1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[]; 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool done; 185 bool cancelled; 186 struct wait_queue_entry wait; 187 struct work_struct work; 188 }; 189 190 /* 191 * NOTE! Each of the iocb union members has the file pointer 192 * as the first entry in their struct definition. So you can 193 * access the file pointer through any of the sub-structs, 194 * or directly as just 'ki_filp' in this struct. 195 */ 196 struct aio_kiocb { 197 union { 198 struct file *ki_filp; 199 struct kiocb rw; 200 struct fsync_iocb fsync; 201 struct poll_iocb poll; 202 }; 203 204 struct kioctx *ki_ctx; 205 kiocb_cancel_fn *ki_cancel; 206 207 struct io_event ki_res; 208 209 struct list_head ki_list; /* the aio core uses this 210 * for cancellation */ 211 refcount_t ki_refcnt; 212 213 /* 214 * If the aio_resfd field of the userspace iocb is not zero, 215 * this is the underlying eventfd context to deliver events to. 216 */ 217 struct eventfd_ctx *ki_eventfd; 218 }; 219 220 /*------ sysctl variables----*/ 221 static DEFINE_SPINLOCK(aio_nr_lock); 222 unsigned long aio_nr; /* current system wide number of aio requests */ 223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 224 /*----end sysctl variables---*/ 225 226 static struct kmem_cache *kiocb_cachep; 227 static struct kmem_cache *kioctx_cachep; 228 229 static struct vfsmount *aio_mnt; 230 231 static const struct file_operations aio_ring_fops; 232 static const struct address_space_operations aio_ctx_aops; 233 234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 235 { 236 struct file *file; 237 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 238 if (IS_ERR(inode)) 239 return ERR_CAST(inode); 240 241 inode->i_mapping->a_ops = &aio_ctx_aops; 242 inode->i_mapping->private_data = ctx; 243 inode->i_size = PAGE_SIZE * nr_pages; 244 245 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 246 O_RDWR, &aio_ring_fops); 247 if (IS_ERR(file)) 248 iput(inode); 249 return file; 250 } 251 252 static int aio_init_fs_context(struct fs_context *fc) 253 { 254 if (!init_pseudo(fc, AIO_RING_MAGIC)) 255 return -ENOMEM; 256 fc->s_iflags |= SB_I_NOEXEC; 257 return 0; 258 } 259 260 /* aio_setup 261 * Creates the slab caches used by the aio routines, panic on 262 * failure as this is done early during the boot sequence. 263 */ 264 static int __init aio_setup(void) 265 { 266 static struct file_system_type aio_fs = { 267 .name = "aio", 268 .init_fs_context = aio_init_fs_context, 269 .kill_sb = kill_anon_super, 270 }; 271 aio_mnt = kern_mount(&aio_fs); 272 if (IS_ERR(aio_mnt)) 273 panic("Failed to create aio fs mount."); 274 275 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 276 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 277 return 0; 278 } 279 __initcall(aio_setup); 280 281 static void put_aio_ring_file(struct kioctx *ctx) 282 { 283 struct file *aio_ring_file = ctx->aio_ring_file; 284 struct address_space *i_mapping; 285 286 if (aio_ring_file) { 287 truncate_setsize(file_inode(aio_ring_file), 0); 288 289 /* Prevent further access to the kioctx from migratepages */ 290 i_mapping = aio_ring_file->f_mapping; 291 spin_lock(&i_mapping->private_lock); 292 i_mapping->private_data = NULL; 293 ctx->aio_ring_file = NULL; 294 spin_unlock(&i_mapping->private_lock); 295 296 fput(aio_ring_file); 297 } 298 } 299 300 static void aio_free_ring(struct kioctx *ctx) 301 { 302 int i; 303 304 /* Disconnect the kiotx from the ring file. This prevents future 305 * accesses to the kioctx from page migration. 306 */ 307 put_aio_ring_file(ctx); 308 309 for (i = 0; i < ctx->nr_pages; i++) { 310 struct page *page; 311 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 312 page_count(ctx->ring_pages[i])); 313 page = ctx->ring_pages[i]; 314 if (!page) 315 continue; 316 ctx->ring_pages[i] = NULL; 317 put_page(page); 318 } 319 320 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 321 kfree(ctx->ring_pages); 322 ctx->ring_pages = NULL; 323 } 324 } 325 326 static int aio_ring_mremap(struct vm_area_struct *vma) 327 { 328 struct file *file = vma->vm_file; 329 struct mm_struct *mm = vma->vm_mm; 330 struct kioctx_table *table; 331 int i, res = -EINVAL; 332 333 spin_lock(&mm->ioctx_lock); 334 rcu_read_lock(); 335 table = rcu_dereference(mm->ioctx_table); 336 for (i = 0; i < table->nr; i++) { 337 struct kioctx *ctx; 338 339 ctx = rcu_dereference(table->table[i]); 340 if (ctx && ctx->aio_ring_file == file) { 341 if (!atomic_read(&ctx->dead)) { 342 ctx->user_id = ctx->mmap_base = vma->vm_start; 343 res = 0; 344 } 345 break; 346 } 347 } 348 349 rcu_read_unlock(); 350 spin_unlock(&mm->ioctx_lock); 351 return res; 352 } 353 354 static const struct vm_operations_struct aio_ring_vm_ops = { 355 .mremap = aio_ring_mremap, 356 #if IS_ENABLED(CONFIG_MMU) 357 .fault = filemap_fault, 358 .map_pages = filemap_map_pages, 359 .page_mkwrite = filemap_page_mkwrite, 360 #endif 361 }; 362 363 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 364 { 365 vma->vm_flags |= VM_DONTEXPAND; 366 vma->vm_ops = &aio_ring_vm_ops; 367 return 0; 368 } 369 370 static const struct file_operations aio_ring_fops = { 371 .mmap = aio_ring_mmap, 372 }; 373 374 #if IS_ENABLED(CONFIG_MIGRATION) 375 static int aio_migratepage(struct address_space *mapping, struct page *new, 376 struct page *old, enum migrate_mode mode) 377 { 378 struct kioctx *ctx; 379 unsigned long flags; 380 pgoff_t idx; 381 int rc; 382 383 /* 384 * We cannot support the _NO_COPY case here, because copy needs to 385 * happen under the ctx->completion_lock. That does not work with the 386 * migration workflow of MIGRATE_SYNC_NO_COPY. 387 */ 388 if (mode == MIGRATE_SYNC_NO_COPY) 389 return -EINVAL; 390 391 rc = 0; 392 393 /* mapping->private_lock here protects against the kioctx teardown. */ 394 spin_lock(&mapping->private_lock); 395 ctx = mapping->private_data; 396 if (!ctx) { 397 rc = -EINVAL; 398 goto out; 399 } 400 401 /* The ring_lock mutex. The prevents aio_read_events() from writing 402 * to the ring's head, and prevents page migration from mucking in 403 * a partially initialized kiotx. 404 */ 405 if (!mutex_trylock(&ctx->ring_lock)) { 406 rc = -EAGAIN; 407 goto out; 408 } 409 410 idx = old->index; 411 if (idx < (pgoff_t)ctx->nr_pages) { 412 /* Make sure the old page hasn't already been changed */ 413 if (ctx->ring_pages[idx] != old) 414 rc = -EAGAIN; 415 } else 416 rc = -EINVAL; 417 418 if (rc != 0) 419 goto out_unlock; 420 421 /* Writeback must be complete */ 422 BUG_ON(PageWriteback(old)); 423 get_page(new); 424 425 rc = migrate_page_move_mapping(mapping, new, old, 1); 426 if (rc != MIGRATEPAGE_SUCCESS) { 427 put_page(new); 428 goto out_unlock; 429 } 430 431 /* Take completion_lock to prevent other writes to the ring buffer 432 * while the old page is copied to the new. This prevents new 433 * events from being lost. 434 */ 435 spin_lock_irqsave(&ctx->completion_lock, flags); 436 migrate_page_copy(new, old); 437 BUG_ON(ctx->ring_pages[idx] != old); 438 ctx->ring_pages[idx] = new; 439 spin_unlock_irqrestore(&ctx->completion_lock, flags); 440 441 /* The old page is no longer accessible. */ 442 put_page(old); 443 444 out_unlock: 445 mutex_unlock(&ctx->ring_lock); 446 out: 447 spin_unlock(&mapping->private_lock); 448 return rc; 449 } 450 #endif 451 452 static const struct address_space_operations aio_ctx_aops = { 453 .set_page_dirty = __set_page_dirty_no_writeback, 454 #if IS_ENABLED(CONFIG_MIGRATION) 455 .migratepage = aio_migratepage, 456 #endif 457 }; 458 459 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 460 { 461 struct aio_ring *ring; 462 struct mm_struct *mm = current->mm; 463 unsigned long size, unused; 464 int nr_pages; 465 int i; 466 struct file *file; 467 468 /* Compensate for the ring buffer's head/tail overlap entry */ 469 nr_events += 2; /* 1 is required, 2 for good luck */ 470 471 size = sizeof(struct aio_ring); 472 size += sizeof(struct io_event) * nr_events; 473 474 nr_pages = PFN_UP(size); 475 if (nr_pages < 0) 476 return -EINVAL; 477 478 file = aio_private_file(ctx, nr_pages); 479 if (IS_ERR(file)) { 480 ctx->aio_ring_file = NULL; 481 return -ENOMEM; 482 } 483 484 ctx->aio_ring_file = file; 485 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 486 / sizeof(struct io_event); 487 488 ctx->ring_pages = ctx->internal_pages; 489 if (nr_pages > AIO_RING_PAGES) { 490 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 491 GFP_KERNEL); 492 if (!ctx->ring_pages) { 493 put_aio_ring_file(ctx); 494 return -ENOMEM; 495 } 496 } 497 498 for (i = 0; i < nr_pages; i++) { 499 struct page *page; 500 page = find_or_create_page(file->f_mapping, 501 i, GFP_HIGHUSER | __GFP_ZERO); 502 if (!page) 503 break; 504 pr_debug("pid(%d) page[%d]->count=%d\n", 505 current->pid, i, page_count(page)); 506 SetPageUptodate(page); 507 unlock_page(page); 508 509 ctx->ring_pages[i] = page; 510 } 511 ctx->nr_pages = i; 512 513 if (unlikely(i != nr_pages)) { 514 aio_free_ring(ctx); 515 return -ENOMEM; 516 } 517 518 ctx->mmap_size = nr_pages * PAGE_SIZE; 519 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 520 521 if (mmap_write_lock_killable(mm)) { 522 ctx->mmap_size = 0; 523 aio_free_ring(ctx); 524 return -EINTR; 525 } 526 527 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 528 PROT_READ | PROT_WRITE, 529 MAP_SHARED, 0, &unused, NULL); 530 mmap_write_unlock(mm); 531 if (IS_ERR((void *)ctx->mmap_base)) { 532 ctx->mmap_size = 0; 533 aio_free_ring(ctx); 534 return -ENOMEM; 535 } 536 537 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 538 539 ctx->user_id = ctx->mmap_base; 540 ctx->nr_events = nr_events; /* trusted copy */ 541 542 ring = kmap_atomic(ctx->ring_pages[0]); 543 ring->nr = nr_events; /* user copy */ 544 ring->id = ~0U; 545 ring->head = ring->tail = 0; 546 ring->magic = AIO_RING_MAGIC; 547 ring->compat_features = AIO_RING_COMPAT_FEATURES; 548 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 549 ring->header_length = sizeof(struct aio_ring); 550 kunmap_atomic(ring); 551 flush_dcache_page(ctx->ring_pages[0]); 552 553 return 0; 554 } 555 556 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 557 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 558 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 559 560 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 561 { 562 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 563 struct kioctx *ctx = req->ki_ctx; 564 unsigned long flags; 565 566 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 567 return; 568 569 spin_lock_irqsave(&ctx->ctx_lock, flags); 570 list_add_tail(&req->ki_list, &ctx->active_reqs); 571 req->ki_cancel = cancel; 572 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 573 } 574 EXPORT_SYMBOL(kiocb_set_cancel_fn); 575 576 /* 577 * free_ioctx() should be RCU delayed to synchronize against the RCU 578 * protected lookup_ioctx() and also needs process context to call 579 * aio_free_ring(). Use rcu_work. 580 */ 581 static void free_ioctx(struct work_struct *work) 582 { 583 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 584 free_rwork); 585 pr_debug("freeing %p\n", ctx); 586 587 aio_free_ring(ctx); 588 free_percpu(ctx->cpu); 589 percpu_ref_exit(&ctx->reqs); 590 percpu_ref_exit(&ctx->users); 591 kmem_cache_free(kioctx_cachep, ctx); 592 } 593 594 static void free_ioctx_reqs(struct percpu_ref *ref) 595 { 596 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 597 598 /* At this point we know that there are no any in-flight requests */ 599 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 600 complete(&ctx->rq_wait->comp); 601 602 /* Synchronize against RCU protected table->table[] dereferences */ 603 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 604 queue_rcu_work(system_wq, &ctx->free_rwork); 605 } 606 607 /* 608 * When this function runs, the kioctx has been removed from the "hash table" 609 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 610 * now it's safe to cancel any that need to be. 611 */ 612 static void free_ioctx_users(struct percpu_ref *ref) 613 { 614 struct kioctx *ctx = container_of(ref, struct kioctx, users); 615 struct aio_kiocb *req; 616 617 spin_lock_irq(&ctx->ctx_lock); 618 619 while (!list_empty(&ctx->active_reqs)) { 620 req = list_first_entry(&ctx->active_reqs, 621 struct aio_kiocb, ki_list); 622 req->ki_cancel(&req->rw); 623 list_del_init(&req->ki_list); 624 } 625 626 spin_unlock_irq(&ctx->ctx_lock); 627 628 percpu_ref_kill(&ctx->reqs); 629 percpu_ref_put(&ctx->reqs); 630 } 631 632 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 633 { 634 unsigned i, new_nr; 635 struct kioctx_table *table, *old; 636 struct aio_ring *ring; 637 638 spin_lock(&mm->ioctx_lock); 639 table = rcu_dereference_raw(mm->ioctx_table); 640 641 while (1) { 642 if (table) 643 for (i = 0; i < table->nr; i++) 644 if (!rcu_access_pointer(table->table[i])) { 645 ctx->id = i; 646 rcu_assign_pointer(table->table[i], ctx); 647 spin_unlock(&mm->ioctx_lock); 648 649 /* While kioctx setup is in progress, 650 * we are protected from page migration 651 * changes ring_pages by ->ring_lock. 652 */ 653 ring = kmap_atomic(ctx->ring_pages[0]); 654 ring->id = ctx->id; 655 kunmap_atomic(ring); 656 return 0; 657 } 658 659 new_nr = (table ? table->nr : 1) * 4; 660 spin_unlock(&mm->ioctx_lock); 661 662 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 663 new_nr, GFP_KERNEL); 664 if (!table) 665 return -ENOMEM; 666 667 table->nr = new_nr; 668 669 spin_lock(&mm->ioctx_lock); 670 old = rcu_dereference_raw(mm->ioctx_table); 671 672 if (!old) { 673 rcu_assign_pointer(mm->ioctx_table, table); 674 } else if (table->nr > old->nr) { 675 memcpy(table->table, old->table, 676 old->nr * sizeof(struct kioctx *)); 677 678 rcu_assign_pointer(mm->ioctx_table, table); 679 kfree_rcu(old, rcu); 680 } else { 681 kfree(table); 682 table = old; 683 } 684 } 685 } 686 687 static void aio_nr_sub(unsigned nr) 688 { 689 spin_lock(&aio_nr_lock); 690 if (WARN_ON(aio_nr - nr > aio_nr)) 691 aio_nr = 0; 692 else 693 aio_nr -= nr; 694 spin_unlock(&aio_nr_lock); 695 } 696 697 /* ioctx_alloc 698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 699 */ 700 static struct kioctx *ioctx_alloc(unsigned nr_events) 701 { 702 struct mm_struct *mm = current->mm; 703 struct kioctx *ctx; 704 int err = -ENOMEM; 705 706 /* 707 * Store the original nr_events -- what userspace passed to io_setup(), 708 * for counting against the global limit -- before it changes. 709 */ 710 unsigned int max_reqs = nr_events; 711 712 /* 713 * We keep track of the number of available ringbuffer slots, to prevent 714 * overflow (reqs_available), and we also use percpu counters for this. 715 * 716 * So since up to half the slots might be on other cpu's percpu counters 717 * and unavailable, double nr_events so userspace sees what they 718 * expected: additionally, we move req_batch slots to/from percpu 719 * counters at a time, so make sure that isn't 0: 720 */ 721 nr_events = max(nr_events, num_possible_cpus() * 4); 722 nr_events *= 2; 723 724 /* Prevent overflows */ 725 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 726 pr_debug("ENOMEM: nr_events too high\n"); 727 return ERR_PTR(-EINVAL); 728 } 729 730 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 731 return ERR_PTR(-EAGAIN); 732 733 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 734 if (!ctx) 735 return ERR_PTR(-ENOMEM); 736 737 ctx->max_reqs = max_reqs; 738 739 spin_lock_init(&ctx->ctx_lock); 740 spin_lock_init(&ctx->completion_lock); 741 mutex_init(&ctx->ring_lock); 742 /* Protect against page migration throughout kiotx setup by keeping 743 * the ring_lock mutex held until setup is complete. */ 744 mutex_lock(&ctx->ring_lock); 745 init_waitqueue_head(&ctx->wait); 746 747 INIT_LIST_HEAD(&ctx->active_reqs); 748 749 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 750 goto err; 751 752 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 753 goto err; 754 755 ctx->cpu = alloc_percpu(struct kioctx_cpu); 756 if (!ctx->cpu) 757 goto err; 758 759 err = aio_setup_ring(ctx, nr_events); 760 if (err < 0) 761 goto err; 762 763 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 764 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 765 if (ctx->req_batch < 1) 766 ctx->req_batch = 1; 767 768 /* limit the number of system wide aios */ 769 spin_lock(&aio_nr_lock); 770 if (aio_nr + ctx->max_reqs > aio_max_nr || 771 aio_nr + ctx->max_reqs < aio_nr) { 772 spin_unlock(&aio_nr_lock); 773 err = -EAGAIN; 774 goto err_ctx; 775 } 776 aio_nr += ctx->max_reqs; 777 spin_unlock(&aio_nr_lock); 778 779 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 780 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 781 782 err = ioctx_add_table(ctx, mm); 783 if (err) 784 goto err_cleanup; 785 786 /* Release the ring_lock mutex now that all setup is complete. */ 787 mutex_unlock(&ctx->ring_lock); 788 789 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 790 ctx, ctx->user_id, mm, ctx->nr_events); 791 return ctx; 792 793 err_cleanup: 794 aio_nr_sub(ctx->max_reqs); 795 err_ctx: 796 atomic_set(&ctx->dead, 1); 797 if (ctx->mmap_size) 798 vm_munmap(ctx->mmap_base, ctx->mmap_size); 799 aio_free_ring(ctx); 800 err: 801 mutex_unlock(&ctx->ring_lock); 802 free_percpu(ctx->cpu); 803 percpu_ref_exit(&ctx->reqs); 804 percpu_ref_exit(&ctx->users); 805 kmem_cache_free(kioctx_cachep, ctx); 806 pr_debug("error allocating ioctx %d\n", err); 807 return ERR_PTR(err); 808 } 809 810 /* kill_ioctx 811 * Cancels all outstanding aio requests on an aio context. Used 812 * when the processes owning a context have all exited to encourage 813 * the rapid destruction of the kioctx. 814 */ 815 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 816 struct ctx_rq_wait *wait) 817 { 818 struct kioctx_table *table; 819 820 spin_lock(&mm->ioctx_lock); 821 if (atomic_xchg(&ctx->dead, 1)) { 822 spin_unlock(&mm->ioctx_lock); 823 return -EINVAL; 824 } 825 826 table = rcu_dereference_raw(mm->ioctx_table); 827 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 828 RCU_INIT_POINTER(table->table[ctx->id], NULL); 829 spin_unlock(&mm->ioctx_lock); 830 831 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 832 wake_up_all(&ctx->wait); 833 834 /* 835 * It'd be more correct to do this in free_ioctx(), after all 836 * the outstanding kiocbs have finished - but by then io_destroy 837 * has already returned, so io_setup() could potentially return 838 * -EAGAIN with no ioctxs actually in use (as far as userspace 839 * could tell). 840 */ 841 aio_nr_sub(ctx->max_reqs); 842 843 if (ctx->mmap_size) 844 vm_munmap(ctx->mmap_base, ctx->mmap_size); 845 846 ctx->rq_wait = wait; 847 percpu_ref_kill(&ctx->users); 848 return 0; 849 } 850 851 /* 852 * exit_aio: called when the last user of mm goes away. At this point, there is 853 * no way for any new requests to be submited or any of the io_* syscalls to be 854 * called on the context. 855 * 856 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 857 * them. 858 */ 859 void exit_aio(struct mm_struct *mm) 860 { 861 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 862 struct ctx_rq_wait wait; 863 int i, skipped; 864 865 if (!table) 866 return; 867 868 atomic_set(&wait.count, table->nr); 869 init_completion(&wait.comp); 870 871 skipped = 0; 872 for (i = 0; i < table->nr; ++i) { 873 struct kioctx *ctx = 874 rcu_dereference_protected(table->table[i], true); 875 876 if (!ctx) { 877 skipped++; 878 continue; 879 } 880 881 /* 882 * We don't need to bother with munmap() here - exit_mmap(mm) 883 * is coming and it'll unmap everything. And we simply can't, 884 * this is not necessarily our ->mm. 885 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 886 * that it needs to unmap the area, just set it to 0. 887 */ 888 ctx->mmap_size = 0; 889 kill_ioctx(mm, ctx, &wait); 890 } 891 892 if (!atomic_sub_and_test(skipped, &wait.count)) { 893 /* Wait until all IO for the context are done. */ 894 wait_for_completion(&wait.comp); 895 } 896 897 RCU_INIT_POINTER(mm->ioctx_table, NULL); 898 kfree(table); 899 } 900 901 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 902 { 903 struct kioctx_cpu *kcpu; 904 unsigned long flags; 905 906 local_irq_save(flags); 907 kcpu = this_cpu_ptr(ctx->cpu); 908 kcpu->reqs_available += nr; 909 910 while (kcpu->reqs_available >= ctx->req_batch * 2) { 911 kcpu->reqs_available -= ctx->req_batch; 912 atomic_add(ctx->req_batch, &ctx->reqs_available); 913 } 914 915 local_irq_restore(flags); 916 } 917 918 static bool __get_reqs_available(struct kioctx *ctx) 919 { 920 struct kioctx_cpu *kcpu; 921 bool ret = false; 922 unsigned long flags; 923 924 local_irq_save(flags); 925 kcpu = this_cpu_ptr(ctx->cpu); 926 if (!kcpu->reqs_available) { 927 int old, avail = atomic_read(&ctx->reqs_available); 928 929 do { 930 if (avail < ctx->req_batch) 931 goto out; 932 933 old = avail; 934 avail = atomic_cmpxchg(&ctx->reqs_available, 935 avail, avail - ctx->req_batch); 936 } while (avail != old); 937 938 kcpu->reqs_available += ctx->req_batch; 939 } 940 941 ret = true; 942 kcpu->reqs_available--; 943 out: 944 local_irq_restore(flags); 945 return ret; 946 } 947 948 /* refill_reqs_available 949 * Updates the reqs_available reference counts used for tracking the 950 * number of free slots in the completion ring. This can be called 951 * from aio_complete() (to optimistically update reqs_available) or 952 * from aio_get_req() (the we're out of events case). It must be 953 * called holding ctx->completion_lock. 954 */ 955 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 956 unsigned tail) 957 { 958 unsigned events_in_ring, completed; 959 960 /* Clamp head since userland can write to it. */ 961 head %= ctx->nr_events; 962 if (head <= tail) 963 events_in_ring = tail - head; 964 else 965 events_in_ring = ctx->nr_events - (head - tail); 966 967 completed = ctx->completed_events; 968 if (events_in_ring < completed) 969 completed -= events_in_ring; 970 else 971 completed = 0; 972 973 if (!completed) 974 return; 975 976 ctx->completed_events -= completed; 977 put_reqs_available(ctx, completed); 978 } 979 980 /* user_refill_reqs_available 981 * Called to refill reqs_available when aio_get_req() encounters an 982 * out of space in the completion ring. 983 */ 984 static void user_refill_reqs_available(struct kioctx *ctx) 985 { 986 spin_lock_irq(&ctx->completion_lock); 987 if (ctx->completed_events) { 988 struct aio_ring *ring; 989 unsigned head; 990 991 /* Access of ring->head may race with aio_read_events_ring() 992 * here, but that's okay since whether we read the old version 993 * or the new version, and either will be valid. The important 994 * part is that head cannot pass tail since we prevent 995 * aio_complete() from updating tail by holding 996 * ctx->completion_lock. Even if head is invalid, the check 997 * against ctx->completed_events below will make sure we do the 998 * safe/right thing. 999 */ 1000 ring = kmap_atomic(ctx->ring_pages[0]); 1001 head = ring->head; 1002 kunmap_atomic(ring); 1003 1004 refill_reqs_available(ctx, head, ctx->tail); 1005 } 1006 1007 spin_unlock_irq(&ctx->completion_lock); 1008 } 1009 1010 static bool get_reqs_available(struct kioctx *ctx) 1011 { 1012 if (__get_reqs_available(ctx)) 1013 return true; 1014 user_refill_reqs_available(ctx); 1015 return __get_reqs_available(ctx); 1016 } 1017 1018 /* aio_get_req 1019 * Allocate a slot for an aio request. 1020 * Returns NULL if no requests are free. 1021 * 1022 * The refcount is initialized to 2 - one for the async op completion, 1023 * one for the synchronous code that does this. 1024 */ 1025 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1026 { 1027 struct aio_kiocb *req; 1028 1029 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1030 if (unlikely(!req)) 1031 return NULL; 1032 1033 if (unlikely(!get_reqs_available(ctx))) { 1034 kmem_cache_free(kiocb_cachep, req); 1035 return NULL; 1036 } 1037 1038 percpu_ref_get(&ctx->reqs); 1039 req->ki_ctx = ctx; 1040 INIT_LIST_HEAD(&req->ki_list); 1041 refcount_set(&req->ki_refcnt, 2); 1042 req->ki_eventfd = NULL; 1043 return req; 1044 } 1045 1046 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1047 { 1048 struct aio_ring __user *ring = (void __user *)ctx_id; 1049 struct mm_struct *mm = current->mm; 1050 struct kioctx *ctx, *ret = NULL; 1051 struct kioctx_table *table; 1052 unsigned id; 1053 1054 if (get_user(id, &ring->id)) 1055 return NULL; 1056 1057 rcu_read_lock(); 1058 table = rcu_dereference(mm->ioctx_table); 1059 1060 if (!table || id >= table->nr) 1061 goto out; 1062 1063 id = array_index_nospec(id, table->nr); 1064 ctx = rcu_dereference(table->table[id]); 1065 if (ctx && ctx->user_id == ctx_id) { 1066 if (percpu_ref_tryget_live(&ctx->users)) 1067 ret = ctx; 1068 } 1069 out: 1070 rcu_read_unlock(); 1071 return ret; 1072 } 1073 1074 static inline void iocb_destroy(struct aio_kiocb *iocb) 1075 { 1076 if (iocb->ki_eventfd) 1077 eventfd_ctx_put(iocb->ki_eventfd); 1078 if (iocb->ki_filp) 1079 fput(iocb->ki_filp); 1080 percpu_ref_put(&iocb->ki_ctx->reqs); 1081 kmem_cache_free(kiocb_cachep, iocb); 1082 } 1083 1084 /* aio_complete 1085 * Called when the io request on the given iocb is complete. 1086 */ 1087 static void aio_complete(struct aio_kiocb *iocb) 1088 { 1089 struct kioctx *ctx = iocb->ki_ctx; 1090 struct aio_ring *ring; 1091 struct io_event *ev_page, *event; 1092 unsigned tail, pos, head; 1093 unsigned long flags; 1094 1095 /* 1096 * Add a completion event to the ring buffer. Must be done holding 1097 * ctx->completion_lock to prevent other code from messing with the tail 1098 * pointer since we might be called from irq context. 1099 */ 1100 spin_lock_irqsave(&ctx->completion_lock, flags); 1101 1102 tail = ctx->tail; 1103 pos = tail + AIO_EVENTS_OFFSET; 1104 1105 if (++tail >= ctx->nr_events) 1106 tail = 0; 1107 1108 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1109 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1110 1111 *event = iocb->ki_res; 1112 1113 kunmap_atomic(ev_page); 1114 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1115 1116 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1117 (void __user *)(unsigned long)iocb->ki_res.obj, 1118 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1119 1120 /* after flagging the request as done, we 1121 * must never even look at it again 1122 */ 1123 smp_wmb(); /* make event visible before updating tail */ 1124 1125 ctx->tail = tail; 1126 1127 ring = kmap_atomic(ctx->ring_pages[0]); 1128 head = ring->head; 1129 ring->tail = tail; 1130 kunmap_atomic(ring); 1131 flush_dcache_page(ctx->ring_pages[0]); 1132 1133 ctx->completed_events++; 1134 if (ctx->completed_events > 1) 1135 refill_reqs_available(ctx, head, tail); 1136 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1137 1138 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1139 1140 /* 1141 * Check if the user asked us to deliver the result through an 1142 * eventfd. The eventfd_signal() function is safe to be called 1143 * from IRQ context. 1144 */ 1145 if (iocb->ki_eventfd) 1146 eventfd_signal(iocb->ki_eventfd, 1); 1147 1148 /* 1149 * We have to order our ring_info tail store above and test 1150 * of the wait list below outside the wait lock. This is 1151 * like in wake_up_bit() where clearing a bit has to be 1152 * ordered with the unlocked test. 1153 */ 1154 smp_mb(); 1155 1156 if (waitqueue_active(&ctx->wait)) 1157 wake_up(&ctx->wait); 1158 } 1159 1160 static inline void iocb_put(struct aio_kiocb *iocb) 1161 { 1162 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1163 aio_complete(iocb); 1164 iocb_destroy(iocb); 1165 } 1166 } 1167 1168 /* aio_read_events_ring 1169 * Pull an event off of the ioctx's event ring. Returns the number of 1170 * events fetched 1171 */ 1172 static long aio_read_events_ring(struct kioctx *ctx, 1173 struct io_event __user *event, long nr) 1174 { 1175 struct aio_ring *ring; 1176 unsigned head, tail, pos; 1177 long ret = 0; 1178 int copy_ret; 1179 1180 /* 1181 * The mutex can block and wake us up and that will cause 1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1183 * and repeat. This should be rare enough that it doesn't cause 1184 * peformance issues. See the comment in read_events() for more detail. 1185 */ 1186 sched_annotate_sleep(); 1187 mutex_lock(&ctx->ring_lock); 1188 1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1190 ring = kmap_atomic(ctx->ring_pages[0]); 1191 head = ring->head; 1192 tail = ring->tail; 1193 kunmap_atomic(ring); 1194 1195 /* 1196 * Ensure that once we've read the current tail pointer, that 1197 * we also see the events that were stored up to the tail. 1198 */ 1199 smp_rmb(); 1200 1201 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1202 1203 if (head == tail) 1204 goto out; 1205 1206 head %= ctx->nr_events; 1207 tail %= ctx->nr_events; 1208 1209 while (ret < nr) { 1210 long avail; 1211 struct io_event *ev; 1212 struct page *page; 1213 1214 avail = (head <= tail ? tail : ctx->nr_events) - head; 1215 if (head == tail) 1216 break; 1217 1218 pos = head + AIO_EVENTS_OFFSET; 1219 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1220 pos %= AIO_EVENTS_PER_PAGE; 1221 1222 avail = min(avail, nr - ret); 1223 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1224 1225 ev = kmap(page); 1226 copy_ret = copy_to_user(event + ret, ev + pos, 1227 sizeof(*ev) * avail); 1228 kunmap(page); 1229 1230 if (unlikely(copy_ret)) { 1231 ret = -EFAULT; 1232 goto out; 1233 } 1234 1235 ret += avail; 1236 head += avail; 1237 head %= ctx->nr_events; 1238 } 1239 1240 ring = kmap_atomic(ctx->ring_pages[0]); 1241 ring->head = head; 1242 kunmap_atomic(ring); 1243 flush_dcache_page(ctx->ring_pages[0]); 1244 1245 pr_debug("%li h%u t%u\n", ret, head, tail); 1246 out: 1247 mutex_unlock(&ctx->ring_lock); 1248 1249 return ret; 1250 } 1251 1252 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1253 struct io_event __user *event, long *i) 1254 { 1255 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1256 1257 if (ret > 0) 1258 *i += ret; 1259 1260 if (unlikely(atomic_read(&ctx->dead))) 1261 ret = -EINVAL; 1262 1263 if (!*i) 1264 *i = ret; 1265 1266 return ret < 0 || *i >= min_nr; 1267 } 1268 1269 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1270 struct io_event __user *event, 1271 ktime_t until) 1272 { 1273 long ret = 0; 1274 1275 /* 1276 * Note that aio_read_events() is being called as the conditional - i.e. 1277 * we're calling it after prepare_to_wait() has set task state to 1278 * TASK_INTERRUPTIBLE. 1279 * 1280 * But aio_read_events() can block, and if it blocks it's going to flip 1281 * the task state back to TASK_RUNNING. 1282 * 1283 * This should be ok, provided it doesn't flip the state back to 1284 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1285 * will only happen if the mutex_lock() call blocks, and we then find 1286 * the ringbuffer empty. So in practice we should be ok, but it's 1287 * something to be aware of when touching this code. 1288 */ 1289 if (until == 0) 1290 aio_read_events(ctx, min_nr, nr, event, &ret); 1291 else 1292 wait_event_interruptible_hrtimeout(ctx->wait, 1293 aio_read_events(ctx, min_nr, nr, event, &ret), 1294 until); 1295 return ret; 1296 } 1297 1298 /* sys_io_setup: 1299 * Create an aio_context capable of receiving at least nr_events. 1300 * ctxp must not point to an aio_context that already exists, and 1301 * must be initialized to 0 prior to the call. On successful 1302 * creation of the aio_context, *ctxp is filled in with the resulting 1303 * handle. May fail with -EINVAL if *ctxp is not initialized, 1304 * if the specified nr_events exceeds internal limits. May fail 1305 * with -EAGAIN if the specified nr_events exceeds the user's limit 1306 * of available events. May fail with -ENOMEM if insufficient kernel 1307 * resources are available. May fail with -EFAULT if an invalid 1308 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1309 * implemented. 1310 */ 1311 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1312 { 1313 struct kioctx *ioctx = NULL; 1314 unsigned long ctx; 1315 long ret; 1316 1317 ret = get_user(ctx, ctxp); 1318 if (unlikely(ret)) 1319 goto out; 1320 1321 ret = -EINVAL; 1322 if (unlikely(ctx || nr_events == 0)) { 1323 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1324 ctx, nr_events); 1325 goto out; 1326 } 1327 1328 ioctx = ioctx_alloc(nr_events); 1329 ret = PTR_ERR(ioctx); 1330 if (!IS_ERR(ioctx)) { 1331 ret = put_user(ioctx->user_id, ctxp); 1332 if (ret) 1333 kill_ioctx(current->mm, ioctx, NULL); 1334 percpu_ref_put(&ioctx->users); 1335 } 1336 1337 out: 1338 return ret; 1339 } 1340 1341 #ifdef CONFIG_COMPAT 1342 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1343 { 1344 struct kioctx *ioctx = NULL; 1345 unsigned long ctx; 1346 long ret; 1347 1348 ret = get_user(ctx, ctx32p); 1349 if (unlikely(ret)) 1350 goto out; 1351 1352 ret = -EINVAL; 1353 if (unlikely(ctx || nr_events == 0)) { 1354 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1355 ctx, nr_events); 1356 goto out; 1357 } 1358 1359 ioctx = ioctx_alloc(nr_events); 1360 ret = PTR_ERR(ioctx); 1361 if (!IS_ERR(ioctx)) { 1362 /* truncating is ok because it's a user address */ 1363 ret = put_user((u32)ioctx->user_id, ctx32p); 1364 if (ret) 1365 kill_ioctx(current->mm, ioctx, NULL); 1366 percpu_ref_put(&ioctx->users); 1367 } 1368 1369 out: 1370 return ret; 1371 } 1372 #endif 1373 1374 /* sys_io_destroy: 1375 * Destroy the aio_context specified. May cancel any outstanding 1376 * AIOs and block on completion. Will fail with -ENOSYS if not 1377 * implemented. May fail with -EINVAL if the context pointed to 1378 * is invalid. 1379 */ 1380 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1381 { 1382 struct kioctx *ioctx = lookup_ioctx(ctx); 1383 if (likely(NULL != ioctx)) { 1384 struct ctx_rq_wait wait; 1385 int ret; 1386 1387 init_completion(&wait.comp); 1388 atomic_set(&wait.count, 1); 1389 1390 /* Pass requests_done to kill_ioctx() where it can be set 1391 * in a thread-safe way. If we try to set it here then we have 1392 * a race condition if two io_destroy() called simultaneously. 1393 */ 1394 ret = kill_ioctx(current->mm, ioctx, &wait); 1395 percpu_ref_put(&ioctx->users); 1396 1397 /* Wait until all IO for the context are done. Otherwise kernel 1398 * keep using user-space buffers even if user thinks the context 1399 * is destroyed. 1400 */ 1401 if (!ret) 1402 wait_for_completion(&wait.comp); 1403 1404 return ret; 1405 } 1406 pr_debug("EINVAL: invalid context id\n"); 1407 return -EINVAL; 1408 } 1409 1410 static void aio_remove_iocb(struct aio_kiocb *iocb) 1411 { 1412 struct kioctx *ctx = iocb->ki_ctx; 1413 unsigned long flags; 1414 1415 spin_lock_irqsave(&ctx->ctx_lock, flags); 1416 list_del(&iocb->ki_list); 1417 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1418 } 1419 1420 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2) 1421 { 1422 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1423 1424 if (!list_empty_careful(&iocb->ki_list)) 1425 aio_remove_iocb(iocb); 1426 1427 if (kiocb->ki_flags & IOCB_WRITE) { 1428 struct inode *inode = file_inode(kiocb->ki_filp); 1429 1430 /* 1431 * Tell lockdep we inherited freeze protection from submission 1432 * thread. 1433 */ 1434 if (S_ISREG(inode->i_mode)) 1435 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1436 file_end_write(kiocb->ki_filp); 1437 } 1438 1439 iocb->ki_res.res = res; 1440 iocb->ki_res.res2 = res2; 1441 iocb_put(iocb); 1442 } 1443 1444 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1445 { 1446 int ret; 1447 1448 req->ki_complete = aio_complete_rw; 1449 req->private = NULL; 1450 req->ki_pos = iocb->aio_offset; 1451 req->ki_flags = iocb_flags(req->ki_filp); 1452 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1453 req->ki_flags |= IOCB_EVENTFD; 1454 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1455 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1456 /* 1457 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1458 * aio_reqprio is interpreted as an I/O scheduling 1459 * class and priority. 1460 */ 1461 ret = ioprio_check_cap(iocb->aio_reqprio); 1462 if (ret) { 1463 pr_debug("aio ioprio check cap error: %d\n", ret); 1464 return ret; 1465 } 1466 1467 req->ki_ioprio = iocb->aio_reqprio; 1468 } else 1469 req->ki_ioprio = get_current_ioprio(); 1470 1471 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1472 if (unlikely(ret)) 1473 return ret; 1474 1475 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1476 return 0; 1477 } 1478 1479 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1480 struct iovec **iovec, bool vectored, bool compat, 1481 struct iov_iter *iter) 1482 { 1483 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1484 size_t len = iocb->aio_nbytes; 1485 1486 if (!vectored) { 1487 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1488 *iovec = NULL; 1489 return ret; 1490 } 1491 1492 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1493 } 1494 1495 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1496 { 1497 switch (ret) { 1498 case -EIOCBQUEUED: 1499 break; 1500 case -ERESTARTSYS: 1501 case -ERESTARTNOINTR: 1502 case -ERESTARTNOHAND: 1503 case -ERESTART_RESTARTBLOCK: 1504 /* 1505 * There's no easy way to restart the syscall since other AIO's 1506 * may be already running. Just fail this IO with EINTR. 1507 */ 1508 ret = -EINTR; 1509 fallthrough; 1510 default: 1511 req->ki_complete(req, ret, 0); 1512 } 1513 } 1514 1515 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1516 bool vectored, bool compat) 1517 { 1518 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1519 struct iov_iter iter; 1520 struct file *file; 1521 int ret; 1522 1523 ret = aio_prep_rw(req, iocb); 1524 if (ret) 1525 return ret; 1526 file = req->ki_filp; 1527 if (unlikely(!(file->f_mode & FMODE_READ))) 1528 return -EBADF; 1529 ret = -EINVAL; 1530 if (unlikely(!file->f_op->read_iter)) 1531 return -EINVAL; 1532 1533 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1534 if (ret < 0) 1535 return ret; 1536 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1537 if (!ret) 1538 aio_rw_done(req, call_read_iter(file, req, &iter)); 1539 kfree(iovec); 1540 return ret; 1541 } 1542 1543 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1544 bool vectored, bool compat) 1545 { 1546 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1547 struct iov_iter iter; 1548 struct file *file; 1549 int ret; 1550 1551 ret = aio_prep_rw(req, iocb); 1552 if (ret) 1553 return ret; 1554 file = req->ki_filp; 1555 1556 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1557 return -EBADF; 1558 if (unlikely(!file->f_op->write_iter)) 1559 return -EINVAL; 1560 1561 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1562 if (ret < 0) 1563 return ret; 1564 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1565 if (!ret) { 1566 /* 1567 * Open-code file_start_write here to grab freeze protection, 1568 * which will be released by another thread in 1569 * aio_complete_rw(). Fool lockdep by telling it the lock got 1570 * released so that it doesn't complain about the held lock when 1571 * we return to userspace. 1572 */ 1573 if (S_ISREG(file_inode(file)->i_mode)) { 1574 sb_start_write(file_inode(file)->i_sb); 1575 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1576 } 1577 req->ki_flags |= IOCB_WRITE; 1578 aio_rw_done(req, call_write_iter(file, req, &iter)); 1579 } 1580 kfree(iovec); 1581 return ret; 1582 } 1583 1584 static void aio_fsync_work(struct work_struct *work) 1585 { 1586 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1587 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1588 1589 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1590 revert_creds(old_cred); 1591 put_cred(iocb->fsync.creds); 1592 iocb_put(iocb); 1593 } 1594 1595 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1596 bool datasync) 1597 { 1598 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1599 iocb->aio_rw_flags)) 1600 return -EINVAL; 1601 1602 if (unlikely(!req->file->f_op->fsync)) 1603 return -EINVAL; 1604 1605 req->creds = prepare_creds(); 1606 if (!req->creds) 1607 return -ENOMEM; 1608 1609 req->datasync = datasync; 1610 INIT_WORK(&req->work, aio_fsync_work); 1611 schedule_work(&req->work); 1612 return 0; 1613 } 1614 1615 static void aio_poll_put_work(struct work_struct *work) 1616 { 1617 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1618 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1619 1620 iocb_put(iocb); 1621 } 1622 1623 static void aio_poll_complete_work(struct work_struct *work) 1624 { 1625 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1626 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1627 struct poll_table_struct pt = { ._key = req->events }; 1628 struct kioctx *ctx = iocb->ki_ctx; 1629 __poll_t mask = 0; 1630 1631 if (!READ_ONCE(req->cancelled)) 1632 mask = vfs_poll(req->file, &pt) & req->events; 1633 1634 /* 1635 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1636 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1637 * synchronize with them. In the cancellation case the list_del_init 1638 * itself is not actually needed, but harmless so we keep it in to 1639 * avoid further branches in the fast path. 1640 */ 1641 spin_lock_irq(&ctx->ctx_lock); 1642 if (!mask && !READ_ONCE(req->cancelled)) { 1643 add_wait_queue(req->head, &req->wait); 1644 spin_unlock_irq(&ctx->ctx_lock); 1645 return; 1646 } 1647 list_del_init(&iocb->ki_list); 1648 iocb->ki_res.res = mangle_poll(mask); 1649 req->done = true; 1650 spin_unlock_irq(&ctx->ctx_lock); 1651 1652 iocb_put(iocb); 1653 } 1654 1655 /* assumes we are called with irqs disabled */ 1656 static int aio_poll_cancel(struct kiocb *iocb) 1657 { 1658 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1659 struct poll_iocb *req = &aiocb->poll; 1660 1661 spin_lock(&req->head->lock); 1662 WRITE_ONCE(req->cancelled, true); 1663 if (!list_empty(&req->wait.entry)) { 1664 list_del_init(&req->wait.entry); 1665 schedule_work(&aiocb->poll.work); 1666 } 1667 spin_unlock(&req->head->lock); 1668 1669 return 0; 1670 } 1671 1672 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1673 void *key) 1674 { 1675 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1676 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1677 __poll_t mask = key_to_poll(key); 1678 unsigned long flags; 1679 1680 /* for instances that support it check for an event match first: */ 1681 if (mask && !(mask & req->events)) 1682 return 0; 1683 1684 list_del_init(&req->wait.entry); 1685 1686 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1687 struct kioctx *ctx = iocb->ki_ctx; 1688 1689 /* 1690 * Try to complete the iocb inline if we can. Use 1691 * irqsave/irqrestore because not all filesystems (e.g. fuse) 1692 * call this function with IRQs disabled and because IRQs 1693 * have to be disabled before ctx_lock is obtained. 1694 */ 1695 list_del(&iocb->ki_list); 1696 iocb->ki_res.res = mangle_poll(mask); 1697 req->done = true; 1698 if (iocb->ki_eventfd && eventfd_signal_count()) { 1699 iocb = NULL; 1700 INIT_WORK(&req->work, aio_poll_put_work); 1701 schedule_work(&req->work); 1702 } 1703 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1704 if (iocb) 1705 iocb_put(iocb); 1706 } else { 1707 schedule_work(&req->work); 1708 } 1709 return 1; 1710 } 1711 1712 struct aio_poll_table { 1713 struct poll_table_struct pt; 1714 struct aio_kiocb *iocb; 1715 int error; 1716 }; 1717 1718 static void 1719 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1720 struct poll_table_struct *p) 1721 { 1722 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1723 1724 /* multiple wait queues per file are not supported */ 1725 if (unlikely(pt->iocb->poll.head)) { 1726 pt->error = -EINVAL; 1727 return; 1728 } 1729 1730 pt->error = 0; 1731 pt->iocb->poll.head = head; 1732 add_wait_queue(head, &pt->iocb->poll.wait); 1733 } 1734 1735 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1736 { 1737 struct kioctx *ctx = aiocb->ki_ctx; 1738 struct poll_iocb *req = &aiocb->poll; 1739 struct aio_poll_table apt; 1740 bool cancel = false; 1741 __poll_t mask; 1742 1743 /* reject any unknown events outside the normal event mask. */ 1744 if ((u16)iocb->aio_buf != iocb->aio_buf) 1745 return -EINVAL; 1746 /* reject fields that are not defined for poll */ 1747 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1748 return -EINVAL; 1749 1750 INIT_WORK(&req->work, aio_poll_complete_work); 1751 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1752 1753 req->head = NULL; 1754 req->done = false; 1755 req->cancelled = false; 1756 1757 apt.pt._qproc = aio_poll_queue_proc; 1758 apt.pt._key = req->events; 1759 apt.iocb = aiocb; 1760 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1761 1762 /* initialized the list so that we can do list_empty checks */ 1763 INIT_LIST_HEAD(&req->wait.entry); 1764 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1765 1766 mask = vfs_poll(req->file, &apt.pt) & req->events; 1767 spin_lock_irq(&ctx->ctx_lock); 1768 if (likely(req->head)) { 1769 spin_lock(&req->head->lock); 1770 if (unlikely(list_empty(&req->wait.entry))) { 1771 if (apt.error) 1772 cancel = true; 1773 apt.error = 0; 1774 mask = 0; 1775 } 1776 if (mask || apt.error) { 1777 list_del_init(&req->wait.entry); 1778 } else if (cancel) { 1779 WRITE_ONCE(req->cancelled, true); 1780 } else if (!req->done) { /* actually waiting for an event */ 1781 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1782 aiocb->ki_cancel = aio_poll_cancel; 1783 } 1784 spin_unlock(&req->head->lock); 1785 } 1786 if (mask) { /* no async, we'd stolen it */ 1787 aiocb->ki_res.res = mangle_poll(mask); 1788 apt.error = 0; 1789 } 1790 spin_unlock_irq(&ctx->ctx_lock); 1791 if (mask) 1792 iocb_put(aiocb); 1793 return apt.error; 1794 } 1795 1796 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1797 struct iocb __user *user_iocb, struct aio_kiocb *req, 1798 bool compat) 1799 { 1800 req->ki_filp = fget(iocb->aio_fildes); 1801 if (unlikely(!req->ki_filp)) 1802 return -EBADF; 1803 1804 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1805 struct eventfd_ctx *eventfd; 1806 /* 1807 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1808 * instance of the file* now. The file descriptor must be 1809 * an eventfd() fd, and will be signaled for each completed 1810 * event using the eventfd_signal() function. 1811 */ 1812 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1813 if (IS_ERR(eventfd)) 1814 return PTR_ERR(eventfd); 1815 1816 req->ki_eventfd = eventfd; 1817 } 1818 1819 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1820 pr_debug("EFAULT: aio_key\n"); 1821 return -EFAULT; 1822 } 1823 1824 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1825 req->ki_res.data = iocb->aio_data; 1826 req->ki_res.res = 0; 1827 req->ki_res.res2 = 0; 1828 1829 switch (iocb->aio_lio_opcode) { 1830 case IOCB_CMD_PREAD: 1831 return aio_read(&req->rw, iocb, false, compat); 1832 case IOCB_CMD_PWRITE: 1833 return aio_write(&req->rw, iocb, false, compat); 1834 case IOCB_CMD_PREADV: 1835 return aio_read(&req->rw, iocb, true, compat); 1836 case IOCB_CMD_PWRITEV: 1837 return aio_write(&req->rw, iocb, true, compat); 1838 case IOCB_CMD_FSYNC: 1839 return aio_fsync(&req->fsync, iocb, false); 1840 case IOCB_CMD_FDSYNC: 1841 return aio_fsync(&req->fsync, iocb, true); 1842 case IOCB_CMD_POLL: 1843 return aio_poll(req, iocb); 1844 default: 1845 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1846 return -EINVAL; 1847 } 1848 } 1849 1850 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1851 bool compat) 1852 { 1853 struct aio_kiocb *req; 1854 struct iocb iocb; 1855 int err; 1856 1857 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1858 return -EFAULT; 1859 1860 /* enforce forwards compatibility on users */ 1861 if (unlikely(iocb.aio_reserved2)) { 1862 pr_debug("EINVAL: reserve field set\n"); 1863 return -EINVAL; 1864 } 1865 1866 /* prevent overflows */ 1867 if (unlikely( 1868 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1869 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1870 ((ssize_t)iocb.aio_nbytes < 0) 1871 )) { 1872 pr_debug("EINVAL: overflow check\n"); 1873 return -EINVAL; 1874 } 1875 1876 req = aio_get_req(ctx); 1877 if (unlikely(!req)) 1878 return -EAGAIN; 1879 1880 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 1881 1882 /* Done with the synchronous reference */ 1883 iocb_put(req); 1884 1885 /* 1886 * If err is 0, we'd either done aio_complete() ourselves or have 1887 * arranged for that to be done asynchronously. Anything non-zero 1888 * means that we need to destroy req ourselves. 1889 */ 1890 if (unlikely(err)) { 1891 iocb_destroy(req); 1892 put_reqs_available(ctx, 1); 1893 } 1894 return err; 1895 } 1896 1897 /* sys_io_submit: 1898 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1899 * the number of iocbs queued. May return -EINVAL if the aio_context 1900 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1901 * *iocbpp[0] is not properly initialized, if the operation specified 1902 * is invalid for the file descriptor in the iocb. May fail with 1903 * -EFAULT if any of the data structures point to invalid data. May 1904 * fail with -EBADF if the file descriptor specified in the first 1905 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1906 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1907 * fail with -ENOSYS if not implemented. 1908 */ 1909 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1910 struct iocb __user * __user *, iocbpp) 1911 { 1912 struct kioctx *ctx; 1913 long ret = 0; 1914 int i = 0; 1915 struct blk_plug plug; 1916 1917 if (unlikely(nr < 0)) 1918 return -EINVAL; 1919 1920 ctx = lookup_ioctx(ctx_id); 1921 if (unlikely(!ctx)) { 1922 pr_debug("EINVAL: invalid context id\n"); 1923 return -EINVAL; 1924 } 1925 1926 if (nr > ctx->nr_events) 1927 nr = ctx->nr_events; 1928 1929 if (nr > AIO_PLUG_THRESHOLD) 1930 blk_start_plug(&plug); 1931 for (i = 0; i < nr; i++) { 1932 struct iocb __user *user_iocb; 1933 1934 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1935 ret = -EFAULT; 1936 break; 1937 } 1938 1939 ret = io_submit_one(ctx, user_iocb, false); 1940 if (ret) 1941 break; 1942 } 1943 if (nr > AIO_PLUG_THRESHOLD) 1944 blk_finish_plug(&plug); 1945 1946 percpu_ref_put(&ctx->users); 1947 return i ? i : ret; 1948 } 1949 1950 #ifdef CONFIG_COMPAT 1951 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1952 int, nr, compat_uptr_t __user *, iocbpp) 1953 { 1954 struct kioctx *ctx; 1955 long ret = 0; 1956 int i = 0; 1957 struct blk_plug plug; 1958 1959 if (unlikely(nr < 0)) 1960 return -EINVAL; 1961 1962 ctx = lookup_ioctx(ctx_id); 1963 if (unlikely(!ctx)) { 1964 pr_debug("EINVAL: invalid context id\n"); 1965 return -EINVAL; 1966 } 1967 1968 if (nr > ctx->nr_events) 1969 nr = ctx->nr_events; 1970 1971 if (nr > AIO_PLUG_THRESHOLD) 1972 blk_start_plug(&plug); 1973 for (i = 0; i < nr; i++) { 1974 compat_uptr_t user_iocb; 1975 1976 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1977 ret = -EFAULT; 1978 break; 1979 } 1980 1981 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 1982 if (ret) 1983 break; 1984 } 1985 if (nr > AIO_PLUG_THRESHOLD) 1986 blk_finish_plug(&plug); 1987 1988 percpu_ref_put(&ctx->users); 1989 return i ? i : ret; 1990 } 1991 #endif 1992 1993 /* sys_io_cancel: 1994 * Attempts to cancel an iocb previously passed to io_submit. If 1995 * the operation is successfully cancelled, the resulting event is 1996 * copied into the memory pointed to by result without being placed 1997 * into the completion queue and 0 is returned. May fail with 1998 * -EFAULT if any of the data structures pointed to are invalid. 1999 * May fail with -EINVAL if aio_context specified by ctx_id is 2000 * invalid. May fail with -EAGAIN if the iocb specified was not 2001 * cancelled. Will fail with -ENOSYS if not implemented. 2002 */ 2003 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2004 struct io_event __user *, result) 2005 { 2006 struct kioctx *ctx; 2007 struct aio_kiocb *kiocb; 2008 int ret = -EINVAL; 2009 u32 key; 2010 u64 obj = (u64)(unsigned long)iocb; 2011 2012 if (unlikely(get_user(key, &iocb->aio_key))) 2013 return -EFAULT; 2014 if (unlikely(key != KIOCB_KEY)) 2015 return -EINVAL; 2016 2017 ctx = lookup_ioctx(ctx_id); 2018 if (unlikely(!ctx)) 2019 return -EINVAL; 2020 2021 spin_lock_irq(&ctx->ctx_lock); 2022 /* TODO: use a hash or array, this sucks. */ 2023 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2024 if (kiocb->ki_res.obj == obj) { 2025 ret = kiocb->ki_cancel(&kiocb->rw); 2026 list_del_init(&kiocb->ki_list); 2027 break; 2028 } 2029 } 2030 spin_unlock_irq(&ctx->ctx_lock); 2031 2032 if (!ret) { 2033 /* 2034 * The result argument is no longer used - the io_event is 2035 * always delivered via the ring buffer. -EINPROGRESS indicates 2036 * cancellation is progress: 2037 */ 2038 ret = -EINPROGRESS; 2039 } 2040 2041 percpu_ref_put(&ctx->users); 2042 2043 return ret; 2044 } 2045 2046 static long do_io_getevents(aio_context_t ctx_id, 2047 long min_nr, 2048 long nr, 2049 struct io_event __user *events, 2050 struct timespec64 *ts) 2051 { 2052 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2053 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2054 long ret = -EINVAL; 2055 2056 if (likely(ioctx)) { 2057 if (likely(min_nr <= nr && min_nr >= 0)) 2058 ret = read_events(ioctx, min_nr, nr, events, until); 2059 percpu_ref_put(&ioctx->users); 2060 } 2061 2062 return ret; 2063 } 2064 2065 /* io_getevents: 2066 * Attempts to read at least min_nr events and up to nr events from 2067 * the completion queue for the aio_context specified by ctx_id. If 2068 * it succeeds, the number of read events is returned. May fail with 2069 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2070 * out of range, if timeout is out of range. May fail with -EFAULT 2071 * if any of the memory specified is invalid. May return 0 or 2072 * < min_nr if the timeout specified by timeout has elapsed 2073 * before sufficient events are available, where timeout == NULL 2074 * specifies an infinite timeout. Note that the timeout pointed to by 2075 * timeout is relative. Will fail with -ENOSYS if not implemented. 2076 */ 2077 #ifdef CONFIG_64BIT 2078 2079 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2080 long, min_nr, 2081 long, nr, 2082 struct io_event __user *, events, 2083 struct __kernel_timespec __user *, timeout) 2084 { 2085 struct timespec64 ts; 2086 int ret; 2087 2088 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2089 return -EFAULT; 2090 2091 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2092 if (!ret && signal_pending(current)) 2093 ret = -EINTR; 2094 return ret; 2095 } 2096 2097 #endif 2098 2099 struct __aio_sigset { 2100 const sigset_t __user *sigmask; 2101 size_t sigsetsize; 2102 }; 2103 2104 SYSCALL_DEFINE6(io_pgetevents, 2105 aio_context_t, ctx_id, 2106 long, min_nr, 2107 long, nr, 2108 struct io_event __user *, events, 2109 struct __kernel_timespec __user *, timeout, 2110 const struct __aio_sigset __user *, usig) 2111 { 2112 struct __aio_sigset ksig = { NULL, }; 2113 struct timespec64 ts; 2114 bool interrupted; 2115 int ret; 2116 2117 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2118 return -EFAULT; 2119 2120 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2121 return -EFAULT; 2122 2123 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2124 if (ret) 2125 return ret; 2126 2127 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2128 2129 interrupted = signal_pending(current); 2130 restore_saved_sigmask_unless(interrupted); 2131 if (interrupted && !ret) 2132 ret = -ERESTARTNOHAND; 2133 2134 return ret; 2135 } 2136 2137 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2138 2139 SYSCALL_DEFINE6(io_pgetevents_time32, 2140 aio_context_t, ctx_id, 2141 long, min_nr, 2142 long, nr, 2143 struct io_event __user *, events, 2144 struct old_timespec32 __user *, timeout, 2145 const struct __aio_sigset __user *, usig) 2146 { 2147 struct __aio_sigset ksig = { NULL, }; 2148 struct timespec64 ts; 2149 bool interrupted; 2150 int ret; 2151 2152 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2153 return -EFAULT; 2154 2155 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2156 return -EFAULT; 2157 2158 2159 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2160 if (ret) 2161 return ret; 2162 2163 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2164 2165 interrupted = signal_pending(current); 2166 restore_saved_sigmask_unless(interrupted); 2167 if (interrupted && !ret) 2168 ret = -ERESTARTNOHAND; 2169 2170 return ret; 2171 } 2172 2173 #endif 2174 2175 #if defined(CONFIG_COMPAT_32BIT_TIME) 2176 2177 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2178 __s32, min_nr, 2179 __s32, nr, 2180 struct io_event __user *, events, 2181 struct old_timespec32 __user *, timeout) 2182 { 2183 struct timespec64 t; 2184 int ret; 2185 2186 if (timeout && get_old_timespec32(&t, timeout)) 2187 return -EFAULT; 2188 2189 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2190 if (!ret && signal_pending(current)) 2191 ret = -EINTR; 2192 return ret; 2193 } 2194 2195 #endif 2196 2197 #ifdef CONFIG_COMPAT 2198 2199 struct __compat_aio_sigset { 2200 compat_uptr_t sigmask; 2201 compat_size_t sigsetsize; 2202 }; 2203 2204 #if defined(CONFIG_COMPAT_32BIT_TIME) 2205 2206 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2207 compat_aio_context_t, ctx_id, 2208 compat_long_t, min_nr, 2209 compat_long_t, nr, 2210 struct io_event __user *, events, 2211 struct old_timespec32 __user *, timeout, 2212 const struct __compat_aio_sigset __user *, usig) 2213 { 2214 struct __compat_aio_sigset ksig = { 0, }; 2215 struct timespec64 t; 2216 bool interrupted; 2217 int ret; 2218 2219 if (timeout && get_old_timespec32(&t, timeout)) 2220 return -EFAULT; 2221 2222 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2223 return -EFAULT; 2224 2225 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2226 if (ret) 2227 return ret; 2228 2229 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2230 2231 interrupted = signal_pending(current); 2232 restore_saved_sigmask_unless(interrupted); 2233 if (interrupted && !ret) 2234 ret = -ERESTARTNOHAND; 2235 2236 return ret; 2237 } 2238 2239 #endif 2240 2241 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2242 compat_aio_context_t, ctx_id, 2243 compat_long_t, min_nr, 2244 compat_long_t, nr, 2245 struct io_event __user *, events, 2246 struct __kernel_timespec __user *, timeout, 2247 const struct __compat_aio_sigset __user *, usig) 2248 { 2249 struct __compat_aio_sigset ksig = { 0, }; 2250 struct timespec64 t; 2251 bool interrupted; 2252 int ret; 2253 2254 if (timeout && get_timespec64(&t, timeout)) 2255 return -EFAULT; 2256 2257 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2258 return -EFAULT; 2259 2260 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2261 if (ret) 2262 return ret; 2263 2264 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2265 2266 interrupted = signal_pending(current); 2267 restore_saved_sigmask_unless(interrupted); 2268 if (interrupted && !ret) 2269 ret = -ERESTARTNOHAND; 2270 2271 return ret; 2272 } 2273 #endif 2274