xref: /linux/fs/aio.c (revision 93df8a1ed6231727c5db94a80b1a6bd5ee67cec3)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct ctx_rq_wait {
81 	struct completion comp;
82 	atomic_t count;
83 };
84 
85 struct kioctx {
86 	struct percpu_ref	users;
87 	atomic_t		dead;
88 
89 	struct percpu_ref	reqs;
90 
91 	unsigned long		user_id;
92 
93 	struct __percpu kioctx_cpu *cpu;
94 
95 	/*
96 	 * For percpu reqs_available, number of slots we move to/from global
97 	 * counter at a time:
98 	 */
99 	unsigned		req_batch;
100 	/*
101 	 * This is what userspace passed to io_setup(), it's not used for
102 	 * anything but counting against the global max_reqs quota.
103 	 *
104 	 * The real limit is nr_events - 1, which will be larger (see
105 	 * aio_setup_ring())
106 	 */
107 	unsigned		max_reqs;
108 
109 	/* Size of ringbuffer, in units of struct io_event */
110 	unsigned		nr_events;
111 
112 	unsigned long		mmap_base;
113 	unsigned long		mmap_size;
114 
115 	struct page		**ring_pages;
116 	long			nr_pages;
117 
118 	struct work_struct	free_work;
119 
120 	/*
121 	 * signals when all in-flight requests are done
122 	 */
123 	struct ctx_rq_wait	*rq_wait;
124 
125 	struct {
126 		/*
127 		 * This counts the number of available slots in the ringbuffer,
128 		 * so we avoid overflowing it: it's decremented (if positive)
129 		 * when allocating a kiocb and incremented when the resulting
130 		 * io_event is pulled off the ringbuffer.
131 		 *
132 		 * We batch accesses to it with a percpu version.
133 		 */
134 		atomic_t	reqs_available;
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		spinlock_t	ctx_lock;
139 		struct list_head active_reqs;	/* used for cancellation */
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		struct mutex	ring_lock;
144 		wait_queue_head_t wait;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		unsigned	tail;
149 		unsigned	completed_events;
150 		spinlock_t	completion_lock;
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct page		*internal_pages[AIO_RING_PAGES];
154 	struct file		*aio_ring_file;
155 
156 	unsigned		id;
157 };
158 
159 /*
160  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161  * cancelled or completed (this makes a certain amount of sense because
162  * successful cancellation - io_cancel() - does deliver the completion to
163  * userspace).
164  *
165  * And since most things don't implement kiocb cancellation and we'd really like
166  * kiocb completion to be lockless when possible, we use ki_cancel to
167  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169  */
170 #define KIOCB_CANCELLED		((void *) (~0ULL))
171 
172 struct aio_kiocb {
173 	struct kiocb		common;
174 
175 	struct kioctx		*ki_ctx;
176 	kiocb_cancel_fn		*ki_cancel;
177 
178 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
179 	__u64			ki_user_data;	/* user's data for completion */
180 
181 	struct list_head	ki_list;	/* the aio core uses this
182 						 * for cancellation */
183 
184 	/*
185 	 * If the aio_resfd field of the userspace iocb is not zero,
186 	 * this is the underlying eventfd context to deliver events to.
187 	 */
188 	struct eventfd_ctx	*ki_eventfd;
189 };
190 
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr;		/* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
196 
197 static struct kmem_cache	*kiocb_cachep;
198 static struct kmem_cache	*kioctx_cachep;
199 
200 static struct vfsmount *aio_mnt;
201 
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
204 
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206 {
207 	struct qstr this = QSTR_INIT("[aio]", 5);
208 	struct file *file;
209 	struct path path;
210 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 	if (IS_ERR(inode))
212 		return ERR_CAST(inode);
213 
214 	inode->i_mapping->a_ops = &aio_ctx_aops;
215 	inode->i_mapping->private_data = ctx;
216 	inode->i_size = PAGE_SIZE * nr_pages;
217 
218 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 	if (!path.dentry) {
220 		iput(inode);
221 		return ERR_PTR(-ENOMEM);
222 	}
223 	path.mnt = mntget(aio_mnt);
224 
225 	d_instantiate(path.dentry, inode);
226 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 	if (IS_ERR(file)) {
228 		path_put(&path);
229 		return file;
230 	}
231 
232 	file->f_flags = O_RDWR;
233 	return file;
234 }
235 
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 				int flags, const char *dev_name, void *data)
238 {
239 	static const struct dentry_operations ops = {
240 		.d_dname	= simple_dname,
241 	};
242 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
243 }
244 
245 /* aio_setup
246  *	Creates the slab caches used by the aio routines, panic on
247  *	failure as this is done early during the boot sequence.
248  */
249 static int __init aio_setup(void)
250 {
251 	static struct file_system_type aio_fs = {
252 		.name		= "aio",
253 		.mount		= aio_mount,
254 		.kill_sb	= kill_anon_super,
255 	};
256 	aio_mnt = kern_mount(&aio_fs);
257 	if (IS_ERR(aio_mnt))
258 		panic("Failed to create aio fs mount.");
259 
260 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
261 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
262 
263 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
264 
265 	return 0;
266 }
267 __initcall(aio_setup);
268 
269 static void put_aio_ring_file(struct kioctx *ctx)
270 {
271 	struct file *aio_ring_file = ctx->aio_ring_file;
272 	if (aio_ring_file) {
273 		truncate_setsize(aio_ring_file->f_inode, 0);
274 
275 		/* Prevent further access to the kioctx from migratepages */
276 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
277 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
278 		ctx->aio_ring_file = NULL;
279 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
280 
281 		fput(aio_ring_file);
282 	}
283 }
284 
285 static void aio_free_ring(struct kioctx *ctx)
286 {
287 	int i;
288 
289 	/* Disconnect the kiotx from the ring file.  This prevents future
290 	 * accesses to the kioctx from page migration.
291 	 */
292 	put_aio_ring_file(ctx);
293 
294 	for (i = 0; i < ctx->nr_pages; i++) {
295 		struct page *page;
296 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
297 				page_count(ctx->ring_pages[i]));
298 		page = ctx->ring_pages[i];
299 		if (!page)
300 			continue;
301 		ctx->ring_pages[i] = NULL;
302 		put_page(page);
303 	}
304 
305 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
306 		kfree(ctx->ring_pages);
307 		ctx->ring_pages = NULL;
308 	}
309 }
310 
311 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
312 {
313 	vma->vm_flags |= VM_DONTEXPAND;
314 	vma->vm_ops = &generic_file_vm_ops;
315 	return 0;
316 }
317 
318 static int aio_ring_remap(struct file *file, struct vm_area_struct *vma)
319 {
320 	struct mm_struct *mm = vma->vm_mm;
321 	struct kioctx_table *table;
322 	int i, res = -EINVAL;
323 
324 	spin_lock(&mm->ioctx_lock);
325 	rcu_read_lock();
326 	table = rcu_dereference(mm->ioctx_table);
327 	for (i = 0; i < table->nr; i++) {
328 		struct kioctx *ctx;
329 
330 		ctx = table->table[i];
331 		if (ctx && ctx->aio_ring_file == file) {
332 			if (!atomic_read(&ctx->dead)) {
333 				ctx->user_id = ctx->mmap_base = vma->vm_start;
334 				res = 0;
335 			}
336 			break;
337 		}
338 	}
339 
340 	rcu_read_unlock();
341 	spin_unlock(&mm->ioctx_lock);
342 	return res;
343 }
344 
345 static const struct file_operations aio_ring_fops = {
346 	.mmap = aio_ring_mmap,
347 	.mremap = aio_ring_remap,
348 };
349 
350 #if IS_ENABLED(CONFIG_MIGRATION)
351 static int aio_migratepage(struct address_space *mapping, struct page *new,
352 			struct page *old, enum migrate_mode mode)
353 {
354 	struct kioctx *ctx;
355 	unsigned long flags;
356 	pgoff_t idx;
357 	int rc;
358 
359 	rc = 0;
360 
361 	/* mapping->private_lock here protects against the kioctx teardown.  */
362 	spin_lock(&mapping->private_lock);
363 	ctx = mapping->private_data;
364 	if (!ctx) {
365 		rc = -EINVAL;
366 		goto out;
367 	}
368 
369 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
370 	 * to the ring's head, and prevents page migration from mucking in
371 	 * a partially initialized kiotx.
372 	 */
373 	if (!mutex_trylock(&ctx->ring_lock)) {
374 		rc = -EAGAIN;
375 		goto out;
376 	}
377 
378 	idx = old->index;
379 	if (idx < (pgoff_t)ctx->nr_pages) {
380 		/* Make sure the old page hasn't already been changed */
381 		if (ctx->ring_pages[idx] != old)
382 			rc = -EAGAIN;
383 	} else
384 		rc = -EINVAL;
385 
386 	if (rc != 0)
387 		goto out_unlock;
388 
389 	/* Writeback must be complete */
390 	BUG_ON(PageWriteback(old));
391 	get_page(new);
392 
393 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
394 	if (rc != MIGRATEPAGE_SUCCESS) {
395 		put_page(new);
396 		goto out_unlock;
397 	}
398 
399 	/* Take completion_lock to prevent other writes to the ring buffer
400 	 * while the old page is copied to the new.  This prevents new
401 	 * events from being lost.
402 	 */
403 	spin_lock_irqsave(&ctx->completion_lock, flags);
404 	migrate_page_copy(new, old);
405 	BUG_ON(ctx->ring_pages[idx] != old);
406 	ctx->ring_pages[idx] = new;
407 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
408 
409 	/* The old page is no longer accessible. */
410 	put_page(old);
411 
412 out_unlock:
413 	mutex_unlock(&ctx->ring_lock);
414 out:
415 	spin_unlock(&mapping->private_lock);
416 	return rc;
417 }
418 #endif
419 
420 static const struct address_space_operations aio_ctx_aops = {
421 	.set_page_dirty = __set_page_dirty_no_writeback,
422 #if IS_ENABLED(CONFIG_MIGRATION)
423 	.migratepage	= aio_migratepage,
424 #endif
425 };
426 
427 static int aio_setup_ring(struct kioctx *ctx)
428 {
429 	struct aio_ring *ring;
430 	unsigned nr_events = ctx->max_reqs;
431 	struct mm_struct *mm = current->mm;
432 	unsigned long size, unused;
433 	int nr_pages;
434 	int i;
435 	struct file *file;
436 
437 	/* Compensate for the ring buffer's head/tail overlap entry */
438 	nr_events += 2;	/* 1 is required, 2 for good luck */
439 
440 	size = sizeof(struct aio_ring);
441 	size += sizeof(struct io_event) * nr_events;
442 
443 	nr_pages = PFN_UP(size);
444 	if (nr_pages < 0)
445 		return -EINVAL;
446 
447 	file = aio_private_file(ctx, nr_pages);
448 	if (IS_ERR(file)) {
449 		ctx->aio_ring_file = NULL;
450 		return -ENOMEM;
451 	}
452 
453 	ctx->aio_ring_file = file;
454 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
455 			/ sizeof(struct io_event);
456 
457 	ctx->ring_pages = ctx->internal_pages;
458 	if (nr_pages > AIO_RING_PAGES) {
459 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
460 					  GFP_KERNEL);
461 		if (!ctx->ring_pages) {
462 			put_aio_ring_file(ctx);
463 			return -ENOMEM;
464 		}
465 	}
466 
467 	for (i = 0; i < nr_pages; i++) {
468 		struct page *page;
469 		page = find_or_create_page(file->f_inode->i_mapping,
470 					   i, GFP_HIGHUSER | __GFP_ZERO);
471 		if (!page)
472 			break;
473 		pr_debug("pid(%d) page[%d]->count=%d\n",
474 			 current->pid, i, page_count(page));
475 		SetPageUptodate(page);
476 		unlock_page(page);
477 
478 		ctx->ring_pages[i] = page;
479 	}
480 	ctx->nr_pages = i;
481 
482 	if (unlikely(i != nr_pages)) {
483 		aio_free_ring(ctx);
484 		return -ENOMEM;
485 	}
486 
487 	ctx->mmap_size = nr_pages * PAGE_SIZE;
488 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
489 
490 	down_write(&mm->mmap_sem);
491 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
492 				       PROT_READ | PROT_WRITE,
493 				       MAP_SHARED, 0, &unused);
494 	up_write(&mm->mmap_sem);
495 	if (IS_ERR((void *)ctx->mmap_base)) {
496 		ctx->mmap_size = 0;
497 		aio_free_ring(ctx);
498 		return -ENOMEM;
499 	}
500 
501 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
502 
503 	ctx->user_id = ctx->mmap_base;
504 	ctx->nr_events = nr_events; /* trusted copy */
505 
506 	ring = kmap_atomic(ctx->ring_pages[0]);
507 	ring->nr = nr_events;	/* user copy */
508 	ring->id = ~0U;
509 	ring->head = ring->tail = 0;
510 	ring->magic = AIO_RING_MAGIC;
511 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
512 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
513 	ring->header_length = sizeof(struct aio_ring);
514 	kunmap_atomic(ring);
515 	flush_dcache_page(ctx->ring_pages[0]);
516 
517 	return 0;
518 }
519 
520 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
521 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
522 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
523 
524 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
525 {
526 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
527 	struct kioctx *ctx = req->ki_ctx;
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&ctx->ctx_lock, flags);
531 
532 	if (!req->ki_list.next)
533 		list_add(&req->ki_list, &ctx->active_reqs);
534 
535 	req->ki_cancel = cancel;
536 
537 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
538 }
539 EXPORT_SYMBOL(kiocb_set_cancel_fn);
540 
541 static int kiocb_cancel(struct aio_kiocb *kiocb)
542 {
543 	kiocb_cancel_fn *old, *cancel;
544 
545 	/*
546 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
547 	 * actually has a cancel function, hence the cmpxchg()
548 	 */
549 
550 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
551 	do {
552 		if (!cancel || cancel == KIOCB_CANCELLED)
553 			return -EINVAL;
554 
555 		old = cancel;
556 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
557 	} while (cancel != old);
558 
559 	return cancel(&kiocb->common);
560 }
561 
562 static void free_ioctx(struct work_struct *work)
563 {
564 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
565 
566 	pr_debug("freeing %p\n", ctx);
567 
568 	aio_free_ring(ctx);
569 	free_percpu(ctx->cpu);
570 	percpu_ref_exit(&ctx->reqs);
571 	percpu_ref_exit(&ctx->users);
572 	kmem_cache_free(kioctx_cachep, ctx);
573 }
574 
575 static void free_ioctx_reqs(struct percpu_ref *ref)
576 {
577 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
578 
579 	/* At this point we know that there are no any in-flight requests */
580 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
581 		complete(&ctx->rq_wait->comp);
582 
583 	INIT_WORK(&ctx->free_work, free_ioctx);
584 	schedule_work(&ctx->free_work);
585 }
586 
587 /*
588  * When this function runs, the kioctx has been removed from the "hash table"
589  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
590  * now it's safe to cancel any that need to be.
591  */
592 static void free_ioctx_users(struct percpu_ref *ref)
593 {
594 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
595 	struct aio_kiocb *req;
596 
597 	spin_lock_irq(&ctx->ctx_lock);
598 
599 	while (!list_empty(&ctx->active_reqs)) {
600 		req = list_first_entry(&ctx->active_reqs,
601 				       struct aio_kiocb, ki_list);
602 
603 		list_del_init(&req->ki_list);
604 		kiocb_cancel(req);
605 	}
606 
607 	spin_unlock_irq(&ctx->ctx_lock);
608 
609 	percpu_ref_kill(&ctx->reqs);
610 	percpu_ref_put(&ctx->reqs);
611 }
612 
613 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
614 {
615 	unsigned i, new_nr;
616 	struct kioctx_table *table, *old;
617 	struct aio_ring *ring;
618 
619 	spin_lock(&mm->ioctx_lock);
620 	table = rcu_dereference_raw(mm->ioctx_table);
621 
622 	while (1) {
623 		if (table)
624 			for (i = 0; i < table->nr; i++)
625 				if (!table->table[i]) {
626 					ctx->id = i;
627 					table->table[i] = ctx;
628 					spin_unlock(&mm->ioctx_lock);
629 
630 					/* While kioctx setup is in progress,
631 					 * we are protected from page migration
632 					 * changes ring_pages by ->ring_lock.
633 					 */
634 					ring = kmap_atomic(ctx->ring_pages[0]);
635 					ring->id = ctx->id;
636 					kunmap_atomic(ring);
637 					return 0;
638 				}
639 
640 		new_nr = (table ? table->nr : 1) * 4;
641 		spin_unlock(&mm->ioctx_lock);
642 
643 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
644 				new_nr, GFP_KERNEL);
645 		if (!table)
646 			return -ENOMEM;
647 
648 		table->nr = new_nr;
649 
650 		spin_lock(&mm->ioctx_lock);
651 		old = rcu_dereference_raw(mm->ioctx_table);
652 
653 		if (!old) {
654 			rcu_assign_pointer(mm->ioctx_table, table);
655 		} else if (table->nr > old->nr) {
656 			memcpy(table->table, old->table,
657 			       old->nr * sizeof(struct kioctx *));
658 
659 			rcu_assign_pointer(mm->ioctx_table, table);
660 			kfree_rcu(old, rcu);
661 		} else {
662 			kfree(table);
663 			table = old;
664 		}
665 	}
666 }
667 
668 static void aio_nr_sub(unsigned nr)
669 {
670 	spin_lock(&aio_nr_lock);
671 	if (WARN_ON(aio_nr - nr > aio_nr))
672 		aio_nr = 0;
673 	else
674 		aio_nr -= nr;
675 	spin_unlock(&aio_nr_lock);
676 }
677 
678 /* ioctx_alloc
679  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
680  */
681 static struct kioctx *ioctx_alloc(unsigned nr_events)
682 {
683 	struct mm_struct *mm = current->mm;
684 	struct kioctx *ctx;
685 	int err = -ENOMEM;
686 
687 	/*
688 	 * We keep track of the number of available ringbuffer slots, to prevent
689 	 * overflow (reqs_available), and we also use percpu counters for this.
690 	 *
691 	 * So since up to half the slots might be on other cpu's percpu counters
692 	 * and unavailable, double nr_events so userspace sees what they
693 	 * expected: additionally, we move req_batch slots to/from percpu
694 	 * counters at a time, so make sure that isn't 0:
695 	 */
696 	nr_events = max(nr_events, num_possible_cpus() * 4);
697 	nr_events *= 2;
698 
699 	/* Prevent overflows */
700 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
701 		pr_debug("ENOMEM: nr_events too high\n");
702 		return ERR_PTR(-EINVAL);
703 	}
704 
705 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
706 		return ERR_PTR(-EAGAIN);
707 
708 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
709 	if (!ctx)
710 		return ERR_PTR(-ENOMEM);
711 
712 	ctx->max_reqs = nr_events;
713 
714 	spin_lock_init(&ctx->ctx_lock);
715 	spin_lock_init(&ctx->completion_lock);
716 	mutex_init(&ctx->ring_lock);
717 	/* Protect against page migration throughout kiotx setup by keeping
718 	 * the ring_lock mutex held until setup is complete. */
719 	mutex_lock(&ctx->ring_lock);
720 	init_waitqueue_head(&ctx->wait);
721 
722 	INIT_LIST_HEAD(&ctx->active_reqs);
723 
724 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
725 		goto err;
726 
727 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
728 		goto err;
729 
730 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
731 	if (!ctx->cpu)
732 		goto err;
733 
734 	err = aio_setup_ring(ctx);
735 	if (err < 0)
736 		goto err;
737 
738 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
739 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
740 	if (ctx->req_batch < 1)
741 		ctx->req_batch = 1;
742 
743 	/* limit the number of system wide aios */
744 	spin_lock(&aio_nr_lock);
745 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
746 	    aio_nr + nr_events < aio_nr) {
747 		spin_unlock(&aio_nr_lock);
748 		err = -EAGAIN;
749 		goto err_ctx;
750 	}
751 	aio_nr += ctx->max_reqs;
752 	spin_unlock(&aio_nr_lock);
753 
754 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
755 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
756 
757 	err = ioctx_add_table(ctx, mm);
758 	if (err)
759 		goto err_cleanup;
760 
761 	/* Release the ring_lock mutex now that all setup is complete. */
762 	mutex_unlock(&ctx->ring_lock);
763 
764 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
765 		 ctx, ctx->user_id, mm, ctx->nr_events);
766 	return ctx;
767 
768 err_cleanup:
769 	aio_nr_sub(ctx->max_reqs);
770 err_ctx:
771 	atomic_set(&ctx->dead, 1);
772 	if (ctx->mmap_size)
773 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
774 	aio_free_ring(ctx);
775 err:
776 	mutex_unlock(&ctx->ring_lock);
777 	free_percpu(ctx->cpu);
778 	percpu_ref_exit(&ctx->reqs);
779 	percpu_ref_exit(&ctx->users);
780 	kmem_cache_free(kioctx_cachep, ctx);
781 	pr_debug("error allocating ioctx %d\n", err);
782 	return ERR_PTR(err);
783 }
784 
785 /* kill_ioctx
786  *	Cancels all outstanding aio requests on an aio context.  Used
787  *	when the processes owning a context have all exited to encourage
788  *	the rapid destruction of the kioctx.
789  */
790 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
791 		      struct ctx_rq_wait *wait)
792 {
793 	struct kioctx_table *table;
794 
795 	spin_lock(&mm->ioctx_lock);
796 	if (atomic_xchg(&ctx->dead, 1)) {
797 		spin_unlock(&mm->ioctx_lock);
798 		return -EINVAL;
799 	}
800 
801 	table = rcu_dereference_raw(mm->ioctx_table);
802 	WARN_ON(ctx != table->table[ctx->id]);
803 	table->table[ctx->id] = NULL;
804 	spin_unlock(&mm->ioctx_lock);
805 
806 	/* percpu_ref_kill() will do the necessary call_rcu() */
807 	wake_up_all(&ctx->wait);
808 
809 	/*
810 	 * It'd be more correct to do this in free_ioctx(), after all
811 	 * the outstanding kiocbs have finished - but by then io_destroy
812 	 * has already returned, so io_setup() could potentially return
813 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
814 	 *  could tell).
815 	 */
816 	aio_nr_sub(ctx->max_reqs);
817 
818 	if (ctx->mmap_size)
819 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
820 
821 	ctx->rq_wait = wait;
822 	percpu_ref_kill(&ctx->users);
823 	return 0;
824 }
825 
826 /*
827  * exit_aio: called when the last user of mm goes away.  At this point, there is
828  * no way for any new requests to be submited or any of the io_* syscalls to be
829  * called on the context.
830  *
831  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
832  * them.
833  */
834 void exit_aio(struct mm_struct *mm)
835 {
836 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
837 	struct ctx_rq_wait wait;
838 	int i, skipped;
839 
840 	if (!table)
841 		return;
842 
843 	atomic_set(&wait.count, table->nr);
844 	init_completion(&wait.comp);
845 
846 	skipped = 0;
847 	for (i = 0; i < table->nr; ++i) {
848 		struct kioctx *ctx = table->table[i];
849 
850 		if (!ctx) {
851 			skipped++;
852 			continue;
853 		}
854 
855 		/*
856 		 * We don't need to bother with munmap() here - exit_mmap(mm)
857 		 * is coming and it'll unmap everything. And we simply can't,
858 		 * this is not necessarily our ->mm.
859 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
860 		 * that it needs to unmap the area, just set it to 0.
861 		 */
862 		ctx->mmap_size = 0;
863 		kill_ioctx(mm, ctx, &wait);
864 	}
865 
866 	if (!atomic_sub_and_test(skipped, &wait.count)) {
867 		/* Wait until all IO for the context are done. */
868 		wait_for_completion(&wait.comp);
869 	}
870 
871 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
872 	kfree(table);
873 }
874 
875 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
876 {
877 	struct kioctx_cpu *kcpu;
878 	unsigned long flags;
879 
880 	local_irq_save(flags);
881 	kcpu = this_cpu_ptr(ctx->cpu);
882 	kcpu->reqs_available += nr;
883 
884 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
885 		kcpu->reqs_available -= ctx->req_batch;
886 		atomic_add(ctx->req_batch, &ctx->reqs_available);
887 	}
888 
889 	local_irq_restore(flags);
890 }
891 
892 static bool get_reqs_available(struct kioctx *ctx)
893 {
894 	struct kioctx_cpu *kcpu;
895 	bool ret = false;
896 	unsigned long flags;
897 
898 	local_irq_save(flags);
899 	kcpu = this_cpu_ptr(ctx->cpu);
900 	if (!kcpu->reqs_available) {
901 		int old, avail = atomic_read(&ctx->reqs_available);
902 
903 		do {
904 			if (avail < ctx->req_batch)
905 				goto out;
906 
907 			old = avail;
908 			avail = atomic_cmpxchg(&ctx->reqs_available,
909 					       avail, avail - ctx->req_batch);
910 		} while (avail != old);
911 
912 		kcpu->reqs_available += ctx->req_batch;
913 	}
914 
915 	ret = true;
916 	kcpu->reqs_available--;
917 out:
918 	local_irq_restore(flags);
919 	return ret;
920 }
921 
922 /* refill_reqs_available
923  *	Updates the reqs_available reference counts used for tracking the
924  *	number of free slots in the completion ring.  This can be called
925  *	from aio_complete() (to optimistically update reqs_available) or
926  *	from aio_get_req() (the we're out of events case).  It must be
927  *	called holding ctx->completion_lock.
928  */
929 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
930                                   unsigned tail)
931 {
932 	unsigned events_in_ring, completed;
933 
934 	/* Clamp head since userland can write to it. */
935 	head %= ctx->nr_events;
936 	if (head <= tail)
937 		events_in_ring = tail - head;
938 	else
939 		events_in_ring = ctx->nr_events - (head - tail);
940 
941 	completed = ctx->completed_events;
942 	if (events_in_ring < completed)
943 		completed -= events_in_ring;
944 	else
945 		completed = 0;
946 
947 	if (!completed)
948 		return;
949 
950 	ctx->completed_events -= completed;
951 	put_reqs_available(ctx, completed);
952 }
953 
954 /* user_refill_reqs_available
955  *	Called to refill reqs_available when aio_get_req() encounters an
956  *	out of space in the completion ring.
957  */
958 static void user_refill_reqs_available(struct kioctx *ctx)
959 {
960 	spin_lock_irq(&ctx->completion_lock);
961 	if (ctx->completed_events) {
962 		struct aio_ring *ring;
963 		unsigned head;
964 
965 		/* Access of ring->head may race with aio_read_events_ring()
966 		 * here, but that's okay since whether we read the old version
967 		 * or the new version, and either will be valid.  The important
968 		 * part is that head cannot pass tail since we prevent
969 		 * aio_complete() from updating tail by holding
970 		 * ctx->completion_lock.  Even if head is invalid, the check
971 		 * against ctx->completed_events below will make sure we do the
972 		 * safe/right thing.
973 		 */
974 		ring = kmap_atomic(ctx->ring_pages[0]);
975 		head = ring->head;
976 		kunmap_atomic(ring);
977 
978 		refill_reqs_available(ctx, head, ctx->tail);
979 	}
980 
981 	spin_unlock_irq(&ctx->completion_lock);
982 }
983 
984 /* aio_get_req
985  *	Allocate a slot for an aio request.
986  * Returns NULL if no requests are free.
987  */
988 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
989 {
990 	struct aio_kiocb *req;
991 
992 	if (!get_reqs_available(ctx)) {
993 		user_refill_reqs_available(ctx);
994 		if (!get_reqs_available(ctx))
995 			return NULL;
996 	}
997 
998 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
999 	if (unlikely(!req))
1000 		goto out_put;
1001 
1002 	percpu_ref_get(&ctx->reqs);
1003 
1004 	req->ki_ctx = ctx;
1005 	return req;
1006 out_put:
1007 	put_reqs_available(ctx, 1);
1008 	return NULL;
1009 }
1010 
1011 static void kiocb_free(struct aio_kiocb *req)
1012 {
1013 	if (req->common.ki_filp)
1014 		fput(req->common.ki_filp);
1015 	if (req->ki_eventfd != NULL)
1016 		eventfd_ctx_put(req->ki_eventfd);
1017 	kmem_cache_free(kiocb_cachep, req);
1018 }
1019 
1020 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1021 {
1022 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1023 	struct mm_struct *mm = current->mm;
1024 	struct kioctx *ctx, *ret = NULL;
1025 	struct kioctx_table *table;
1026 	unsigned id;
1027 
1028 	if (get_user(id, &ring->id))
1029 		return NULL;
1030 
1031 	rcu_read_lock();
1032 	table = rcu_dereference(mm->ioctx_table);
1033 
1034 	if (!table || id >= table->nr)
1035 		goto out;
1036 
1037 	ctx = table->table[id];
1038 	if (ctx && ctx->user_id == ctx_id) {
1039 		percpu_ref_get(&ctx->users);
1040 		ret = ctx;
1041 	}
1042 out:
1043 	rcu_read_unlock();
1044 	return ret;
1045 }
1046 
1047 /* aio_complete
1048  *	Called when the io request on the given iocb is complete.
1049  */
1050 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1051 {
1052 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1053 	struct kioctx	*ctx = iocb->ki_ctx;
1054 	struct aio_ring	*ring;
1055 	struct io_event	*ev_page, *event;
1056 	unsigned tail, pos, head;
1057 	unsigned long	flags;
1058 
1059 	/*
1060 	 * Special case handling for sync iocbs:
1061 	 *  - events go directly into the iocb for fast handling
1062 	 *  - the sync task with the iocb in its stack holds the single iocb
1063 	 *    ref, no other paths have a way to get another ref
1064 	 *  - the sync task helpfully left a reference to itself in the iocb
1065 	 */
1066 	BUG_ON(is_sync_kiocb(kiocb));
1067 
1068 	if (iocb->ki_list.next) {
1069 		unsigned long flags;
1070 
1071 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1072 		list_del(&iocb->ki_list);
1073 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1074 	}
1075 
1076 	/*
1077 	 * Add a completion event to the ring buffer. Must be done holding
1078 	 * ctx->completion_lock to prevent other code from messing with the tail
1079 	 * pointer since we might be called from irq context.
1080 	 */
1081 	spin_lock_irqsave(&ctx->completion_lock, flags);
1082 
1083 	tail = ctx->tail;
1084 	pos = tail + AIO_EVENTS_OFFSET;
1085 
1086 	if (++tail >= ctx->nr_events)
1087 		tail = 0;
1088 
1089 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1090 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1091 
1092 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1093 	event->data = iocb->ki_user_data;
1094 	event->res = res;
1095 	event->res2 = res2;
1096 
1097 	kunmap_atomic(ev_page);
1098 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1099 
1100 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1101 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1102 		 res, res2);
1103 
1104 	/* after flagging the request as done, we
1105 	 * must never even look at it again
1106 	 */
1107 	smp_wmb();	/* make event visible before updating tail */
1108 
1109 	ctx->tail = tail;
1110 
1111 	ring = kmap_atomic(ctx->ring_pages[0]);
1112 	head = ring->head;
1113 	ring->tail = tail;
1114 	kunmap_atomic(ring);
1115 	flush_dcache_page(ctx->ring_pages[0]);
1116 
1117 	ctx->completed_events++;
1118 	if (ctx->completed_events > 1)
1119 		refill_reqs_available(ctx, head, tail);
1120 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1121 
1122 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1123 
1124 	/*
1125 	 * Check if the user asked us to deliver the result through an
1126 	 * eventfd. The eventfd_signal() function is safe to be called
1127 	 * from IRQ context.
1128 	 */
1129 	if (iocb->ki_eventfd != NULL)
1130 		eventfd_signal(iocb->ki_eventfd, 1);
1131 
1132 	/* everything turned out well, dispose of the aiocb. */
1133 	kiocb_free(iocb);
1134 
1135 	/*
1136 	 * We have to order our ring_info tail store above and test
1137 	 * of the wait list below outside the wait lock.  This is
1138 	 * like in wake_up_bit() where clearing a bit has to be
1139 	 * ordered with the unlocked test.
1140 	 */
1141 	smp_mb();
1142 
1143 	if (waitqueue_active(&ctx->wait))
1144 		wake_up(&ctx->wait);
1145 
1146 	percpu_ref_put(&ctx->reqs);
1147 }
1148 
1149 /* aio_read_events_ring
1150  *	Pull an event off of the ioctx's event ring.  Returns the number of
1151  *	events fetched
1152  */
1153 static long aio_read_events_ring(struct kioctx *ctx,
1154 				 struct io_event __user *event, long nr)
1155 {
1156 	struct aio_ring *ring;
1157 	unsigned head, tail, pos;
1158 	long ret = 0;
1159 	int copy_ret;
1160 
1161 	/*
1162 	 * The mutex can block and wake us up and that will cause
1163 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1164 	 * and repeat. This should be rare enough that it doesn't cause
1165 	 * peformance issues. See the comment in read_events() for more detail.
1166 	 */
1167 	sched_annotate_sleep();
1168 	mutex_lock(&ctx->ring_lock);
1169 
1170 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1171 	ring = kmap_atomic(ctx->ring_pages[0]);
1172 	head = ring->head;
1173 	tail = ring->tail;
1174 	kunmap_atomic(ring);
1175 
1176 	/*
1177 	 * Ensure that once we've read the current tail pointer, that
1178 	 * we also see the events that were stored up to the tail.
1179 	 */
1180 	smp_rmb();
1181 
1182 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1183 
1184 	if (head == tail)
1185 		goto out;
1186 
1187 	head %= ctx->nr_events;
1188 	tail %= ctx->nr_events;
1189 
1190 	while (ret < nr) {
1191 		long avail;
1192 		struct io_event *ev;
1193 		struct page *page;
1194 
1195 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1196 		if (head == tail)
1197 			break;
1198 
1199 		avail = min(avail, nr - ret);
1200 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1201 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1202 
1203 		pos = head + AIO_EVENTS_OFFSET;
1204 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1205 		pos %= AIO_EVENTS_PER_PAGE;
1206 
1207 		ev = kmap(page);
1208 		copy_ret = copy_to_user(event + ret, ev + pos,
1209 					sizeof(*ev) * avail);
1210 		kunmap(page);
1211 
1212 		if (unlikely(copy_ret)) {
1213 			ret = -EFAULT;
1214 			goto out;
1215 		}
1216 
1217 		ret += avail;
1218 		head += avail;
1219 		head %= ctx->nr_events;
1220 	}
1221 
1222 	ring = kmap_atomic(ctx->ring_pages[0]);
1223 	ring->head = head;
1224 	kunmap_atomic(ring);
1225 	flush_dcache_page(ctx->ring_pages[0]);
1226 
1227 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1228 out:
1229 	mutex_unlock(&ctx->ring_lock);
1230 
1231 	return ret;
1232 }
1233 
1234 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1235 			    struct io_event __user *event, long *i)
1236 {
1237 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1238 
1239 	if (ret > 0)
1240 		*i += ret;
1241 
1242 	if (unlikely(atomic_read(&ctx->dead)))
1243 		ret = -EINVAL;
1244 
1245 	if (!*i)
1246 		*i = ret;
1247 
1248 	return ret < 0 || *i >= min_nr;
1249 }
1250 
1251 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1252 			struct io_event __user *event,
1253 			struct timespec __user *timeout)
1254 {
1255 	ktime_t until = { .tv64 = KTIME_MAX };
1256 	long ret = 0;
1257 
1258 	if (timeout) {
1259 		struct timespec	ts;
1260 
1261 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1262 			return -EFAULT;
1263 
1264 		until = timespec_to_ktime(ts);
1265 	}
1266 
1267 	/*
1268 	 * Note that aio_read_events() is being called as the conditional - i.e.
1269 	 * we're calling it after prepare_to_wait() has set task state to
1270 	 * TASK_INTERRUPTIBLE.
1271 	 *
1272 	 * But aio_read_events() can block, and if it blocks it's going to flip
1273 	 * the task state back to TASK_RUNNING.
1274 	 *
1275 	 * This should be ok, provided it doesn't flip the state back to
1276 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1277 	 * will only happen if the mutex_lock() call blocks, and we then find
1278 	 * the ringbuffer empty. So in practice we should be ok, but it's
1279 	 * something to be aware of when touching this code.
1280 	 */
1281 	if (until.tv64 == 0)
1282 		aio_read_events(ctx, min_nr, nr, event, &ret);
1283 	else
1284 		wait_event_interruptible_hrtimeout(ctx->wait,
1285 				aio_read_events(ctx, min_nr, nr, event, &ret),
1286 				until);
1287 
1288 	if (!ret && signal_pending(current))
1289 		ret = -EINTR;
1290 
1291 	return ret;
1292 }
1293 
1294 /* sys_io_setup:
1295  *	Create an aio_context capable of receiving at least nr_events.
1296  *	ctxp must not point to an aio_context that already exists, and
1297  *	must be initialized to 0 prior to the call.  On successful
1298  *	creation of the aio_context, *ctxp is filled in with the resulting
1299  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1300  *	if the specified nr_events exceeds internal limits.  May fail
1301  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1302  *	of available events.  May fail with -ENOMEM if insufficient kernel
1303  *	resources are available.  May fail with -EFAULT if an invalid
1304  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1305  *	implemented.
1306  */
1307 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1308 {
1309 	struct kioctx *ioctx = NULL;
1310 	unsigned long ctx;
1311 	long ret;
1312 
1313 	ret = get_user(ctx, ctxp);
1314 	if (unlikely(ret))
1315 		goto out;
1316 
1317 	ret = -EINVAL;
1318 	if (unlikely(ctx || nr_events == 0)) {
1319 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1320 		         ctx, nr_events);
1321 		goto out;
1322 	}
1323 
1324 	ioctx = ioctx_alloc(nr_events);
1325 	ret = PTR_ERR(ioctx);
1326 	if (!IS_ERR(ioctx)) {
1327 		ret = put_user(ioctx->user_id, ctxp);
1328 		if (ret)
1329 			kill_ioctx(current->mm, ioctx, NULL);
1330 		percpu_ref_put(&ioctx->users);
1331 	}
1332 
1333 out:
1334 	return ret;
1335 }
1336 
1337 /* sys_io_destroy:
1338  *	Destroy the aio_context specified.  May cancel any outstanding
1339  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1340  *	implemented.  May fail with -EINVAL if the context pointed to
1341  *	is invalid.
1342  */
1343 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1344 {
1345 	struct kioctx *ioctx = lookup_ioctx(ctx);
1346 	if (likely(NULL != ioctx)) {
1347 		struct ctx_rq_wait wait;
1348 		int ret;
1349 
1350 		init_completion(&wait.comp);
1351 		atomic_set(&wait.count, 1);
1352 
1353 		/* Pass requests_done to kill_ioctx() where it can be set
1354 		 * in a thread-safe way. If we try to set it here then we have
1355 		 * a race condition if two io_destroy() called simultaneously.
1356 		 */
1357 		ret = kill_ioctx(current->mm, ioctx, &wait);
1358 		percpu_ref_put(&ioctx->users);
1359 
1360 		/* Wait until all IO for the context are done. Otherwise kernel
1361 		 * keep using user-space buffers even if user thinks the context
1362 		 * is destroyed.
1363 		 */
1364 		if (!ret)
1365 			wait_for_completion(&wait.comp);
1366 
1367 		return ret;
1368 	}
1369 	pr_debug("EINVAL: invalid context id\n");
1370 	return -EINVAL;
1371 }
1372 
1373 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1374 
1375 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1376 				 struct iovec **iovec,
1377 				 bool compat,
1378 				 struct iov_iter *iter)
1379 {
1380 #ifdef CONFIG_COMPAT
1381 	if (compat)
1382 		return compat_import_iovec(rw,
1383 				(struct compat_iovec __user *)buf,
1384 				len, UIO_FASTIOV, iovec, iter);
1385 #endif
1386 	return import_iovec(rw, (struct iovec __user *)buf,
1387 				len, UIO_FASTIOV, iovec, iter);
1388 }
1389 
1390 /*
1391  * aio_run_iocb:
1392  *	Performs the initial checks and io submission.
1393  */
1394 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1395 			    char __user *buf, size_t len, bool compat)
1396 {
1397 	struct file *file = req->ki_filp;
1398 	ssize_t ret;
1399 	int rw;
1400 	fmode_t mode;
1401 	rw_iter_op *iter_op;
1402 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1403 	struct iov_iter iter;
1404 
1405 	switch (opcode) {
1406 	case IOCB_CMD_PREAD:
1407 	case IOCB_CMD_PREADV:
1408 		mode	= FMODE_READ;
1409 		rw	= READ;
1410 		iter_op	= file->f_op->read_iter;
1411 		goto rw_common;
1412 
1413 	case IOCB_CMD_PWRITE:
1414 	case IOCB_CMD_PWRITEV:
1415 		mode	= FMODE_WRITE;
1416 		rw	= WRITE;
1417 		iter_op	= file->f_op->write_iter;
1418 		goto rw_common;
1419 rw_common:
1420 		if (unlikely(!(file->f_mode & mode)))
1421 			return -EBADF;
1422 
1423 		if (!iter_op)
1424 			return -EINVAL;
1425 
1426 		if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1427 			ret = aio_setup_vectored_rw(rw, buf, len,
1428 						&iovec, compat, &iter);
1429 		else {
1430 			ret = import_single_range(rw, buf, len, iovec, &iter);
1431 			iovec = NULL;
1432 		}
1433 		if (!ret)
1434 			ret = rw_verify_area(rw, file, &req->ki_pos,
1435 					     iov_iter_count(&iter));
1436 		if (ret < 0) {
1437 			kfree(iovec);
1438 			return ret;
1439 		}
1440 
1441 		len = ret;
1442 
1443 		if (rw == WRITE)
1444 			file_start_write(file);
1445 
1446 		ret = iter_op(req, &iter);
1447 
1448 		if (rw == WRITE)
1449 			file_end_write(file);
1450 		kfree(iovec);
1451 		break;
1452 
1453 	case IOCB_CMD_FDSYNC:
1454 		if (!file->f_op->aio_fsync)
1455 			return -EINVAL;
1456 
1457 		ret = file->f_op->aio_fsync(req, 1);
1458 		break;
1459 
1460 	case IOCB_CMD_FSYNC:
1461 		if (!file->f_op->aio_fsync)
1462 			return -EINVAL;
1463 
1464 		ret = file->f_op->aio_fsync(req, 0);
1465 		break;
1466 
1467 	default:
1468 		pr_debug("EINVAL: no operation provided\n");
1469 		return -EINVAL;
1470 	}
1471 
1472 	if (ret != -EIOCBQUEUED) {
1473 		/*
1474 		 * There's no easy way to restart the syscall since other AIO's
1475 		 * may be already running. Just fail this IO with EINTR.
1476 		 */
1477 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1478 			     ret == -ERESTARTNOHAND ||
1479 			     ret == -ERESTART_RESTARTBLOCK))
1480 			ret = -EINTR;
1481 		aio_complete(req, ret, 0);
1482 	}
1483 
1484 	return 0;
1485 }
1486 
1487 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1488 			 struct iocb *iocb, bool compat)
1489 {
1490 	struct aio_kiocb *req;
1491 	ssize_t ret;
1492 
1493 	/* enforce forwards compatibility on users */
1494 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1495 		pr_debug("EINVAL: reserve field set\n");
1496 		return -EINVAL;
1497 	}
1498 
1499 	/* prevent overflows */
1500 	if (unlikely(
1501 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1502 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1503 	    ((ssize_t)iocb->aio_nbytes < 0)
1504 	   )) {
1505 		pr_debug("EINVAL: overflow check\n");
1506 		return -EINVAL;
1507 	}
1508 
1509 	req = aio_get_req(ctx);
1510 	if (unlikely(!req))
1511 		return -EAGAIN;
1512 
1513 	req->common.ki_filp = fget(iocb->aio_fildes);
1514 	if (unlikely(!req->common.ki_filp)) {
1515 		ret = -EBADF;
1516 		goto out_put_req;
1517 	}
1518 	req->common.ki_pos = iocb->aio_offset;
1519 	req->common.ki_complete = aio_complete;
1520 	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1521 
1522 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1523 		/*
1524 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1525 		 * instance of the file* now. The file descriptor must be
1526 		 * an eventfd() fd, and will be signaled for each completed
1527 		 * event using the eventfd_signal() function.
1528 		 */
1529 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1530 		if (IS_ERR(req->ki_eventfd)) {
1531 			ret = PTR_ERR(req->ki_eventfd);
1532 			req->ki_eventfd = NULL;
1533 			goto out_put_req;
1534 		}
1535 
1536 		req->common.ki_flags |= IOCB_EVENTFD;
1537 	}
1538 
1539 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1540 	if (unlikely(ret)) {
1541 		pr_debug("EFAULT: aio_key\n");
1542 		goto out_put_req;
1543 	}
1544 
1545 	req->ki_user_iocb = user_iocb;
1546 	req->ki_user_data = iocb->aio_data;
1547 
1548 	ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1549 			   (char __user *)(unsigned long)iocb->aio_buf,
1550 			   iocb->aio_nbytes,
1551 			   compat);
1552 	if (ret)
1553 		goto out_put_req;
1554 
1555 	return 0;
1556 out_put_req:
1557 	put_reqs_available(ctx, 1);
1558 	percpu_ref_put(&ctx->reqs);
1559 	kiocb_free(req);
1560 	return ret;
1561 }
1562 
1563 long do_io_submit(aio_context_t ctx_id, long nr,
1564 		  struct iocb __user *__user *iocbpp, bool compat)
1565 {
1566 	struct kioctx *ctx;
1567 	long ret = 0;
1568 	int i = 0;
1569 	struct blk_plug plug;
1570 
1571 	if (unlikely(nr < 0))
1572 		return -EINVAL;
1573 
1574 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1575 		nr = LONG_MAX/sizeof(*iocbpp);
1576 
1577 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1578 		return -EFAULT;
1579 
1580 	ctx = lookup_ioctx(ctx_id);
1581 	if (unlikely(!ctx)) {
1582 		pr_debug("EINVAL: invalid context id\n");
1583 		return -EINVAL;
1584 	}
1585 
1586 	blk_start_plug(&plug);
1587 
1588 	/*
1589 	 * AKPM: should this return a partial result if some of the IOs were
1590 	 * successfully submitted?
1591 	 */
1592 	for (i=0; i<nr; i++) {
1593 		struct iocb __user *user_iocb;
1594 		struct iocb tmp;
1595 
1596 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1597 			ret = -EFAULT;
1598 			break;
1599 		}
1600 
1601 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1602 			ret = -EFAULT;
1603 			break;
1604 		}
1605 
1606 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1607 		if (ret)
1608 			break;
1609 	}
1610 	blk_finish_plug(&plug);
1611 
1612 	percpu_ref_put(&ctx->users);
1613 	return i ? i : ret;
1614 }
1615 
1616 /* sys_io_submit:
1617  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1618  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1619  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1620  *	*iocbpp[0] is not properly initialized, if the operation specified
1621  *	is invalid for the file descriptor in the iocb.  May fail with
1622  *	-EFAULT if any of the data structures point to invalid data.  May
1623  *	fail with -EBADF if the file descriptor specified in the first
1624  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1625  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1626  *	fail with -ENOSYS if not implemented.
1627  */
1628 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1629 		struct iocb __user * __user *, iocbpp)
1630 {
1631 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1632 }
1633 
1634 /* lookup_kiocb
1635  *	Finds a given iocb for cancellation.
1636  */
1637 static struct aio_kiocb *
1638 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1639 {
1640 	struct aio_kiocb *kiocb;
1641 
1642 	assert_spin_locked(&ctx->ctx_lock);
1643 
1644 	if (key != KIOCB_KEY)
1645 		return NULL;
1646 
1647 	/* TODO: use a hash or array, this sucks. */
1648 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1649 		if (kiocb->ki_user_iocb == iocb)
1650 			return kiocb;
1651 	}
1652 	return NULL;
1653 }
1654 
1655 /* sys_io_cancel:
1656  *	Attempts to cancel an iocb previously passed to io_submit.  If
1657  *	the operation is successfully cancelled, the resulting event is
1658  *	copied into the memory pointed to by result without being placed
1659  *	into the completion queue and 0 is returned.  May fail with
1660  *	-EFAULT if any of the data structures pointed to are invalid.
1661  *	May fail with -EINVAL if aio_context specified by ctx_id is
1662  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1663  *	cancelled.  Will fail with -ENOSYS if not implemented.
1664  */
1665 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1666 		struct io_event __user *, result)
1667 {
1668 	struct kioctx *ctx;
1669 	struct aio_kiocb *kiocb;
1670 	u32 key;
1671 	int ret;
1672 
1673 	ret = get_user(key, &iocb->aio_key);
1674 	if (unlikely(ret))
1675 		return -EFAULT;
1676 
1677 	ctx = lookup_ioctx(ctx_id);
1678 	if (unlikely(!ctx))
1679 		return -EINVAL;
1680 
1681 	spin_lock_irq(&ctx->ctx_lock);
1682 
1683 	kiocb = lookup_kiocb(ctx, iocb, key);
1684 	if (kiocb)
1685 		ret = kiocb_cancel(kiocb);
1686 	else
1687 		ret = -EINVAL;
1688 
1689 	spin_unlock_irq(&ctx->ctx_lock);
1690 
1691 	if (!ret) {
1692 		/*
1693 		 * The result argument is no longer used - the io_event is
1694 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1695 		 * cancellation is progress:
1696 		 */
1697 		ret = -EINPROGRESS;
1698 	}
1699 
1700 	percpu_ref_put(&ctx->users);
1701 
1702 	return ret;
1703 }
1704 
1705 /* io_getevents:
1706  *	Attempts to read at least min_nr events and up to nr events from
1707  *	the completion queue for the aio_context specified by ctx_id. If
1708  *	it succeeds, the number of read events is returned. May fail with
1709  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1710  *	out of range, if timeout is out of range.  May fail with -EFAULT
1711  *	if any of the memory specified is invalid.  May return 0 or
1712  *	< min_nr if the timeout specified by timeout has elapsed
1713  *	before sufficient events are available, where timeout == NULL
1714  *	specifies an infinite timeout. Note that the timeout pointed to by
1715  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1716  */
1717 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1718 		long, min_nr,
1719 		long, nr,
1720 		struct io_event __user *, events,
1721 		struct timespec __user *, timeout)
1722 {
1723 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1724 	long ret = -EINVAL;
1725 
1726 	if (likely(ioctx)) {
1727 		if (likely(min_nr <= nr && min_nr >= 0))
1728 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1729 		percpu_ref_put(&ioctx->users);
1730 	}
1731 	return ret;
1732 }
1733