 * Called typically from a wait queue callback context 912 * (aio_wake_function) to trigger a retry of the iocb. 913 * The retry is usually executed by aio workqueue 914 * threads (See aio_kick_handler). 915 */ 916 void fastcall kick_iocb(struct kiocb *iocb) 917 { 918 /* sync iocbs are easy: they can only ever be executing from a 919 * single context. */ 920 if (is_sync_kiocb(iocb)) { 921 kiocbSetKicked(iocb); 922 wake_up_process(iocb->ki_obj.tsk); 923 return; 924 } 925 926 try_queue_kicked_iocb(iocb); 927 } 928 EXPORT_SYMBOL(kick_iocb); 929 930 /* aio_complete 931 * Called when the io request on the given iocb is complete. 932 * Returns true if this is the last user of the request. The 933 * only other user of the request can be the cancellation code. 934 */ 935 int fastcall aio_complete(struct kiocb *iocb, long res, long res2) 936 { 937 struct kioctx *ctx = iocb->ki_ctx; 938 struct aio_ring_info *info; 939 struct aio_ring *ring; 940 struct io_event *event; 941 unsigned long flags; 942 unsigned long tail; 943 int ret; 944 945 /* 946 * Special case handling for sync iocbs: 947 * - events go directly into the iocb for fast handling 948 * - the sync task with the iocb in its stack holds the single iocb 949 * ref, no other paths have a way to get another ref 950 * - the sync task helpfully left a reference to itself in the iocb 951 */ 952 if (is_sync_kiocb(iocb)) { 953 BUG_ON(iocb->ki_users != 1); 954 iocb->ki_user_data = res; 955 iocb->ki_users = 0; 956 wake_up_process(iocb->ki_obj.tsk); 957 return 1; 958 } 959 960 info = &ctx->ring_info; 961 962 /* add a completion event to the ring buffer. 963 * must be done holding ctx->ctx_lock to prevent 964 * other code from messing with the tail 965 * pointer since we might be called from irq 966 * context. 967 */ 968 spin_lock_irqsave(&ctx->ctx_lock, flags); 969 970 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 971 list_del_init(&iocb->ki_run_list); 972 973 /* 974 * cancelled requests don't get events, userland was given one 975 * when the event got cancelled. 976 */ 977 if (kiocbIsCancelled(iocb)) 978 goto put_rq; 979 980 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 981 982 tail = info->tail; 983 event = aio_ring_event(info, tail, KM_IRQ0); 984 if (++tail >= info->nr) 985 tail = 0; 986 987 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 988 event->data = iocb->ki_user_data; 989 event->res = res; 990 event->res2 = res2; 991 992 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 993 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 994 res, res2); 995 996 /* after flagging the request as done, we 997 * must never even look at it again 998 */ 999 smp_wmb(); /* make event visible before updating tail */ 1000 1001 info->tail = tail; 1002 ring->tail = tail; 1003 1004 put_aio_ring_event(event, KM_IRQ0); 1005 kunmap_atomic(ring, KM_IRQ1); 1006 1007 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 1008 1009 pr_debug("%ld retries: %d of %d\n", iocb->ki_retried, 1010 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes); 1011 put_rq: 1012 /* everything turned out well, dispose of the aiocb. */ 1013 ret = __aio_put_req(ctx, iocb); 1014 1015 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1016 1017 if (waitqueue_active(&ctx->wait)) 1018 wake_up(&ctx->wait); 1019 1020 if (ret) 1021 put_ioctx(ctx); 1022 1023 return ret; 1024 } 1025 1026 /* aio_read_evt 1027 * Pull an event off of the ioctx's event ring. Returns the number of 1028 * events fetched (0 or 1 ;-) 1029 * FIXME: make this use cmpxchg. 1030 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1031 */ 1032 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1033 { 1034 struct aio_ring_info *info = &ioctx->ring_info; 1035 struct aio_ring *ring; 1036 unsigned long head; 1037 int ret = 0; 1038 1039 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1040 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1041 (unsigned long)ring->head, (unsigned long)ring->tail, 1042 (unsigned long)ring->nr); 1043 1044 if (ring->head == ring->tail) 1045 goto out; 1046 1047 spin_lock(&info->ring_lock); 1048 1049 head = ring->head % info->nr; 1050 if (head != ring->tail) { 1051 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1052 *ent = *evp; 1053 head = (head + 1) % info->nr; 1054 smp_mb(); /* finish reading the event before updatng the head */ 1055 ring->head = head; 1056 ret = 1; 1057 put_aio_ring_event(evp, KM_USER1); 1058 } 1059 spin_unlock(&info->ring_lock); 1060 1061 out: 1062 kunmap_atomic(ring, KM_USER0); 1063 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1064 (unsigned long)ring->head, (unsigned long)ring->tail); 1065 return ret; 1066 } 1067 1068 struct aio_timeout { 1069 struct timer_list timer; 1070 int timed_out; 1071 struct task_struct *p; 1072 }; 1073 1074 static void timeout_func(unsigned long data) 1075 { 1076 struct aio_timeout *to = (struct aio_timeout *)data; 1077 1078 to->timed_out = 1; 1079 wake_up_process(to->p); 1080 } 1081 1082 static inline void init_timeout(struct aio_timeout *to) 1083 { 1084 init_timer(&to->timer); 1085 to->timer.data = (unsigned long)to; 1086 to->timer.function = timeout_func; 1087 to->timed_out = 0; 1088 to->p = current; 1089 } 1090 1091 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1092 const struct timespec *ts) 1093 { 1094 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1095 if (time_after(to->timer.expires, jiffies)) 1096 add_timer(&to->timer); 1097 else 1098 to->timed_out = 1; 1099 } 1100 1101 static inline void clear_timeout(struct aio_timeout *to) 1102 { 1103 del_singleshot_timer_sync(&to->timer); 1104 } 1105 1106 static int read_events(struct kioctx *ctx, 1107 long min_nr, long nr, 1108 struct io_event __user *event, 1109 struct timespec __user *timeout) 1110 { 1111 long start_jiffies = jiffies; 1112 struct task_struct *tsk = current; 1113 DECLARE_WAITQUEUE(wait, tsk); 1114 int ret; 1115 int i = 0; 1116 struct io_event ent; 1117 struct aio_timeout to; 1118 int retry = 0; 1119 1120 /* needed to zero any padding within an entry (there shouldn't be 1121 * any, but C is fun! 1122 */ 1123 memset(&ent, 0, sizeof(ent)); 1124 retry: 1125 ret = 0; 1126 while (likely(i < nr)) { 1127 ret = aio_read_evt(ctx, &ent); 1128 if (unlikely(ret <= 0)) 1129 break; 1130 1131 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1132 ent.data, ent.obj, ent.res, ent.res2); 1133 1134 /* Could we split the check in two? */ 1135 ret = -EFAULT; 1136 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1137 dprintk("aio: lost an event due to EFAULT.\n"); 1138 break; 1139 } 1140 ret = 0; 1141 1142 /* Good, event copied to userland, update counts. */ 1143 event ++; 1144 i ++; 1145 } 1146 1147 if (min_nr <= i) 1148 return i; 1149 if (ret) 1150 return ret; 1151 1152 /* End fast path */ 1153 1154 /* racey check, but it gets redone */ 1155 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1156 retry = 1; 1157 aio_run_all_iocbs(ctx); 1158 goto retry; 1159 } 1160 1161 init_timeout(&to); 1162 if (timeout) { 1163 struct timespec ts; 1164 ret = -EFAULT; 1165 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1166 goto out; 1167 1168 set_timeout(start_jiffies, &to, &ts); 1169 } 1170 1171 while (likely(i < nr)) { 1172 add_wait_queue_exclusive(&ctx->wait, &wait); 1173 do { 1174 set_task_state(tsk, TASK_INTERRUPTIBLE); 1175 ret = aio_read_evt(ctx, &ent); 1176 if (ret) 1177 break; 1178 if (min_nr <= i) 1179 break; 1180 ret = 0; 1181 if (to.timed_out) /* Only check after read evt */ 1182 break; 1183 schedule(); 1184 if (signal_pending(tsk)) { 1185 ret = -EINTR; 1186 break; 1187 } 1188 /*ret = aio_read_evt(ctx, &ent);*/ 1189 } while (1) ; 1190 1191 set_task_state(tsk, TASK_RUNNING); 1192 remove_wait_queue(&ctx->wait, &wait); 1193 1194 if (unlikely(ret <= 0)) 1195 break; 1196 1197 ret = -EFAULT; 1198 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1199 dprintk("aio: lost an event due to EFAULT.\n"); 1200 break; 1201 } 1202 1203 /* Good, event copied to userland, update counts. */ 1204 event ++; 1205 i ++; 1206 } 1207 1208 if (timeout) 1209 clear_timeout(&to); 1210 out: 1211 return i ? i : ret; 1212 } 1213 1214 /* Take an ioctx and remove it from the list of ioctx's. Protects 1215 * against races with itself via ->dead. 1216 */ 1217 static void io_destroy(struct kioctx *ioctx) 1218 { 1219 struct mm_struct *mm = current->mm; 1220 struct kioctx **tmp; 1221 int was_dead; 1222 1223 /* delete the entry from the list is someone else hasn't already */ 1224 write_lock(&mm->ioctx_list_lock); 1225 was_dead = ioctx->dead; 1226 ioctx->dead = 1; 1227 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1228 tmp = &(*tmp)->next) 1229 ; 1230 if (*tmp) 1231 *tmp = ioctx->next; 1232 write_unlock(&mm->ioctx_list_lock); 1233 1234 dprintk("aio_release(%p)\n", ioctx); 1235 if (likely(!was_dead)) 1236 put_ioctx(ioctx); /* twice for the list */ 1237 1238 aio_cancel_all(ioctx); 1239 wait_for_all_aios(ioctx); 1240 put_ioctx(ioctx); /* once for the lookup */ 1241 } 1242 1243 /* sys_io_setup: 1244 * Create an aio_context capable of receiving at least nr_events. 1245 * ctxp must not point to an aio_context that already exists, and 1246 * must be initialized to 0 prior to the call. On successful 1247 * creation of the aio_context, *ctxp is filled in with the resulting 1248 * handle. May fail with -EINVAL if *ctxp is not initialized, 1249 * if the specified nr_events exceeds internal limits. May fail 1250 * with -EAGAIN if the specified nr_events exceeds the user's limit 1251 * of available events. May fail with -ENOMEM if insufficient kernel 1252 * resources are available. May fail with -EFAULT if an invalid 1253 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1254 * implemented. 1255 */ 1256 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1257 { 1258 struct kioctx *ioctx = NULL; 1259 unsigned long ctx; 1260 long ret; 1261 1262 ret = get_user(ctx, ctxp); 1263 if (unlikely(ret)) 1264 goto out; 1265 1266 ret = -EINVAL; 1267 if (unlikely(ctx || nr_events == 0)) { 1268 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1269 ctx, nr_events); 1270 goto out; 1271 } 1272 1273 ioctx = ioctx_alloc(nr_events); 1274 ret = PTR_ERR(ioctx); 1275 if (!IS_ERR(ioctx)) { 1276 ret = put_user(ioctx->user_id, ctxp); 1277 if (!ret) 1278 return 0; 1279 1280 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1281 io_destroy(ioctx); 1282 } 1283 1284 out: 1285 return ret; 1286 } 1287 1288 /* sys_io_destroy: 1289 * Destroy the aio_context specified. May cancel any outstanding 1290 * AIOs and block on completion. Will fail with -ENOSYS if not 1291 * implemented. May fail with -EFAULT if the context pointed to 1292 * is invalid. 1293 */ 1294 asmlinkage long sys_io_destroy(aio_context_t ctx) 1295 { 1296 struct kioctx *ioctx = lookup_ioctx(ctx); 1297 if (likely(NULL != ioctx)) { 1298 io_destroy(ioctx); 1299 return 0; 1300 } 1301 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1302 return -EINVAL; 1303 } 1304 1305 /* 1306 * aio_p{read,write} are the default ki_retry methods for 1307 * IO_CMD_P{READ,WRITE}. They maintains kiocb retry state around potentially 1308 * multiple calls to f_op->aio_read(). They loop around partial progress 1309 * instead of returning -EIOCBRETRY because they don't have the means to call 1310 * kick_iocb(). 1311 */ 1312 static ssize_t aio_pread(struct kiocb *iocb) 1313 { 1314 struct file *file = iocb->ki_filp; 1315 struct address_space *mapping = file->f_mapping; 1316 struct inode *inode = mapping->host; 1317 ssize_t ret = 0; 1318 1319 do { 1320 ret = file->f_op->aio_read(iocb, iocb->ki_buf, 1321 iocb->ki_left, iocb->ki_pos); 1322 /* 1323 * Can't just depend on iocb->ki_left to determine 1324 * whether we are done. This may have been a short read. 1325 */ 1326 if (ret > 0) { 1327 iocb->ki_buf += ret; 1328 iocb->ki_left -= ret; 1329 } 1330 1331 /* 1332 * For pipes and sockets we return once we have some data; for 1333 * regular files we retry till we complete the entire read or 1334 * find that we can't read any more data (e.g short reads). 1335 */ 1336 } while (ret > 0 && iocb->ki_left > 0 && 1337 !S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)); 1338 1339 /* This means we must have transferred all that we could */ 1340 /* No need to retry anymore */ 1341 if ((ret == 0) || (iocb->ki_left == 0)) 1342 ret = iocb->ki_nbytes - iocb->ki_left; 1343 1344 return ret; 1345 } 1346 1347 /* see aio_pread() */ 1348 static ssize_t aio_pwrite(struct kiocb *iocb) 1349 { 1350 struct file *file = iocb->ki_filp; 1351 ssize_t ret = 0; 1352 1353 do { 1354 ret = file->f_op->aio_write(iocb, iocb->ki_buf, 1355 iocb->ki_left, iocb->ki_pos); 1356 if (ret > 0) { 1357 iocb->ki_buf += ret; 1358 iocb->ki_left -= ret; 1359 } 1360 } while (ret > 0 && iocb->ki_left > 0); 1361 1362 if ((ret == 0) || (iocb->ki_left == 0)) 1363 ret = iocb->ki_nbytes - iocb->ki_left; 1364 1365 return ret; 1366 } 1367 1368 static ssize_t aio_fdsync(struct kiocb *iocb) 1369 { 1370 struct file *file = iocb->ki_filp; 1371 ssize_t ret = -EINVAL; 1372 1373 if (file->f_op->aio_fsync) 1374 ret = file->f_op->aio_fsync(iocb, 1); 1375 return ret; 1376 } 1377 1378 static ssize_t aio_fsync(struct kiocb *iocb) 1379 { 1380 struct file *file = iocb->ki_filp; 1381 ssize_t ret = -EINVAL; 1382 1383 if (file->f_op->aio_fsync) 1384 ret = file->f_op->aio_fsync(iocb, 0); 1385 return ret; 1386 } 1387 1388 /* 1389 * aio_setup_iocb: 1390 * Performs the initial checks and aio retry method 1391 * setup for the kiocb at the time of io submission. 1392 */ 1393 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1394 { 1395 struct file *file = kiocb->ki_filp; 1396 ssize_t ret = 0; 1397 1398 switch (kiocb->ki_opcode) { 1399 case IOCB_CMD_PREAD: 1400 ret = -EBADF; 1401 if (unlikely(!(file->f_mode & FMODE_READ))) 1402 break; 1403 ret = -EFAULT; 1404 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1405 kiocb->ki_left))) 1406 break; 1407 ret = security_file_permission(file, MAY_READ); 1408 if (unlikely(ret)) 1409 break; 1410 ret = -EINVAL; 1411 if (file->f_op->aio_read) 1412 kiocb->ki_retry = aio_pread; 1413 break; 1414 case IOCB_CMD_PWRITE: 1415 ret = -EBADF; 1416 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1417 break; 1418 ret = -EFAULT; 1419 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1420 kiocb->ki_left))) 1421 break; 1422 ret = security_file_permission(file, MAY_WRITE); 1423 if (unlikely(ret)) 1424 break; 1425 ret = -EINVAL; 1426 if (file->f_op->aio_write) 1427 kiocb->ki_retry = aio_pwrite; 1428 break; 1429 case IOCB_CMD_FDSYNC: 1430 ret = -EINVAL; 1431 if (file->f_op->aio_fsync) 1432 kiocb->ki_retry = aio_fdsync; 1433 break; 1434 case IOCB_CMD_FSYNC: 1435 ret = -EINVAL; 1436 if (file->f_op->aio_fsync) 1437 kiocb->ki_retry = aio_fsync; 1438 break; 1439 default: 1440 dprintk("EINVAL: io_submit: no operation provided\n"); 1441 ret = -EINVAL; 1442 } 1443 1444 if (!kiocb->ki_retry) 1445 return ret; 1446 1447 return 0; 1448 } 1449 1450 /* 1451 * aio_wake_function: 1452 * wait queue callback function for aio notification, 1453 * Simply triggers a retry of the operation via kick_iocb. 1454 * 1455 * This callback is specified in the wait queue entry in 1456 * a kiocb (current->io_wait points to this wait queue 1457 * entry when an aio operation executes; it is used 1458 * instead of a synchronous wait when an i/o blocking 1459 * condition is encountered during aio). 1460 * 1461 * Note: 1462 * This routine is executed with the wait queue lock held. 1463 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1464 * the ioctx lock inside the wait queue lock. This is safe 1465 * because this callback isn't used for wait queues which 1466 * are nested inside ioctx lock (i.e. ctx->wait) 1467 */ 1468 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1469 int sync, void *key) 1470 { 1471 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1472 1473 list_del_init(&wait->task_list); 1474 kick_iocb(iocb); 1475 return 1; 1476 } 1477 1478 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1479 struct iocb *iocb) 1480 { 1481 struct kiocb *req; 1482 struct file *file; 1483 ssize_t ret; 1484 1485 /* enforce forwards compatibility on users */ 1486 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 || 1487 iocb->aio_reserved3)) { 1488 pr_debug("EINVAL: io_submit: reserve field set\n"); 1489 return -EINVAL; 1490 } 1491 1492 /* prevent overflows */ 1493 if (unlikely( 1494 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1495 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1496 ((ssize_t)iocb->aio_nbytes < 0) 1497 )) { 1498 pr_debug("EINVAL: io_submit: overflow check\n"); 1499 return -EINVAL; 1500 } 1501 1502 file = fget(iocb->aio_fildes); 1503 if (unlikely(!file)) 1504 return -EBADF; 1505 1506 req = aio_get_req(ctx); /* returns with 2 references to req */ 1507 if (unlikely(!req)) { 1508 fput(file); 1509 return -EAGAIN; 1510 } 1511 1512 req->ki_filp = file; 1513 ret = put_user(req->ki_key, &user_iocb->aio_key); 1514 if (unlikely(ret)) { 1515 dprintk("EFAULT: aio_key\n"); 1516 goto out_put_req; 1517 } 1518 1519 req->ki_obj.user = user_iocb; 1520 req->ki_user_data = iocb->aio_data; 1521 req->ki_pos = iocb->aio_offset; 1522 1523 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1524 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1525 req->ki_opcode = iocb->aio_lio_opcode; 1526 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1527 INIT_LIST_HEAD(&req->ki_wait.task_list); 1528 req->ki_retried = 0; 1529 1530 ret = aio_setup_iocb(req); 1531 1532 if (ret) 1533 goto out_put_req; 1534 1535 spin_lock_irq(&ctx->ctx_lock); 1536 aio_run_iocb(req); 1537 if (!list_empty(&ctx->run_list)) { 1538 /* drain the run list */ 1539 while (__aio_run_iocbs(ctx)) 1540 ; 1541 } 1542 spin_unlock_irq(&ctx->ctx_lock); 1543 aio_put_req(req); /* drop extra ref to req */ 1544 return 0; 1545 1546 out_put_req: 1547 aio_put_req(req); /* drop extra ref to req */ 1548 aio_put_req(req); /* drop i/o ref to req */ 1549 return ret; 1550 } 1551 1552 /* sys_io_submit: 1553 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1554 * the number of iocbs queued. May return -EINVAL if the aio_context 1555 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1556 * *iocbpp[0] is not properly initialized, if the operation specified 1557 * is invalid for the file descriptor in the iocb. May fail with 1558 * -EFAULT if any of the data structures point to invalid data. May 1559 * fail with -EBADF if the file descriptor specified in the first 1560 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1561 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1562 * fail with -ENOSYS if not implemented. 1563 */ 1564 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1565 struct iocb __user * __user *iocbpp) 1566 { 1567 struct kioctx *ctx; 1568 long ret = 0; 1569 int i; 1570 1571 if (unlikely(nr < 0)) 1572 return -EINVAL; 1573 1574 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1575 return -EFAULT; 1576 1577 ctx = lookup_ioctx(ctx_id); 1578 if (unlikely(!ctx)) { 1579 pr_debug("EINVAL: io_submit: invalid context id\n"); 1580 return -EINVAL; 1581 } 1582 1583 /* 1584 * AKPM: should this return a partial result if some of the IOs were 1585 * successfully submitted? 1586 */ 1587 for (i=0; i<nr; i++) { 1588 struct iocb __user *user_iocb; 1589 struct iocb tmp; 1590 1591 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1592 ret = -EFAULT; 1593 break; 1594 } 1595 1596 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1597 ret = -EFAULT; 1598 break; 1599 } 1600 1601 ret = io_submit_one(ctx, user_iocb, &tmp); 1602 if (ret) 1603 break; 1604 } 1605 1606 put_ioctx(ctx); 1607 return i ? i : ret; 1608 } 1609 1610 /* lookup_kiocb 1611 * Finds a given iocb for cancellation. 1612 */ 1613 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1614 u32 key) 1615 { 1616 struct list_head *pos; 1617 1618 assert_spin_locked(&ctx->ctx_lock); 1619 1620 /* TODO: use a hash or array, this sucks. */ 1621 list_for_each(pos, &ctx->active_reqs) { 1622 struct kiocb *kiocb = list_kiocb(pos); 1623 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1624 return kiocb; 1625 } 1626 return NULL; 1627 } 1628 1629 /* sys_io_cancel: 1630 * Attempts to cancel an iocb previously passed to io_submit. If 1631 * the operation is successfully cancelled, the resulting event is 1632 * copied into the memory pointed to by result without being placed 1633 * into the completion queue and 0 is returned. May fail with 1634 * -EFAULT if any of the data structures pointed to are invalid. 1635 * May fail with -EINVAL if aio_context specified by ctx_id is 1636 * invalid. May fail with -EAGAIN if the iocb specified was not 1637 * cancelled. Will fail with -ENOSYS if not implemented. 1638 */ 1639 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1640 struct io_event __user *result) 1641 { 1642 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1643 struct kioctx *ctx; 1644 struct kiocb *kiocb; 1645 u32 key; 1646 int ret; 1647 1648 ret = get_user(key, &iocb->aio_key); 1649 if (unlikely(ret)) 1650 return -EFAULT; 1651 1652 ctx = lookup_ioctx(ctx_id); 1653 if (unlikely(!ctx)) 1654 return -EINVAL; 1655 1656 spin_lock_irq(&ctx->ctx_lock); 1657 ret = -EAGAIN; 1658 kiocb = lookup_kiocb(ctx, iocb, key); 1659 if (kiocb && kiocb->ki_cancel) { 1660 cancel = kiocb->ki_cancel; 1661 kiocb->ki_users ++; 1662 kiocbSetCancelled(kiocb); 1663 } else 1664 cancel = NULL; 1665 spin_unlock_irq(&ctx->ctx_lock); 1666 1667 if (NULL != cancel) { 1668 struct io_event tmp; 1669 pr_debug("calling cancel\n"); 1670 memset(&tmp, 0, sizeof(tmp)); 1671 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1672 tmp.data = kiocb->ki_user_data; 1673 ret = cancel(kiocb, &tmp); 1674 if (!ret) { 1675 /* Cancellation succeeded -- copy the result 1676 * into the user's buffer. 1677 */ 1678 if (copy_to_user(result, &tmp, sizeof(tmp))) 1679 ret = -EFAULT; 1680 } 1681 } else 1682 ret = -EINVAL; 1683 1684 put_ioctx(ctx); 1685 1686 return ret; 1687 } 1688 1689 /* io_getevents: 1690 * Attempts to read at least min_nr events and up to nr events from 1691 * the completion queue for the aio_context specified by ctx_id. May 1692 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1693 * if nr is out of range, if when is out of range. May fail with 1694 * -EFAULT if any of the memory specified to is invalid. May return 1695 * 0 or < min_nr if no events are available and the timeout specified 1696 * by when has elapsed, where when == NULL specifies an infinite 1697 * timeout. Note that the timeout pointed to by when is relative and 1698 * will be updated if not NULL and the operation blocks. Will fail 1699 * with -ENOSYS if not implemented. 1700 */ 1701 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1702 long min_nr, 1703 long nr, 1704 struct io_event __user *events, 1705 struct timespec __user *timeout) 1706 { 1707 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1708 long ret = -EINVAL; 1709 1710 if (likely(ioctx)) { 1711 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1712 ret = read_events(ioctx, min_nr, nr, events, timeout); 1713 put_ioctx(ioctx); 1714 } 1715 1716 return ret; 1717 } 1718 1719 __initcall(aio_setup); 1720 1721 EXPORT_SYMBOL(aio_complete); 1722 EXPORT_SYMBOL(aio_put_req); 1723 EXPORT_SYMBOL(wait_on_sync_kiocb); 1724