1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/slab.h> 30 #include <linux/timer.h> 31 #include <linux/aio.h> 32 #include <linux/highmem.h> 33 #include <linux/workqueue.h> 34 #include <linux/security.h> 35 #include <linux/eventfd.h> 36 #include <linux/blkdev.h> 37 #include <linux/compat.h> 38 39 #include <asm/kmap_types.h> 40 #include <asm/uaccess.h> 41 42 #define AIO_RING_MAGIC 0xa10a10a1 43 #define AIO_RING_COMPAT_FEATURES 1 44 #define AIO_RING_INCOMPAT_FEATURES 0 45 struct aio_ring { 46 unsigned id; /* kernel internal index number */ 47 unsigned nr; /* number of io_events */ 48 unsigned head; 49 unsigned tail; 50 51 unsigned magic; 52 unsigned compat_features; 53 unsigned incompat_features; 54 unsigned header_length; /* size of aio_ring */ 55 56 57 struct io_event io_events[0]; 58 }; /* 128 bytes + ring size */ 59 60 #define AIO_RING_PAGES 8 61 62 struct kioctx { 63 atomic_t users; 64 atomic_t dead; 65 66 /* This needs improving */ 67 unsigned long user_id; 68 struct hlist_node list; 69 70 /* 71 * This is what userspace passed to io_setup(), it's not used for 72 * anything but counting against the global max_reqs quota. 73 * 74 * The real limit is nr_events - 1, which will be larger (see 75 * aio_setup_ring()) 76 */ 77 unsigned max_reqs; 78 79 /* Size of ringbuffer, in units of struct io_event */ 80 unsigned nr_events; 81 82 unsigned long mmap_base; 83 unsigned long mmap_size; 84 85 struct page **ring_pages; 86 long nr_pages; 87 88 struct rcu_head rcu_head; 89 struct work_struct rcu_work; 90 91 struct { 92 atomic_t reqs_active; 93 } ____cacheline_aligned_in_smp; 94 95 struct { 96 spinlock_t ctx_lock; 97 struct list_head active_reqs; /* used for cancellation */ 98 } ____cacheline_aligned_in_smp; 99 100 struct { 101 struct mutex ring_lock; 102 wait_queue_head_t wait; 103 } ____cacheline_aligned_in_smp; 104 105 struct { 106 unsigned tail; 107 spinlock_t completion_lock; 108 } ____cacheline_aligned_in_smp; 109 110 struct page *internal_pages[AIO_RING_PAGES]; 111 }; 112 113 /*------ sysctl variables----*/ 114 static DEFINE_SPINLOCK(aio_nr_lock); 115 unsigned long aio_nr; /* current system wide number of aio requests */ 116 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 117 /*----end sysctl variables---*/ 118 119 static struct kmem_cache *kiocb_cachep; 120 static struct kmem_cache *kioctx_cachep; 121 122 /* aio_setup 123 * Creates the slab caches used by the aio routines, panic on 124 * failure as this is done early during the boot sequence. 125 */ 126 static int __init aio_setup(void) 127 { 128 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 129 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 130 131 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 132 133 return 0; 134 } 135 __initcall(aio_setup); 136 137 static void aio_free_ring(struct kioctx *ctx) 138 { 139 long i; 140 141 for (i = 0; i < ctx->nr_pages; i++) 142 put_page(ctx->ring_pages[i]); 143 144 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) 145 kfree(ctx->ring_pages); 146 } 147 148 static int aio_setup_ring(struct kioctx *ctx) 149 { 150 struct aio_ring *ring; 151 unsigned nr_events = ctx->max_reqs; 152 struct mm_struct *mm = current->mm; 153 unsigned long size, populate; 154 int nr_pages; 155 156 /* Compensate for the ring buffer's head/tail overlap entry */ 157 nr_events += 2; /* 1 is required, 2 for good luck */ 158 159 size = sizeof(struct aio_ring); 160 size += sizeof(struct io_event) * nr_events; 161 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 162 163 if (nr_pages < 0) 164 return -EINVAL; 165 166 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 167 168 ctx->nr_events = 0; 169 ctx->ring_pages = ctx->internal_pages; 170 if (nr_pages > AIO_RING_PAGES) { 171 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 172 GFP_KERNEL); 173 if (!ctx->ring_pages) 174 return -ENOMEM; 175 } 176 177 ctx->mmap_size = nr_pages * PAGE_SIZE; 178 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 179 down_write(&mm->mmap_sem); 180 ctx->mmap_base = do_mmap_pgoff(NULL, 0, ctx->mmap_size, 181 PROT_READ|PROT_WRITE, 182 MAP_ANONYMOUS|MAP_PRIVATE, 0, &populate); 183 if (IS_ERR((void *)ctx->mmap_base)) { 184 up_write(&mm->mmap_sem); 185 ctx->mmap_size = 0; 186 aio_free_ring(ctx); 187 return -EAGAIN; 188 } 189 190 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 191 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 192 1, 0, ctx->ring_pages, NULL); 193 up_write(&mm->mmap_sem); 194 195 if (unlikely(ctx->nr_pages != nr_pages)) { 196 aio_free_ring(ctx); 197 return -EAGAIN; 198 } 199 if (populate) 200 mm_populate(ctx->mmap_base, populate); 201 202 ctx->user_id = ctx->mmap_base; 203 ctx->nr_events = nr_events; /* trusted copy */ 204 205 ring = kmap_atomic(ctx->ring_pages[0]); 206 ring->nr = nr_events; /* user copy */ 207 ring->id = ctx->user_id; 208 ring->head = ring->tail = 0; 209 ring->magic = AIO_RING_MAGIC; 210 ring->compat_features = AIO_RING_COMPAT_FEATURES; 211 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 212 ring->header_length = sizeof(struct aio_ring); 213 kunmap_atomic(ring); 214 flush_dcache_page(ctx->ring_pages[0]); 215 216 return 0; 217 } 218 219 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 220 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 221 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 222 223 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 224 { 225 struct kioctx *ctx = req->ki_ctx; 226 unsigned long flags; 227 228 spin_lock_irqsave(&ctx->ctx_lock, flags); 229 230 if (!req->ki_list.next) 231 list_add(&req->ki_list, &ctx->active_reqs); 232 233 req->ki_cancel = cancel; 234 235 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 236 } 237 EXPORT_SYMBOL(kiocb_set_cancel_fn); 238 239 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb, 240 struct io_event *res) 241 { 242 kiocb_cancel_fn *old, *cancel; 243 int ret = -EINVAL; 244 245 /* 246 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 247 * actually has a cancel function, hence the cmpxchg() 248 */ 249 250 cancel = ACCESS_ONCE(kiocb->ki_cancel); 251 do { 252 if (!cancel || cancel == KIOCB_CANCELLED) 253 return ret; 254 255 old = cancel; 256 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 257 } while (cancel != old); 258 259 atomic_inc(&kiocb->ki_users); 260 spin_unlock_irq(&ctx->ctx_lock); 261 262 memset(res, 0, sizeof(*res)); 263 res->obj = (u64)(unsigned long)kiocb->ki_obj.user; 264 res->data = kiocb->ki_user_data; 265 ret = cancel(kiocb, res); 266 267 spin_lock_irq(&ctx->ctx_lock); 268 269 return ret; 270 } 271 272 static void free_ioctx_rcu(struct rcu_head *head) 273 { 274 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 275 kmem_cache_free(kioctx_cachep, ctx); 276 } 277 278 /* 279 * When this function runs, the kioctx has been removed from the "hash table" 280 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 281 * now it's safe to cancel any that need to be. 282 */ 283 static void free_ioctx(struct kioctx *ctx) 284 { 285 struct aio_ring *ring; 286 struct io_event res; 287 struct kiocb *req; 288 unsigned head, avail; 289 290 spin_lock_irq(&ctx->ctx_lock); 291 292 while (!list_empty(&ctx->active_reqs)) { 293 req = list_first_entry(&ctx->active_reqs, 294 struct kiocb, ki_list); 295 296 list_del_init(&req->ki_list); 297 kiocb_cancel(ctx, req, &res); 298 } 299 300 spin_unlock_irq(&ctx->ctx_lock); 301 302 ring = kmap_atomic(ctx->ring_pages[0]); 303 head = ring->head; 304 kunmap_atomic(ring); 305 306 while (atomic_read(&ctx->reqs_active) > 0) { 307 wait_event(ctx->wait, 308 head != ctx->tail || 309 atomic_read(&ctx->reqs_active) <= 0); 310 311 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head; 312 313 atomic_sub(avail, &ctx->reqs_active); 314 head += avail; 315 head %= ctx->nr_events; 316 } 317 318 WARN_ON(atomic_read(&ctx->reqs_active) < 0); 319 320 aio_free_ring(ctx); 321 322 pr_debug("freeing %p\n", ctx); 323 324 /* 325 * Here the call_rcu() is between the wait_event() for reqs_active to 326 * hit 0, and freeing the ioctx. 327 * 328 * aio_complete() decrements reqs_active, but it has to touch the ioctx 329 * after to issue a wakeup so we use rcu. 330 */ 331 call_rcu(&ctx->rcu_head, free_ioctx_rcu); 332 } 333 334 static void put_ioctx(struct kioctx *ctx) 335 { 336 if (unlikely(atomic_dec_and_test(&ctx->users))) 337 free_ioctx(ctx); 338 } 339 340 /* ioctx_alloc 341 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 342 */ 343 static struct kioctx *ioctx_alloc(unsigned nr_events) 344 { 345 struct mm_struct *mm = current->mm; 346 struct kioctx *ctx; 347 int err = -ENOMEM; 348 349 /* Prevent overflows */ 350 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 351 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 352 pr_debug("ENOMEM: nr_events too high\n"); 353 return ERR_PTR(-EINVAL); 354 } 355 356 if (!nr_events || (unsigned long)nr_events > aio_max_nr) 357 return ERR_PTR(-EAGAIN); 358 359 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 360 if (!ctx) 361 return ERR_PTR(-ENOMEM); 362 363 ctx->max_reqs = nr_events; 364 365 atomic_set(&ctx->users, 2); 366 atomic_set(&ctx->dead, 0); 367 spin_lock_init(&ctx->ctx_lock); 368 spin_lock_init(&ctx->completion_lock); 369 mutex_init(&ctx->ring_lock); 370 init_waitqueue_head(&ctx->wait); 371 372 INIT_LIST_HEAD(&ctx->active_reqs); 373 374 if (aio_setup_ring(ctx) < 0) 375 goto out_freectx; 376 377 /* limit the number of system wide aios */ 378 spin_lock(&aio_nr_lock); 379 if (aio_nr + nr_events > aio_max_nr || 380 aio_nr + nr_events < aio_nr) { 381 spin_unlock(&aio_nr_lock); 382 goto out_cleanup; 383 } 384 aio_nr += ctx->max_reqs; 385 spin_unlock(&aio_nr_lock); 386 387 /* now link into global list. */ 388 spin_lock(&mm->ioctx_lock); 389 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 390 spin_unlock(&mm->ioctx_lock); 391 392 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 393 ctx, ctx->user_id, mm, ctx->nr_events); 394 return ctx; 395 396 out_cleanup: 397 err = -EAGAIN; 398 aio_free_ring(ctx); 399 out_freectx: 400 kmem_cache_free(kioctx_cachep, ctx); 401 pr_debug("error allocating ioctx %d\n", err); 402 return ERR_PTR(err); 403 } 404 405 static void kill_ioctx_work(struct work_struct *work) 406 { 407 struct kioctx *ctx = container_of(work, struct kioctx, rcu_work); 408 409 wake_up_all(&ctx->wait); 410 put_ioctx(ctx); 411 } 412 413 static void kill_ioctx_rcu(struct rcu_head *head) 414 { 415 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 416 417 INIT_WORK(&ctx->rcu_work, kill_ioctx_work); 418 schedule_work(&ctx->rcu_work); 419 } 420 421 /* kill_ioctx 422 * Cancels all outstanding aio requests on an aio context. Used 423 * when the processes owning a context have all exited to encourage 424 * the rapid destruction of the kioctx. 425 */ 426 static void kill_ioctx(struct kioctx *ctx) 427 { 428 if (!atomic_xchg(&ctx->dead, 1)) { 429 hlist_del_rcu(&ctx->list); 430 431 /* 432 * It'd be more correct to do this in free_ioctx(), after all 433 * the outstanding kiocbs have finished - but by then io_destroy 434 * has already returned, so io_setup() could potentially return 435 * -EAGAIN with no ioctxs actually in use (as far as userspace 436 * could tell). 437 */ 438 spin_lock(&aio_nr_lock); 439 BUG_ON(aio_nr - ctx->max_reqs > aio_nr); 440 aio_nr -= ctx->max_reqs; 441 spin_unlock(&aio_nr_lock); 442 443 if (ctx->mmap_size) 444 vm_munmap(ctx->mmap_base, ctx->mmap_size); 445 446 /* Between hlist_del_rcu() and dropping the initial ref */ 447 call_rcu(&ctx->rcu_head, kill_ioctx_rcu); 448 } 449 } 450 451 /* wait_on_sync_kiocb: 452 * Waits on the given sync kiocb to complete. 453 */ 454 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 455 { 456 while (atomic_read(&iocb->ki_users)) { 457 set_current_state(TASK_UNINTERRUPTIBLE); 458 if (!atomic_read(&iocb->ki_users)) 459 break; 460 io_schedule(); 461 } 462 __set_current_state(TASK_RUNNING); 463 return iocb->ki_user_data; 464 } 465 EXPORT_SYMBOL(wait_on_sync_kiocb); 466 467 /* 468 * exit_aio: called when the last user of mm goes away. At this point, there is 469 * no way for any new requests to be submited or any of the io_* syscalls to be 470 * called on the context. 471 * 472 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 473 * them. 474 */ 475 void exit_aio(struct mm_struct *mm) 476 { 477 struct kioctx *ctx; 478 struct hlist_node *n; 479 480 hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) { 481 if (1 != atomic_read(&ctx->users)) 482 printk(KERN_DEBUG 483 "exit_aio:ioctx still alive: %d %d %d\n", 484 atomic_read(&ctx->users), 485 atomic_read(&ctx->dead), 486 atomic_read(&ctx->reqs_active)); 487 /* 488 * We don't need to bother with munmap() here - 489 * exit_mmap(mm) is coming and it'll unmap everything. 490 * Since aio_free_ring() uses non-zero ->mmap_size 491 * as indicator that it needs to unmap the area, 492 * just set it to 0; aio_free_ring() is the only 493 * place that uses ->mmap_size, so it's safe. 494 */ 495 ctx->mmap_size = 0; 496 497 kill_ioctx(ctx); 498 } 499 } 500 501 /* aio_get_req 502 * Allocate a slot for an aio request. Increments the ki_users count 503 * of the kioctx so that the kioctx stays around until all requests are 504 * complete. Returns NULL if no requests are free. 505 * 506 * Returns with kiocb->ki_users set to 2. The io submit code path holds 507 * an extra reference while submitting the i/o. 508 * This prevents races between the aio code path referencing the 509 * req (after submitting it) and aio_complete() freeing the req. 510 */ 511 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 512 { 513 struct kiocb *req; 514 515 if (atomic_read(&ctx->reqs_active) >= ctx->nr_events) 516 return NULL; 517 518 if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1) 519 goto out_put; 520 521 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 522 if (unlikely(!req)) 523 goto out_put; 524 525 atomic_set(&req->ki_users, 2); 526 req->ki_ctx = ctx; 527 528 return req; 529 out_put: 530 atomic_dec(&ctx->reqs_active); 531 return NULL; 532 } 533 534 static void kiocb_free(struct kiocb *req) 535 { 536 if (req->ki_filp) 537 fput(req->ki_filp); 538 if (req->ki_eventfd != NULL) 539 eventfd_ctx_put(req->ki_eventfd); 540 if (req->ki_dtor) 541 req->ki_dtor(req); 542 if (req->ki_iovec != &req->ki_inline_vec) 543 kfree(req->ki_iovec); 544 kmem_cache_free(kiocb_cachep, req); 545 } 546 547 void aio_put_req(struct kiocb *req) 548 { 549 if (atomic_dec_and_test(&req->ki_users)) 550 kiocb_free(req); 551 } 552 EXPORT_SYMBOL(aio_put_req); 553 554 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 555 { 556 struct mm_struct *mm = current->mm; 557 struct kioctx *ctx, *ret = NULL; 558 559 rcu_read_lock(); 560 561 hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) { 562 if (ctx->user_id == ctx_id) { 563 atomic_inc(&ctx->users); 564 ret = ctx; 565 break; 566 } 567 } 568 569 rcu_read_unlock(); 570 return ret; 571 } 572 573 /* aio_complete 574 * Called when the io request on the given iocb is complete. 575 */ 576 void aio_complete(struct kiocb *iocb, long res, long res2) 577 { 578 struct kioctx *ctx = iocb->ki_ctx; 579 struct aio_ring *ring; 580 struct io_event *ev_page, *event; 581 unsigned long flags; 582 unsigned tail, pos; 583 584 /* 585 * Special case handling for sync iocbs: 586 * - events go directly into the iocb for fast handling 587 * - the sync task with the iocb in its stack holds the single iocb 588 * ref, no other paths have a way to get another ref 589 * - the sync task helpfully left a reference to itself in the iocb 590 */ 591 if (is_sync_kiocb(iocb)) { 592 BUG_ON(atomic_read(&iocb->ki_users) != 1); 593 iocb->ki_user_data = res; 594 atomic_set(&iocb->ki_users, 0); 595 wake_up_process(iocb->ki_obj.tsk); 596 return; 597 } 598 599 /* 600 * Take rcu_read_lock() in case the kioctx is being destroyed, as we 601 * need to issue a wakeup after decrementing reqs_active. 602 */ 603 rcu_read_lock(); 604 605 if (iocb->ki_list.next) { 606 unsigned long flags; 607 608 spin_lock_irqsave(&ctx->ctx_lock, flags); 609 list_del(&iocb->ki_list); 610 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 611 } 612 613 /* 614 * cancelled requests don't get events, userland was given one 615 * when the event got cancelled. 616 */ 617 if (unlikely(xchg(&iocb->ki_cancel, 618 KIOCB_CANCELLED) == KIOCB_CANCELLED)) { 619 atomic_dec(&ctx->reqs_active); 620 /* Still need the wake_up in case free_ioctx is waiting */ 621 goto put_rq; 622 } 623 624 /* 625 * Add a completion event to the ring buffer. Must be done holding 626 * ctx->ctx_lock to prevent other code from messing with the tail 627 * pointer since we might be called from irq context. 628 */ 629 spin_lock_irqsave(&ctx->completion_lock, flags); 630 631 tail = ctx->tail; 632 pos = tail + AIO_EVENTS_OFFSET; 633 634 if (++tail >= ctx->nr_events) 635 tail = 0; 636 637 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 638 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 639 640 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 641 event->data = iocb->ki_user_data; 642 event->res = res; 643 event->res2 = res2; 644 645 kunmap_atomic(ev_page); 646 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 647 648 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 649 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 650 res, res2); 651 652 /* after flagging the request as done, we 653 * must never even look at it again 654 */ 655 smp_wmb(); /* make event visible before updating tail */ 656 657 ctx->tail = tail; 658 659 ring = kmap_atomic(ctx->ring_pages[0]); 660 ring->tail = tail; 661 kunmap_atomic(ring); 662 flush_dcache_page(ctx->ring_pages[0]); 663 664 spin_unlock_irqrestore(&ctx->completion_lock, flags); 665 666 pr_debug("added to ring %p at [%u]\n", iocb, tail); 667 668 /* 669 * Check if the user asked us to deliver the result through an 670 * eventfd. The eventfd_signal() function is safe to be called 671 * from IRQ context. 672 */ 673 if (iocb->ki_eventfd != NULL) 674 eventfd_signal(iocb->ki_eventfd, 1); 675 676 put_rq: 677 /* everything turned out well, dispose of the aiocb. */ 678 aio_put_req(iocb); 679 680 /* 681 * We have to order our ring_info tail store above and test 682 * of the wait list below outside the wait lock. This is 683 * like in wake_up_bit() where clearing a bit has to be 684 * ordered with the unlocked test. 685 */ 686 smp_mb(); 687 688 if (waitqueue_active(&ctx->wait)) 689 wake_up(&ctx->wait); 690 691 rcu_read_unlock(); 692 } 693 EXPORT_SYMBOL(aio_complete); 694 695 /* aio_read_events 696 * Pull an event off of the ioctx's event ring. Returns the number of 697 * events fetched 698 */ 699 static long aio_read_events_ring(struct kioctx *ctx, 700 struct io_event __user *event, long nr) 701 { 702 struct aio_ring *ring; 703 unsigned head, pos; 704 long ret = 0; 705 int copy_ret; 706 707 mutex_lock(&ctx->ring_lock); 708 709 ring = kmap_atomic(ctx->ring_pages[0]); 710 head = ring->head; 711 kunmap_atomic(ring); 712 713 pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events); 714 715 if (head == ctx->tail) 716 goto out; 717 718 while (ret < nr) { 719 long avail; 720 struct io_event *ev; 721 struct page *page; 722 723 avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head; 724 if (head == ctx->tail) 725 break; 726 727 avail = min(avail, nr - ret); 728 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 729 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 730 731 pos = head + AIO_EVENTS_OFFSET; 732 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 733 pos %= AIO_EVENTS_PER_PAGE; 734 735 ev = kmap(page); 736 copy_ret = copy_to_user(event + ret, ev + pos, 737 sizeof(*ev) * avail); 738 kunmap(page); 739 740 if (unlikely(copy_ret)) { 741 ret = -EFAULT; 742 goto out; 743 } 744 745 ret += avail; 746 head += avail; 747 head %= ctx->nr_events; 748 } 749 750 ring = kmap_atomic(ctx->ring_pages[0]); 751 ring->head = head; 752 kunmap_atomic(ring); 753 flush_dcache_page(ctx->ring_pages[0]); 754 755 pr_debug("%li h%u t%u\n", ret, head, ctx->tail); 756 757 atomic_sub(ret, &ctx->reqs_active); 758 out: 759 mutex_unlock(&ctx->ring_lock); 760 761 return ret; 762 } 763 764 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 765 struct io_event __user *event, long *i) 766 { 767 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 768 769 if (ret > 0) 770 *i += ret; 771 772 if (unlikely(atomic_read(&ctx->dead))) 773 ret = -EINVAL; 774 775 if (!*i) 776 *i = ret; 777 778 return ret < 0 || *i >= min_nr; 779 } 780 781 static long read_events(struct kioctx *ctx, long min_nr, long nr, 782 struct io_event __user *event, 783 struct timespec __user *timeout) 784 { 785 ktime_t until = { .tv64 = KTIME_MAX }; 786 long ret = 0; 787 788 if (timeout) { 789 struct timespec ts; 790 791 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 792 return -EFAULT; 793 794 until = timespec_to_ktime(ts); 795 } 796 797 /* 798 * Note that aio_read_events() is being called as the conditional - i.e. 799 * we're calling it after prepare_to_wait() has set task state to 800 * TASK_INTERRUPTIBLE. 801 * 802 * But aio_read_events() can block, and if it blocks it's going to flip 803 * the task state back to TASK_RUNNING. 804 * 805 * This should be ok, provided it doesn't flip the state back to 806 * TASK_RUNNING and return 0 too much - that causes us to spin. That 807 * will only happen if the mutex_lock() call blocks, and we then find 808 * the ringbuffer empty. So in practice we should be ok, but it's 809 * something to be aware of when touching this code. 810 */ 811 wait_event_interruptible_hrtimeout(ctx->wait, 812 aio_read_events(ctx, min_nr, nr, event, &ret), until); 813 814 if (!ret && signal_pending(current)) 815 ret = -EINTR; 816 817 return ret; 818 } 819 820 /* sys_io_setup: 821 * Create an aio_context capable of receiving at least nr_events. 822 * ctxp must not point to an aio_context that already exists, and 823 * must be initialized to 0 prior to the call. On successful 824 * creation of the aio_context, *ctxp is filled in with the resulting 825 * handle. May fail with -EINVAL if *ctxp is not initialized, 826 * if the specified nr_events exceeds internal limits. May fail 827 * with -EAGAIN if the specified nr_events exceeds the user's limit 828 * of available events. May fail with -ENOMEM if insufficient kernel 829 * resources are available. May fail with -EFAULT if an invalid 830 * pointer is passed for ctxp. Will fail with -ENOSYS if not 831 * implemented. 832 */ 833 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 834 { 835 struct kioctx *ioctx = NULL; 836 unsigned long ctx; 837 long ret; 838 839 ret = get_user(ctx, ctxp); 840 if (unlikely(ret)) 841 goto out; 842 843 ret = -EINVAL; 844 if (unlikely(ctx || nr_events == 0)) { 845 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 846 ctx, nr_events); 847 goto out; 848 } 849 850 ioctx = ioctx_alloc(nr_events); 851 ret = PTR_ERR(ioctx); 852 if (!IS_ERR(ioctx)) { 853 ret = put_user(ioctx->user_id, ctxp); 854 if (ret) 855 kill_ioctx(ioctx); 856 put_ioctx(ioctx); 857 } 858 859 out: 860 return ret; 861 } 862 863 /* sys_io_destroy: 864 * Destroy the aio_context specified. May cancel any outstanding 865 * AIOs and block on completion. Will fail with -ENOSYS if not 866 * implemented. May fail with -EINVAL if the context pointed to 867 * is invalid. 868 */ 869 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 870 { 871 struct kioctx *ioctx = lookup_ioctx(ctx); 872 if (likely(NULL != ioctx)) { 873 kill_ioctx(ioctx); 874 put_ioctx(ioctx); 875 return 0; 876 } 877 pr_debug("EINVAL: io_destroy: invalid context id\n"); 878 return -EINVAL; 879 } 880 881 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 882 { 883 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 884 885 BUG_ON(ret <= 0); 886 887 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 888 ssize_t this = min((ssize_t)iov->iov_len, ret); 889 iov->iov_base += this; 890 iov->iov_len -= this; 891 iocb->ki_left -= this; 892 ret -= this; 893 if (iov->iov_len == 0) { 894 iocb->ki_cur_seg++; 895 iov++; 896 } 897 } 898 899 /* the caller should not have done more io than what fit in 900 * the remaining iovecs */ 901 BUG_ON(ret > 0 && iocb->ki_left == 0); 902 } 903 904 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 905 unsigned long, loff_t); 906 907 static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op) 908 { 909 struct file *file = iocb->ki_filp; 910 struct address_space *mapping = file->f_mapping; 911 struct inode *inode = mapping->host; 912 ssize_t ret = 0; 913 914 /* This matches the pread()/pwrite() logic */ 915 if (iocb->ki_pos < 0) 916 return -EINVAL; 917 918 if (rw == WRITE) 919 file_start_write(file); 920 do { 921 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 922 iocb->ki_nr_segs - iocb->ki_cur_seg, 923 iocb->ki_pos); 924 if (ret > 0) 925 aio_advance_iovec(iocb, ret); 926 927 /* retry all partial writes. retry partial reads as long as its a 928 * regular file. */ 929 } while (ret > 0 && iocb->ki_left > 0 && 930 (rw == WRITE || 931 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 932 if (rw == WRITE) 933 file_end_write(file); 934 935 /* This means we must have transferred all that we could */ 936 /* No need to retry anymore */ 937 if ((ret == 0) || (iocb->ki_left == 0)) 938 ret = iocb->ki_nbytes - iocb->ki_left; 939 940 /* If we managed to write some out we return that, rather than 941 * the eventual error. */ 942 if (rw == WRITE 943 && ret < 0 && ret != -EIOCBQUEUED 944 && iocb->ki_nbytes - iocb->ki_left) 945 ret = iocb->ki_nbytes - iocb->ki_left; 946 947 return ret; 948 } 949 950 static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat) 951 { 952 ssize_t ret; 953 954 kiocb->ki_nr_segs = kiocb->ki_nbytes; 955 956 #ifdef CONFIG_COMPAT 957 if (compat) 958 ret = compat_rw_copy_check_uvector(rw, 959 (struct compat_iovec __user *)kiocb->ki_buf, 960 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec, 961 &kiocb->ki_iovec); 962 else 963 #endif 964 ret = rw_copy_check_uvector(rw, 965 (struct iovec __user *)kiocb->ki_buf, 966 kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec, 967 &kiocb->ki_iovec); 968 if (ret < 0) 969 return ret; 970 971 /* ki_nbytes now reflect bytes instead of segs */ 972 kiocb->ki_nbytes = ret; 973 return 0; 974 } 975 976 static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb) 977 { 978 if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes))) 979 return -EFAULT; 980 981 kiocb->ki_iovec = &kiocb->ki_inline_vec; 982 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 983 kiocb->ki_iovec->iov_len = kiocb->ki_nbytes; 984 kiocb->ki_nr_segs = 1; 985 return 0; 986 } 987 988 /* 989 * aio_setup_iocb: 990 * Performs the initial checks and aio retry method 991 * setup for the kiocb at the time of io submission. 992 */ 993 static ssize_t aio_run_iocb(struct kiocb *req, bool compat) 994 { 995 struct file *file = req->ki_filp; 996 ssize_t ret; 997 int rw; 998 fmode_t mode; 999 aio_rw_op *rw_op; 1000 1001 switch (req->ki_opcode) { 1002 case IOCB_CMD_PREAD: 1003 case IOCB_CMD_PREADV: 1004 mode = FMODE_READ; 1005 rw = READ; 1006 rw_op = file->f_op->aio_read; 1007 goto rw_common; 1008 1009 case IOCB_CMD_PWRITE: 1010 case IOCB_CMD_PWRITEV: 1011 mode = FMODE_WRITE; 1012 rw = WRITE; 1013 rw_op = file->f_op->aio_write; 1014 goto rw_common; 1015 rw_common: 1016 if (unlikely(!(file->f_mode & mode))) 1017 return -EBADF; 1018 1019 if (!rw_op) 1020 return -EINVAL; 1021 1022 ret = (req->ki_opcode == IOCB_CMD_PREADV || 1023 req->ki_opcode == IOCB_CMD_PWRITEV) 1024 ? aio_setup_vectored_rw(rw, req, compat) 1025 : aio_setup_single_vector(rw, req); 1026 if (ret) 1027 return ret; 1028 1029 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1030 if (ret < 0) 1031 return ret; 1032 1033 req->ki_nbytes = ret; 1034 req->ki_left = ret; 1035 1036 ret = aio_rw_vect_retry(req, rw, rw_op); 1037 break; 1038 1039 case IOCB_CMD_FDSYNC: 1040 if (!file->f_op->aio_fsync) 1041 return -EINVAL; 1042 1043 ret = file->f_op->aio_fsync(req, 1); 1044 break; 1045 1046 case IOCB_CMD_FSYNC: 1047 if (!file->f_op->aio_fsync) 1048 return -EINVAL; 1049 1050 ret = file->f_op->aio_fsync(req, 0); 1051 break; 1052 1053 default: 1054 pr_debug("EINVAL: no operation provided\n"); 1055 return -EINVAL; 1056 } 1057 1058 if (ret != -EIOCBQUEUED) { 1059 /* 1060 * There's no easy way to restart the syscall since other AIO's 1061 * may be already running. Just fail this IO with EINTR. 1062 */ 1063 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1064 ret == -ERESTARTNOHAND || 1065 ret == -ERESTART_RESTARTBLOCK)) 1066 ret = -EINTR; 1067 aio_complete(req, ret, 0); 1068 } 1069 1070 return 0; 1071 } 1072 1073 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1074 struct iocb *iocb, bool compat) 1075 { 1076 struct kiocb *req; 1077 ssize_t ret; 1078 1079 /* enforce forwards compatibility on users */ 1080 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1081 pr_debug("EINVAL: reserve field set\n"); 1082 return -EINVAL; 1083 } 1084 1085 /* prevent overflows */ 1086 if (unlikely( 1087 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1088 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1089 ((ssize_t)iocb->aio_nbytes < 0) 1090 )) { 1091 pr_debug("EINVAL: io_submit: overflow check\n"); 1092 return -EINVAL; 1093 } 1094 1095 req = aio_get_req(ctx); 1096 if (unlikely(!req)) 1097 return -EAGAIN; 1098 1099 req->ki_filp = fget(iocb->aio_fildes); 1100 if (unlikely(!req->ki_filp)) { 1101 ret = -EBADF; 1102 goto out_put_req; 1103 } 1104 1105 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1106 /* 1107 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1108 * instance of the file* now. The file descriptor must be 1109 * an eventfd() fd, and will be signaled for each completed 1110 * event using the eventfd_signal() function. 1111 */ 1112 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1113 if (IS_ERR(req->ki_eventfd)) { 1114 ret = PTR_ERR(req->ki_eventfd); 1115 req->ki_eventfd = NULL; 1116 goto out_put_req; 1117 } 1118 } 1119 1120 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1121 if (unlikely(ret)) { 1122 pr_debug("EFAULT: aio_key\n"); 1123 goto out_put_req; 1124 } 1125 1126 req->ki_obj.user = user_iocb; 1127 req->ki_user_data = iocb->aio_data; 1128 req->ki_pos = iocb->aio_offset; 1129 1130 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1131 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1132 req->ki_opcode = iocb->aio_lio_opcode; 1133 1134 ret = aio_run_iocb(req, compat); 1135 if (ret) 1136 goto out_put_req; 1137 1138 aio_put_req(req); /* drop extra ref to req */ 1139 return 0; 1140 out_put_req: 1141 atomic_dec(&ctx->reqs_active); 1142 aio_put_req(req); /* drop extra ref to req */ 1143 aio_put_req(req); /* drop i/o ref to req */ 1144 return ret; 1145 } 1146 1147 long do_io_submit(aio_context_t ctx_id, long nr, 1148 struct iocb __user *__user *iocbpp, bool compat) 1149 { 1150 struct kioctx *ctx; 1151 long ret = 0; 1152 int i = 0; 1153 struct blk_plug plug; 1154 1155 if (unlikely(nr < 0)) 1156 return -EINVAL; 1157 1158 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1159 nr = LONG_MAX/sizeof(*iocbpp); 1160 1161 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1162 return -EFAULT; 1163 1164 ctx = lookup_ioctx(ctx_id); 1165 if (unlikely(!ctx)) { 1166 pr_debug("EINVAL: invalid context id\n"); 1167 return -EINVAL; 1168 } 1169 1170 blk_start_plug(&plug); 1171 1172 /* 1173 * AKPM: should this return a partial result if some of the IOs were 1174 * successfully submitted? 1175 */ 1176 for (i=0; i<nr; i++) { 1177 struct iocb __user *user_iocb; 1178 struct iocb tmp; 1179 1180 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1181 ret = -EFAULT; 1182 break; 1183 } 1184 1185 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1186 ret = -EFAULT; 1187 break; 1188 } 1189 1190 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1191 if (ret) 1192 break; 1193 } 1194 blk_finish_plug(&plug); 1195 1196 put_ioctx(ctx); 1197 return i ? i : ret; 1198 } 1199 1200 /* sys_io_submit: 1201 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1202 * the number of iocbs queued. May return -EINVAL if the aio_context 1203 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1204 * *iocbpp[0] is not properly initialized, if the operation specified 1205 * is invalid for the file descriptor in the iocb. May fail with 1206 * -EFAULT if any of the data structures point to invalid data. May 1207 * fail with -EBADF if the file descriptor specified in the first 1208 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1209 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1210 * fail with -ENOSYS if not implemented. 1211 */ 1212 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1213 struct iocb __user * __user *, iocbpp) 1214 { 1215 return do_io_submit(ctx_id, nr, iocbpp, 0); 1216 } 1217 1218 /* lookup_kiocb 1219 * Finds a given iocb for cancellation. 1220 */ 1221 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1222 u32 key) 1223 { 1224 struct list_head *pos; 1225 1226 assert_spin_locked(&ctx->ctx_lock); 1227 1228 if (key != KIOCB_KEY) 1229 return NULL; 1230 1231 /* TODO: use a hash or array, this sucks. */ 1232 list_for_each(pos, &ctx->active_reqs) { 1233 struct kiocb *kiocb = list_kiocb(pos); 1234 if (kiocb->ki_obj.user == iocb) 1235 return kiocb; 1236 } 1237 return NULL; 1238 } 1239 1240 /* sys_io_cancel: 1241 * Attempts to cancel an iocb previously passed to io_submit. If 1242 * the operation is successfully cancelled, the resulting event is 1243 * copied into the memory pointed to by result without being placed 1244 * into the completion queue and 0 is returned. May fail with 1245 * -EFAULT if any of the data structures pointed to are invalid. 1246 * May fail with -EINVAL if aio_context specified by ctx_id is 1247 * invalid. May fail with -EAGAIN if the iocb specified was not 1248 * cancelled. Will fail with -ENOSYS if not implemented. 1249 */ 1250 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1251 struct io_event __user *, result) 1252 { 1253 struct io_event res; 1254 struct kioctx *ctx; 1255 struct kiocb *kiocb; 1256 u32 key; 1257 int ret; 1258 1259 ret = get_user(key, &iocb->aio_key); 1260 if (unlikely(ret)) 1261 return -EFAULT; 1262 1263 ctx = lookup_ioctx(ctx_id); 1264 if (unlikely(!ctx)) 1265 return -EINVAL; 1266 1267 spin_lock_irq(&ctx->ctx_lock); 1268 1269 kiocb = lookup_kiocb(ctx, iocb, key); 1270 if (kiocb) 1271 ret = kiocb_cancel(ctx, kiocb, &res); 1272 else 1273 ret = -EINVAL; 1274 1275 spin_unlock_irq(&ctx->ctx_lock); 1276 1277 if (!ret) { 1278 /* Cancellation succeeded -- copy the result 1279 * into the user's buffer. 1280 */ 1281 if (copy_to_user(result, &res, sizeof(res))) 1282 ret = -EFAULT; 1283 } 1284 1285 put_ioctx(ctx); 1286 1287 return ret; 1288 } 1289 1290 /* io_getevents: 1291 * Attempts to read at least min_nr events and up to nr events from 1292 * the completion queue for the aio_context specified by ctx_id. If 1293 * it succeeds, the number of read events is returned. May fail with 1294 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1295 * out of range, if timeout is out of range. May fail with -EFAULT 1296 * if any of the memory specified is invalid. May return 0 or 1297 * < min_nr if the timeout specified by timeout has elapsed 1298 * before sufficient events are available, where timeout == NULL 1299 * specifies an infinite timeout. Note that the timeout pointed to by 1300 * timeout is relative. Will fail with -ENOSYS if not implemented. 1301 */ 1302 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1303 long, min_nr, 1304 long, nr, 1305 struct io_event __user *, events, 1306 struct timespec __user *, timeout) 1307 { 1308 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1309 long ret = -EINVAL; 1310 1311 if (likely(ioctx)) { 1312 if (likely(min_nr <= nr && min_nr >= 0)) 1313 ret = read_events(ioctx, min_nr, nr, events, timeout); 1314 put_ioctx(ioctx); 1315 } 1316 return ret; 1317 } 1318