xref: /linux/fs/aio.c (revision 7cc9196675234d4de0e1e19b9da1a8b86ecfeedd)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 };
243 
244 static void __init aio_sysctl_init(void)
245 {
246 	register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251 
252 static struct kmem_cache	*kiocb_cachep;
253 static struct kmem_cache	*kioctx_cachep;
254 
255 static struct vfsmount *aio_mnt;
256 
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259 
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 	struct file *file;
263 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 	if (IS_ERR(inode))
265 		return ERR_CAST(inode);
266 
267 	inode->i_mapping->a_ops = &aio_ctx_aops;
268 	inode->i_mapping->i_private_data = ctx;
269 	inode->i_size = PAGE_SIZE * nr_pages;
270 
271 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 				O_RDWR, &aio_ring_fops);
273 	if (IS_ERR(file))
274 		iput(inode);
275 	return file;
276 }
277 
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 	if (!init_pseudo(fc, AIO_RING_MAGIC))
281 		return -ENOMEM;
282 	fc->s_iflags |= SB_I_NOEXEC;
283 	return 0;
284 }
285 
286 /* aio_setup
287  *	Creates the slab caches used by the aio routines, panic on
288  *	failure as this is done early during the boot sequence.
289  */
290 static int __init aio_setup(void)
291 {
292 	static struct file_system_type aio_fs = {
293 		.name		= "aio",
294 		.init_fs_context = aio_init_fs_context,
295 		.kill_sb	= kill_anon_super,
296 	};
297 	aio_mnt = kern_mount(&aio_fs);
298 	if (IS_ERR(aio_mnt))
299 		panic("Failed to create aio fs mount.");
300 
301 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	aio_sysctl_init();
304 	return 0;
305 }
306 __initcall(aio_setup);
307 
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 	struct file *aio_ring_file = ctx->aio_ring_file;
311 	struct address_space *i_mapping;
312 
313 	if (aio_ring_file) {
314 		truncate_setsize(file_inode(aio_ring_file), 0);
315 
316 		/* Prevent further access to the kioctx from migratepages */
317 		i_mapping = aio_ring_file->f_mapping;
318 		spin_lock(&i_mapping->i_private_lock);
319 		i_mapping->i_private_data = NULL;
320 		ctx->aio_ring_file = NULL;
321 		spin_unlock(&i_mapping->i_private_lock);
322 
323 		fput(aio_ring_file);
324 	}
325 }
326 
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 	int i;
330 
331 	/* Disconnect the kiotx from the ring file.  This prevents future
332 	 * accesses to the kioctx from page migration.
333 	 */
334 	put_aio_ring_file(ctx);
335 
336 	for (i = 0; i < ctx->nr_pages; i++) {
337 		struct page *page;
338 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
339 				page_count(ctx->ring_pages[i]));
340 		page = ctx->ring_pages[i];
341 		if (!page)
342 			continue;
343 		ctx->ring_pages[i] = NULL;
344 		put_page(page);
345 	}
346 
347 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
348 		kfree(ctx->ring_pages);
349 		ctx->ring_pages = NULL;
350 	}
351 }
352 
353 static int aio_ring_mremap(struct vm_area_struct *vma)
354 {
355 	struct file *file = vma->vm_file;
356 	struct mm_struct *mm = vma->vm_mm;
357 	struct kioctx_table *table;
358 	int i, res = -EINVAL;
359 
360 	spin_lock(&mm->ioctx_lock);
361 	rcu_read_lock();
362 	table = rcu_dereference(mm->ioctx_table);
363 	if (!table)
364 		goto out_unlock;
365 
366 	for (i = 0; i < table->nr; i++) {
367 		struct kioctx *ctx;
368 
369 		ctx = rcu_dereference(table->table[i]);
370 		if (ctx && ctx->aio_ring_file == file) {
371 			if (!atomic_read(&ctx->dead)) {
372 				ctx->user_id = ctx->mmap_base = vma->vm_start;
373 				res = 0;
374 			}
375 			break;
376 		}
377 	}
378 
379 out_unlock:
380 	rcu_read_unlock();
381 	spin_unlock(&mm->ioctx_lock);
382 	return res;
383 }
384 
385 static const struct vm_operations_struct aio_ring_vm_ops = {
386 	.mremap		= aio_ring_mremap,
387 #if IS_ENABLED(CONFIG_MMU)
388 	.fault		= filemap_fault,
389 	.map_pages	= filemap_map_pages,
390 	.page_mkwrite	= filemap_page_mkwrite,
391 #endif
392 };
393 
394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
395 {
396 	vm_flags_set(vma, VM_DONTEXPAND);
397 	vma->vm_ops = &aio_ring_vm_ops;
398 	return 0;
399 }
400 
401 static const struct file_operations aio_ring_fops = {
402 	.mmap = aio_ring_mmap,
403 };
404 
405 #if IS_ENABLED(CONFIG_MIGRATION)
406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
407 			struct folio *src, enum migrate_mode mode)
408 {
409 	struct kioctx *ctx;
410 	unsigned long flags;
411 	pgoff_t idx;
412 	int rc;
413 
414 	/*
415 	 * We cannot support the _NO_COPY case here, because copy needs to
416 	 * happen under the ctx->completion_lock. That does not work with the
417 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
418 	 */
419 	if (mode == MIGRATE_SYNC_NO_COPY)
420 		return -EINVAL;
421 
422 	rc = 0;
423 
424 	/* mapping->i_private_lock here protects against the kioctx teardown.  */
425 	spin_lock(&mapping->i_private_lock);
426 	ctx = mapping->i_private_data;
427 	if (!ctx) {
428 		rc = -EINVAL;
429 		goto out;
430 	}
431 
432 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
433 	 * to the ring's head, and prevents page migration from mucking in
434 	 * a partially initialized kiotx.
435 	 */
436 	if (!mutex_trylock(&ctx->ring_lock)) {
437 		rc = -EAGAIN;
438 		goto out;
439 	}
440 
441 	idx = src->index;
442 	if (idx < (pgoff_t)ctx->nr_pages) {
443 		/* Make sure the old folio hasn't already been changed */
444 		if (ctx->ring_pages[idx] != &src->page)
445 			rc = -EAGAIN;
446 	} else
447 		rc = -EINVAL;
448 
449 	if (rc != 0)
450 		goto out_unlock;
451 
452 	/* Writeback must be complete */
453 	BUG_ON(folio_test_writeback(src));
454 	folio_get(dst);
455 
456 	rc = folio_migrate_mapping(mapping, dst, src, 1);
457 	if (rc != MIGRATEPAGE_SUCCESS) {
458 		folio_put(dst);
459 		goto out_unlock;
460 	}
461 
462 	/* Take completion_lock to prevent other writes to the ring buffer
463 	 * while the old folio is copied to the new.  This prevents new
464 	 * events from being lost.
465 	 */
466 	spin_lock_irqsave(&ctx->completion_lock, flags);
467 	folio_migrate_copy(dst, src);
468 	BUG_ON(ctx->ring_pages[idx] != &src->page);
469 	ctx->ring_pages[idx] = &dst->page;
470 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
471 
472 	/* The old folio is no longer accessible. */
473 	folio_put(src);
474 
475 out_unlock:
476 	mutex_unlock(&ctx->ring_lock);
477 out:
478 	spin_unlock(&mapping->i_private_lock);
479 	return rc;
480 }
481 #else
482 #define aio_migrate_folio NULL
483 #endif
484 
485 static const struct address_space_operations aio_ctx_aops = {
486 	.dirty_folio	= noop_dirty_folio,
487 	.migrate_folio	= aio_migrate_folio,
488 };
489 
490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
491 {
492 	struct aio_ring *ring;
493 	struct mm_struct *mm = current->mm;
494 	unsigned long size, unused;
495 	int nr_pages;
496 	int i;
497 	struct file *file;
498 
499 	/* Compensate for the ring buffer's head/tail overlap entry */
500 	nr_events += 2;	/* 1 is required, 2 for good luck */
501 
502 	size = sizeof(struct aio_ring);
503 	size += sizeof(struct io_event) * nr_events;
504 
505 	nr_pages = PFN_UP(size);
506 	if (nr_pages < 0)
507 		return -EINVAL;
508 
509 	file = aio_private_file(ctx, nr_pages);
510 	if (IS_ERR(file)) {
511 		ctx->aio_ring_file = NULL;
512 		return -ENOMEM;
513 	}
514 
515 	ctx->aio_ring_file = file;
516 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
517 			/ sizeof(struct io_event);
518 
519 	ctx->ring_pages = ctx->internal_pages;
520 	if (nr_pages > AIO_RING_PAGES) {
521 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
522 					  GFP_KERNEL);
523 		if (!ctx->ring_pages) {
524 			put_aio_ring_file(ctx);
525 			return -ENOMEM;
526 		}
527 	}
528 
529 	for (i = 0; i < nr_pages; i++) {
530 		struct page *page;
531 		page = find_or_create_page(file->f_mapping,
532 					   i, GFP_USER | __GFP_ZERO);
533 		if (!page)
534 			break;
535 		pr_debug("pid(%d) page[%d]->count=%d\n",
536 			 current->pid, i, page_count(page));
537 		SetPageUptodate(page);
538 		unlock_page(page);
539 
540 		ctx->ring_pages[i] = page;
541 	}
542 	ctx->nr_pages = i;
543 
544 	if (unlikely(i != nr_pages)) {
545 		aio_free_ring(ctx);
546 		return -ENOMEM;
547 	}
548 
549 	ctx->mmap_size = nr_pages * PAGE_SIZE;
550 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
551 
552 	if (mmap_write_lock_killable(mm)) {
553 		ctx->mmap_size = 0;
554 		aio_free_ring(ctx);
555 		return -EINTR;
556 	}
557 
558 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
559 				 PROT_READ | PROT_WRITE,
560 				 MAP_SHARED, 0, 0, &unused, NULL);
561 	mmap_write_unlock(mm);
562 	if (IS_ERR((void *)ctx->mmap_base)) {
563 		ctx->mmap_size = 0;
564 		aio_free_ring(ctx);
565 		return -ENOMEM;
566 	}
567 
568 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
569 
570 	ctx->user_id = ctx->mmap_base;
571 	ctx->nr_events = nr_events; /* trusted copy */
572 
573 	ring = page_address(ctx->ring_pages[0]);
574 	ring->nr = nr_events;	/* user copy */
575 	ring->id = ~0U;
576 	ring->head = ring->tail = 0;
577 	ring->magic = AIO_RING_MAGIC;
578 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
579 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
580 	ring->header_length = sizeof(struct aio_ring);
581 	flush_dcache_page(ctx->ring_pages[0]);
582 
583 	return 0;
584 }
585 
586 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
587 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
588 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
589 
590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
591 {
592 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
593 	struct kioctx *ctx = req->ki_ctx;
594 	unsigned long flags;
595 
596 	/*
597 	 * kiocb didn't come from aio or is neither a read nor a write, hence
598 	 * ignore it.
599 	 */
600 	if (!(iocb->ki_flags & IOCB_AIO_RW))
601 		return;
602 
603 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
604 		return;
605 
606 	spin_lock_irqsave(&ctx->ctx_lock, flags);
607 	list_add_tail(&req->ki_list, &ctx->active_reqs);
608 	req->ki_cancel = cancel;
609 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
610 }
611 EXPORT_SYMBOL(kiocb_set_cancel_fn);
612 
613 /*
614  * free_ioctx() should be RCU delayed to synchronize against the RCU
615  * protected lookup_ioctx() and also needs process context to call
616  * aio_free_ring().  Use rcu_work.
617  */
618 static void free_ioctx(struct work_struct *work)
619 {
620 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
621 					  free_rwork);
622 	pr_debug("freeing %p\n", ctx);
623 
624 	aio_free_ring(ctx);
625 	free_percpu(ctx->cpu);
626 	percpu_ref_exit(&ctx->reqs);
627 	percpu_ref_exit(&ctx->users);
628 	kmem_cache_free(kioctx_cachep, ctx);
629 }
630 
631 static void free_ioctx_reqs(struct percpu_ref *ref)
632 {
633 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
634 
635 	/* At this point we know that there are no any in-flight requests */
636 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
637 		complete(&ctx->rq_wait->comp);
638 
639 	/* Synchronize against RCU protected table->table[] dereferences */
640 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
641 	queue_rcu_work(system_wq, &ctx->free_rwork);
642 }
643 
644 /*
645  * When this function runs, the kioctx has been removed from the "hash table"
646  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
647  * now it's safe to cancel any that need to be.
648  */
649 static void free_ioctx_users(struct percpu_ref *ref)
650 {
651 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
652 	struct aio_kiocb *req;
653 
654 	spin_lock_irq(&ctx->ctx_lock);
655 
656 	while (!list_empty(&ctx->active_reqs)) {
657 		req = list_first_entry(&ctx->active_reqs,
658 				       struct aio_kiocb, ki_list);
659 		req->ki_cancel(&req->rw);
660 		list_del_init(&req->ki_list);
661 	}
662 
663 	spin_unlock_irq(&ctx->ctx_lock);
664 
665 	percpu_ref_kill(&ctx->reqs);
666 	percpu_ref_put(&ctx->reqs);
667 }
668 
669 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
670 {
671 	unsigned i, new_nr;
672 	struct kioctx_table *table, *old;
673 	struct aio_ring *ring;
674 
675 	spin_lock(&mm->ioctx_lock);
676 	table = rcu_dereference_raw(mm->ioctx_table);
677 
678 	while (1) {
679 		if (table)
680 			for (i = 0; i < table->nr; i++)
681 				if (!rcu_access_pointer(table->table[i])) {
682 					ctx->id = i;
683 					rcu_assign_pointer(table->table[i], ctx);
684 					spin_unlock(&mm->ioctx_lock);
685 
686 					/* While kioctx setup is in progress,
687 					 * we are protected from page migration
688 					 * changes ring_pages by ->ring_lock.
689 					 */
690 					ring = page_address(ctx->ring_pages[0]);
691 					ring->id = ctx->id;
692 					return 0;
693 				}
694 
695 		new_nr = (table ? table->nr : 1) * 4;
696 		spin_unlock(&mm->ioctx_lock);
697 
698 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
699 		if (!table)
700 			return -ENOMEM;
701 
702 		table->nr = new_nr;
703 
704 		spin_lock(&mm->ioctx_lock);
705 		old = rcu_dereference_raw(mm->ioctx_table);
706 
707 		if (!old) {
708 			rcu_assign_pointer(mm->ioctx_table, table);
709 		} else if (table->nr > old->nr) {
710 			memcpy(table->table, old->table,
711 			       old->nr * sizeof(struct kioctx *));
712 
713 			rcu_assign_pointer(mm->ioctx_table, table);
714 			kfree_rcu(old, rcu);
715 		} else {
716 			kfree(table);
717 			table = old;
718 		}
719 	}
720 }
721 
722 static void aio_nr_sub(unsigned nr)
723 {
724 	spin_lock(&aio_nr_lock);
725 	if (WARN_ON(aio_nr - nr > aio_nr))
726 		aio_nr = 0;
727 	else
728 		aio_nr -= nr;
729 	spin_unlock(&aio_nr_lock);
730 }
731 
732 /* ioctx_alloc
733  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
734  */
735 static struct kioctx *ioctx_alloc(unsigned nr_events)
736 {
737 	struct mm_struct *mm = current->mm;
738 	struct kioctx *ctx;
739 	int err = -ENOMEM;
740 
741 	/*
742 	 * Store the original nr_events -- what userspace passed to io_setup(),
743 	 * for counting against the global limit -- before it changes.
744 	 */
745 	unsigned int max_reqs = nr_events;
746 
747 	/*
748 	 * We keep track of the number of available ringbuffer slots, to prevent
749 	 * overflow (reqs_available), and we also use percpu counters for this.
750 	 *
751 	 * So since up to half the slots might be on other cpu's percpu counters
752 	 * and unavailable, double nr_events so userspace sees what they
753 	 * expected: additionally, we move req_batch slots to/from percpu
754 	 * counters at a time, so make sure that isn't 0:
755 	 */
756 	nr_events = max(nr_events, num_possible_cpus() * 4);
757 	nr_events *= 2;
758 
759 	/* Prevent overflows */
760 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
761 		pr_debug("ENOMEM: nr_events too high\n");
762 		return ERR_PTR(-EINVAL);
763 	}
764 
765 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
766 		return ERR_PTR(-EAGAIN);
767 
768 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
769 	if (!ctx)
770 		return ERR_PTR(-ENOMEM);
771 
772 	ctx->max_reqs = max_reqs;
773 
774 	spin_lock_init(&ctx->ctx_lock);
775 	spin_lock_init(&ctx->completion_lock);
776 	mutex_init(&ctx->ring_lock);
777 	/* Protect against page migration throughout kiotx setup by keeping
778 	 * the ring_lock mutex held until setup is complete. */
779 	mutex_lock(&ctx->ring_lock);
780 	init_waitqueue_head(&ctx->wait);
781 
782 	INIT_LIST_HEAD(&ctx->active_reqs);
783 
784 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
785 		goto err;
786 
787 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
788 		goto err;
789 
790 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
791 	if (!ctx->cpu)
792 		goto err;
793 
794 	err = aio_setup_ring(ctx, nr_events);
795 	if (err < 0)
796 		goto err;
797 
798 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
799 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
800 	if (ctx->req_batch < 1)
801 		ctx->req_batch = 1;
802 
803 	/* limit the number of system wide aios */
804 	spin_lock(&aio_nr_lock);
805 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
806 	    aio_nr + ctx->max_reqs < aio_nr) {
807 		spin_unlock(&aio_nr_lock);
808 		err = -EAGAIN;
809 		goto err_ctx;
810 	}
811 	aio_nr += ctx->max_reqs;
812 	spin_unlock(&aio_nr_lock);
813 
814 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
815 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
816 
817 	err = ioctx_add_table(ctx, mm);
818 	if (err)
819 		goto err_cleanup;
820 
821 	/* Release the ring_lock mutex now that all setup is complete. */
822 	mutex_unlock(&ctx->ring_lock);
823 
824 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
825 		 ctx, ctx->user_id, mm, ctx->nr_events);
826 	return ctx;
827 
828 err_cleanup:
829 	aio_nr_sub(ctx->max_reqs);
830 err_ctx:
831 	atomic_set(&ctx->dead, 1);
832 	if (ctx->mmap_size)
833 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
834 	aio_free_ring(ctx);
835 err:
836 	mutex_unlock(&ctx->ring_lock);
837 	free_percpu(ctx->cpu);
838 	percpu_ref_exit(&ctx->reqs);
839 	percpu_ref_exit(&ctx->users);
840 	kmem_cache_free(kioctx_cachep, ctx);
841 	pr_debug("error allocating ioctx %d\n", err);
842 	return ERR_PTR(err);
843 }
844 
845 /* kill_ioctx
846  *	Cancels all outstanding aio requests on an aio context.  Used
847  *	when the processes owning a context have all exited to encourage
848  *	the rapid destruction of the kioctx.
849  */
850 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
851 		      struct ctx_rq_wait *wait)
852 {
853 	struct kioctx_table *table;
854 
855 	spin_lock(&mm->ioctx_lock);
856 	if (atomic_xchg(&ctx->dead, 1)) {
857 		spin_unlock(&mm->ioctx_lock);
858 		return -EINVAL;
859 	}
860 
861 	table = rcu_dereference_raw(mm->ioctx_table);
862 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
863 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
864 	spin_unlock(&mm->ioctx_lock);
865 
866 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
867 	wake_up_all(&ctx->wait);
868 
869 	/*
870 	 * It'd be more correct to do this in free_ioctx(), after all
871 	 * the outstanding kiocbs have finished - but by then io_destroy
872 	 * has already returned, so io_setup() could potentially return
873 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
874 	 *  could tell).
875 	 */
876 	aio_nr_sub(ctx->max_reqs);
877 
878 	if (ctx->mmap_size)
879 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
880 
881 	ctx->rq_wait = wait;
882 	percpu_ref_kill(&ctx->users);
883 	return 0;
884 }
885 
886 /*
887  * exit_aio: called when the last user of mm goes away.  At this point, there is
888  * no way for any new requests to be submited or any of the io_* syscalls to be
889  * called on the context.
890  *
891  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
892  * them.
893  */
894 void exit_aio(struct mm_struct *mm)
895 {
896 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
897 	struct ctx_rq_wait wait;
898 	int i, skipped;
899 
900 	if (!table)
901 		return;
902 
903 	atomic_set(&wait.count, table->nr);
904 	init_completion(&wait.comp);
905 
906 	skipped = 0;
907 	for (i = 0; i < table->nr; ++i) {
908 		struct kioctx *ctx =
909 			rcu_dereference_protected(table->table[i], true);
910 
911 		if (!ctx) {
912 			skipped++;
913 			continue;
914 		}
915 
916 		/*
917 		 * We don't need to bother with munmap() here - exit_mmap(mm)
918 		 * is coming and it'll unmap everything. And we simply can't,
919 		 * this is not necessarily our ->mm.
920 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
921 		 * that it needs to unmap the area, just set it to 0.
922 		 */
923 		ctx->mmap_size = 0;
924 		kill_ioctx(mm, ctx, &wait);
925 	}
926 
927 	if (!atomic_sub_and_test(skipped, &wait.count)) {
928 		/* Wait until all IO for the context are done. */
929 		wait_for_completion(&wait.comp);
930 	}
931 
932 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
933 	kfree(table);
934 }
935 
936 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
937 {
938 	struct kioctx_cpu *kcpu;
939 	unsigned long flags;
940 
941 	local_irq_save(flags);
942 	kcpu = this_cpu_ptr(ctx->cpu);
943 	kcpu->reqs_available += nr;
944 
945 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
946 		kcpu->reqs_available -= ctx->req_batch;
947 		atomic_add(ctx->req_batch, &ctx->reqs_available);
948 	}
949 
950 	local_irq_restore(flags);
951 }
952 
953 static bool __get_reqs_available(struct kioctx *ctx)
954 {
955 	struct kioctx_cpu *kcpu;
956 	bool ret = false;
957 	unsigned long flags;
958 
959 	local_irq_save(flags);
960 	kcpu = this_cpu_ptr(ctx->cpu);
961 	if (!kcpu->reqs_available) {
962 		int avail = atomic_read(&ctx->reqs_available);
963 
964 		do {
965 			if (avail < ctx->req_batch)
966 				goto out;
967 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
968 					     &avail, avail - ctx->req_batch));
969 
970 		kcpu->reqs_available += ctx->req_batch;
971 	}
972 
973 	ret = true;
974 	kcpu->reqs_available--;
975 out:
976 	local_irq_restore(flags);
977 	return ret;
978 }
979 
980 /* refill_reqs_available
981  *	Updates the reqs_available reference counts used for tracking the
982  *	number of free slots in the completion ring.  This can be called
983  *	from aio_complete() (to optimistically update reqs_available) or
984  *	from aio_get_req() (the we're out of events case).  It must be
985  *	called holding ctx->completion_lock.
986  */
987 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
988                                   unsigned tail)
989 {
990 	unsigned events_in_ring, completed;
991 
992 	/* Clamp head since userland can write to it. */
993 	head %= ctx->nr_events;
994 	if (head <= tail)
995 		events_in_ring = tail - head;
996 	else
997 		events_in_ring = ctx->nr_events - (head - tail);
998 
999 	completed = ctx->completed_events;
1000 	if (events_in_ring < completed)
1001 		completed -= events_in_ring;
1002 	else
1003 		completed = 0;
1004 
1005 	if (!completed)
1006 		return;
1007 
1008 	ctx->completed_events -= completed;
1009 	put_reqs_available(ctx, completed);
1010 }
1011 
1012 /* user_refill_reqs_available
1013  *	Called to refill reqs_available when aio_get_req() encounters an
1014  *	out of space in the completion ring.
1015  */
1016 static void user_refill_reqs_available(struct kioctx *ctx)
1017 {
1018 	spin_lock_irq(&ctx->completion_lock);
1019 	if (ctx->completed_events) {
1020 		struct aio_ring *ring;
1021 		unsigned head;
1022 
1023 		/* Access of ring->head may race with aio_read_events_ring()
1024 		 * here, but that's okay since whether we read the old version
1025 		 * or the new version, and either will be valid.  The important
1026 		 * part is that head cannot pass tail since we prevent
1027 		 * aio_complete() from updating tail by holding
1028 		 * ctx->completion_lock.  Even if head is invalid, the check
1029 		 * against ctx->completed_events below will make sure we do the
1030 		 * safe/right thing.
1031 		 */
1032 		ring = page_address(ctx->ring_pages[0]);
1033 		head = ring->head;
1034 
1035 		refill_reqs_available(ctx, head, ctx->tail);
1036 	}
1037 
1038 	spin_unlock_irq(&ctx->completion_lock);
1039 }
1040 
1041 static bool get_reqs_available(struct kioctx *ctx)
1042 {
1043 	if (__get_reqs_available(ctx))
1044 		return true;
1045 	user_refill_reqs_available(ctx);
1046 	return __get_reqs_available(ctx);
1047 }
1048 
1049 /* aio_get_req
1050  *	Allocate a slot for an aio request.
1051  * Returns NULL if no requests are free.
1052  *
1053  * The refcount is initialized to 2 - one for the async op completion,
1054  * one for the synchronous code that does this.
1055  */
1056 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1057 {
1058 	struct aio_kiocb *req;
1059 
1060 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1061 	if (unlikely(!req))
1062 		return NULL;
1063 
1064 	if (unlikely(!get_reqs_available(ctx))) {
1065 		kmem_cache_free(kiocb_cachep, req);
1066 		return NULL;
1067 	}
1068 
1069 	percpu_ref_get(&ctx->reqs);
1070 	req->ki_ctx = ctx;
1071 	INIT_LIST_HEAD(&req->ki_list);
1072 	refcount_set(&req->ki_refcnt, 2);
1073 	req->ki_eventfd = NULL;
1074 	return req;
1075 }
1076 
1077 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1078 {
1079 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1080 	struct mm_struct *mm = current->mm;
1081 	struct kioctx *ctx, *ret = NULL;
1082 	struct kioctx_table *table;
1083 	unsigned id;
1084 
1085 	if (get_user(id, &ring->id))
1086 		return NULL;
1087 
1088 	rcu_read_lock();
1089 	table = rcu_dereference(mm->ioctx_table);
1090 
1091 	if (!table || id >= table->nr)
1092 		goto out;
1093 
1094 	id = array_index_nospec(id, table->nr);
1095 	ctx = rcu_dereference(table->table[id]);
1096 	if (ctx && ctx->user_id == ctx_id) {
1097 		if (percpu_ref_tryget_live(&ctx->users))
1098 			ret = ctx;
1099 	}
1100 out:
1101 	rcu_read_unlock();
1102 	return ret;
1103 }
1104 
1105 static inline void iocb_destroy(struct aio_kiocb *iocb)
1106 {
1107 	if (iocb->ki_eventfd)
1108 		eventfd_ctx_put(iocb->ki_eventfd);
1109 	if (iocb->ki_filp)
1110 		fput(iocb->ki_filp);
1111 	percpu_ref_put(&iocb->ki_ctx->reqs);
1112 	kmem_cache_free(kiocb_cachep, iocb);
1113 }
1114 
1115 struct aio_waiter {
1116 	struct wait_queue_entry	w;
1117 	size_t			min_nr;
1118 };
1119 
1120 /* aio_complete
1121  *	Called when the io request on the given iocb is complete.
1122  */
1123 static void aio_complete(struct aio_kiocb *iocb)
1124 {
1125 	struct kioctx	*ctx = iocb->ki_ctx;
1126 	struct aio_ring	*ring;
1127 	struct io_event	*ev_page, *event;
1128 	unsigned tail, pos, head, avail;
1129 	unsigned long	flags;
1130 
1131 	/*
1132 	 * Add a completion event to the ring buffer. Must be done holding
1133 	 * ctx->completion_lock to prevent other code from messing with the tail
1134 	 * pointer since we might be called from irq context.
1135 	 */
1136 	spin_lock_irqsave(&ctx->completion_lock, flags);
1137 
1138 	tail = ctx->tail;
1139 	pos = tail + AIO_EVENTS_OFFSET;
1140 
1141 	if (++tail >= ctx->nr_events)
1142 		tail = 0;
1143 
1144 	ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1145 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1146 
1147 	*event = iocb->ki_res;
1148 
1149 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1150 
1151 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1152 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1153 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1154 
1155 	/* after flagging the request as done, we
1156 	 * must never even look at it again
1157 	 */
1158 	smp_wmb();	/* make event visible before updating tail */
1159 
1160 	ctx->tail = tail;
1161 
1162 	ring = page_address(ctx->ring_pages[0]);
1163 	head = ring->head;
1164 	ring->tail = tail;
1165 	flush_dcache_page(ctx->ring_pages[0]);
1166 
1167 	ctx->completed_events++;
1168 	if (ctx->completed_events > 1)
1169 		refill_reqs_available(ctx, head, tail);
1170 
1171 	avail = tail > head
1172 		? tail - head
1173 		: tail + ctx->nr_events - head;
1174 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1175 
1176 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1177 
1178 	/*
1179 	 * Check if the user asked us to deliver the result through an
1180 	 * eventfd. The eventfd_signal() function is safe to be called
1181 	 * from IRQ context.
1182 	 */
1183 	if (iocb->ki_eventfd)
1184 		eventfd_signal(iocb->ki_eventfd);
1185 
1186 	/*
1187 	 * We have to order our ring_info tail store above and test
1188 	 * of the wait list below outside the wait lock.  This is
1189 	 * like in wake_up_bit() where clearing a bit has to be
1190 	 * ordered with the unlocked test.
1191 	 */
1192 	smp_mb();
1193 
1194 	if (waitqueue_active(&ctx->wait)) {
1195 		struct aio_waiter *curr, *next;
1196 		unsigned long flags;
1197 
1198 		spin_lock_irqsave(&ctx->wait.lock, flags);
1199 		list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1200 			if (avail >= curr->min_nr) {
1201 				list_del_init_careful(&curr->w.entry);
1202 				wake_up_process(curr->w.private);
1203 			}
1204 		spin_unlock_irqrestore(&ctx->wait.lock, flags);
1205 	}
1206 }
1207 
1208 static inline void iocb_put(struct aio_kiocb *iocb)
1209 {
1210 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1211 		aio_complete(iocb);
1212 		iocb_destroy(iocb);
1213 	}
1214 }
1215 
1216 /* aio_read_events_ring
1217  *	Pull an event off of the ioctx's event ring.  Returns the number of
1218  *	events fetched
1219  */
1220 static long aio_read_events_ring(struct kioctx *ctx,
1221 				 struct io_event __user *event, long nr)
1222 {
1223 	struct aio_ring *ring;
1224 	unsigned head, tail, pos;
1225 	long ret = 0;
1226 	int copy_ret;
1227 
1228 	/*
1229 	 * The mutex can block and wake us up and that will cause
1230 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1231 	 * and repeat. This should be rare enough that it doesn't cause
1232 	 * peformance issues. See the comment in read_events() for more detail.
1233 	 */
1234 	sched_annotate_sleep();
1235 	mutex_lock(&ctx->ring_lock);
1236 
1237 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1238 	ring = page_address(ctx->ring_pages[0]);
1239 	head = ring->head;
1240 	tail = ring->tail;
1241 
1242 	/*
1243 	 * Ensure that once we've read the current tail pointer, that
1244 	 * we also see the events that were stored up to the tail.
1245 	 */
1246 	smp_rmb();
1247 
1248 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1249 
1250 	if (head == tail)
1251 		goto out;
1252 
1253 	head %= ctx->nr_events;
1254 	tail %= ctx->nr_events;
1255 
1256 	while (ret < nr) {
1257 		long avail;
1258 		struct io_event *ev;
1259 		struct page *page;
1260 
1261 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1262 		if (head == tail)
1263 			break;
1264 
1265 		pos = head + AIO_EVENTS_OFFSET;
1266 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1267 		pos %= AIO_EVENTS_PER_PAGE;
1268 
1269 		avail = min(avail, nr - ret);
1270 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1271 
1272 		ev = page_address(page);
1273 		copy_ret = copy_to_user(event + ret, ev + pos,
1274 					sizeof(*ev) * avail);
1275 
1276 		if (unlikely(copy_ret)) {
1277 			ret = -EFAULT;
1278 			goto out;
1279 		}
1280 
1281 		ret += avail;
1282 		head += avail;
1283 		head %= ctx->nr_events;
1284 	}
1285 
1286 	ring = page_address(ctx->ring_pages[0]);
1287 	ring->head = head;
1288 	flush_dcache_page(ctx->ring_pages[0]);
1289 
1290 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1291 out:
1292 	mutex_unlock(&ctx->ring_lock);
1293 
1294 	return ret;
1295 }
1296 
1297 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1298 			    struct io_event __user *event, long *i)
1299 {
1300 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1301 
1302 	if (ret > 0)
1303 		*i += ret;
1304 
1305 	if (unlikely(atomic_read(&ctx->dead)))
1306 		ret = -EINVAL;
1307 
1308 	if (!*i)
1309 		*i = ret;
1310 
1311 	return ret < 0 || *i >= min_nr;
1312 }
1313 
1314 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1315 			struct io_event __user *event,
1316 			ktime_t until)
1317 {
1318 	struct hrtimer_sleeper	t;
1319 	struct aio_waiter	w;
1320 	long ret = 0, ret2 = 0;
1321 
1322 	/*
1323 	 * Note that aio_read_events() is being called as the conditional - i.e.
1324 	 * we're calling it after prepare_to_wait() has set task state to
1325 	 * TASK_INTERRUPTIBLE.
1326 	 *
1327 	 * But aio_read_events() can block, and if it blocks it's going to flip
1328 	 * the task state back to TASK_RUNNING.
1329 	 *
1330 	 * This should be ok, provided it doesn't flip the state back to
1331 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1332 	 * will only happen if the mutex_lock() call blocks, and we then find
1333 	 * the ringbuffer empty. So in practice we should be ok, but it's
1334 	 * something to be aware of when touching this code.
1335 	 */
1336 	aio_read_events(ctx, min_nr, nr, event, &ret);
1337 	if (until == 0 || ret < 0 || ret >= min_nr)
1338 		return ret;
1339 
1340 	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1341 	if (until != KTIME_MAX) {
1342 		hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1343 		hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1344 	}
1345 
1346 	init_wait(&w.w);
1347 
1348 	while (1) {
1349 		unsigned long nr_got = ret;
1350 
1351 		w.min_nr = min_nr - ret;
1352 
1353 		ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1354 		if (!ret2 && !t.task)
1355 			ret2 = -ETIME;
1356 
1357 		if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1358 			break;
1359 
1360 		if (nr_got == ret)
1361 			schedule();
1362 	}
1363 
1364 	finish_wait(&ctx->wait, &w.w);
1365 	hrtimer_cancel(&t.timer);
1366 	destroy_hrtimer_on_stack(&t.timer);
1367 
1368 	return ret;
1369 }
1370 
1371 /* sys_io_setup:
1372  *	Create an aio_context capable of receiving at least nr_events.
1373  *	ctxp must not point to an aio_context that already exists, and
1374  *	must be initialized to 0 prior to the call.  On successful
1375  *	creation of the aio_context, *ctxp is filled in with the resulting
1376  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1377  *	if the specified nr_events exceeds internal limits.  May fail
1378  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1379  *	of available events.  May fail with -ENOMEM if insufficient kernel
1380  *	resources are available.  May fail with -EFAULT if an invalid
1381  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1382  *	implemented.
1383  */
1384 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1385 {
1386 	struct kioctx *ioctx = NULL;
1387 	unsigned long ctx;
1388 	long ret;
1389 
1390 	ret = get_user(ctx, ctxp);
1391 	if (unlikely(ret))
1392 		goto out;
1393 
1394 	ret = -EINVAL;
1395 	if (unlikely(ctx || nr_events == 0)) {
1396 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1397 		         ctx, nr_events);
1398 		goto out;
1399 	}
1400 
1401 	ioctx = ioctx_alloc(nr_events);
1402 	ret = PTR_ERR(ioctx);
1403 	if (!IS_ERR(ioctx)) {
1404 		ret = put_user(ioctx->user_id, ctxp);
1405 		if (ret)
1406 			kill_ioctx(current->mm, ioctx, NULL);
1407 		percpu_ref_put(&ioctx->users);
1408 	}
1409 
1410 out:
1411 	return ret;
1412 }
1413 
1414 #ifdef CONFIG_COMPAT
1415 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1416 {
1417 	struct kioctx *ioctx = NULL;
1418 	unsigned long ctx;
1419 	long ret;
1420 
1421 	ret = get_user(ctx, ctx32p);
1422 	if (unlikely(ret))
1423 		goto out;
1424 
1425 	ret = -EINVAL;
1426 	if (unlikely(ctx || nr_events == 0)) {
1427 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1428 		         ctx, nr_events);
1429 		goto out;
1430 	}
1431 
1432 	ioctx = ioctx_alloc(nr_events);
1433 	ret = PTR_ERR(ioctx);
1434 	if (!IS_ERR(ioctx)) {
1435 		/* truncating is ok because it's a user address */
1436 		ret = put_user((u32)ioctx->user_id, ctx32p);
1437 		if (ret)
1438 			kill_ioctx(current->mm, ioctx, NULL);
1439 		percpu_ref_put(&ioctx->users);
1440 	}
1441 
1442 out:
1443 	return ret;
1444 }
1445 #endif
1446 
1447 /* sys_io_destroy:
1448  *	Destroy the aio_context specified.  May cancel any outstanding
1449  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1450  *	implemented.  May fail with -EINVAL if the context pointed to
1451  *	is invalid.
1452  */
1453 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1454 {
1455 	struct kioctx *ioctx = lookup_ioctx(ctx);
1456 	if (likely(NULL != ioctx)) {
1457 		struct ctx_rq_wait wait;
1458 		int ret;
1459 
1460 		init_completion(&wait.comp);
1461 		atomic_set(&wait.count, 1);
1462 
1463 		/* Pass requests_done to kill_ioctx() where it can be set
1464 		 * in a thread-safe way. If we try to set it here then we have
1465 		 * a race condition if two io_destroy() called simultaneously.
1466 		 */
1467 		ret = kill_ioctx(current->mm, ioctx, &wait);
1468 		percpu_ref_put(&ioctx->users);
1469 
1470 		/* Wait until all IO for the context are done. Otherwise kernel
1471 		 * keep using user-space buffers even if user thinks the context
1472 		 * is destroyed.
1473 		 */
1474 		if (!ret)
1475 			wait_for_completion(&wait.comp);
1476 
1477 		return ret;
1478 	}
1479 	pr_debug("EINVAL: invalid context id\n");
1480 	return -EINVAL;
1481 }
1482 
1483 static void aio_remove_iocb(struct aio_kiocb *iocb)
1484 {
1485 	struct kioctx *ctx = iocb->ki_ctx;
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1489 	list_del(&iocb->ki_list);
1490 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1491 }
1492 
1493 static void aio_complete_rw(struct kiocb *kiocb, long res)
1494 {
1495 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1496 
1497 	if (!list_empty_careful(&iocb->ki_list))
1498 		aio_remove_iocb(iocb);
1499 
1500 	if (kiocb->ki_flags & IOCB_WRITE) {
1501 		struct inode *inode = file_inode(kiocb->ki_filp);
1502 
1503 		if (S_ISREG(inode->i_mode))
1504 			kiocb_end_write(kiocb);
1505 	}
1506 
1507 	iocb->ki_res.res = res;
1508 	iocb->ki_res.res2 = 0;
1509 	iocb_put(iocb);
1510 }
1511 
1512 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1513 {
1514 	int ret;
1515 
1516 	req->ki_complete = aio_complete_rw;
1517 	req->private = NULL;
1518 	req->ki_pos = iocb->aio_offset;
1519 	req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1520 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1521 		req->ki_flags |= IOCB_EVENTFD;
1522 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1523 		/*
1524 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1525 		 * aio_reqprio is interpreted as an I/O scheduling
1526 		 * class and priority.
1527 		 */
1528 		ret = ioprio_check_cap(iocb->aio_reqprio);
1529 		if (ret) {
1530 			pr_debug("aio ioprio check cap error: %d\n", ret);
1531 			return ret;
1532 		}
1533 
1534 		req->ki_ioprio = iocb->aio_reqprio;
1535 	} else
1536 		req->ki_ioprio = get_current_ioprio();
1537 
1538 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1539 	if (unlikely(ret))
1540 		return ret;
1541 
1542 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1543 	return 0;
1544 }
1545 
1546 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1547 		struct iovec **iovec, bool vectored, bool compat,
1548 		struct iov_iter *iter)
1549 {
1550 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1551 	size_t len = iocb->aio_nbytes;
1552 
1553 	if (!vectored) {
1554 		ssize_t ret = import_ubuf(rw, buf, len, iter);
1555 		*iovec = NULL;
1556 		return ret;
1557 	}
1558 
1559 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1560 }
1561 
1562 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1563 {
1564 	switch (ret) {
1565 	case -EIOCBQUEUED:
1566 		break;
1567 	case -ERESTARTSYS:
1568 	case -ERESTARTNOINTR:
1569 	case -ERESTARTNOHAND:
1570 	case -ERESTART_RESTARTBLOCK:
1571 		/*
1572 		 * There's no easy way to restart the syscall since other AIO's
1573 		 * may be already running. Just fail this IO with EINTR.
1574 		 */
1575 		ret = -EINTR;
1576 		fallthrough;
1577 	default:
1578 		req->ki_complete(req, ret);
1579 	}
1580 }
1581 
1582 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1583 			bool vectored, bool compat)
1584 {
1585 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1586 	struct iov_iter iter;
1587 	struct file *file;
1588 	int ret;
1589 
1590 	ret = aio_prep_rw(req, iocb);
1591 	if (ret)
1592 		return ret;
1593 	file = req->ki_filp;
1594 	if (unlikely(!(file->f_mode & FMODE_READ)))
1595 		return -EBADF;
1596 	if (unlikely(!file->f_op->read_iter))
1597 		return -EINVAL;
1598 
1599 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1600 	if (ret < 0)
1601 		return ret;
1602 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1603 	if (!ret)
1604 		aio_rw_done(req, call_read_iter(file, req, &iter));
1605 	kfree(iovec);
1606 	return ret;
1607 }
1608 
1609 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1610 			 bool vectored, bool compat)
1611 {
1612 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1613 	struct iov_iter iter;
1614 	struct file *file;
1615 	int ret;
1616 
1617 	ret = aio_prep_rw(req, iocb);
1618 	if (ret)
1619 		return ret;
1620 	file = req->ki_filp;
1621 
1622 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1623 		return -EBADF;
1624 	if (unlikely(!file->f_op->write_iter))
1625 		return -EINVAL;
1626 
1627 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1628 	if (ret < 0)
1629 		return ret;
1630 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1631 	if (!ret) {
1632 		if (S_ISREG(file_inode(file)->i_mode))
1633 			kiocb_start_write(req);
1634 		req->ki_flags |= IOCB_WRITE;
1635 		aio_rw_done(req, call_write_iter(file, req, &iter));
1636 	}
1637 	kfree(iovec);
1638 	return ret;
1639 }
1640 
1641 static void aio_fsync_work(struct work_struct *work)
1642 {
1643 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1644 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1645 
1646 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1647 	revert_creds(old_cred);
1648 	put_cred(iocb->fsync.creds);
1649 	iocb_put(iocb);
1650 }
1651 
1652 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1653 		     bool datasync)
1654 {
1655 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1656 			iocb->aio_rw_flags))
1657 		return -EINVAL;
1658 
1659 	if (unlikely(!req->file->f_op->fsync))
1660 		return -EINVAL;
1661 
1662 	req->creds = prepare_creds();
1663 	if (!req->creds)
1664 		return -ENOMEM;
1665 
1666 	req->datasync = datasync;
1667 	INIT_WORK(&req->work, aio_fsync_work);
1668 	schedule_work(&req->work);
1669 	return 0;
1670 }
1671 
1672 static void aio_poll_put_work(struct work_struct *work)
1673 {
1674 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1675 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1676 
1677 	iocb_put(iocb);
1678 }
1679 
1680 /*
1681  * Safely lock the waitqueue which the request is on, synchronizing with the
1682  * case where the ->poll() provider decides to free its waitqueue early.
1683  *
1684  * Returns true on success, meaning that req->head->lock was locked, req->wait
1685  * is on req->head, and an RCU read lock was taken.  Returns false if the
1686  * request was already removed from its waitqueue (which might no longer exist).
1687  */
1688 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1689 {
1690 	wait_queue_head_t *head;
1691 
1692 	/*
1693 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1694 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1695 	 * lock in the first place can race with the waitqueue being freed.
1696 	 *
1697 	 * We solve this as eventpoll does: by taking advantage of the fact that
1698 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1699 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1700 	 * non-NULL, we can then lock it without the memory being freed out from
1701 	 * under us, then check whether the request is still on the queue.
1702 	 *
1703 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1704 	 * case the caller deletes the entry from the queue, leaving it empty.
1705 	 * In that case, only RCU prevents the queue memory from being freed.
1706 	 */
1707 	rcu_read_lock();
1708 	head = smp_load_acquire(&req->head);
1709 	if (head) {
1710 		spin_lock(&head->lock);
1711 		if (!list_empty(&req->wait.entry))
1712 			return true;
1713 		spin_unlock(&head->lock);
1714 	}
1715 	rcu_read_unlock();
1716 	return false;
1717 }
1718 
1719 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1720 {
1721 	spin_unlock(&req->head->lock);
1722 	rcu_read_unlock();
1723 }
1724 
1725 static void aio_poll_complete_work(struct work_struct *work)
1726 {
1727 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1728 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1729 	struct poll_table_struct pt = { ._key = req->events };
1730 	struct kioctx *ctx = iocb->ki_ctx;
1731 	__poll_t mask = 0;
1732 
1733 	if (!READ_ONCE(req->cancelled))
1734 		mask = vfs_poll(req->file, &pt) & req->events;
1735 
1736 	/*
1737 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1738 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1739 	 * synchronize with them.  In the cancellation case the list_del_init
1740 	 * itself is not actually needed, but harmless so we keep it in to
1741 	 * avoid further branches in the fast path.
1742 	 */
1743 	spin_lock_irq(&ctx->ctx_lock);
1744 	if (poll_iocb_lock_wq(req)) {
1745 		if (!mask && !READ_ONCE(req->cancelled)) {
1746 			/*
1747 			 * The request isn't actually ready to be completed yet.
1748 			 * Reschedule completion if another wakeup came in.
1749 			 */
1750 			if (req->work_need_resched) {
1751 				schedule_work(&req->work);
1752 				req->work_need_resched = false;
1753 			} else {
1754 				req->work_scheduled = false;
1755 			}
1756 			poll_iocb_unlock_wq(req);
1757 			spin_unlock_irq(&ctx->ctx_lock);
1758 			return;
1759 		}
1760 		list_del_init(&req->wait.entry);
1761 		poll_iocb_unlock_wq(req);
1762 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1763 	list_del_init(&iocb->ki_list);
1764 	iocb->ki_res.res = mangle_poll(mask);
1765 	spin_unlock_irq(&ctx->ctx_lock);
1766 
1767 	iocb_put(iocb);
1768 }
1769 
1770 /* assumes we are called with irqs disabled */
1771 static int aio_poll_cancel(struct kiocb *iocb)
1772 {
1773 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1774 	struct poll_iocb *req = &aiocb->poll;
1775 
1776 	if (poll_iocb_lock_wq(req)) {
1777 		WRITE_ONCE(req->cancelled, true);
1778 		if (!req->work_scheduled) {
1779 			schedule_work(&aiocb->poll.work);
1780 			req->work_scheduled = true;
1781 		}
1782 		poll_iocb_unlock_wq(req);
1783 	} /* else, the request was force-cancelled by POLLFREE already */
1784 
1785 	return 0;
1786 }
1787 
1788 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1789 		void *key)
1790 {
1791 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1792 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1793 	__poll_t mask = key_to_poll(key);
1794 	unsigned long flags;
1795 
1796 	/* for instances that support it check for an event match first: */
1797 	if (mask && !(mask & req->events))
1798 		return 0;
1799 
1800 	/*
1801 	 * Complete the request inline if possible.  This requires that three
1802 	 * conditions be met:
1803 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1804 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1805 	 *	the events, so inline completion isn't possible.
1806 	 *   2. The completion work must not have already been scheduled.
1807 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1808 	 *	already hold the waitqueue lock, so this inverts the normal
1809 	 *	locking order.  Use irqsave/irqrestore because not all
1810 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1811 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1812 	 */
1813 	if (mask && !req->work_scheduled &&
1814 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1815 		struct kioctx *ctx = iocb->ki_ctx;
1816 
1817 		list_del_init(&req->wait.entry);
1818 		list_del(&iocb->ki_list);
1819 		iocb->ki_res.res = mangle_poll(mask);
1820 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1821 			iocb = NULL;
1822 			INIT_WORK(&req->work, aio_poll_put_work);
1823 			schedule_work(&req->work);
1824 		}
1825 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1826 		if (iocb)
1827 			iocb_put(iocb);
1828 	} else {
1829 		/*
1830 		 * Schedule the completion work if needed.  If it was already
1831 		 * scheduled, record that another wakeup came in.
1832 		 *
1833 		 * Don't remove the request from the waitqueue here, as it might
1834 		 * not actually be complete yet (we won't know until vfs_poll()
1835 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1836 		 * exception to this; see below.
1837 		 */
1838 		if (req->work_scheduled) {
1839 			req->work_need_resched = true;
1840 		} else {
1841 			schedule_work(&req->work);
1842 			req->work_scheduled = true;
1843 		}
1844 
1845 		/*
1846 		 * If the waitqueue is being freed early but we can't complete
1847 		 * the request inline, we have to tear down the request as best
1848 		 * we can.  That means immediately removing the request from its
1849 		 * waitqueue and preventing all further accesses to the
1850 		 * waitqueue via the request.  We also need to schedule the
1851 		 * completion work (done above).  Also mark the request as
1852 		 * cancelled, to potentially skip an unneeded call to ->poll().
1853 		 */
1854 		if (mask & POLLFREE) {
1855 			WRITE_ONCE(req->cancelled, true);
1856 			list_del_init(&req->wait.entry);
1857 
1858 			/*
1859 			 * Careful: this *must* be the last step, since as soon
1860 			 * as req->head is NULL'ed out, the request can be
1861 			 * completed and freed, since aio_poll_complete_work()
1862 			 * will no longer need to take the waitqueue lock.
1863 			 */
1864 			smp_store_release(&req->head, NULL);
1865 		}
1866 	}
1867 	return 1;
1868 }
1869 
1870 struct aio_poll_table {
1871 	struct poll_table_struct	pt;
1872 	struct aio_kiocb		*iocb;
1873 	bool				queued;
1874 	int				error;
1875 };
1876 
1877 static void
1878 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1879 		struct poll_table_struct *p)
1880 {
1881 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1882 
1883 	/* multiple wait queues per file are not supported */
1884 	if (unlikely(pt->queued)) {
1885 		pt->error = -EINVAL;
1886 		return;
1887 	}
1888 
1889 	pt->queued = true;
1890 	pt->error = 0;
1891 	pt->iocb->poll.head = head;
1892 	add_wait_queue(head, &pt->iocb->poll.wait);
1893 }
1894 
1895 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1896 {
1897 	struct kioctx *ctx = aiocb->ki_ctx;
1898 	struct poll_iocb *req = &aiocb->poll;
1899 	struct aio_poll_table apt;
1900 	bool cancel = false;
1901 	__poll_t mask;
1902 
1903 	/* reject any unknown events outside the normal event mask. */
1904 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1905 		return -EINVAL;
1906 	/* reject fields that are not defined for poll */
1907 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1908 		return -EINVAL;
1909 
1910 	INIT_WORK(&req->work, aio_poll_complete_work);
1911 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1912 
1913 	req->head = NULL;
1914 	req->cancelled = false;
1915 	req->work_scheduled = false;
1916 	req->work_need_resched = false;
1917 
1918 	apt.pt._qproc = aio_poll_queue_proc;
1919 	apt.pt._key = req->events;
1920 	apt.iocb = aiocb;
1921 	apt.queued = false;
1922 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1923 
1924 	/* initialized the list so that we can do list_empty checks */
1925 	INIT_LIST_HEAD(&req->wait.entry);
1926 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1927 
1928 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1929 	spin_lock_irq(&ctx->ctx_lock);
1930 	if (likely(apt.queued)) {
1931 		bool on_queue = poll_iocb_lock_wq(req);
1932 
1933 		if (!on_queue || req->work_scheduled) {
1934 			/*
1935 			 * aio_poll_wake() already either scheduled the async
1936 			 * completion work, or completed the request inline.
1937 			 */
1938 			if (apt.error) /* unsupported case: multiple queues */
1939 				cancel = true;
1940 			apt.error = 0;
1941 			mask = 0;
1942 		}
1943 		if (mask || apt.error) {
1944 			/* Steal to complete synchronously. */
1945 			list_del_init(&req->wait.entry);
1946 		} else if (cancel) {
1947 			/* Cancel if possible (may be too late though). */
1948 			WRITE_ONCE(req->cancelled, true);
1949 		} else if (on_queue) {
1950 			/*
1951 			 * Actually waiting for an event, so add the request to
1952 			 * active_reqs so that it can be cancelled if needed.
1953 			 */
1954 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1955 			aiocb->ki_cancel = aio_poll_cancel;
1956 		}
1957 		if (on_queue)
1958 			poll_iocb_unlock_wq(req);
1959 	}
1960 	if (mask) { /* no async, we'd stolen it */
1961 		aiocb->ki_res.res = mangle_poll(mask);
1962 		apt.error = 0;
1963 	}
1964 	spin_unlock_irq(&ctx->ctx_lock);
1965 	if (mask)
1966 		iocb_put(aiocb);
1967 	return apt.error;
1968 }
1969 
1970 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1971 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1972 			   bool compat)
1973 {
1974 	req->ki_filp = fget(iocb->aio_fildes);
1975 	if (unlikely(!req->ki_filp))
1976 		return -EBADF;
1977 
1978 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1979 		struct eventfd_ctx *eventfd;
1980 		/*
1981 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1982 		 * instance of the file* now. The file descriptor must be
1983 		 * an eventfd() fd, and will be signaled for each completed
1984 		 * event using the eventfd_signal() function.
1985 		 */
1986 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1987 		if (IS_ERR(eventfd))
1988 			return PTR_ERR(eventfd);
1989 
1990 		req->ki_eventfd = eventfd;
1991 	}
1992 
1993 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1994 		pr_debug("EFAULT: aio_key\n");
1995 		return -EFAULT;
1996 	}
1997 
1998 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1999 	req->ki_res.data = iocb->aio_data;
2000 	req->ki_res.res = 0;
2001 	req->ki_res.res2 = 0;
2002 
2003 	switch (iocb->aio_lio_opcode) {
2004 	case IOCB_CMD_PREAD:
2005 		return aio_read(&req->rw, iocb, false, compat);
2006 	case IOCB_CMD_PWRITE:
2007 		return aio_write(&req->rw, iocb, false, compat);
2008 	case IOCB_CMD_PREADV:
2009 		return aio_read(&req->rw, iocb, true, compat);
2010 	case IOCB_CMD_PWRITEV:
2011 		return aio_write(&req->rw, iocb, true, compat);
2012 	case IOCB_CMD_FSYNC:
2013 		return aio_fsync(&req->fsync, iocb, false);
2014 	case IOCB_CMD_FDSYNC:
2015 		return aio_fsync(&req->fsync, iocb, true);
2016 	case IOCB_CMD_POLL:
2017 		return aio_poll(req, iocb);
2018 	default:
2019 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2020 		return -EINVAL;
2021 	}
2022 }
2023 
2024 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2025 			 bool compat)
2026 {
2027 	struct aio_kiocb *req;
2028 	struct iocb iocb;
2029 	int err;
2030 
2031 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2032 		return -EFAULT;
2033 
2034 	/* enforce forwards compatibility on users */
2035 	if (unlikely(iocb.aio_reserved2)) {
2036 		pr_debug("EINVAL: reserve field set\n");
2037 		return -EINVAL;
2038 	}
2039 
2040 	/* prevent overflows */
2041 	if (unlikely(
2042 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2043 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2044 	    ((ssize_t)iocb.aio_nbytes < 0)
2045 	   )) {
2046 		pr_debug("EINVAL: overflow check\n");
2047 		return -EINVAL;
2048 	}
2049 
2050 	req = aio_get_req(ctx);
2051 	if (unlikely(!req))
2052 		return -EAGAIN;
2053 
2054 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2055 
2056 	/* Done with the synchronous reference */
2057 	iocb_put(req);
2058 
2059 	/*
2060 	 * If err is 0, we'd either done aio_complete() ourselves or have
2061 	 * arranged for that to be done asynchronously.  Anything non-zero
2062 	 * means that we need to destroy req ourselves.
2063 	 */
2064 	if (unlikely(err)) {
2065 		iocb_destroy(req);
2066 		put_reqs_available(ctx, 1);
2067 	}
2068 	return err;
2069 }
2070 
2071 /* sys_io_submit:
2072  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2073  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2074  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2075  *	*iocbpp[0] is not properly initialized, if the operation specified
2076  *	is invalid for the file descriptor in the iocb.  May fail with
2077  *	-EFAULT if any of the data structures point to invalid data.  May
2078  *	fail with -EBADF if the file descriptor specified in the first
2079  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2080  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2081  *	fail with -ENOSYS if not implemented.
2082  */
2083 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2084 		struct iocb __user * __user *, iocbpp)
2085 {
2086 	struct kioctx *ctx;
2087 	long ret = 0;
2088 	int i = 0;
2089 	struct blk_plug plug;
2090 
2091 	if (unlikely(nr < 0))
2092 		return -EINVAL;
2093 
2094 	ctx = lookup_ioctx(ctx_id);
2095 	if (unlikely(!ctx)) {
2096 		pr_debug("EINVAL: invalid context id\n");
2097 		return -EINVAL;
2098 	}
2099 
2100 	if (nr > ctx->nr_events)
2101 		nr = ctx->nr_events;
2102 
2103 	if (nr > AIO_PLUG_THRESHOLD)
2104 		blk_start_plug(&plug);
2105 	for (i = 0; i < nr; i++) {
2106 		struct iocb __user *user_iocb;
2107 
2108 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2109 			ret = -EFAULT;
2110 			break;
2111 		}
2112 
2113 		ret = io_submit_one(ctx, user_iocb, false);
2114 		if (ret)
2115 			break;
2116 	}
2117 	if (nr > AIO_PLUG_THRESHOLD)
2118 		blk_finish_plug(&plug);
2119 
2120 	percpu_ref_put(&ctx->users);
2121 	return i ? i : ret;
2122 }
2123 
2124 #ifdef CONFIG_COMPAT
2125 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2126 		       int, nr, compat_uptr_t __user *, iocbpp)
2127 {
2128 	struct kioctx *ctx;
2129 	long ret = 0;
2130 	int i = 0;
2131 	struct blk_plug plug;
2132 
2133 	if (unlikely(nr < 0))
2134 		return -EINVAL;
2135 
2136 	ctx = lookup_ioctx(ctx_id);
2137 	if (unlikely(!ctx)) {
2138 		pr_debug("EINVAL: invalid context id\n");
2139 		return -EINVAL;
2140 	}
2141 
2142 	if (nr > ctx->nr_events)
2143 		nr = ctx->nr_events;
2144 
2145 	if (nr > AIO_PLUG_THRESHOLD)
2146 		blk_start_plug(&plug);
2147 	for (i = 0; i < nr; i++) {
2148 		compat_uptr_t user_iocb;
2149 
2150 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2151 			ret = -EFAULT;
2152 			break;
2153 		}
2154 
2155 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2156 		if (ret)
2157 			break;
2158 	}
2159 	if (nr > AIO_PLUG_THRESHOLD)
2160 		blk_finish_plug(&plug);
2161 
2162 	percpu_ref_put(&ctx->users);
2163 	return i ? i : ret;
2164 }
2165 #endif
2166 
2167 /* sys_io_cancel:
2168  *	Attempts to cancel an iocb previously passed to io_submit.  If
2169  *	the operation is successfully cancelled, the resulting event is
2170  *	copied into the memory pointed to by result without being placed
2171  *	into the completion queue and 0 is returned.  May fail with
2172  *	-EFAULT if any of the data structures pointed to are invalid.
2173  *	May fail with -EINVAL if aio_context specified by ctx_id is
2174  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2175  *	cancelled.  Will fail with -ENOSYS if not implemented.
2176  */
2177 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2178 		struct io_event __user *, result)
2179 {
2180 	struct kioctx *ctx;
2181 	struct aio_kiocb *kiocb;
2182 	int ret = -EINVAL;
2183 	u32 key;
2184 	u64 obj = (u64)(unsigned long)iocb;
2185 
2186 	if (unlikely(get_user(key, &iocb->aio_key)))
2187 		return -EFAULT;
2188 	if (unlikely(key != KIOCB_KEY))
2189 		return -EINVAL;
2190 
2191 	ctx = lookup_ioctx(ctx_id);
2192 	if (unlikely(!ctx))
2193 		return -EINVAL;
2194 
2195 	spin_lock_irq(&ctx->ctx_lock);
2196 	/* TODO: use a hash or array, this sucks. */
2197 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2198 		if (kiocb->ki_res.obj == obj) {
2199 			ret = kiocb->ki_cancel(&kiocb->rw);
2200 			list_del_init(&kiocb->ki_list);
2201 			break;
2202 		}
2203 	}
2204 	spin_unlock_irq(&ctx->ctx_lock);
2205 
2206 	if (!ret) {
2207 		/*
2208 		 * The result argument is no longer used - the io_event is
2209 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2210 		 * cancellation is progress:
2211 		 */
2212 		ret = -EINPROGRESS;
2213 	}
2214 
2215 	percpu_ref_put(&ctx->users);
2216 
2217 	return ret;
2218 }
2219 
2220 static long do_io_getevents(aio_context_t ctx_id,
2221 		long min_nr,
2222 		long nr,
2223 		struct io_event __user *events,
2224 		struct timespec64 *ts)
2225 {
2226 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2227 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2228 	long ret = -EINVAL;
2229 
2230 	if (likely(ioctx)) {
2231 		if (likely(min_nr <= nr && min_nr >= 0))
2232 			ret = read_events(ioctx, min_nr, nr, events, until);
2233 		percpu_ref_put(&ioctx->users);
2234 	}
2235 
2236 	return ret;
2237 }
2238 
2239 /* io_getevents:
2240  *	Attempts to read at least min_nr events and up to nr events from
2241  *	the completion queue for the aio_context specified by ctx_id. If
2242  *	it succeeds, the number of read events is returned. May fail with
2243  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2244  *	out of range, if timeout is out of range.  May fail with -EFAULT
2245  *	if any of the memory specified is invalid.  May return 0 or
2246  *	< min_nr if the timeout specified by timeout has elapsed
2247  *	before sufficient events are available, where timeout == NULL
2248  *	specifies an infinite timeout. Note that the timeout pointed to by
2249  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2250  */
2251 #ifdef CONFIG_64BIT
2252 
2253 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2254 		long, min_nr,
2255 		long, nr,
2256 		struct io_event __user *, events,
2257 		struct __kernel_timespec __user *, timeout)
2258 {
2259 	struct timespec64	ts;
2260 	int			ret;
2261 
2262 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2263 		return -EFAULT;
2264 
2265 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2266 	if (!ret && signal_pending(current))
2267 		ret = -EINTR;
2268 	return ret;
2269 }
2270 
2271 #endif
2272 
2273 struct __aio_sigset {
2274 	const sigset_t __user	*sigmask;
2275 	size_t		sigsetsize;
2276 };
2277 
2278 SYSCALL_DEFINE6(io_pgetevents,
2279 		aio_context_t, ctx_id,
2280 		long, min_nr,
2281 		long, nr,
2282 		struct io_event __user *, events,
2283 		struct __kernel_timespec __user *, timeout,
2284 		const struct __aio_sigset __user *, usig)
2285 {
2286 	struct __aio_sigset	ksig = { NULL, };
2287 	struct timespec64	ts;
2288 	bool interrupted;
2289 	int ret;
2290 
2291 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2292 		return -EFAULT;
2293 
2294 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2295 		return -EFAULT;
2296 
2297 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2298 	if (ret)
2299 		return ret;
2300 
2301 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2302 
2303 	interrupted = signal_pending(current);
2304 	restore_saved_sigmask_unless(interrupted);
2305 	if (interrupted && !ret)
2306 		ret = -ERESTARTNOHAND;
2307 
2308 	return ret;
2309 }
2310 
2311 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2312 
2313 SYSCALL_DEFINE6(io_pgetevents_time32,
2314 		aio_context_t, ctx_id,
2315 		long, min_nr,
2316 		long, nr,
2317 		struct io_event __user *, events,
2318 		struct old_timespec32 __user *, timeout,
2319 		const struct __aio_sigset __user *, usig)
2320 {
2321 	struct __aio_sigset	ksig = { NULL, };
2322 	struct timespec64	ts;
2323 	bool interrupted;
2324 	int ret;
2325 
2326 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2327 		return -EFAULT;
2328 
2329 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2330 		return -EFAULT;
2331 
2332 
2333 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2334 	if (ret)
2335 		return ret;
2336 
2337 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2338 
2339 	interrupted = signal_pending(current);
2340 	restore_saved_sigmask_unless(interrupted);
2341 	if (interrupted && !ret)
2342 		ret = -ERESTARTNOHAND;
2343 
2344 	return ret;
2345 }
2346 
2347 #endif
2348 
2349 #if defined(CONFIG_COMPAT_32BIT_TIME)
2350 
2351 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2352 		__s32, min_nr,
2353 		__s32, nr,
2354 		struct io_event __user *, events,
2355 		struct old_timespec32 __user *, timeout)
2356 {
2357 	struct timespec64 t;
2358 	int ret;
2359 
2360 	if (timeout && get_old_timespec32(&t, timeout))
2361 		return -EFAULT;
2362 
2363 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2364 	if (!ret && signal_pending(current))
2365 		ret = -EINTR;
2366 	return ret;
2367 }
2368 
2369 #endif
2370 
2371 #ifdef CONFIG_COMPAT
2372 
2373 struct __compat_aio_sigset {
2374 	compat_uptr_t		sigmask;
2375 	compat_size_t		sigsetsize;
2376 };
2377 
2378 #if defined(CONFIG_COMPAT_32BIT_TIME)
2379 
2380 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2381 		compat_aio_context_t, ctx_id,
2382 		compat_long_t, min_nr,
2383 		compat_long_t, nr,
2384 		struct io_event __user *, events,
2385 		struct old_timespec32 __user *, timeout,
2386 		const struct __compat_aio_sigset __user *, usig)
2387 {
2388 	struct __compat_aio_sigset ksig = { 0, };
2389 	struct timespec64 t;
2390 	bool interrupted;
2391 	int ret;
2392 
2393 	if (timeout && get_old_timespec32(&t, timeout))
2394 		return -EFAULT;
2395 
2396 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2397 		return -EFAULT;
2398 
2399 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2400 	if (ret)
2401 		return ret;
2402 
2403 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2404 
2405 	interrupted = signal_pending(current);
2406 	restore_saved_sigmask_unless(interrupted);
2407 	if (interrupted && !ret)
2408 		ret = -ERESTARTNOHAND;
2409 
2410 	return ret;
2411 }
2412 
2413 #endif
2414 
2415 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2416 		compat_aio_context_t, ctx_id,
2417 		compat_long_t, min_nr,
2418 		compat_long_t, nr,
2419 		struct io_event __user *, events,
2420 		struct __kernel_timespec __user *, timeout,
2421 		const struct __compat_aio_sigset __user *, usig)
2422 {
2423 	struct __compat_aio_sigset ksig = { 0, };
2424 	struct timespec64 t;
2425 	bool interrupted;
2426 	int ret;
2427 
2428 	if (timeout && get_timespec64(&t, timeout))
2429 		return -EFAULT;
2430 
2431 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2432 		return -EFAULT;
2433 
2434 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2435 	if (ret)
2436 		return ret;
2437 
2438 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2439 
2440 	interrupted = signal_pending(current);
2441 	restore_saved_sigmask_unless(interrupted);
2442 	if (interrupted && !ret)
2443 		ret = -ERESTARTNOHAND;
2444 
2445 	return ret;
2446 }
2447 #endif
2448