1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/backing-dev.h> 19 #include <linux/uio.h> 20 21 #define DEBUG 0 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #if DEBUG > 1 43 #define dprintk printk 44 #else 45 #define dprintk(x...) do { ; } while (0) 46 #endif 47 48 /*------ sysctl variables----*/ 49 static DEFINE_SPINLOCK(aio_nr_lock); 50 unsigned long aio_nr; /* current system wide number of aio requests */ 51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 52 /*----end sysctl variables---*/ 53 54 static struct kmem_cache *kiocb_cachep; 55 static struct kmem_cache *kioctx_cachep; 56 57 static struct workqueue_struct *aio_wq; 58 59 /* Used for rare fput completion. */ 60 static void aio_fput_routine(struct work_struct *); 61 static DECLARE_WORK(fput_work, aio_fput_routine); 62 63 static DEFINE_SPINLOCK(fput_lock); 64 static LIST_HEAD(fput_head); 65 66 static void aio_kick_handler(struct work_struct *); 67 static void aio_queue_work(struct kioctx *); 68 69 /* aio_setup 70 * Creates the slab caches used by the aio routines, panic on 71 * failure as this is done early during the boot sequence. 72 */ 73 static int __init aio_setup(void) 74 { 75 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 76 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 77 78 aio_wq = alloc_workqueue("aio", 0, 1); /* used to limit concurrency */ 79 BUG_ON(!aio_wq); 80 81 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 82 83 return 0; 84 } 85 __initcall(aio_setup); 86 87 static void aio_free_ring(struct kioctx *ctx) 88 { 89 struct aio_ring_info *info = &ctx->ring_info; 90 long i; 91 92 for (i=0; i<info->nr_pages; i++) 93 put_page(info->ring_pages[i]); 94 95 if (info->mmap_size) { 96 down_write(&ctx->mm->mmap_sem); 97 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 98 up_write(&ctx->mm->mmap_sem); 99 } 100 101 if (info->ring_pages && info->ring_pages != info->internal_pages) 102 kfree(info->ring_pages); 103 info->ring_pages = NULL; 104 info->nr = 0; 105 } 106 107 static int aio_setup_ring(struct kioctx *ctx) 108 { 109 struct aio_ring *ring; 110 struct aio_ring_info *info = &ctx->ring_info; 111 unsigned nr_events = ctx->max_reqs; 112 unsigned long size; 113 int nr_pages; 114 115 /* Compensate for the ring buffer's head/tail overlap entry */ 116 nr_events += 2; /* 1 is required, 2 for good luck */ 117 118 size = sizeof(struct aio_ring); 119 size += sizeof(struct io_event) * nr_events; 120 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 121 122 if (nr_pages < 0) 123 return -EINVAL; 124 125 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 126 127 info->nr = 0; 128 info->ring_pages = info->internal_pages; 129 if (nr_pages > AIO_RING_PAGES) { 130 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 131 if (!info->ring_pages) 132 return -ENOMEM; 133 } 134 135 info->mmap_size = nr_pages * PAGE_SIZE; 136 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 137 down_write(&ctx->mm->mmap_sem); 138 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 139 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 140 0); 141 if (IS_ERR((void *)info->mmap_base)) { 142 up_write(&ctx->mm->mmap_sem); 143 info->mmap_size = 0; 144 aio_free_ring(ctx); 145 return -EAGAIN; 146 } 147 148 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 149 info->nr_pages = get_user_pages(current, ctx->mm, 150 info->mmap_base, nr_pages, 151 1, 0, info->ring_pages, NULL); 152 up_write(&ctx->mm->mmap_sem); 153 154 if (unlikely(info->nr_pages != nr_pages)) { 155 aio_free_ring(ctx); 156 return -EAGAIN; 157 } 158 159 ctx->user_id = info->mmap_base; 160 161 info->nr = nr_events; /* trusted copy */ 162 163 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 164 ring->nr = nr_events; /* user copy */ 165 ring->id = ctx->user_id; 166 ring->head = ring->tail = 0; 167 ring->magic = AIO_RING_MAGIC; 168 ring->compat_features = AIO_RING_COMPAT_FEATURES; 169 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 170 ring->header_length = sizeof(struct aio_ring); 171 kunmap_atomic(ring, KM_USER0); 172 173 return 0; 174 } 175 176 177 /* aio_ring_event: returns a pointer to the event at the given index from 178 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 179 */ 180 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 181 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 182 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 183 184 #define aio_ring_event(info, nr, km) ({ \ 185 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 186 struct io_event *__event; \ 187 __event = kmap_atomic( \ 188 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 189 __event += pos % AIO_EVENTS_PER_PAGE; \ 190 __event; \ 191 }) 192 193 #define put_aio_ring_event(event, km) do { \ 194 struct io_event *__event = (event); \ 195 (void)__event; \ 196 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 197 } while(0) 198 199 static void ctx_rcu_free(struct rcu_head *head) 200 { 201 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 202 unsigned nr_events = ctx->max_reqs; 203 204 kmem_cache_free(kioctx_cachep, ctx); 205 206 if (nr_events) { 207 spin_lock(&aio_nr_lock); 208 BUG_ON(aio_nr - nr_events > aio_nr); 209 aio_nr -= nr_events; 210 spin_unlock(&aio_nr_lock); 211 } 212 } 213 214 /* __put_ioctx 215 * Called when the last user of an aio context has gone away, 216 * and the struct needs to be freed. 217 */ 218 static void __put_ioctx(struct kioctx *ctx) 219 { 220 BUG_ON(ctx->reqs_active); 221 222 cancel_delayed_work(&ctx->wq); 223 cancel_work_sync(&ctx->wq.work); 224 aio_free_ring(ctx); 225 mmdrop(ctx->mm); 226 ctx->mm = NULL; 227 pr_debug("__put_ioctx: freeing %p\n", ctx); 228 call_rcu(&ctx->rcu_head, ctx_rcu_free); 229 } 230 231 static inline void get_ioctx(struct kioctx *kioctx) 232 { 233 BUG_ON(atomic_read(&kioctx->users) <= 0); 234 atomic_inc(&kioctx->users); 235 } 236 237 static inline int try_get_ioctx(struct kioctx *kioctx) 238 { 239 return atomic_inc_not_zero(&kioctx->users); 240 } 241 242 static inline void put_ioctx(struct kioctx *kioctx) 243 { 244 BUG_ON(atomic_read(&kioctx->users) <= 0); 245 if (unlikely(atomic_dec_and_test(&kioctx->users))) 246 __put_ioctx(kioctx); 247 } 248 249 /* ioctx_alloc 250 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 251 */ 252 static struct kioctx *ioctx_alloc(unsigned nr_events) 253 { 254 struct mm_struct *mm; 255 struct kioctx *ctx; 256 int did_sync = 0; 257 258 /* Prevent overflows */ 259 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 260 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 261 pr_debug("ENOMEM: nr_events too high\n"); 262 return ERR_PTR(-EINVAL); 263 } 264 265 if ((unsigned long)nr_events > aio_max_nr) 266 return ERR_PTR(-EAGAIN); 267 268 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 269 if (!ctx) 270 return ERR_PTR(-ENOMEM); 271 272 ctx->max_reqs = nr_events; 273 mm = ctx->mm = current->mm; 274 atomic_inc(&mm->mm_count); 275 276 atomic_set(&ctx->users, 1); 277 spin_lock_init(&ctx->ctx_lock); 278 spin_lock_init(&ctx->ring_info.ring_lock); 279 init_waitqueue_head(&ctx->wait); 280 281 INIT_LIST_HEAD(&ctx->active_reqs); 282 INIT_LIST_HEAD(&ctx->run_list); 283 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 284 285 if (aio_setup_ring(ctx) < 0) 286 goto out_freectx; 287 288 /* limit the number of system wide aios */ 289 do { 290 spin_lock_bh(&aio_nr_lock); 291 if (aio_nr + nr_events > aio_max_nr || 292 aio_nr + nr_events < aio_nr) 293 ctx->max_reqs = 0; 294 else 295 aio_nr += ctx->max_reqs; 296 spin_unlock_bh(&aio_nr_lock); 297 if (ctx->max_reqs || did_sync) 298 break; 299 300 /* wait for rcu callbacks to have completed before giving up */ 301 synchronize_rcu(); 302 did_sync = 1; 303 ctx->max_reqs = nr_events; 304 } while (1); 305 306 if (ctx->max_reqs == 0) 307 goto out_cleanup; 308 309 /* now link into global list. */ 310 spin_lock(&mm->ioctx_lock); 311 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 312 spin_unlock(&mm->ioctx_lock); 313 314 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 315 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 316 return ctx; 317 318 out_cleanup: 319 __put_ioctx(ctx); 320 return ERR_PTR(-EAGAIN); 321 322 out_freectx: 323 mmdrop(mm); 324 kmem_cache_free(kioctx_cachep, ctx); 325 ctx = ERR_PTR(-ENOMEM); 326 327 dprintk("aio: error allocating ioctx %p\n", ctx); 328 return ctx; 329 } 330 331 /* aio_cancel_all 332 * Cancels all outstanding aio requests on an aio context. Used 333 * when the processes owning a context have all exited to encourage 334 * the rapid destruction of the kioctx. 335 */ 336 static void aio_cancel_all(struct kioctx *ctx) 337 { 338 int (*cancel)(struct kiocb *, struct io_event *); 339 struct io_event res; 340 spin_lock_irq(&ctx->ctx_lock); 341 ctx->dead = 1; 342 while (!list_empty(&ctx->active_reqs)) { 343 struct list_head *pos = ctx->active_reqs.next; 344 struct kiocb *iocb = list_kiocb(pos); 345 list_del_init(&iocb->ki_list); 346 cancel = iocb->ki_cancel; 347 kiocbSetCancelled(iocb); 348 if (cancel) { 349 iocb->ki_users++; 350 spin_unlock_irq(&ctx->ctx_lock); 351 cancel(iocb, &res); 352 spin_lock_irq(&ctx->ctx_lock); 353 } 354 } 355 spin_unlock_irq(&ctx->ctx_lock); 356 } 357 358 static void wait_for_all_aios(struct kioctx *ctx) 359 { 360 struct task_struct *tsk = current; 361 DECLARE_WAITQUEUE(wait, tsk); 362 363 spin_lock_irq(&ctx->ctx_lock); 364 if (!ctx->reqs_active) 365 goto out; 366 367 add_wait_queue(&ctx->wait, &wait); 368 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 369 while (ctx->reqs_active) { 370 spin_unlock_irq(&ctx->ctx_lock); 371 io_schedule(); 372 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 373 spin_lock_irq(&ctx->ctx_lock); 374 } 375 __set_task_state(tsk, TASK_RUNNING); 376 remove_wait_queue(&ctx->wait, &wait); 377 378 out: 379 spin_unlock_irq(&ctx->ctx_lock); 380 } 381 382 /* wait_on_sync_kiocb: 383 * Waits on the given sync kiocb to complete. 384 */ 385 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 386 { 387 while (iocb->ki_users) { 388 set_current_state(TASK_UNINTERRUPTIBLE); 389 if (!iocb->ki_users) 390 break; 391 io_schedule(); 392 } 393 __set_current_state(TASK_RUNNING); 394 return iocb->ki_user_data; 395 } 396 EXPORT_SYMBOL(wait_on_sync_kiocb); 397 398 /* exit_aio: called when the last user of mm goes away. At this point, 399 * there is no way for any new requests to be submited or any of the 400 * io_* syscalls to be called on the context. However, there may be 401 * outstanding requests which hold references to the context; as they 402 * go away, they will call put_ioctx and release any pinned memory 403 * associated with the request (held via struct page * references). 404 */ 405 void exit_aio(struct mm_struct *mm) 406 { 407 struct kioctx *ctx; 408 409 while (!hlist_empty(&mm->ioctx_list)) { 410 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 411 hlist_del_rcu(&ctx->list); 412 413 aio_cancel_all(ctx); 414 415 wait_for_all_aios(ctx); 416 /* 417 * Ensure we don't leave the ctx on the aio_wq 418 */ 419 cancel_work_sync(&ctx->wq.work); 420 421 if (1 != atomic_read(&ctx->users)) 422 printk(KERN_DEBUG 423 "exit_aio:ioctx still alive: %d %d %d\n", 424 atomic_read(&ctx->users), ctx->dead, 425 ctx->reqs_active); 426 put_ioctx(ctx); 427 } 428 } 429 430 /* aio_get_req 431 * Allocate a slot for an aio request. Increments the users count 432 * of the kioctx so that the kioctx stays around until all requests are 433 * complete. Returns NULL if no requests are free. 434 * 435 * Returns with kiocb->users set to 2. The io submit code path holds 436 * an extra reference while submitting the i/o. 437 * This prevents races between the aio code path referencing the 438 * req (after submitting it) and aio_complete() freeing the req. 439 */ 440 static struct kiocb *__aio_get_req(struct kioctx *ctx) 441 { 442 struct kiocb *req = NULL; 443 444 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 445 if (unlikely(!req)) 446 return NULL; 447 448 req->ki_flags = 0; 449 req->ki_users = 2; 450 req->ki_key = 0; 451 req->ki_ctx = ctx; 452 req->ki_cancel = NULL; 453 req->ki_retry = NULL; 454 req->ki_dtor = NULL; 455 req->private = NULL; 456 req->ki_iovec = NULL; 457 INIT_LIST_HEAD(&req->ki_run_list); 458 req->ki_eventfd = NULL; 459 460 return req; 461 } 462 463 /* 464 * struct kiocb's are allocated in batches to reduce the number of 465 * times the ctx lock is acquired and released. 466 */ 467 #define KIOCB_BATCH_SIZE 32L 468 struct kiocb_batch { 469 struct list_head head; 470 long count; /* number of requests left to allocate */ 471 }; 472 473 static void kiocb_batch_init(struct kiocb_batch *batch, long total) 474 { 475 INIT_LIST_HEAD(&batch->head); 476 batch->count = total; 477 } 478 479 static void kiocb_batch_free(struct kiocb_batch *batch) 480 { 481 struct kiocb *req, *n; 482 483 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 484 list_del(&req->ki_batch); 485 kmem_cache_free(kiocb_cachep, req); 486 } 487 } 488 489 /* 490 * Allocate a batch of kiocbs. This avoids taking and dropping the 491 * context lock a lot during setup. 492 */ 493 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch) 494 { 495 unsigned short allocated, to_alloc; 496 long avail; 497 bool called_fput = false; 498 struct kiocb *req, *n; 499 struct aio_ring *ring; 500 501 to_alloc = min(batch->count, KIOCB_BATCH_SIZE); 502 for (allocated = 0; allocated < to_alloc; allocated++) { 503 req = __aio_get_req(ctx); 504 if (!req) 505 /* allocation failed, go with what we've got */ 506 break; 507 list_add(&req->ki_batch, &batch->head); 508 } 509 510 if (allocated == 0) 511 goto out; 512 513 retry: 514 spin_lock_irq(&ctx->ctx_lock); 515 ring = kmap_atomic(ctx->ring_info.ring_pages[0]); 516 517 avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active; 518 BUG_ON(avail < 0); 519 if (avail == 0 && !called_fput) { 520 /* 521 * Handle a potential starvation case. It is possible that 522 * we hold the last reference on a struct file, causing us 523 * to delay the final fput to non-irq context. In this case, 524 * ctx->reqs_active is artificially high. Calling the fput 525 * routine here may free up a slot in the event completion 526 * ring, allowing this allocation to succeed. 527 */ 528 kunmap_atomic(ring); 529 spin_unlock_irq(&ctx->ctx_lock); 530 aio_fput_routine(NULL); 531 called_fput = true; 532 goto retry; 533 } 534 535 if (avail < allocated) { 536 /* Trim back the number of requests. */ 537 list_for_each_entry_safe(req, n, &batch->head, ki_batch) { 538 list_del(&req->ki_batch); 539 kmem_cache_free(kiocb_cachep, req); 540 if (--allocated <= avail) 541 break; 542 } 543 } 544 545 batch->count -= allocated; 546 list_for_each_entry(req, &batch->head, ki_batch) { 547 list_add(&req->ki_list, &ctx->active_reqs); 548 ctx->reqs_active++; 549 } 550 551 kunmap_atomic(ring); 552 spin_unlock_irq(&ctx->ctx_lock); 553 554 out: 555 return allocated; 556 } 557 558 static inline struct kiocb *aio_get_req(struct kioctx *ctx, 559 struct kiocb_batch *batch) 560 { 561 struct kiocb *req; 562 563 if (list_empty(&batch->head)) 564 if (kiocb_batch_refill(ctx, batch) == 0) 565 return NULL; 566 req = list_first_entry(&batch->head, struct kiocb, ki_batch); 567 list_del(&req->ki_batch); 568 return req; 569 } 570 571 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 572 { 573 assert_spin_locked(&ctx->ctx_lock); 574 575 if (req->ki_eventfd != NULL) 576 eventfd_ctx_put(req->ki_eventfd); 577 if (req->ki_dtor) 578 req->ki_dtor(req); 579 if (req->ki_iovec != &req->ki_inline_vec) 580 kfree(req->ki_iovec); 581 kmem_cache_free(kiocb_cachep, req); 582 ctx->reqs_active--; 583 584 if (unlikely(!ctx->reqs_active && ctx->dead)) 585 wake_up_all(&ctx->wait); 586 } 587 588 static void aio_fput_routine(struct work_struct *data) 589 { 590 spin_lock_irq(&fput_lock); 591 while (likely(!list_empty(&fput_head))) { 592 struct kiocb *req = list_kiocb(fput_head.next); 593 struct kioctx *ctx = req->ki_ctx; 594 595 list_del(&req->ki_list); 596 spin_unlock_irq(&fput_lock); 597 598 /* Complete the fput(s) */ 599 if (req->ki_filp != NULL) 600 fput(req->ki_filp); 601 602 /* Link the iocb into the context's free list */ 603 spin_lock_irq(&ctx->ctx_lock); 604 really_put_req(ctx, req); 605 spin_unlock_irq(&ctx->ctx_lock); 606 607 put_ioctx(ctx); 608 spin_lock_irq(&fput_lock); 609 } 610 spin_unlock_irq(&fput_lock); 611 } 612 613 /* __aio_put_req 614 * Returns true if this put was the last user of the request. 615 */ 616 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 617 { 618 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 619 req, atomic_long_read(&req->ki_filp->f_count)); 620 621 assert_spin_locked(&ctx->ctx_lock); 622 623 req->ki_users--; 624 BUG_ON(req->ki_users < 0); 625 if (likely(req->ki_users)) 626 return 0; 627 list_del(&req->ki_list); /* remove from active_reqs */ 628 req->ki_cancel = NULL; 629 req->ki_retry = NULL; 630 631 /* 632 * Try to optimize the aio and eventfd file* puts, by avoiding to 633 * schedule work in case it is not final fput() time. In normal cases, 634 * we would not be holding the last reference to the file*, so 635 * this function will be executed w/out any aio kthread wakeup. 636 */ 637 if (unlikely(!fput_atomic(req->ki_filp))) { 638 get_ioctx(ctx); 639 spin_lock(&fput_lock); 640 list_add(&req->ki_list, &fput_head); 641 spin_unlock(&fput_lock); 642 schedule_work(&fput_work); 643 } else { 644 req->ki_filp = NULL; 645 really_put_req(ctx, req); 646 } 647 return 1; 648 } 649 650 /* aio_put_req 651 * Returns true if this put was the last user of the kiocb, 652 * false if the request is still in use. 653 */ 654 int aio_put_req(struct kiocb *req) 655 { 656 struct kioctx *ctx = req->ki_ctx; 657 int ret; 658 spin_lock_irq(&ctx->ctx_lock); 659 ret = __aio_put_req(ctx, req); 660 spin_unlock_irq(&ctx->ctx_lock); 661 return ret; 662 } 663 EXPORT_SYMBOL(aio_put_req); 664 665 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 666 { 667 struct mm_struct *mm = current->mm; 668 struct kioctx *ctx, *ret = NULL; 669 struct hlist_node *n; 670 671 rcu_read_lock(); 672 673 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 674 /* 675 * RCU protects us against accessing freed memory but 676 * we have to be careful not to get a reference when the 677 * reference count already dropped to 0 (ctx->dead test 678 * is unreliable because of races). 679 */ 680 if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){ 681 ret = ctx; 682 break; 683 } 684 } 685 686 rcu_read_unlock(); 687 return ret; 688 } 689 690 /* 691 * Queue up a kiocb to be retried. Assumes that the kiocb 692 * has already been marked as kicked, and places it on 693 * the retry run list for the corresponding ioctx, if it 694 * isn't already queued. Returns 1 if it actually queued 695 * the kiocb (to tell the caller to activate the work 696 * queue to process it), or 0, if it found that it was 697 * already queued. 698 */ 699 static inline int __queue_kicked_iocb(struct kiocb *iocb) 700 { 701 struct kioctx *ctx = iocb->ki_ctx; 702 703 assert_spin_locked(&ctx->ctx_lock); 704 705 if (list_empty(&iocb->ki_run_list)) { 706 list_add_tail(&iocb->ki_run_list, 707 &ctx->run_list); 708 return 1; 709 } 710 return 0; 711 } 712 713 /* aio_run_iocb 714 * This is the core aio execution routine. It is 715 * invoked both for initial i/o submission and 716 * subsequent retries via the aio_kick_handler. 717 * Expects to be invoked with iocb->ki_ctx->lock 718 * already held. The lock is released and reacquired 719 * as needed during processing. 720 * 721 * Calls the iocb retry method (already setup for the 722 * iocb on initial submission) for operation specific 723 * handling, but takes care of most of common retry 724 * execution details for a given iocb. The retry method 725 * needs to be non-blocking as far as possible, to avoid 726 * holding up other iocbs waiting to be serviced by the 727 * retry kernel thread. 728 * 729 * The trickier parts in this code have to do with 730 * ensuring that only one retry instance is in progress 731 * for a given iocb at any time. Providing that guarantee 732 * simplifies the coding of individual aio operations as 733 * it avoids various potential races. 734 */ 735 static ssize_t aio_run_iocb(struct kiocb *iocb) 736 { 737 struct kioctx *ctx = iocb->ki_ctx; 738 ssize_t (*retry)(struct kiocb *); 739 ssize_t ret; 740 741 if (!(retry = iocb->ki_retry)) { 742 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 743 return 0; 744 } 745 746 /* 747 * We don't want the next retry iteration for this 748 * operation to start until this one has returned and 749 * updated the iocb state. However, wait_queue functions 750 * can trigger a kick_iocb from interrupt context in the 751 * meantime, indicating that data is available for the next 752 * iteration. We want to remember that and enable the 753 * next retry iteration _after_ we are through with 754 * this one. 755 * 756 * So, in order to be able to register a "kick", but 757 * prevent it from being queued now, we clear the kick 758 * flag, but make the kick code *think* that the iocb is 759 * still on the run list until we are actually done. 760 * When we are done with this iteration, we check if 761 * the iocb was kicked in the meantime and if so, queue 762 * it up afresh. 763 */ 764 765 kiocbClearKicked(iocb); 766 767 /* 768 * This is so that aio_complete knows it doesn't need to 769 * pull the iocb off the run list (We can't just call 770 * INIT_LIST_HEAD because we don't want a kick_iocb to 771 * queue this on the run list yet) 772 */ 773 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 774 spin_unlock_irq(&ctx->ctx_lock); 775 776 /* Quit retrying if the i/o has been cancelled */ 777 if (kiocbIsCancelled(iocb)) { 778 ret = -EINTR; 779 aio_complete(iocb, ret, 0); 780 /* must not access the iocb after this */ 781 goto out; 782 } 783 784 /* 785 * Now we are all set to call the retry method in async 786 * context. 787 */ 788 ret = retry(iocb); 789 790 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 791 /* 792 * There's no easy way to restart the syscall since other AIO's 793 * may be already running. Just fail this IO with EINTR. 794 */ 795 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 796 ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK)) 797 ret = -EINTR; 798 aio_complete(iocb, ret, 0); 799 } 800 out: 801 spin_lock_irq(&ctx->ctx_lock); 802 803 if (-EIOCBRETRY == ret) { 804 /* 805 * OK, now that we are done with this iteration 806 * and know that there is more left to go, 807 * this is where we let go so that a subsequent 808 * "kick" can start the next iteration 809 */ 810 811 /* will make __queue_kicked_iocb succeed from here on */ 812 INIT_LIST_HEAD(&iocb->ki_run_list); 813 /* we must queue the next iteration ourselves, if it 814 * has already been kicked */ 815 if (kiocbIsKicked(iocb)) { 816 __queue_kicked_iocb(iocb); 817 818 /* 819 * __queue_kicked_iocb will always return 1 here, because 820 * iocb->ki_run_list is empty at this point so it should 821 * be safe to unconditionally queue the context into the 822 * work queue. 823 */ 824 aio_queue_work(ctx); 825 } 826 } 827 return ret; 828 } 829 830 /* 831 * __aio_run_iocbs: 832 * Process all pending retries queued on the ioctx 833 * run list. 834 * Assumes it is operating within the aio issuer's mm 835 * context. 836 */ 837 static int __aio_run_iocbs(struct kioctx *ctx) 838 { 839 struct kiocb *iocb; 840 struct list_head run_list; 841 842 assert_spin_locked(&ctx->ctx_lock); 843 844 list_replace_init(&ctx->run_list, &run_list); 845 while (!list_empty(&run_list)) { 846 iocb = list_entry(run_list.next, struct kiocb, 847 ki_run_list); 848 list_del(&iocb->ki_run_list); 849 /* 850 * Hold an extra reference while retrying i/o. 851 */ 852 iocb->ki_users++; /* grab extra reference */ 853 aio_run_iocb(iocb); 854 __aio_put_req(ctx, iocb); 855 } 856 if (!list_empty(&ctx->run_list)) 857 return 1; 858 return 0; 859 } 860 861 static void aio_queue_work(struct kioctx * ctx) 862 { 863 unsigned long timeout; 864 /* 865 * if someone is waiting, get the work started right 866 * away, otherwise, use a longer delay 867 */ 868 smp_mb(); 869 if (waitqueue_active(&ctx->wait)) 870 timeout = 1; 871 else 872 timeout = HZ/10; 873 queue_delayed_work(aio_wq, &ctx->wq, timeout); 874 } 875 876 /* 877 * aio_run_all_iocbs: 878 * Process all pending retries queued on the ioctx 879 * run list, and keep running them until the list 880 * stays empty. 881 * Assumes it is operating within the aio issuer's mm context. 882 */ 883 static inline void aio_run_all_iocbs(struct kioctx *ctx) 884 { 885 spin_lock_irq(&ctx->ctx_lock); 886 while (__aio_run_iocbs(ctx)) 887 ; 888 spin_unlock_irq(&ctx->ctx_lock); 889 } 890 891 /* 892 * aio_kick_handler: 893 * Work queue handler triggered to process pending 894 * retries on an ioctx. Takes on the aio issuer's 895 * mm context before running the iocbs, so that 896 * copy_xxx_user operates on the issuer's address 897 * space. 898 * Run on aiod's context. 899 */ 900 static void aio_kick_handler(struct work_struct *work) 901 { 902 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 903 mm_segment_t oldfs = get_fs(); 904 struct mm_struct *mm; 905 int requeue; 906 907 set_fs(USER_DS); 908 use_mm(ctx->mm); 909 spin_lock_irq(&ctx->ctx_lock); 910 requeue =__aio_run_iocbs(ctx); 911 mm = ctx->mm; 912 spin_unlock_irq(&ctx->ctx_lock); 913 unuse_mm(mm); 914 set_fs(oldfs); 915 /* 916 * we're in a worker thread already, don't use queue_delayed_work, 917 */ 918 if (requeue) 919 queue_delayed_work(aio_wq, &ctx->wq, 0); 920 } 921 922 923 /* 924 * Called by kick_iocb to queue the kiocb for retry 925 * and if required activate the aio work queue to process 926 * it 927 */ 928 static void try_queue_kicked_iocb(struct kiocb *iocb) 929 { 930 struct kioctx *ctx = iocb->ki_ctx; 931 unsigned long flags; 932 int run = 0; 933 934 spin_lock_irqsave(&ctx->ctx_lock, flags); 935 /* set this inside the lock so that we can't race with aio_run_iocb() 936 * testing it and putting the iocb on the run list under the lock */ 937 if (!kiocbTryKick(iocb)) 938 run = __queue_kicked_iocb(iocb); 939 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 940 if (run) 941 aio_queue_work(ctx); 942 } 943 944 /* 945 * kick_iocb: 946 * Called typically from a wait queue callback context 947 * to trigger a retry of the iocb. 948 * The retry is usually executed by aio workqueue 949 * threads (See aio_kick_handler). 950 */ 951 void kick_iocb(struct kiocb *iocb) 952 { 953 /* sync iocbs are easy: they can only ever be executing from a 954 * single context. */ 955 if (is_sync_kiocb(iocb)) { 956 kiocbSetKicked(iocb); 957 wake_up_process(iocb->ki_obj.tsk); 958 return; 959 } 960 961 try_queue_kicked_iocb(iocb); 962 } 963 EXPORT_SYMBOL(kick_iocb); 964 965 /* aio_complete 966 * Called when the io request on the given iocb is complete. 967 * Returns true if this is the last user of the request. The 968 * only other user of the request can be the cancellation code. 969 */ 970 int aio_complete(struct kiocb *iocb, long res, long res2) 971 { 972 struct kioctx *ctx = iocb->ki_ctx; 973 struct aio_ring_info *info; 974 struct aio_ring *ring; 975 struct io_event *event; 976 unsigned long flags; 977 unsigned long tail; 978 int ret; 979 980 /* 981 * Special case handling for sync iocbs: 982 * - events go directly into the iocb for fast handling 983 * - the sync task with the iocb in its stack holds the single iocb 984 * ref, no other paths have a way to get another ref 985 * - the sync task helpfully left a reference to itself in the iocb 986 */ 987 if (is_sync_kiocb(iocb)) { 988 BUG_ON(iocb->ki_users != 1); 989 iocb->ki_user_data = res; 990 iocb->ki_users = 0; 991 wake_up_process(iocb->ki_obj.tsk); 992 return 1; 993 } 994 995 info = &ctx->ring_info; 996 997 /* add a completion event to the ring buffer. 998 * must be done holding ctx->ctx_lock to prevent 999 * other code from messing with the tail 1000 * pointer since we might be called from irq 1001 * context. 1002 */ 1003 spin_lock_irqsave(&ctx->ctx_lock, flags); 1004 1005 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 1006 list_del_init(&iocb->ki_run_list); 1007 1008 /* 1009 * cancelled requests don't get events, userland was given one 1010 * when the event got cancelled. 1011 */ 1012 if (kiocbIsCancelled(iocb)) 1013 goto put_rq; 1014 1015 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 1016 1017 tail = info->tail; 1018 event = aio_ring_event(info, tail, KM_IRQ0); 1019 if (++tail >= info->nr) 1020 tail = 0; 1021 1022 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 1023 event->data = iocb->ki_user_data; 1024 event->res = res; 1025 event->res2 = res2; 1026 1027 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 1028 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 1029 res, res2); 1030 1031 /* after flagging the request as done, we 1032 * must never even look at it again 1033 */ 1034 smp_wmb(); /* make event visible before updating tail */ 1035 1036 info->tail = tail; 1037 ring->tail = tail; 1038 1039 put_aio_ring_event(event, KM_IRQ0); 1040 kunmap_atomic(ring, KM_IRQ1); 1041 1042 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 1043 1044 /* 1045 * Check if the user asked us to deliver the result through an 1046 * eventfd. The eventfd_signal() function is safe to be called 1047 * from IRQ context. 1048 */ 1049 if (iocb->ki_eventfd != NULL) 1050 eventfd_signal(iocb->ki_eventfd, 1); 1051 1052 put_rq: 1053 /* everything turned out well, dispose of the aiocb. */ 1054 ret = __aio_put_req(ctx, iocb); 1055 1056 /* 1057 * We have to order our ring_info tail store above and test 1058 * of the wait list below outside the wait lock. This is 1059 * like in wake_up_bit() where clearing a bit has to be 1060 * ordered with the unlocked test. 1061 */ 1062 smp_mb(); 1063 1064 if (waitqueue_active(&ctx->wait)) 1065 wake_up(&ctx->wait); 1066 1067 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1068 return ret; 1069 } 1070 EXPORT_SYMBOL(aio_complete); 1071 1072 /* aio_read_evt 1073 * Pull an event off of the ioctx's event ring. Returns the number of 1074 * events fetched (0 or 1 ;-) 1075 * FIXME: make this use cmpxchg. 1076 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1077 */ 1078 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1079 { 1080 struct aio_ring_info *info = &ioctx->ring_info; 1081 struct aio_ring *ring; 1082 unsigned long head; 1083 int ret = 0; 1084 1085 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1086 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1087 (unsigned long)ring->head, (unsigned long)ring->tail, 1088 (unsigned long)ring->nr); 1089 1090 if (ring->head == ring->tail) 1091 goto out; 1092 1093 spin_lock(&info->ring_lock); 1094 1095 head = ring->head % info->nr; 1096 if (head != ring->tail) { 1097 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1098 *ent = *evp; 1099 head = (head + 1) % info->nr; 1100 smp_mb(); /* finish reading the event before updatng the head */ 1101 ring->head = head; 1102 ret = 1; 1103 put_aio_ring_event(evp, KM_USER1); 1104 } 1105 spin_unlock(&info->ring_lock); 1106 1107 out: 1108 kunmap_atomic(ring, KM_USER0); 1109 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1110 (unsigned long)ring->head, (unsigned long)ring->tail); 1111 return ret; 1112 } 1113 1114 struct aio_timeout { 1115 struct timer_list timer; 1116 int timed_out; 1117 struct task_struct *p; 1118 }; 1119 1120 static void timeout_func(unsigned long data) 1121 { 1122 struct aio_timeout *to = (struct aio_timeout *)data; 1123 1124 to->timed_out = 1; 1125 wake_up_process(to->p); 1126 } 1127 1128 static inline void init_timeout(struct aio_timeout *to) 1129 { 1130 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1131 to->timed_out = 0; 1132 to->p = current; 1133 } 1134 1135 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1136 const struct timespec *ts) 1137 { 1138 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1139 if (time_after(to->timer.expires, jiffies)) 1140 add_timer(&to->timer); 1141 else 1142 to->timed_out = 1; 1143 } 1144 1145 static inline void clear_timeout(struct aio_timeout *to) 1146 { 1147 del_singleshot_timer_sync(&to->timer); 1148 } 1149 1150 static int read_events(struct kioctx *ctx, 1151 long min_nr, long nr, 1152 struct io_event __user *event, 1153 struct timespec __user *timeout) 1154 { 1155 long start_jiffies = jiffies; 1156 struct task_struct *tsk = current; 1157 DECLARE_WAITQUEUE(wait, tsk); 1158 int ret; 1159 int i = 0; 1160 struct io_event ent; 1161 struct aio_timeout to; 1162 int retry = 0; 1163 1164 /* needed to zero any padding within an entry (there shouldn't be 1165 * any, but C is fun! 1166 */ 1167 memset(&ent, 0, sizeof(ent)); 1168 retry: 1169 ret = 0; 1170 while (likely(i < nr)) { 1171 ret = aio_read_evt(ctx, &ent); 1172 if (unlikely(ret <= 0)) 1173 break; 1174 1175 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1176 ent.data, ent.obj, ent.res, ent.res2); 1177 1178 /* Could we split the check in two? */ 1179 ret = -EFAULT; 1180 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1181 dprintk("aio: lost an event due to EFAULT.\n"); 1182 break; 1183 } 1184 ret = 0; 1185 1186 /* Good, event copied to userland, update counts. */ 1187 event ++; 1188 i ++; 1189 } 1190 1191 if (min_nr <= i) 1192 return i; 1193 if (ret) 1194 return ret; 1195 1196 /* End fast path */ 1197 1198 /* racey check, but it gets redone */ 1199 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1200 retry = 1; 1201 aio_run_all_iocbs(ctx); 1202 goto retry; 1203 } 1204 1205 init_timeout(&to); 1206 if (timeout) { 1207 struct timespec ts; 1208 ret = -EFAULT; 1209 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1210 goto out; 1211 1212 set_timeout(start_jiffies, &to, &ts); 1213 } 1214 1215 while (likely(i < nr)) { 1216 add_wait_queue_exclusive(&ctx->wait, &wait); 1217 do { 1218 set_task_state(tsk, TASK_INTERRUPTIBLE); 1219 ret = aio_read_evt(ctx, &ent); 1220 if (ret) 1221 break; 1222 if (min_nr <= i) 1223 break; 1224 if (unlikely(ctx->dead)) { 1225 ret = -EINVAL; 1226 break; 1227 } 1228 if (to.timed_out) /* Only check after read evt */ 1229 break; 1230 /* Try to only show up in io wait if there are ops 1231 * in flight */ 1232 if (ctx->reqs_active) 1233 io_schedule(); 1234 else 1235 schedule(); 1236 if (signal_pending(tsk)) { 1237 ret = -EINTR; 1238 break; 1239 } 1240 /*ret = aio_read_evt(ctx, &ent);*/ 1241 } while (1) ; 1242 1243 set_task_state(tsk, TASK_RUNNING); 1244 remove_wait_queue(&ctx->wait, &wait); 1245 1246 if (unlikely(ret <= 0)) 1247 break; 1248 1249 ret = -EFAULT; 1250 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1251 dprintk("aio: lost an event due to EFAULT.\n"); 1252 break; 1253 } 1254 1255 /* Good, event copied to userland, update counts. */ 1256 event ++; 1257 i ++; 1258 } 1259 1260 if (timeout) 1261 clear_timeout(&to); 1262 out: 1263 destroy_timer_on_stack(&to.timer); 1264 return i ? i : ret; 1265 } 1266 1267 /* Take an ioctx and remove it from the list of ioctx's. Protects 1268 * against races with itself via ->dead. 1269 */ 1270 static void io_destroy(struct kioctx *ioctx) 1271 { 1272 struct mm_struct *mm = current->mm; 1273 int was_dead; 1274 1275 /* delete the entry from the list is someone else hasn't already */ 1276 spin_lock(&mm->ioctx_lock); 1277 was_dead = ioctx->dead; 1278 ioctx->dead = 1; 1279 hlist_del_rcu(&ioctx->list); 1280 spin_unlock(&mm->ioctx_lock); 1281 1282 dprintk("aio_release(%p)\n", ioctx); 1283 if (likely(!was_dead)) 1284 put_ioctx(ioctx); /* twice for the list */ 1285 1286 aio_cancel_all(ioctx); 1287 wait_for_all_aios(ioctx); 1288 1289 /* 1290 * Wake up any waiters. The setting of ctx->dead must be seen 1291 * by other CPUs at this point. Right now, we rely on the 1292 * locking done by the above calls to ensure this consistency. 1293 */ 1294 wake_up_all(&ioctx->wait); 1295 put_ioctx(ioctx); /* once for the lookup */ 1296 } 1297 1298 /* sys_io_setup: 1299 * Create an aio_context capable of receiving at least nr_events. 1300 * ctxp must not point to an aio_context that already exists, and 1301 * must be initialized to 0 prior to the call. On successful 1302 * creation of the aio_context, *ctxp is filled in with the resulting 1303 * handle. May fail with -EINVAL if *ctxp is not initialized, 1304 * if the specified nr_events exceeds internal limits. May fail 1305 * with -EAGAIN if the specified nr_events exceeds the user's limit 1306 * of available events. May fail with -ENOMEM if insufficient kernel 1307 * resources are available. May fail with -EFAULT if an invalid 1308 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1309 * implemented. 1310 */ 1311 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1312 { 1313 struct kioctx *ioctx = NULL; 1314 unsigned long ctx; 1315 long ret; 1316 1317 ret = get_user(ctx, ctxp); 1318 if (unlikely(ret)) 1319 goto out; 1320 1321 ret = -EINVAL; 1322 if (unlikely(ctx || nr_events == 0)) { 1323 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1324 ctx, nr_events); 1325 goto out; 1326 } 1327 1328 ioctx = ioctx_alloc(nr_events); 1329 ret = PTR_ERR(ioctx); 1330 if (!IS_ERR(ioctx)) { 1331 ret = put_user(ioctx->user_id, ctxp); 1332 if (!ret) 1333 return 0; 1334 1335 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1336 io_destroy(ioctx); 1337 } 1338 1339 out: 1340 return ret; 1341 } 1342 1343 /* sys_io_destroy: 1344 * Destroy the aio_context specified. May cancel any outstanding 1345 * AIOs and block on completion. Will fail with -ENOSYS if not 1346 * implemented. May fail with -EINVAL if the context pointed to 1347 * is invalid. 1348 */ 1349 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1350 { 1351 struct kioctx *ioctx = lookup_ioctx(ctx); 1352 if (likely(NULL != ioctx)) { 1353 io_destroy(ioctx); 1354 return 0; 1355 } 1356 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1357 return -EINVAL; 1358 } 1359 1360 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1361 { 1362 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1363 1364 BUG_ON(ret <= 0); 1365 1366 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1367 ssize_t this = min((ssize_t)iov->iov_len, ret); 1368 iov->iov_base += this; 1369 iov->iov_len -= this; 1370 iocb->ki_left -= this; 1371 ret -= this; 1372 if (iov->iov_len == 0) { 1373 iocb->ki_cur_seg++; 1374 iov++; 1375 } 1376 } 1377 1378 /* the caller should not have done more io than what fit in 1379 * the remaining iovecs */ 1380 BUG_ON(ret > 0 && iocb->ki_left == 0); 1381 } 1382 1383 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1384 { 1385 struct file *file = iocb->ki_filp; 1386 struct address_space *mapping = file->f_mapping; 1387 struct inode *inode = mapping->host; 1388 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1389 unsigned long, loff_t); 1390 ssize_t ret = 0; 1391 unsigned short opcode; 1392 1393 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1394 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1395 rw_op = file->f_op->aio_read; 1396 opcode = IOCB_CMD_PREADV; 1397 } else { 1398 rw_op = file->f_op->aio_write; 1399 opcode = IOCB_CMD_PWRITEV; 1400 } 1401 1402 /* This matches the pread()/pwrite() logic */ 1403 if (iocb->ki_pos < 0) 1404 return -EINVAL; 1405 1406 do { 1407 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1408 iocb->ki_nr_segs - iocb->ki_cur_seg, 1409 iocb->ki_pos); 1410 if (ret > 0) 1411 aio_advance_iovec(iocb, ret); 1412 1413 /* retry all partial writes. retry partial reads as long as its a 1414 * regular file. */ 1415 } while (ret > 0 && iocb->ki_left > 0 && 1416 (opcode == IOCB_CMD_PWRITEV || 1417 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1418 1419 /* This means we must have transferred all that we could */ 1420 /* No need to retry anymore */ 1421 if ((ret == 0) || (iocb->ki_left == 0)) 1422 ret = iocb->ki_nbytes - iocb->ki_left; 1423 1424 /* If we managed to write some out we return that, rather than 1425 * the eventual error. */ 1426 if (opcode == IOCB_CMD_PWRITEV 1427 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1428 && iocb->ki_nbytes - iocb->ki_left) 1429 ret = iocb->ki_nbytes - iocb->ki_left; 1430 1431 return ret; 1432 } 1433 1434 static ssize_t aio_fdsync(struct kiocb *iocb) 1435 { 1436 struct file *file = iocb->ki_filp; 1437 ssize_t ret = -EINVAL; 1438 1439 if (file->f_op->aio_fsync) 1440 ret = file->f_op->aio_fsync(iocb, 1); 1441 return ret; 1442 } 1443 1444 static ssize_t aio_fsync(struct kiocb *iocb) 1445 { 1446 struct file *file = iocb->ki_filp; 1447 ssize_t ret = -EINVAL; 1448 1449 if (file->f_op->aio_fsync) 1450 ret = file->f_op->aio_fsync(iocb, 0); 1451 return ret; 1452 } 1453 1454 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat) 1455 { 1456 ssize_t ret; 1457 1458 #ifdef CONFIG_COMPAT 1459 if (compat) 1460 ret = compat_rw_copy_check_uvector(type, 1461 (struct compat_iovec __user *)kiocb->ki_buf, 1462 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1463 &kiocb->ki_iovec, 1); 1464 else 1465 #endif 1466 ret = rw_copy_check_uvector(type, 1467 (struct iovec __user *)kiocb->ki_buf, 1468 kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec, 1469 &kiocb->ki_iovec, 1); 1470 if (ret < 0) 1471 goto out; 1472 1473 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1474 kiocb->ki_cur_seg = 0; 1475 /* ki_nbytes/left now reflect bytes instead of segs */ 1476 kiocb->ki_nbytes = ret; 1477 kiocb->ki_left = ret; 1478 1479 ret = 0; 1480 out: 1481 return ret; 1482 } 1483 1484 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1485 { 1486 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1487 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1488 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1489 kiocb->ki_nr_segs = 1; 1490 kiocb->ki_cur_seg = 0; 1491 return 0; 1492 } 1493 1494 /* 1495 * aio_setup_iocb: 1496 * Performs the initial checks and aio retry method 1497 * setup for the kiocb at the time of io submission. 1498 */ 1499 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat) 1500 { 1501 struct file *file = kiocb->ki_filp; 1502 ssize_t ret = 0; 1503 1504 switch (kiocb->ki_opcode) { 1505 case IOCB_CMD_PREAD: 1506 ret = -EBADF; 1507 if (unlikely(!(file->f_mode & FMODE_READ))) 1508 break; 1509 ret = -EFAULT; 1510 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1511 kiocb->ki_left))) 1512 break; 1513 ret = security_file_permission(file, MAY_READ); 1514 if (unlikely(ret)) 1515 break; 1516 ret = aio_setup_single_vector(kiocb); 1517 if (ret) 1518 break; 1519 ret = -EINVAL; 1520 if (file->f_op->aio_read) 1521 kiocb->ki_retry = aio_rw_vect_retry; 1522 break; 1523 case IOCB_CMD_PWRITE: 1524 ret = -EBADF; 1525 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1526 break; 1527 ret = -EFAULT; 1528 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1529 kiocb->ki_left))) 1530 break; 1531 ret = security_file_permission(file, MAY_WRITE); 1532 if (unlikely(ret)) 1533 break; 1534 ret = aio_setup_single_vector(kiocb); 1535 if (ret) 1536 break; 1537 ret = -EINVAL; 1538 if (file->f_op->aio_write) 1539 kiocb->ki_retry = aio_rw_vect_retry; 1540 break; 1541 case IOCB_CMD_PREADV: 1542 ret = -EBADF; 1543 if (unlikely(!(file->f_mode & FMODE_READ))) 1544 break; 1545 ret = security_file_permission(file, MAY_READ); 1546 if (unlikely(ret)) 1547 break; 1548 ret = aio_setup_vectored_rw(READ, kiocb, compat); 1549 if (ret) 1550 break; 1551 ret = -EINVAL; 1552 if (file->f_op->aio_read) 1553 kiocb->ki_retry = aio_rw_vect_retry; 1554 break; 1555 case IOCB_CMD_PWRITEV: 1556 ret = -EBADF; 1557 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1558 break; 1559 ret = security_file_permission(file, MAY_WRITE); 1560 if (unlikely(ret)) 1561 break; 1562 ret = aio_setup_vectored_rw(WRITE, kiocb, compat); 1563 if (ret) 1564 break; 1565 ret = -EINVAL; 1566 if (file->f_op->aio_write) 1567 kiocb->ki_retry = aio_rw_vect_retry; 1568 break; 1569 case IOCB_CMD_FDSYNC: 1570 ret = -EINVAL; 1571 if (file->f_op->aio_fsync) 1572 kiocb->ki_retry = aio_fdsync; 1573 break; 1574 case IOCB_CMD_FSYNC: 1575 ret = -EINVAL; 1576 if (file->f_op->aio_fsync) 1577 kiocb->ki_retry = aio_fsync; 1578 break; 1579 default: 1580 dprintk("EINVAL: io_submit: no operation provided\n"); 1581 ret = -EINVAL; 1582 } 1583 1584 if (!kiocb->ki_retry) 1585 return ret; 1586 1587 return 0; 1588 } 1589 1590 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1591 struct iocb *iocb, struct kiocb_batch *batch, 1592 bool compat) 1593 { 1594 struct kiocb *req; 1595 struct file *file; 1596 ssize_t ret; 1597 1598 /* enforce forwards compatibility on users */ 1599 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1600 pr_debug("EINVAL: io_submit: reserve field set\n"); 1601 return -EINVAL; 1602 } 1603 1604 /* prevent overflows */ 1605 if (unlikely( 1606 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1607 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1608 ((ssize_t)iocb->aio_nbytes < 0) 1609 )) { 1610 pr_debug("EINVAL: io_submit: overflow check\n"); 1611 return -EINVAL; 1612 } 1613 1614 file = fget(iocb->aio_fildes); 1615 if (unlikely(!file)) 1616 return -EBADF; 1617 1618 req = aio_get_req(ctx, batch); /* returns with 2 references to req */ 1619 if (unlikely(!req)) { 1620 fput(file); 1621 return -EAGAIN; 1622 } 1623 req->ki_filp = file; 1624 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1625 /* 1626 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1627 * instance of the file* now. The file descriptor must be 1628 * an eventfd() fd, and will be signaled for each completed 1629 * event using the eventfd_signal() function. 1630 */ 1631 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1632 if (IS_ERR(req->ki_eventfd)) { 1633 ret = PTR_ERR(req->ki_eventfd); 1634 req->ki_eventfd = NULL; 1635 goto out_put_req; 1636 } 1637 } 1638 1639 ret = put_user(req->ki_key, &user_iocb->aio_key); 1640 if (unlikely(ret)) { 1641 dprintk("EFAULT: aio_key\n"); 1642 goto out_put_req; 1643 } 1644 1645 req->ki_obj.user = user_iocb; 1646 req->ki_user_data = iocb->aio_data; 1647 req->ki_pos = iocb->aio_offset; 1648 1649 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1650 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1651 req->ki_opcode = iocb->aio_lio_opcode; 1652 1653 ret = aio_setup_iocb(req, compat); 1654 1655 if (ret) 1656 goto out_put_req; 1657 1658 spin_lock_irq(&ctx->ctx_lock); 1659 /* 1660 * We could have raced with io_destroy() and are currently holding a 1661 * reference to ctx which should be destroyed. We cannot submit IO 1662 * since ctx gets freed as soon as io_submit() puts its reference. The 1663 * check here is reliable: io_destroy() sets ctx->dead before waiting 1664 * for outstanding IO and the barrier between these two is realized by 1665 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock. Analogously we 1666 * increment ctx->reqs_active before checking for ctx->dead and the 1667 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we 1668 * don't see ctx->dead set here, io_destroy() waits for our IO to 1669 * finish. 1670 */ 1671 if (ctx->dead) { 1672 spin_unlock_irq(&ctx->ctx_lock); 1673 ret = -EINVAL; 1674 goto out_put_req; 1675 } 1676 aio_run_iocb(req); 1677 if (!list_empty(&ctx->run_list)) { 1678 /* drain the run list */ 1679 while (__aio_run_iocbs(ctx)) 1680 ; 1681 } 1682 spin_unlock_irq(&ctx->ctx_lock); 1683 1684 aio_put_req(req); /* drop extra ref to req */ 1685 return 0; 1686 1687 out_put_req: 1688 aio_put_req(req); /* drop extra ref to req */ 1689 aio_put_req(req); /* drop i/o ref to req */ 1690 return ret; 1691 } 1692 1693 long do_io_submit(aio_context_t ctx_id, long nr, 1694 struct iocb __user *__user *iocbpp, bool compat) 1695 { 1696 struct kioctx *ctx; 1697 long ret = 0; 1698 int i = 0; 1699 struct blk_plug plug; 1700 struct kiocb_batch batch; 1701 1702 if (unlikely(nr < 0)) 1703 return -EINVAL; 1704 1705 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1706 nr = LONG_MAX/sizeof(*iocbpp); 1707 1708 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1709 return -EFAULT; 1710 1711 ctx = lookup_ioctx(ctx_id); 1712 if (unlikely(!ctx)) { 1713 pr_debug("EINVAL: io_submit: invalid context id\n"); 1714 return -EINVAL; 1715 } 1716 1717 kiocb_batch_init(&batch, nr); 1718 1719 blk_start_plug(&plug); 1720 1721 /* 1722 * AKPM: should this return a partial result if some of the IOs were 1723 * successfully submitted? 1724 */ 1725 for (i=0; i<nr; i++) { 1726 struct iocb __user *user_iocb; 1727 struct iocb tmp; 1728 1729 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1730 ret = -EFAULT; 1731 break; 1732 } 1733 1734 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1735 ret = -EFAULT; 1736 break; 1737 } 1738 1739 ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat); 1740 if (ret) 1741 break; 1742 } 1743 blk_finish_plug(&plug); 1744 1745 kiocb_batch_free(&batch); 1746 put_ioctx(ctx); 1747 return i ? i : ret; 1748 } 1749 1750 /* sys_io_submit: 1751 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1752 * the number of iocbs queued. May return -EINVAL if the aio_context 1753 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1754 * *iocbpp[0] is not properly initialized, if the operation specified 1755 * is invalid for the file descriptor in the iocb. May fail with 1756 * -EFAULT if any of the data structures point to invalid data. May 1757 * fail with -EBADF if the file descriptor specified in the first 1758 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1759 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1760 * fail with -ENOSYS if not implemented. 1761 */ 1762 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1763 struct iocb __user * __user *, iocbpp) 1764 { 1765 return do_io_submit(ctx_id, nr, iocbpp, 0); 1766 } 1767 1768 /* lookup_kiocb 1769 * Finds a given iocb for cancellation. 1770 */ 1771 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1772 u32 key) 1773 { 1774 struct list_head *pos; 1775 1776 assert_spin_locked(&ctx->ctx_lock); 1777 1778 /* TODO: use a hash or array, this sucks. */ 1779 list_for_each(pos, &ctx->active_reqs) { 1780 struct kiocb *kiocb = list_kiocb(pos); 1781 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1782 return kiocb; 1783 } 1784 return NULL; 1785 } 1786 1787 /* sys_io_cancel: 1788 * Attempts to cancel an iocb previously passed to io_submit. If 1789 * the operation is successfully cancelled, the resulting event is 1790 * copied into the memory pointed to by result without being placed 1791 * into the completion queue and 0 is returned. May fail with 1792 * -EFAULT if any of the data structures pointed to are invalid. 1793 * May fail with -EINVAL if aio_context specified by ctx_id is 1794 * invalid. May fail with -EAGAIN if the iocb specified was not 1795 * cancelled. Will fail with -ENOSYS if not implemented. 1796 */ 1797 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1798 struct io_event __user *, result) 1799 { 1800 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1801 struct kioctx *ctx; 1802 struct kiocb *kiocb; 1803 u32 key; 1804 int ret; 1805 1806 ret = get_user(key, &iocb->aio_key); 1807 if (unlikely(ret)) 1808 return -EFAULT; 1809 1810 ctx = lookup_ioctx(ctx_id); 1811 if (unlikely(!ctx)) 1812 return -EINVAL; 1813 1814 spin_lock_irq(&ctx->ctx_lock); 1815 ret = -EAGAIN; 1816 kiocb = lookup_kiocb(ctx, iocb, key); 1817 if (kiocb && kiocb->ki_cancel) { 1818 cancel = kiocb->ki_cancel; 1819 kiocb->ki_users ++; 1820 kiocbSetCancelled(kiocb); 1821 } else 1822 cancel = NULL; 1823 spin_unlock_irq(&ctx->ctx_lock); 1824 1825 if (NULL != cancel) { 1826 struct io_event tmp; 1827 pr_debug("calling cancel\n"); 1828 memset(&tmp, 0, sizeof(tmp)); 1829 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1830 tmp.data = kiocb->ki_user_data; 1831 ret = cancel(kiocb, &tmp); 1832 if (!ret) { 1833 /* Cancellation succeeded -- copy the result 1834 * into the user's buffer. 1835 */ 1836 if (copy_to_user(result, &tmp, sizeof(tmp))) 1837 ret = -EFAULT; 1838 } 1839 } else 1840 ret = -EINVAL; 1841 1842 put_ioctx(ctx); 1843 1844 return ret; 1845 } 1846 1847 /* io_getevents: 1848 * Attempts to read at least min_nr events and up to nr events from 1849 * the completion queue for the aio_context specified by ctx_id. If 1850 * it succeeds, the number of read events is returned. May fail with 1851 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1852 * out of range, if timeout is out of range. May fail with -EFAULT 1853 * if any of the memory specified is invalid. May return 0 or 1854 * < min_nr if the timeout specified by timeout has elapsed 1855 * before sufficient events are available, where timeout == NULL 1856 * specifies an infinite timeout. Note that the timeout pointed to by 1857 * timeout is relative and will be updated if not NULL and the 1858 * operation blocks. Will fail with -ENOSYS if not implemented. 1859 */ 1860 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1861 long, min_nr, 1862 long, nr, 1863 struct io_event __user *, events, 1864 struct timespec __user *, timeout) 1865 { 1866 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1867 long ret = -EINVAL; 1868 1869 if (likely(ioctx)) { 1870 if (likely(min_nr <= nr && min_nr >= 0)) 1871 ret = read_events(ioctx, min_nr, nr, events, timeout); 1872 put_ioctx(ioctx); 1873 } 1874 1875 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1876 return ret; 1877 } 1878