xref: /linux/fs/aio.c (revision 90ab5ee94171b3e28de6bb42ee30b527014e0be7)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #if DEBUG > 1
43 #define dprintk		printk
44 #else
45 #define dprintk(x...)	do { ; } while (0)
46 #endif
47 
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr;		/* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
53 
54 static struct kmem_cache	*kiocb_cachep;
55 static struct kmem_cache	*kioctx_cachep;
56 
57 static struct workqueue_struct *aio_wq;
58 
59 /* Used for rare fput completion. */
60 static void aio_fput_routine(struct work_struct *);
61 static DECLARE_WORK(fput_work, aio_fput_routine);
62 
63 static DEFINE_SPINLOCK(fput_lock);
64 static LIST_HEAD(fput_head);
65 
66 static void aio_kick_handler(struct work_struct *);
67 static void aio_queue_work(struct kioctx *);
68 
69 /* aio_setup
70  *	Creates the slab caches used by the aio routines, panic on
71  *	failure as this is done early during the boot sequence.
72  */
73 static int __init aio_setup(void)
74 {
75 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
76 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
77 
78 	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
79 	BUG_ON(!aio_wq);
80 
81 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
82 
83 	return 0;
84 }
85 __initcall(aio_setup);
86 
87 static void aio_free_ring(struct kioctx *ctx)
88 {
89 	struct aio_ring_info *info = &ctx->ring_info;
90 	long i;
91 
92 	for (i=0; i<info->nr_pages; i++)
93 		put_page(info->ring_pages[i]);
94 
95 	if (info->mmap_size) {
96 		down_write(&ctx->mm->mmap_sem);
97 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
98 		up_write(&ctx->mm->mmap_sem);
99 	}
100 
101 	if (info->ring_pages && info->ring_pages != info->internal_pages)
102 		kfree(info->ring_pages);
103 	info->ring_pages = NULL;
104 	info->nr = 0;
105 }
106 
107 static int aio_setup_ring(struct kioctx *ctx)
108 {
109 	struct aio_ring *ring;
110 	struct aio_ring_info *info = &ctx->ring_info;
111 	unsigned nr_events = ctx->max_reqs;
112 	unsigned long size;
113 	int nr_pages;
114 
115 	/* Compensate for the ring buffer's head/tail overlap entry */
116 	nr_events += 2;	/* 1 is required, 2 for good luck */
117 
118 	size = sizeof(struct aio_ring);
119 	size += sizeof(struct io_event) * nr_events;
120 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
121 
122 	if (nr_pages < 0)
123 		return -EINVAL;
124 
125 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
126 
127 	info->nr = 0;
128 	info->ring_pages = info->internal_pages;
129 	if (nr_pages > AIO_RING_PAGES) {
130 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
131 		if (!info->ring_pages)
132 			return -ENOMEM;
133 	}
134 
135 	info->mmap_size = nr_pages * PAGE_SIZE;
136 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
137 	down_write(&ctx->mm->mmap_sem);
138 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
139 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
140 				  0);
141 	if (IS_ERR((void *)info->mmap_base)) {
142 		up_write(&ctx->mm->mmap_sem);
143 		info->mmap_size = 0;
144 		aio_free_ring(ctx);
145 		return -EAGAIN;
146 	}
147 
148 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
149 	info->nr_pages = get_user_pages(current, ctx->mm,
150 					info->mmap_base, nr_pages,
151 					1, 0, info->ring_pages, NULL);
152 	up_write(&ctx->mm->mmap_sem);
153 
154 	if (unlikely(info->nr_pages != nr_pages)) {
155 		aio_free_ring(ctx);
156 		return -EAGAIN;
157 	}
158 
159 	ctx->user_id = info->mmap_base;
160 
161 	info->nr = nr_events;		/* trusted copy */
162 
163 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
164 	ring->nr = nr_events;	/* user copy */
165 	ring->id = ctx->user_id;
166 	ring->head = ring->tail = 0;
167 	ring->magic = AIO_RING_MAGIC;
168 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
169 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
170 	ring->header_length = sizeof(struct aio_ring);
171 	kunmap_atomic(ring, KM_USER0);
172 
173 	return 0;
174 }
175 
176 
177 /* aio_ring_event: returns a pointer to the event at the given index from
178  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
179  */
180 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
181 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
182 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
183 
184 #define aio_ring_event(info, nr, km) ({					\
185 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
186 	struct io_event *__event;					\
187 	__event = kmap_atomic(						\
188 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
189 	__event += pos % AIO_EVENTS_PER_PAGE;				\
190 	__event;							\
191 })
192 
193 #define put_aio_ring_event(event, km) do {	\
194 	struct io_event *__event = (event);	\
195 	(void)__event;				\
196 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
197 } while(0)
198 
199 static void ctx_rcu_free(struct rcu_head *head)
200 {
201 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
202 	unsigned nr_events = ctx->max_reqs;
203 
204 	kmem_cache_free(kioctx_cachep, ctx);
205 
206 	if (nr_events) {
207 		spin_lock(&aio_nr_lock);
208 		BUG_ON(aio_nr - nr_events > aio_nr);
209 		aio_nr -= nr_events;
210 		spin_unlock(&aio_nr_lock);
211 	}
212 }
213 
214 /* __put_ioctx
215  *	Called when the last user of an aio context has gone away,
216  *	and the struct needs to be freed.
217  */
218 static void __put_ioctx(struct kioctx *ctx)
219 {
220 	BUG_ON(ctx->reqs_active);
221 
222 	cancel_delayed_work(&ctx->wq);
223 	cancel_work_sync(&ctx->wq.work);
224 	aio_free_ring(ctx);
225 	mmdrop(ctx->mm);
226 	ctx->mm = NULL;
227 	pr_debug("__put_ioctx: freeing %p\n", ctx);
228 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
229 }
230 
231 static inline void get_ioctx(struct kioctx *kioctx)
232 {
233 	BUG_ON(atomic_read(&kioctx->users) <= 0);
234 	atomic_inc(&kioctx->users);
235 }
236 
237 static inline int try_get_ioctx(struct kioctx *kioctx)
238 {
239 	return atomic_inc_not_zero(&kioctx->users);
240 }
241 
242 static inline void put_ioctx(struct kioctx *kioctx)
243 {
244 	BUG_ON(atomic_read(&kioctx->users) <= 0);
245 	if (unlikely(atomic_dec_and_test(&kioctx->users)))
246 		__put_ioctx(kioctx);
247 }
248 
249 /* ioctx_alloc
250  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
251  */
252 static struct kioctx *ioctx_alloc(unsigned nr_events)
253 {
254 	struct mm_struct *mm;
255 	struct kioctx *ctx;
256 	int did_sync = 0;
257 
258 	/* Prevent overflows */
259 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
260 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
261 		pr_debug("ENOMEM: nr_events too high\n");
262 		return ERR_PTR(-EINVAL);
263 	}
264 
265 	if ((unsigned long)nr_events > aio_max_nr)
266 		return ERR_PTR(-EAGAIN);
267 
268 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
269 	if (!ctx)
270 		return ERR_PTR(-ENOMEM);
271 
272 	ctx->max_reqs = nr_events;
273 	mm = ctx->mm = current->mm;
274 	atomic_inc(&mm->mm_count);
275 
276 	atomic_set(&ctx->users, 1);
277 	spin_lock_init(&ctx->ctx_lock);
278 	spin_lock_init(&ctx->ring_info.ring_lock);
279 	init_waitqueue_head(&ctx->wait);
280 
281 	INIT_LIST_HEAD(&ctx->active_reqs);
282 	INIT_LIST_HEAD(&ctx->run_list);
283 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
284 
285 	if (aio_setup_ring(ctx) < 0)
286 		goto out_freectx;
287 
288 	/* limit the number of system wide aios */
289 	do {
290 		spin_lock_bh(&aio_nr_lock);
291 		if (aio_nr + nr_events > aio_max_nr ||
292 		    aio_nr + nr_events < aio_nr)
293 			ctx->max_reqs = 0;
294 		else
295 			aio_nr += ctx->max_reqs;
296 		spin_unlock_bh(&aio_nr_lock);
297 		if (ctx->max_reqs || did_sync)
298 			break;
299 
300 		/* wait for rcu callbacks to have completed before giving up */
301 		synchronize_rcu();
302 		did_sync = 1;
303 		ctx->max_reqs = nr_events;
304 	} while (1);
305 
306 	if (ctx->max_reqs == 0)
307 		goto out_cleanup;
308 
309 	/* now link into global list. */
310 	spin_lock(&mm->ioctx_lock);
311 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
312 	spin_unlock(&mm->ioctx_lock);
313 
314 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
315 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
316 	return ctx;
317 
318 out_cleanup:
319 	__put_ioctx(ctx);
320 	return ERR_PTR(-EAGAIN);
321 
322 out_freectx:
323 	mmdrop(mm);
324 	kmem_cache_free(kioctx_cachep, ctx);
325 	ctx = ERR_PTR(-ENOMEM);
326 
327 	dprintk("aio: error allocating ioctx %p\n", ctx);
328 	return ctx;
329 }
330 
331 /* aio_cancel_all
332  *	Cancels all outstanding aio requests on an aio context.  Used
333  *	when the processes owning a context have all exited to encourage
334  *	the rapid destruction of the kioctx.
335  */
336 static void aio_cancel_all(struct kioctx *ctx)
337 {
338 	int (*cancel)(struct kiocb *, struct io_event *);
339 	struct io_event res;
340 	spin_lock_irq(&ctx->ctx_lock);
341 	ctx->dead = 1;
342 	while (!list_empty(&ctx->active_reqs)) {
343 		struct list_head *pos = ctx->active_reqs.next;
344 		struct kiocb *iocb = list_kiocb(pos);
345 		list_del_init(&iocb->ki_list);
346 		cancel = iocb->ki_cancel;
347 		kiocbSetCancelled(iocb);
348 		if (cancel) {
349 			iocb->ki_users++;
350 			spin_unlock_irq(&ctx->ctx_lock);
351 			cancel(iocb, &res);
352 			spin_lock_irq(&ctx->ctx_lock);
353 		}
354 	}
355 	spin_unlock_irq(&ctx->ctx_lock);
356 }
357 
358 static void wait_for_all_aios(struct kioctx *ctx)
359 {
360 	struct task_struct *tsk = current;
361 	DECLARE_WAITQUEUE(wait, tsk);
362 
363 	spin_lock_irq(&ctx->ctx_lock);
364 	if (!ctx->reqs_active)
365 		goto out;
366 
367 	add_wait_queue(&ctx->wait, &wait);
368 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
369 	while (ctx->reqs_active) {
370 		spin_unlock_irq(&ctx->ctx_lock);
371 		io_schedule();
372 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
373 		spin_lock_irq(&ctx->ctx_lock);
374 	}
375 	__set_task_state(tsk, TASK_RUNNING);
376 	remove_wait_queue(&ctx->wait, &wait);
377 
378 out:
379 	spin_unlock_irq(&ctx->ctx_lock);
380 }
381 
382 /* wait_on_sync_kiocb:
383  *	Waits on the given sync kiocb to complete.
384  */
385 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
386 {
387 	while (iocb->ki_users) {
388 		set_current_state(TASK_UNINTERRUPTIBLE);
389 		if (!iocb->ki_users)
390 			break;
391 		io_schedule();
392 	}
393 	__set_current_state(TASK_RUNNING);
394 	return iocb->ki_user_data;
395 }
396 EXPORT_SYMBOL(wait_on_sync_kiocb);
397 
398 /* exit_aio: called when the last user of mm goes away.  At this point,
399  * there is no way for any new requests to be submited or any of the
400  * io_* syscalls to be called on the context.  However, there may be
401  * outstanding requests which hold references to the context; as they
402  * go away, they will call put_ioctx and release any pinned memory
403  * associated with the request (held via struct page * references).
404  */
405 void exit_aio(struct mm_struct *mm)
406 {
407 	struct kioctx *ctx;
408 
409 	while (!hlist_empty(&mm->ioctx_list)) {
410 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
411 		hlist_del_rcu(&ctx->list);
412 
413 		aio_cancel_all(ctx);
414 
415 		wait_for_all_aios(ctx);
416 		/*
417 		 * Ensure we don't leave the ctx on the aio_wq
418 		 */
419 		cancel_work_sync(&ctx->wq.work);
420 
421 		if (1 != atomic_read(&ctx->users))
422 			printk(KERN_DEBUG
423 				"exit_aio:ioctx still alive: %d %d %d\n",
424 				atomic_read(&ctx->users), ctx->dead,
425 				ctx->reqs_active);
426 		put_ioctx(ctx);
427 	}
428 }
429 
430 /* aio_get_req
431  *	Allocate a slot for an aio request.  Increments the users count
432  * of the kioctx so that the kioctx stays around until all requests are
433  * complete.  Returns NULL if no requests are free.
434  *
435  * Returns with kiocb->users set to 2.  The io submit code path holds
436  * an extra reference while submitting the i/o.
437  * This prevents races between the aio code path referencing the
438  * req (after submitting it) and aio_complete() freeing the req.
439  */
440 static struct kiocb *__aio_get_req(struct kioctx *ctx)
441 {
442 	struct kiocb *req = NULL;
443 
444 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
445 	if (unlikely(!req))
446 		return NULL;
447 
448 	req->ki_flags = 0;
449 	req->ki_users = 2;
450 	req->ki_key = 0;
451 	req->ki_ctx = ctx;
452 	req->ki_cancel = NULL;
453 	req->ki_retry = NULL;
454 	req->ki_dtor = NULL;
455 	req->private = NULL;
456 	req->ki_iovec = NULL;
457 	INIT_LIST_HEAD(&req->ki_run_list);
458 	req->ki_eventfd = NULL;
459 
460 	return req;
461 }
462 
463 /*
464  * struct kiocb's are allocated in batches to reduce the number of
465  * times the ctx lock is acquired and released.
466  */
467 #define KIOCB_BATCH_SIZE	32L
468 struct kiocb_batch {
469 	struct list_head head;
470 	long count; /* number of requests left to allocate */
471 };
472 
473 static void kiocb_batch_init(struct kiocb_batch *batch, long total)
474 {
475 	INIT_LIST_HEAD(&batch->head);
476 	batch->count = total;
477 }
478 
479 static void kiocb_batch_free(struct kiocb_batch *batch)
480 {
481 	struct kiocb *req, *n;
482 
483 	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
484 		list_del(&req->ki_batch);
485 		kmem_cache_free(kiocb_cachep, req);
486 	}
487 }
488 
489 /*
490  * Allocate a batch of kiocbs.  This avoids taking and dropping the
491  * context lock a lot during setup.
492  */
493 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
494 {
495 	unsigned short allocated, to_alloc;
496 	long avail;
497 	bool called_fput = false;
498 	struct kiocb *req, *n;
499 	struct aio_ring *ring;
500 
501 	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
502 	for (allocated = 0; allocated < to_alloc; allocated++) {
503 		req = __aio_get_req(ctx);
504 		if (!req)
505 			/* allocation failed, go with what we've got */
506 			break;
507 		list_add(&req->ki_batch, &batch->head);
508 	}
509 
510 	if (allocated == 0)
511 		goto out;
512 
513 retry:
514 	spin_lock_irq(&ctx->ctx_lock);
515 	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
516 
517 	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
518 	BUG_ON(avail < 0);
519 	if (avail == 0 && !called_fput) {
520 		/*
521 		 * Handle a potential starvation case.  It is possible that
522 		 * we hold the last reference on a struct file, causing us
523 		 * to delay the final fput to non-irq context.  In this case,
524 		 * ctx->reqs_active is artificially high.  Calling the fput
525 		 * routine here may free up a slot in the event completion
526 		 * ring, allowing this allocation to succeed.
527 		 */
528 		kunmap_atomic(ring);
529 		spin_unlock_irq(&ctx->ctx_lock);
530 		aio_fput_routine(NULL);
531 		called_fput = true;
532 		goto retry;
533 	}
534 
535 	if (avail < allocated) {
536 		/* Trim back the number of requests. */
537 		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
538 			list_del(&req->ki_batch);
539 			kmem_cache_free(kiocb_cachep, req);
540 			if (--allocated <= avail)
541 				break;
542 		}
543 	}
544 
545 	batch->count -= allocated;
546 	list_for_each_entry(req, &batch->head, ki_batch) {
547 		list_add(&req->ki_list, &ctx->active_reqs);
548 		ctx->reqs_active++;
549 	}
550 
551 	kunmap_atomic(ring);
552 	spin_unlock_irq(&ctx->ctx_lock);
553 
554 out:
555 	return allocated;
556 }
557 
558 static inline struct kiocb *aio_get_req(struct kioctx *ctx,
559 					struct kiocb_batch *batch)
560 {
561 	struct kiocb *req;
562 
563 	if (list_empty(&batch->head))
564 		if (kiocb_batch_refill(ctx, batch) == 0)
565 			return NULL;
566 	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
567 	list_del(&req->ki_batch);
568 	return req;
569 }
570 
571 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
572 {
573 	assert_spin_locked(&ctx->ctx_lock);
574 
575 	if (req->ki_eventfd != NULL)
576 		eventfd_ctx_put(req->ki_eventfd);
577 	if (req->ki_dtor)
578 		req->ki_dtor(req);
579 	if (req->ki_iovec != &req->ki_inline_vec)
580 		kfree(req->ki_iovec);
581 	kmem_cache_free(kiocb_cachep, req);
582 	ctx->reqs_active--;
583 
584 	if (unlikely(!ctx->reqs_active && ctx->dead))
585 		wake_up_all(&ctx->wait);
586 }
587 
588 static void aio_fput_routine(struct work_struct *data)
589 {
590 	spin_lock_irq(&fput_lock);
591 	while (likely(!list_empty(&fput_head))) {
592 		struct kiocb *req = list_kiocb(fput_head.next);
593 		struct kioctx *ctx = req->ki_ctx;
594 
595 		list_del(&req->ki_list);
596 		spin_unlock_irq(&fput_lock);
597 
598 		/* Complete the fput(s) */
599 		if (req->ki_filp != NULL)
600 			fput(req->ki_filp);
601 
602 		/* Link the iocb into the context's free list */
603 		spin_lock_irq(&ctx->ctx_lock);
604 		really_put_req(ctx, req);
605 		spin_unlock_irq(&ctx->ctx_lock);
606 
607 		put_ioctx(ctx);
608 		spin_lock_irq(&fput_lock);
609 	}
610 	spin_unlock_irq(&fput_lock);
611 }
612 
613 /* __aio_put_req
614  *	Returns true if this put was the last user of the request.
615  */
616 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
617 {
618 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
619 		req, atomic_long_read(&req->ki_filp->f_count));
620 
621 	assert_spin_locked(&ctx->ctx_lock);
622 
623 	req->ki_users--;
624 	BUG_ON(req->ki_users < 0);
625 	if (likely(req->ki_users))
626 		return 0;
627 	list_del(&req->ki_list);		/* remove from active_reqs */
628 	req->ki_cancel = NULL;
629 	req->ki_retry = NULL;
630 
631 	/*
632 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
633 	 * schedule work in case it is not final fput() time. In normal cases,
634 	 * we would not be holding the last reference to the file*, so
635 	 * this function will be executed w/out any aio kthread wakeup.
636 	 */
637 	if (unlikely(!fput_atomic(req->ki_filp))) {
638 		get_ioctx(ctx);
639 		spin_lock(&fput_lock);
640 		list_add(&req->ki_list, &fput_head);
641 		spin_unlock(&fput_lock);
642 		schedule_work(&fput_work);
643 	} else {
644 		req->ki_filp = NULL;
645 		really_put_req(ctx, req);
646 	}
647 	return 1;
648 }
649 
650 /* aio_put_req
651  *	Returns true if this put was the last user of the kiocb,
652  *	false if the request is still in use.
653  */
654 int aio_put_req(struct kiocb *req)
655 {
656 	struct kioctx *ctx = req->ki_ctx;
657 	int ret;
658 	spin_lock_irq(&ctx->ctx_lock);
659 	ret = __aio_put_req(ctx, req);
660 	spin_unlock_irq(&ctx->ctx_lock);
661 	return ret;
662 }
663 EXPORT_SYMBOL(aio_put_req);
664 
665 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
666 {
667 	struct mm_struct *mm = current->mm;
668 	struct kioctx *ctx, *ret = NULL;
669 	struct hlist_node *n;
670 
671 	rcu_read_lock();
672 
673 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
674 		/*
675 		 * RCU protects us against accessing freed memory but
676 		 * we have to be careful not to get a reference when the
677 		 * reference count already dropped to 0 (ctx->dead test
678 		 * is unreliable because of races).
679 		 */
680 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
681 			ret = ctx;
682 			break;
683 		}
684 	}
685 
686 	rcu_read_unlock();
687 	return ret;
688 }
689 
690 /*
691  * Queue up a kiocb to be retried. Assumes that the kiocb
692  * has already been marked as kicked, and places it on
693  * the retry run list for the corresponding ioctx, if it
694  * isn't already queued. Returns 1 if it actually queued
695  * the kiocb (to tell the caller to activate the work
696  * queue to process it), or 0, if it found that it was
697  * already queued.
698  */
699 static inline int __queue_kicked_iocb(struct kiocb *iocb)
700 {
701 	struct kioctx *ctx = iocb->ki_ctx;
702 
703 	assert_spin_locked(&ctx->ctx_lock);
704 
705 	if (list_empty(&iocb->ki_run_list)) {
706 		list_add_tail(&iocb->ki_run_list,
707 			&ctx->run_list);
708 		return 1;
709 	}
710 	return 0;
711 }
712 
713 /* aio_run_iocb
714  *	This is the core aio execution routine. It is
715  *	invoked both for initial i/o submission and
716  *	subsequent retries via the aio_kick_handler.
717  *	Expects to be invoked with iocb->ki_ctx->lock
718  *	already held. The lock is released and reacquired
719  *	as needed during processing.
720  *
721  * Calls the iocb retry method (already setup for the
722  * iocb on initial submission) for operation specific
723  * handling, but takes care of most of common retry
724  * execution details for a given iocb. The retry method
725  * needs to be non-blocking as far as possible, to avoid
726  * holding up other iocbs waiting to be serviced by the
727  * retry kernel thread.
728  *
729  * The trickier parts in this code have to do with
730  * ensuring that only one retry instance is in progress
731  * for a given iocb at any time. Providing that guarantee
732  * simplifies the coding of individual aio operations as
733  * it avoids various potential races.
734  */
735 static ssize_t aio_run_iocb(struct kiocb *iocb)
736 {
737 	struct kioctx	*ctx = iocb->ki_ctx;
738 	ssize_t (*retry)(struct kiocb *);
739 	ssize_t ret;
740 
741 	if (!(retry = iocb->ki_retry)) {
742 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
743 		return 0;
744 	}
745 
746 	/*
747 	 * We don't want the next retry iteration for this
748 	 * operation to start until this one has returned and
749 	 * updated the iocb state. However, wait_queue functions
750 	 * can trigger a kick_iocb from interrupt context in the
751 	 * meantime, indicating that data is available for the next
752 	 * iteration. We want to remember that and enable the
753 	 * next retry iteration _after_ we are through with
754 	 * this one.
755 	 *
756 	 * So, in order to be able to register a "kick", but
757 	 * prevent it from being queued now, we clear the kick
758 	 * flag, but make the kick code *think* that the iocb is
759 	 * still on the run list until we are actually done.
760 	 * When we are done with this iteration, we check if
761 	 * the iocb was kicked in the meantime and if so, queue
762 	 * it up afresh.
763 	 */
764 
765 	kiocbClearKicked(iocb);
766 
767 	/*
768 	 * This is so that aio_complete knows it doesn't need to
769 	 * pull the iocb off the run list (We can't just call
770 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
771 	 * queue this on the run list yet)
772 	 */
773 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
774 	spin_unlock_irq(&ctx->ctx_lock);
775 
776 	/* Quit retrying if the i/o has been cancelled */
777 	if (kiocbIsCancelled(iocb)) {
778 		ret = -EINTR;
779 		aio_complete(iocb, ret, 0);
780 		/* must not access the iocb after this */
781 		goto out;
782 	}
783 
784 	/*
785 	 * Now we are all set to call the retry method in async
786 	 * context.
787 	 */
788 	ret = retry(iocb);
789 
790 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
791 		/*
792 		 * There's no easy way to restart the syscall since other AIO's
793 		 * may be already running. Just fail this IO with EINTR.
794 		 */
795 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
796 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
797 			ret = -EINTR;
798 		aio_complete(iocb, ret, 0);
799 	}
800 out:
801 	spin_lock_irq(&ctx->ctx_lock);
802 
803 	if (-EIOCBRETRY == ret) {
804 		/*
805 		 * OK, now that we are done with this iteration
806 		 * and know that there is more left to go,
807 		 * this is where we let go so that a subsequent
808 		 * "kick" can start the next iteration
809 		 */
810 
811 		/* will make __queue_kicked_iocb succeed from here on */
812 		INIT_LIST_HEAD(&iocb->ki_run_list);
813 		/* we must queue the next iteration ourselves, if it
814 		 * has already been kicked */
815 		if (kiocbIsKicked(iocb)) {
816 			__queue_kicked_iocb(iocb);
817 
818 			/*
819 			 * __queue_kicked_iocb will always return 1 here, because
820 			 * iocb->ki_run_list is empty at this point so it should
821 			 * be safe to unconditionally queue the context into the
822 			 * work queue.
823 			 */
824 			aio_queue_work(ctx);
825 		}
826 	}
827 	return ret;
828 }
829 
830 /*
831  * __aio_run_iocbs:
832  * 	Process all pending retries queued on the ioctx
833  * 	run list.
834  * Assumes it is operating within the aio issuer's mm
835  * context.
836  */
837 static int __aio_run_iocbs(struct kioctx *ctx)
838 {
839 	struct kiocb *iocb;
840 	struct list_head run_list;
841 
842 	assert_spin_locked(&ctx->ctx_lock);
843 
844 	list_replace_init(&ctx->run_list, &run_list);
845 	while (!list_empty(&run_list)) {
846 		iocb = list_entry(run_list.next, struct kiocb,
847 			ki_run_list);
848 		list_del(&iocb->ki_run_list);
849 		/*
850 		 * Hold an extra reference while retrying i/o.
851 		 */
852 		iocb->ki_users++;       /* grab extra reference */
853 		aio_run_iocb(iocb);
854 		__aio_put_req(ctx, iocb);
855  	}
856 	if (!list_empty(&ctx->run_list))
857 		return 1;
858 	return 0;
859 }
860 
861 static void aio_queue_work(struct kioctx * ctx)
862 {
863 	unsigned long timeout;
864 	/*
865 	 * if someone is waiting, get the work started right
866 	 * away, otherwise, use a longer delay
867 	 */
868 	smp_mb();
869 	if (waitqueue_active(&ctx->wait))
870 		timeout = 1;
871 	else
872 		timeout = HZ/10;
873 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
874 }
875 
876 /*
877  * aio_run_all_iocbs:
878  *	Process all pending retries queued on the ioctx
879  *	run list, and keep running them until the list
880  *	stays empty.
881  * Assumes it is operating within the aio issuer's mm context.
882  */
883 static inline void aio_run_all_iocbs(struct kioctx *ctx)
884 {
885 	spin_lock_irq(&ctx->ctx_lock);
886 	while (__aio_run_iocbs(ctx))
887 		;
888 	spin_unlock_irq(&ctx->ctx_lock);
889 }
890 
891 /*
892  * aio_kick_handler:
893  * 	Work queue handler triggered to process pending
894  * 	retries on an ioctx. Takes on the aio issuer's
895  *	mm context before running the iocbs, so that
896  *	copy_xxx_user operates on the issuer's address
897  *      space.
898  * Run on aiod's context.
899  */
900 static void aio_kick_handler(struct work_struct *work)
901 {
902 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
903 	mm_segment_t oldfs = get_fs();
904 	struct mm_struct *mm;
905 	int requeue;
906 
907 	set_fs(USER_DS);
908 	use_mm(ctx->mm);
909 	spin_lock_irq(&ctx->ctx_lock);
910 	requeue =__aio_run_iocbs(ctx);
911 	mm = ctx->mm;
912 	spin_unlock_irq(&ctx->ctx_lock);
913  	unuse_mm(mm);
914 	set_fs(oldfs);
915 	/*
916 	 * we're in a worker thread already, don't use queue_delayed_work,
917 	 */
918 	if (requeue)
919 		queue_delayed_work(aio_wq, &ctx->wq, 0);
920 }
921 
922 
923 /*
924  * Called by kick_iocb to queue the kiocb for retry
925  * and if required activate the aio work queue to process
926  * it
927  */
928 static void try_queue_kicked_iocb(struct kiocb *iocb)
929 {
930  	struct kioctx	*ctx = iocb->ki_ctx;
931 	unsigned long flags;
932 	int run = 0;
933 
934 	spin_lock_irqsave(&ctx->ctx_lock, flags);
935 	/* set this inside the lock so that we can't race with aio_run_iocb()
936 	 * testing it and putting the iocb on the run list under the lock */
937 	if (!kiocbTryKick(iocb))
938 		run = __queue_kicked_iocb(iocb);
939 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
940 	if (run)
941 		aio_queue_work(ctx);
942 }
943 
944 /*
945  * kick_iocb:
946  *      Called typically from a wait queue callback context
947  *      to trigger a retry of the iocb.
948  *      The retry is usually executed by aio workqueue
949  *      threads (See aio_kick_handler).
950  */
951 void kick_iocb(struct kiocb *iocb)
952 {
953 	/* sync iocbs are easy: they can only ever be executing from a
954 	 * single context. */
955 	if (is_sync_kiocb(iocb)) {
956 		kiocbSetKicked(iocb);
957 	        wake_up_process(iocb->ki_obj.tsk);
958 		return;
959 	}
960 
961 	try_queue_kicked_iocb(iocb);
962 }
963 EXPORT_SYMBOL(kick_iocb);
964 
965 /* aio_complete
966  *	Called when the io request on the given iocb is complete.
967  *	Returns true if this is the last user of the request.  The
968  *	only other user of the request can be the cancellation code.
969  */
970 int aio_complete(struct kiocb *iocb, long res, long res2)
971 {
972 	struct kioctx	*ctx = iocb->ki_ctx;
973 	struct aio_ring_info	*info;
974 	struct aio_ring	*ring;
975 	struct io_event	*event;
976 	unsigned long	flags;
977 	unsigned long	tail;
978 	int		ret;
979 
980 	/*
981 	 * Special case handling for sync iocbs:
982 	 *  - events go directly into the iocb for fast handling
983 	 *  - the sync task with the iocb in its stack holds the single iocb
984 	 *    ref, no other paths have a way to get another ref
985 	 *  - the sync task helpfully left a reference to itself in the iocb
986 	 */
987 	if (is_sync_kiocb(iocb)) {
988 		BUG_ON(iocb->ki_users != 1);
989 		iocb->ki_user_data = res;
990 		iocb->ki_users = 0;
991 		wake_up_process(iocb->ki_obj.tsk);
992 		return 1;
993 	}
994 
995 	info = &ctx->ring_info;
996 
997 	/* add a completion event to the ring buffer.
998 	 * must be done holding ctx->ctx_lock to prevent
999 	 * other code from messing with the tail
1000 	 * pointer since we might be called from irq
1001 	 * context.
1002 	 */
1003 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1004 
1005 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
1006 		list_del_init(&iocb->ki_run_list);
1007 
1008 	/*
1009 	 * cancelled requests don't get events, userland was given one
1010 	 * when the event got cancelled.
1011 	 */
1012 	if (kiocbIsCancelled(iocb))
1013 		goto put_rq;
1014 
1015 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
1016 
1017 	tail = info->tail;
1018 	event = aio_ring_event(info, tail, KM_IRQ0);
1019 	if (++tail >= info->nr)
1020 		tail = 0;
1021 
1022 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
1023 	event->data = iocb->ki_user_data;
1024 	event->res = res;
1025 	event->res2 = res2;
1026 
1027 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
1028 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
1029 		res, res2);
1030 
1031 	/* after flagging the request as done, we
1032 	 * must never even look at it again
1033 	 */
1034 	smp_wmb();	/* make event visible before updating tail */
1035 
1036 	info->tail = tail;
1037 	ring->tail = tail;
1038 
1039 	put_aio_ring_event(event, KM_IRQ0);
1040 	kunmap_atomic(ring, KM_IRQ1);
1041 
1042 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1043 
1044 	/*
1045 	 * Check if the user asked us to deliver the result through an
1046 	 * eventfd. The eventfd_signal() function is safe to be called
1047 	 * from IRQ context.
1048 	 */
1049 	if (iocb->ki_eventfd != NULL)
1050 		eventfd_signal(iocb->ki_eventfd, 1);
1051 
1052 put_rq:
1053 	/* everything turned out well, dispose of the aiocb. */
1054 	ret = __aio_put_req(ctx, iocb);
1055 
1056 	/*
1057 	 * We have to order our ring_info tail store above and test
1058 	 * of the wait list below outside the wait lock.  This is
1059 	 * like in wake_up_bit() where clearing a bit has to be
1060 	 * ordered with the unlocked test.
1061 	 */
1062 	smp_mb();
1063 
1064 	if (waitqueue_active(&ctx->wait))
1065 		wake_up(&ctx->wait);
1066 
1067 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1068 	return ret;
1069 }
1070 EXPORT_SYMBOL(aio_complete);
1071 
1072 /* aio_read_evt
1073  *	Pull an event off of the ioctx's event ring.  Returns the number of
1074  *	events fetched (0 or 1 ;-)
1075  *	FIXME: make this use cmpxchg.
1076  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1077  */
1078 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1079 {
1080 	struct aio_ring_info *info = &ioctx->ring_info;
1081 	struct aio_ring *ring;
1082 	unsigned long head;
1083 	int ret = 0;
1084 
1085 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1086 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1087 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1088 		 (unsigned long)ring->nr);
1089 
1090 	if (ring->head == ring->tail)
1091 		goto out;
1092 
1093 	spin_lock(&info->ring_lock);
1094 
1095 	head = ring->head % info->nr;
1096 	if (head != ring->tail) {
1097 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1098 		*ent = *evp;
1099 		head = (head + 1) % info->nr;
1100 		smp_mb(); /* finish reading the event before updatng the head */
1101 		ring->head = head;
1102 		ret = 1;
1103 		put_aio_ring_event(evp, KM_USER1);
1104 	}
1105 	spin_unlock(&info->ring_lock);
1106 
1107 out:
1108 	kunmap_atomic(ring, KM_USER0);
1109 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1110 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1111 	return ret;
1112 }
1113 
1114 struct aio_timeout {
1115 	struct timer_list	timer;
1116 	int			timed_out;
1117 	struct task_struct	*p;
1118 };
1119 
1120 static void timeout_func(unsigned long data)
1121 {
1122 	struct aio_timeout *to = (struct aio_timeout *)data;
1123 
1124 	to->timed_out = 1;
1125 	wake_up_process(to->p);
1126 }
1127 
1128 static inline void init_timeout(struct aio_timeout *to)
1129 {
1130 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1131 	to->timed_out = 0;
1132 	to->p = current;
1133 }
1134 
1135 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1136 			       const struct timespec *ts)
1137 {
1138 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1139 	if (time_after(to->timer.expires, jiffies))
1140 		add_timer(&to->timer);
1141 	else
1142 		to->timed_out = 1;
1143 }
1144 
1145 static inline void clear_timeout(struct aio_timeout *to)
1146 {
1147 	del_singleshot_timer_sync(&to->timer);
1148 }
1149 
1150 static int read_events(struct kioctx *ctx,
1151 			long min_nr, long nr,
1152 			struct io_event __user *event,
1153 			struct timespec __user *timeout)
1154 {
1155 	long			start_jiffies = jiffies;
1156 	struct task_struct	*tsk = current;
1157 	DECLARE_WAITQUEUE(wait, tsk);
1158 	int			ret;
1159 	int			i = 0;
1160 	struct io_event		ent;
1161 	struct aio_timeout	to;
1162 	int			retry = 0;
1163 
1164 	/* needed to zero any padding within an entry (there shouldn't be
1165 	 * any, but C is fun!
1166 	 */
1167 	memset(&ent, 0, sizeof(ent));
1168 retry:
1169 	ret = 0;
1170 	while (likely(i < nr)) {
1171 		ret = aio_read_evt(ctx, &ent);
1172 		if (unlikely(ret <= 0))
1173 			break;
1174 
1175 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1176 			ent.data, ent.obj, ent.res, ent.res2);
1177 
1178 		/* Could we split the check in two? */
1179 		ret = -EFAULT;
1180 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1181 			dprintk("aio: lost an event due to EFAULT.\n");
1182 			break;
1183 		}
1184 		ret = 0;
1185 
1186 		/* Good, event copied to userland, update counts. */
1187 		event ++;
1188 		i ++;
1189 	}
1190 
1191 	if (min_nr <= i)
1192 		return i;
1193 	if (ret)
1194 		return ret;
1195 
1196 	/* End fast path */
1197 
1198 	/* racey check, but it gets redone */
1199 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1200 		retry = 1;
1201 		aio_run_all_iocbs(ctx);
1202 		goto retry;
1203 	}
1204 
1205 	init_timeout(&to);
1206 	if (timeout) {
1207 		struct timespec	ts;
1208 		ret = -EFAULT;
1209 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1210 			goto out;
1211 
1212 		set_timeout(start_jiffies, &to, &ts);
1213 	}
1214 
1215 	while (likely(i < nr)) {
1216 		add_wait_queue_exclusive(&ctx->wait, &wait);
1217 		do {
1218 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1219 			ret = aio_read_evt(ctx, &ent);
1220 			if (ret)
1221 				break;
1222 			if (min_nr <= i)
1223 				break;
1224 			if (unlikely(ctx->dead)) {
1225 				ret = -EINVAL;
1226 				break;
1227 			}
1228 			if (to.timed_out)	/* Only check after read evt */
1229 				break;
1230 			/* Try to only show up in io wait if there are ops
1231 			 *  in flight */
1232 			if (ctx->reqs_active)
1233 				io_schedule();
1234 			else
1235 				schedule();
1236 			if (signal_pending(tsk)) {
1237 				ret = -EINTR;
1238 				break;
1239 			}
1240 			/*ret = aio_read_evt(ctx, &ent);*/
1241 		} while (1) ;
1242 
1243 		set_task_state(tsk, TASK_RUNNING);
1244 		remove_wait_queue(&ctx->wait, &wait);
1245 
1246 		if (unlikely(ret <= 0))
1247 			break;
1248 
1249 		ret = -EFAULT;
1250 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1251 			dprintk("aio: lost an event due to EFAULT.\n");
1252 			break;
1253 		}
1254 
1255 		/* Good, event copied to userland, update counts. */
1256 		event ++;
1257 		i ++;
1258 	}
1259 
1260 	if (timeout)
1261 		clear_timeout(&to);
1262 out:
1263 	destroy_timer_on_stack(&to.timer);
1264 	return i ? i : ret;
1265 }
1266 
1267 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1268  * against races with itself via ->dead.
1269  */
1270 static void io_destroy(struct kioctx *ioctx)
1271 {
1272 	struct mm_struct *mm = current->mm;
1273 	int was_dead;
1274 
1275 	/* delete the entry from the list is someone else hasn't already */
1276 	spin_lock(&mm->ioctx_lock);
1277 	was_dead = ioctx->dead;
1278 	ioctx->dead = 1;
1279 	hlist_del_rcu(&ioctx->list);
1280 	spin_unlock(&mm->ioctx_lock);
1281 
1282 	dprintk("aio_release(%p)\n", ioctx);
1283 	if (likely(!was_dead))
1284 		put_ioctx(ioctx);	/* twice for the list */
1285 
1286 	aio_cancel_all(ioctx);
1287 	wait_for_all_aios(ioctx);
1288 
1289 	/*
1290 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1291 	 * by other CPUs at this point.  Right now, we rely on the
1292 	 * locking done by the above calls to ensure this consistency.
1293 	 */
1294 	wake_up_all(&ioctx->wait);
1295 	put_ioctx(ioctx);	/* once for the lookup */
1296 }
1297 
1298 /* sys_io_setup:
1299  *	Create an aio_context capable of receiving at least nr_events.
1300  *	ctxp must not point to an aio_context that already exists, and
1301  *	must be initialized to 0 prior to the call.  On successful
1302  *	creation of the aio_context, *ctxp is filled in with the resulting
1303  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1304  *	if the specified nr_events exceeds internal limits.  May fail
1305  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1306  *	of available events.  May fail with -ENOMEM if insufficient kernel
1307  *	resources are available.  May fail with -EFAULT if an invalid
1308  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1309  *	implemented.
1310  */
1311 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1312 {
1313 	struct kioctx *ioctx = NULL;
1314 	unsigned long ctx;
1315 	long ret;
1316 
1317 	ret = get_user(ctx, ctxp);
1318 	if (unlikely(ret))
1319 		goto out;
1320 
1321 	ret = -EINVAL;
1322 	if (unlikely(ctx || nr_events == 0)) {
1323 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1324 		         ctx, nr_events);
1325 		goto out;
1326 	}
1327 
1328 	ioctx = ioctx_alloc(nr_events);
1329 	ret = PTR_ERR(ioctx);
1330 	if (!IS_ERR(ioctx)) {
1331 		ret = put_user(ioctx->user_id, ctxp);
1332 		if (!ret)
1333 			return 0;
1334 
1335 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1336 		io_destroy(ioctx);
1337 	}
1338 
1339 out:
1340 	return ret;
1341 }
1342 
1343 /* sys_io_destroy:
1344  *	Destroy the aio_context specified.  May cancel any outstanding
1345  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1346  *	implemented.  May fail with -EINVAL if the context pointed to
1347  *	is invalid.
1348  */
1349 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1350 {
1351 	struct kioctx *ioctx = lookup_ioctx(ctx);
1352 	if (likely(NULL != ioctx)) {
1353 		io_destroy(ioctx);
1354 		return 0;
1355 	}
1356 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1357 	return -EINVAL;
1358 }
1359 
1360 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1361 {
1362 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1363 
1364 	BUG_ON(ret <= 0);
1365 
1366 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1367 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1368 		iov->iov_base += this;
1369 		iov->iov_len -= this;
1370 		iocb->ki_left -= this;
1371 		ret -= this;
1372 		if (iov->iov_len == 0) {
1373 			iocb->ki_cur_seg++;
1374 			iov++;
1375 		}
1376 	}
1377 
1378 	/* the caller should not have done more io than what fit in
1379 	 * the remaining iovecs */
1380 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1381 }
1382 
1383 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1384 {
1385 	struct file *file = iocb->ki_filp;
1386 	struct address_space *mapping = file->f_mapping;
1387 	struct inode *inode = mapping->host;
1388 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1389 			 unsigned long, loff_t);
1390 	ssize_t ret = 0;
1391 	unsigned short opcode;
1392 
1393 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1394 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1395 		rw_op = file->f_op->aio_read;
1396 		opcode = IOCB_CMD_PREADV;
1397 	} else {
1398 		rw_op = file->f_op->aio_write;
1399 		opcode = IOCB_CMD_PWRITEV;
1400 	}
1401 
1402 	/* This matches the pread()/pwrite() logic */
1403 	if (iocb->ki_pos < 0)
1404 		return -EINVAL;
1405 
1406 	do {
1407 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1408 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1409 			    iocb->ki_pos);
1410 		if (ret > 0)
1411 			aio_advance_iovec(iocb, ret);
1412 
1413 	/* retry all partial writes.  retry partial reads as long as its a
1414 	 * regular file. */
1415 	} while (ret > 0 && iocb->ki_left > 0 &&
1416 		 (opcode == IOCB_CMD_PWRITEV ||
1417 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1418 
1419 	/* This means we must have transferred all that we could */
1420 	/* No need to retry anymore */
1421 	if ((ret == 0) || (iocb->ki_left == 0))
1422 		ret = iocb->ki_nbytes - iocb->ki_left;
1423 
1424 	/* If we managed to write some out we return that, rather than
1425 	 * the eventual error. */
1426 	if (opcode == IOCB_CMD_PWRITEV
1427 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1428 	    && iocb->ki_nbytes - iocb->ki_left)
1429 		ret = iocb->ki_nbytes - iocb->ki_left;
1430 
1431 	return ret;
1432 }
1433 
1434 static ssize_t aio_fdsync(struct kiocb *iocb)
1435 {
1436 	struct file *file = iocb->ki_filp;
1437 	ssize_t ret = -EINVAL;
1438 
1439 	if (file->f_op->aio_fsync)
1440 		ret = file->f_op->aio_fsync(iocb, 1);
1441 	return ret;
1442 }
1443 
1444 static ssize_t aio_fsync(struct kiocb *iocb)
1445 {
1446 	struct file *file = iocb->ki_filp;
1447 	ssize_t ret = -EINVAL;
1448 
1449 	if (file->f_op->aio_fsync)
1450 		ret = file->f_op->aio_fsync(iocb, 0);
1451 	return ret;
1452 }
1453 
1454 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1455 {
1456 	ssize_t ret;
1457 
1458 #ifdef CONFIG_COMPAT
1459 	if (compat)
1460 		ret = compat_rw_copy_check_uvector(type,
1461 				(struct compat_iovec __user *)kiocb->ki_buf,
1462 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1463 				&kiocb->ki_iovec, 1);
1464 	else
1465 #endif
1466 		ret = rw_copy_check_uvector(type,
1467 				(struct iovec __user *)kiocb->ki_buf,
1468 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1469 				&kiocb->ki_iovec, 1);
1470 	if (ret < 0)
1471 		goto out;
1472 
1473 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1474 	kiocb->ki_cur_seg = 0;
1475 	/* ki_nbytes/left now reflect bytes instead of segs */
1476 	kiocb->ki_nbytes = ret;
1477 	kiocb->ki_left = ret;
1478 
1479 	ret = 0;
1480 out:
1481 	return ret;
1482 }
1483 
1484 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1485 {
1486 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1487 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1488 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1489 	kiocb->ki_nr_segs = 1;
1490 	kiocb->ki_cur_seg = 0;
1491 	return 0;
1492 }
1493 
1494 /*
1495  * aio_setup_iocb:
1496  *	Performs the initial checks and aio retry method
1497  *	setup for the kiocb at the time of io submission.
1498  */
1499 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1500 {
1501 	struct file *file = kiocb->ki_filp;
1502 	ssize_t ret = 0;
1503 
1504 	switch (kiocb->ki_opcode) {
1505 	case IOCB_CMD_PREAD:
1506 		ret = -EBADF;
1507 		if (unlikely(!(file->f_mode & FMODE_READ)))
1508 			break;
1509 		ret = -EFAULT;
1510 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1511 			kiocb->ki_left)))
1512 			break;
1513 		ret = security_file_permission(file, MAY_READ);
1514 		if (unlikely(ret))
1515 			break;
1516 		ret = aio_setup_single_vector(kiocb);
1517 		if (ret)
1518 			break;
1519 		ret = -EINVAL;
1520 		if (file->f_op->aio_read)
1521 			kiocb->ki_retry = aio_rw_vect_retry;
1522 		break;
1523 	case IOCB_CMD_PWRITE:
1524 		ret = -EBADF;
1525 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1526 			break;
1527 		ret = -EFAULT;
1528 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1529 			kiocb->ki_left)))
1530 			break;
1531 		ret = security_file_permission(file, MAY_WRITE);
1532 		if (unlikely(ret))
1533 			break;
1534 		ret = aio_setup_single_vector(kiocb);
1535 		if (ret)
1536 			break;
1537 		ret = -EINVAL;
1538 		if (file->f_op->aio_write)
1539 			kiocb->ki_retry = aio_rw_vect_retry;
1540 		break;
1541 	case IOCB_CMD_PREADV:
1542 		ret = -EBADF;
1543 		if (unlikely(!(file->f_mode & FMODE_READ)))
1544 			break;
1545 		ret = security_file_permission(file, MAY_READ);
1546 		if (unlikely(ret))
1547 			break;
1548 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1549 		if (ret)
1550 			break;
1551 		ret = -EINVAL;
1552 		if (file->f_op->aio_read)
1553 			kiocb->ki_retry = aio_rw_vect_retry;
1554 		break;
1555 	case IOCB_CMD_PWRITEV:
1556 		ret = -EBADF;
1557 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1558 			break;
1559 		ret = security_file_permission(file, MAY_WRITE);
1560 		if (unlikely(ret))
1561 			break;
1562 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1563 		if (ret)
1564 			break;
1565 		ret = -EINVAL;
1566 		if (file->f_op->aio_write)
1567 			kiocb->ki_retry = aio_rw_vect_retry;
1568 		break;
1569 	case IOCB_CMD_FDSYNC:
1570 		ret = -EINVAL;
1571 		if (file->f_op->aio_fsync)
1572 			kiocb->ki_retry = aio_fdsync;
1573 		break;
1574 	case IOCB_CMD_FSYNC:
1575 		ret = -EINVAL;
1576 		if (file->f_op->aio_fsync)
1577 			kiocb->ki_retry = aio_fsync;
1578 		break;
1579 	default:
1580 		dprintk("EINVAL: io_submit: no operation provided\n");
1581 		ret = -EINVAL;
1582 	}
1583 
1584 	if (!kiocb->ki_retry)
1585 		return ret;
1586 
1587 	return 0;
1588 }
1589 
1590 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1591 			 struct iocb *iocb, struct kiocb_batch *batch,
1592 			 bool compat)
1593 {
1594 	struct kiocb *req;
1595 	struct file *file;
1596 	ssize_t ret;
1597 
1598 	/* enforce forwards compatibility on users */
1599 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1600 		pr_debug("EINVAL: io_submit: reserve field set\n");
1601 		return -EINVAL;
1602 	}
1603 
1604 	/* prevent overflows */
1605 	if (unlikely(
1606 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1607 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1608 	    ((ssize_t)iocb->aio_nbytes < 0)
1609 	   )) {
1610 		pr_debug("EINVAL: io_submit: overflow check\n");
1611 		return -EINVAL;
1612 	}
1613 
1614 	file = fget(iocb->aio_fildes);
1615 	if (unlikely(!file))
1616 		return -EBADF;
1617 
1618 	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1619 	if (unlikely(!req)) {
1620 		fput(file);
1621 		return -EAGAIN;
1622 	}
1623 	req->ki_filp = file;
1624 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1625 		/*
1626 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1627 		 * instance of the file* now. The file descriptor must be
1628 		 * an eventfd() fd, and will be signaled for each completed
1629 		 * event using the eventfd_signal() function.
1630 		 */
1631 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1632 		if (IS_ERR(req->ki_eventfd)) {
1633 			ret = PTR_ERR(req->ki_eventfd);
1634 			req->ki_eventfd = NULL;
1635 			goto out_put_req;
1636 		}
1637 	}
1638 
1639 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1640 	if (unlikely(ret)) {
1641 		dprintk("EFAULT: aio_key\n");
1642 		goto out_put_req;
1643 	}
1644 
1645 	req->ki_obj.user = user_iocb;
1646 	req->ki_user_data = iocb->aio_data;
1647 	req->ki_pos = iocb->aio_offset;
1648 
1649 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1650 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1651 	req->ki_opcode = iocb->aio_lio_opcode;
1652 
1653 	ret = aio_setup_iocb(req, compat);
1654 
1655 	if (ret)
1656 		goto out_put_req;
1657 
1658 	spin_lock_irq(&ctx->ctx_lock);
1659 	/*
1660 	 * We could have raced with io_destroy() and are currently holding a
1661 	 * reference to ctx which should be destroyed. We cannot submit IO
1662 	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1663 	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1664 	 * for outstanding IO and the barrier between these two is realized by
1665 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1666 	 * increment ctx->reqs_active before checking for ctx->dead and the
1667 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1668 	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1669 	 * finish.
1670 	 */
1671 	if (ctx->dead) {
1672 		spin_unlock_irq(&ctx->ctx_lock);
1673 		ret = -EINVAL;
1674 		goto out_put_req;
1675 	}
1676 	aio_run_iocb(req);
1677 	if (!list_empty(&ctx->run_list)) {
1678 		/* drain the run list */
1679 		while (__aio_run_iocbs(ctx))
1680 			;
1681 	}
1682 	spin_unlock_irq(&ctx->ctx_lock);
1683 
1684 	aio_put_req(req);	/* drop extra ref to req */
1685 	return 0;
1686 
1687 out_put_req:
1688 	aio_put_req(req);	/* drop extra ref to req */
1689 	aio_put_req(req);	/* drop i/o ref to req */
1690 	return ret;
1691 }
1692 
1693 long do_io_submit(aio_context_t ctx_id, long nr,
1694 		  struct iocb __user *__user *iocbpp, bool compat)
1695 {
1696 	struct kioctx *ctx;
1697 	long ret = 0;
1698 	int i = 0;
1699 	struct blk_plug plug;
1700 	struct kiocb_batch batch;
1701 
1702 	if (unlikely(nr < 0))
1703 		return -EINVAL;
1704 
1705 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1706 		nr = LONG_MAX/sizeof(*iocbpp);
1707 
1708 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1709 		return -EFAULT;
1710 
1711 	ctx = lookup_ioctx(ctx_id);
1712 	if (unlikely(!ctx)) {
1713 		pr_debug("EINVAL: io_submit: invalid context id\n");
1714 		return -EINVAL;
1715 	}
1716 
1717 	kiocb_batch_init(&batch, nr);
1718 
1719 	blk_start_plug(&plug);
1720 
1721 	/*
1722 	 * AKPM: should this return a partial result if some of the IOs were
1723 	 * successfully submitted?
1724 	 */
1725 	for (i=0; i<nr; i++) {
1726 		struct iocb __user *user_iocb;
1727 		struct iocb tmp;
1728 
1729 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1730 			ret = -EFAULT;
1731 			break;
1732 		}
1733 
1734 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1735 			ret = -EFAULT;
1736 			break;
1737 		}
1738 
1739 		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1740 		if (ret)
1741 			break;
1742 	}
1743 	blk_finish_plug(&plug);
1744 
1745 	kiocb_batch_free(&batch);
1746 	put_ioctx(ctx);
1747 	return i ? i : ret;
1748 }
1749 
1750 /* sys_io_submit:
1751  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1752  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1753  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1754  *	*iocbpp[0] is not properly initialized, if the operation specified
1755  *	is invalid for the file descriptor in the iocb.  May fail with
1756  *	-EFAULT if any of the data structures point to invalid data.  May
1757  *	fail with -EBADF if the file descriptor specified in the first
1758  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1759  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1760  *	fail with -ENOSYS if not implemented.
1761  */
1762 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1763 		struct iocb __user * __user *, iocbpp)
1764 {
1765 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1766 }
1767 
1768 /* lookup_kiocb
1769  *	Finds a given iocb for cancellation.
1770  */
1771 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1772 				  u32 key)
1773 {
1774 	struct list_head *pos;
1775 
1776 	assert_spin_locked(&ctx->ctx_lock);
1777 
1778 	/* TODO: use a hash or array, this sucks. */
1779 	list_for_each(pos, &ctx->active_reqs) {
1780 		struct kiocb *kiocb = list_kiocb(pos);
1781 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1782 			return kiocb;
1783 	}
1784 	return NULL;
1785 }
1786 
1787 /* sys_io_cancel:
1788  *	Attempts to cancel an iocb previously passed to io_submit.  If
1789  *	the operation is successfully cancelled, the resulting event is
1790  *	copied into the memory pointed to by result without being placed
1791  *	into the completion queue and 0 is returned.  May fail with
1792  *	-EFAULT if any of the data structures pointed to are invalid.
1793  *	May fail with -EINVAL if aio_context specified by ctx_id is
1794  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1795  *	cancelled.  Will fail with -ENOSYS if not implemented.
1796  */
1797 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1798 		struct io_event __user *, result)
1799 {
1800 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1801 	struct kioctx *ctx;
1802 	struct kiocb *kiocb;
1803 	u32 key;
1804 	int ret;
1805 
1806 	ret = get_user(key, &iocb->aio_key);
1807 	if (unlikely(ret))
1808 		return -EFAULT;
1809 
1810 	ctx = lookup_ioctx(ctx_id);
1811 	if (unlikely(!ctx))
1812 		return -EINVAL;
1813 
1814 	spin_lock_irq(&ctx->ctx_lock);
1815 	ret = -EAGAIN;
1816 	kiocb = lookup_kiocb(ctx, iocb, key);
1817 	if (kiocb && kiocb->ki_cancel) {
1818 		cancel = kiocb->ki_cancel;
1819 		kiocb->ki_users ++;
1820 		kiocbSetCancelled(kiocb);
1821 	} else
1822 		cancel = NULL;
1823 	spin_unlock_irq(&ctx->ctx_lock);
1824 
1825 	if (NULL != cancel) {
1826 		struct io_event tmp;
1827 		pr_debug("calling cancel\n");
1828 		memset(&tmp, 0, sizeof(tmp));
1829 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1830 		tmp.data = kiocb->ki_user_data;
1831 		ret = cancel(kiocb, &tmp);
1832 		if (!ret) {
1833 			/* Cancellation succeeded -- copy the result
1834 			 * into the user's buffer.
1835 			 */
1836 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1837 				ret = -EFAULT;
1838 		}
1839 	} else
1840 		ret = -EINVAL;
1841 
1842 	put_ioctx(ctx);
1843 
1844 	return ret;
1845 }
1846 
1847 /* io_getevents:
1848  *	Attempts to read at least min_nr events and up to nr events from
1849  *	the completion queue for the aio_context specified by ctx_id. If
1850  *	it succeeds, the number of read events is returned. May fail with
1851  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1852  *	out of range, if timeout is out of range.  May fail with -EFAULT
1853  *	if any of the memory specified is invalid.  May return 0 or
1854  *	< min_nr if the timeout specified by timeout has elapsed
1855  *	before sufficient events are available, where timeout == NULL
1856  *	specifies an infinite timeout. Note that the timeout pointed to by
1857  *	timeout is relative and will be updated if not NULL and the
1858  *	operation blocks. Will fail with -ENOSYS if not implemented.
1859  */
1860 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1861 		long, min_nr,
1862 		long, nr,
1863 		struct io_event __user *, events,
1864 		struct timespec __user *, timeout)
1865 {
1866 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1867 	long ret = -EINVAL;
1868 
1869 	if (likely(ioctx)) {
1870 		if (likely(min_nr <= nr && min_nr >= 0))
1871 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1872 		put_ioctx(ioctx);
1873 	}
1874 
1875 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1876 	return ret;
1877 }
1878