1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[] __counted_by(nr); 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 }; 243 244 static void __init aio_sysctl_init(void) 245 { 246 register_sysctl_init("fs", aio_sysctls); 247 } 248 #else 249 #define aio_sysctl_init() do { } while (0) 250 #endif 251 252 static struct kmem_cache *kiocb_cachep; 253 static struct kmem_cache *kioctx_cachep; 254 255 static struct vfsmount *aio_mnt; 256 257 static const struct file_operations aio_ring_fops; 258 static const struct address_space_operations aio_ctx_aops; 259 260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 261 { 262 struct file *file; 263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 264 if (IS_ERR(inode)) 265 return ERR_CAST(inode); 266 267 inode->i_mapping->a_ops = &aio_ctx_aops; 268 inode->i_mapping->i_private_data = ctx; 269 inode->i_size = PAGE_SIZE * nr_pages; 270 271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 272 O_RDWR, &aio_ring_fops); 273 if (IS_ERR(file)) 274 iput(inode); 275 return file; 276 } 277 278 static int aio_init_fs_context(struct fs_context *fc) 279 { 280 if (!init_pseudo(fc, AIO_RING_MAGIC)) 281 return -ENOMEM; 282 fc->s_iflags |= SB_I_NOEXEC; 283 return 0; 284 } 285 286 /* aio_setup 287 * Creates the slab caches used by the aio routines, panic on 288 * failure as this is done early during the boot sequence. 289 */ 290 static int __init aio_setup(void) 291 { 292 static struct file_system_type aio_fs = { 293 .name = "aio", 294 .init_fs_context = aio_init_fs_context, 295 .kill_sb = kill_anon_super, 296 }; 297 aio_mnt = kern_mount(&aio_fs); 298 if (IS_ERR(aio_mnt)) 299 panic("Failed to create aio fs mount."); 300 301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 aio_sysctl_init(); 304 return 0; 305 } 306 __initcall(aio_setup); 307 308 static void put_aio_ring_file(struct kioctx *ctx) 309 { 310 struct file *aio_ring_file = ctx->aio_ring_file; 311 struct address_space *i_mapping; 312 313 if (aio_ring_file) { 314 truncate_setsize(file_inode(aio_ring_file), 0); 315 316 /* Prevent further access to the kioctx from migratepages */ 317 i_mapping = aio_ring_file->f_mapping; 318 spin_lock(&i_mapping->i_private_lock); 319 i_mapping->i_private_data = NULL; 320 ctx->aio_ring_file = NULL; 321 spin_unlock(&i_mapping->i_private_lock); 322 323 fput(aio_ring_file); 324 } 325 } 326 327 static void aio_free_ring(struct kioctx *ctx) 328 { 329 int i; 330 331 /* Disconnect the kiotx from the ring file. This prevents future 332 * accesses to the kioctx from page migration. 333 */ 334 put_aio_ring_file(ctx); 335 336 for (i = 0; i < ctx->nr_pages; i++) { 337 struct page *page; 338 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 339 page_count(ctx->ring_pages[i])); 340 page = ctx->ring_pages[i]; 341 if (!page) 342 continue; 343 ctx->ring_pages[i] = NULL; 344 put_page(page); 345 } 346 347 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 348 kfree(ctx->ring_pages); 349 ctx->ring_pages = NULL; 350 } 351 } 352 353 static int aio_ring_mremap(struct vm_area_struct *vma) 354 { 355 struct file *file = vma->vm_file; 356 struct mm_struct *mm = vma->vm_mm; 357 struct kioctx_table *table; 358 int i, res = -EINVAL; 359 360 spin_lock(&mm->ioctx_lock); 361 rcu_read_lock(); 362 table = rcu_dereference(mm->ioctx_table); 363 if (!table) 364 goto out_unlock; 365 366 for (i = 0; i < table->nr; i++) { 367 struct kioctx *ctx; 368 369 ctx = rcu_dereference(table->table[i]); 370 if (ctx && ctx->aio_ring_file == file) { 371 if (!atomic_read(&ctx->dead)) { 372 ctx->user_id = ctx->mmap_base = vma->vm_start; 373 res = 0; 374 } 375 break; 376 } 377 } 378 379 out_unlock: 380 rcu_read_unlock(); 381 spin_unlock(&mm->ioctx_lock); 382 return res; 383 } 384 385 static const struct vm_operations_struct aio_ring_vm_ops = { 386 .mremap = aio_ring_mremap, 387 #if IS_ENABLED(CONFIG_MMU) 388 .fault = filemap_fault, 389 .map_pages = filemap_map_pages, 390 .page_mkwrite = filemap_page_mkwrite, 391 #endif 392 }; 393 394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 395 { 396 vm_flags_set(vma, VM_DONTEXPAND); 397 vma->vm_ops = &aio_ring_vm_ops; 398 return 0; 399 } 400 401 static const struct file_operations aio_ring_fops = { 402 .mmap = aio_ring_mmap, 403 }; 404 405 #if IS_ENABLED(CONFIG_MIGRATION) 406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, 407 struct folio *src, enum migrate_mode mode) 408 { 409 struct kioctx *ctx; 410 unsigned long flags; 411 pgoff_t idx; 412 int rc; 413 414 /* 415 * We cannot support the _NO_COPY case here, because copy needs to 416 * happen under the ctx->completion_lock. That does not work with the 417 * migration workflow of MIGRATE_SYNC_NO_COPY. 418 */ 419 if (mode == MIGRATE_SYNC_NO_COPY) 420 return -EINVAL; 421 422 rc = 0; 423 424 /* mapping->i_private_lock here protects against the kioctx teardown. */ 425 spin_lock(&mapping->i_private_lock); 426 ctx = mapping->i_private_data; 427 if (!ctx) { 428 rc = -EINVAL; 429 goto out; 430 } 431 432 /* The ring_lock mutex. The prevents aio_read_events() from writing 433 * to the ring's head, and prevents page migration from mucking in 434 * a partially initialized kiotx. 435 */ 436 if (!mutex_trylock(&ctx->ring_lock)) { 437 rc = -EAGAIN; 438 goto out; 439 } 440 441 idx = src->index; 442 if (idx < (pgoff_t)ctx->nr_pages) { 443 /* Make sure the old folio hasn't already been changed */ 444 if (ctx->ring_pages[idx] != &src->page) 445 rc = -EAGAIN; 446 } else 447 rc = -EINVAL; 448 449 if (rc != 0) 450 goto out_unlock; 451 452 /* Writeback must be complete */ 453 BUG_ON(folio_test_writeback(src)); 454 folio_get(dst); 455 456 rc = folio_migrate_mapping(mapping, dst, src, 1); 457 if (rc != MIGRATEPAGE_SUCCESS) { 458 folio_put(dst); 459 goto out_unlock; 460 } 461 462 /* Take completion_lock to prevent other writes to the ring buffer 463 * while the old folio is copied to the new. This prevents new 464 * events from being lost. 465 */ 466 spin_lock_irqsave(&ctx->completion_lock, flags); 467 folio_migrate_copy(dst, src); 468 BUG_ON(ctx->ring_pages[idx] != &src->page); 469 ctx->ring_pages[idx] = &dst->page; 470 spin_unlock_irqrestore(&ctx->completion_lock, flags); 471 472 /* The old folio is no longer accessible. */ 473 folio_put(src); 474 475 out_unlock: 476 mutex_unlock(&ctx->ring_lock); 477 out: 478 spin_unlock(&mapping->i_private_lock); 479 return rc; 480 } 481 #else 482 #define aio_migrate_folio NULL 483 #endif 484 485 static const struct address_space_operations aio_ctx_aops = { 486 .dirty_folio = noop_dirty_folio, 487 .migrate_folio = aio_migrate_folio, 488 }; 489 490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 491 { 492 struct aio_ring *ring; 493 struct mm_struct *mm = current->mm; 494 unsigned long size, unused; 495 int nr_pages; 496 int i; 497 struct file *file; 498 499 /* Compensate for the ring buffer's head/tail overlap entry */ 500 nr_events += 2; /* 1 is required, 2 for good luck */ 501 502 size = sizeof(struct aio_ring); 503 size += sizeof(struct io_event) * nr_events; 504 505 nr_pages = PFN_UP(size); 506 if (nr_pages < 0) 507 return -EINVAL; 508 509 file = aio_private_file(ctx, nr_pages); 510 if (IS_ERR(file)) { 511 ctx->aio_ring_file = NULL; 512 return -ENOMEM; 513 } 514 515 ctx->aio_ring_file = file; 516 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 517 / sizeof(struct io_event); 518 519 ctx->ring_pages = ctx->internal_pages; 520 if (nr_pages > AIO_RING_PAGES) { 521 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 522 GFP_KERNEL); 523 if (!ctx->ring_pages) { 524 put_aio_ring_file(ctx); 525 return -ENOMEM; 526 } 527 } 528 529 for (i = 0; i < nr_pages; i++) { 530 struct page *page; 531 page = find_or_create_page(file->f_mapping, 532 i, GFP_USER | __GFP_ZERO); 533 if (!page) 534 break; 535 pr_debug("pid(%d) page[%d]->count=%d\n", 536 current->pid, i, page_count(page)); 537 SetPageUptodate(page); 538 unlock_page(page); 539 540 ctx->ring_pages[i] = page; 541 } 542 ctx->nr_pages = i; 543 544 if (unlikely(i != nr_pages)) { 545 aio_free_ring(ctx); 546 return -ENOMEM; 547 } 548 549 ctx->mmap_size = nr_pages * PAGE_SIZE; 550 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 551 552 if (mmap_write_lock_killable(mm)) { 553 ctx->mmap_size = 0; 554 aio_free_ring(ctx); 555 return -EINTR; 556 } 557 558 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 559 PROT_READ | PROT_WRITE, 560 MAP_SHARED, 0, 0, &unused, NULL); 561 mmap_write_unlock(mm); 562 if (IS_ERR((void *)ctx->mmap_base)) { 563 ctx->mmap_size = 0; 564 aio_free_ring(ctx); 565 return -ENOMEM; 566 } 567 568 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 569 570 ctx->user_id = ctx->mmap_base; 571 ctx->nr_events = nr_events; /* trusted copy */ 572 573 ring = page_address(ctx->ring_pages[0]); 574 ring->nr = nr_events; /* user copy */ 575 ring->id = ~0U; 576 ring->head = ring->tail = 0; 577 ring->magic = AIO_RING_MAGIC; 578 ring->compat_features = AIO_RING_COMPAT_FEATURES; 579 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 580 ring->header_length = sizeof(struct aio_ring); 581 flush_dcache_page(ctx->ring_pages[0]); 582 583 return 0; 584 } 585 586 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 587 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 588 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 589 590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 591 { 592 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 593 struct kioctx *ctx = req->ki_ctx; 594 unsigned long flags; 595 596 /* 597 * kiocb didn't come from aio or is neither a read nor a write, hence 598 * ignore it. 599 */ 600 if (!(iocb->ki_flags & IOCB_AIO_RW)) 601 return; 602 603 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 604 return; 605 606 spin_lock_irqsave(&ctx->ctx_lock, flags); 607 list_add_tail(&req->ki_list, &ctx->active_reqs); 608 req->ki_cancel = cancel; 609 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 610 } 611 EXPORT_SYMBOL(kiocb_set_cancel_fn); 612 613 /* 614 * free_ioctx() should be RCU delayed to synchronize against the RCU 615 * protected lookup_ioctx() and also needs process context to call 616 * aio_free_ring(). Use rcu_work. 617 */ 618 static void free_ioctx(struct work_struct *work) 619 { 620 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 621 free_rwork); 622 pr_debug("freeing %p\n", ctx); 623 624 aio_free_ring(ctx); 625 free_percpu(ctx->cpu); 626 percpu_ref_exit(&ctx->reqs); 627 percpu_ref_exit(&ctx->users); 628 kmem_cache_free(kioctx_cachep, ctx); 629 } 630 631 static void free_ioctx_reqs(struct percpu_ref *ref) 632 { 633 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 634 635 /* At this point we know that there are no any in-flight requests */ 636 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 637 complete(&ctx->rq_wait->comp); 638 639 /* Synchronize against RCU protected table->table[] dereferences */ 640 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 641 queue_rcu_work(system_wq, &ctx->free_rwork); 642 } 643 644 /* 645 * When this function runs, the kioctx has been removed from the "hash table" 646 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 647 * now it's safe to cancel any that need to be. 648 */ 649 static void free_ioctx_users(struct percpu_ref *ref) 650 { 651 struct kioctx *ctx = container_of(ref, struct kioctx, users); 652 struct aio_kiocb *req; 653 654 spin_lock_irq(&ctx->ctx_lock); 655 656 while (!list_empty(&ctx->active_reqs)) { 657 req = list_first_entry(&ctx->active_reqs, 658 struct aio_kiocb, ki_list); 659 req->ki_cancel(&req->rw); 660 list_del_init(&req->ki_list); 661 } 662 663 spin_unlock_irq(&ctx->ctx_lock); 664 665 percpu_ref_kill(&ctx->reqs); 666 percpu_ref_put(&ctx->reqs); 667 } 668 669 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 670 { 671 unsigned i, new_nr; 672 struct kioctx_table *table, *old; 673 struct aio_ring *ring; 674 675 spin_lock(&mm->ioctx_lock); 676 table = rcu_dereference_raw(mm->ioctx_table); 677 678 while (1) { 679 if (table) 680 for (i = 0; i < table->nr; i++) 681 if (!rcu_access_pointer(table->table[i])) { 682 ctx->id = i; 683 rcu_assign_pointer(table->table[i], ctx); 684 spin_unlock(&mm->ioctx_lock); 685 686 /* While kioctx setup is in progress, 687 * we are protected from page migration 688 * changes ring_pages by ->ring_lock. 689 */ 690 ring = page_address(ctx->ring_pages[0]); 691 ring->id = ctx->id; 692 return 0; 693 } 694 695 new_nr = (table ? table->nr : 1) * 4; 696 spin_unlock(&mm->ioctx_lock); 697 698 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 699 if (!table) 700 return -ENOMEM; 701 702 table->nr = new_nr; 703 704 spin_lock(&mm->ioctx_lock); 705 old = rcu_dereference_raw(mm->ioctx_table); 706 707 if (!old) { 708 rcu_assign_pointer(mm->ioctx_table, table); 709 } else if (table->nr > old->nr) { 710 memcpy(table->table, old->table, 711 old->nr * sizeof(struct kioctx *)); 712 713 rcu_assign_pointer(mm->ioctx_table, table); 714 kfree_rcu(old, rcu); 715 } else { 716 kfree(table); 717 table = old; 718 } 719 } 720 } 721 722 static void aio_nr_sub(unsigned nr) 723 { 724 spin_lock(&aio_nr_lock); 725 if (WARN_ON(aio_nr - nr > aio_nr)) 726 aio_nr = 0; 727 else 728 aio_nr -= nr; 729 spin_unlock(&aio_nr_lock); 730 } 731 732 /* ioctx_alloc 733 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 734 */ 735 static struct kioctx *ioctx_alloc(unsigned nr_events) 736 { 737 struct mm_struct *mm = current->mm; 738 struct kioctx *ctx; 739 int err = -ENOMEM; 740 741 /* 742 * Store the original nr_events -- what userspace passed to io_setup(), 743 * for counting against the global limit -- before it changes. 744 */ 745 unsigned int max_reqs = nr_events; 746 747 /* 748 * We keep track of the number of available ringbuffer slots, to prevent 749 * overflow (reqs_available), and we also use percpu counters for this. 750 * 751 * So since up to half the slots might be on other cpu's percpu counters 752 * and unavailable, double nr_events so userspace sees what they 753 * expected: additionally, we move req_batch slots to/from percpu 754 * counters at a time, so make sure that isn't 0: 755 */ 756 nr_events = max(nr_events, num_possible_cpus() * 4); 757 nr_events *= 2; 758 759 /* Prevent overflows */ 760 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 761 pr_debug("ENOMEM: nr_events too high\n"); 762 return ERR_PTR(-EINVAL); 763 } 764 765 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 766 return ERR_PTR(-EAGAIN); 767 768 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 769 if (!ctx) 770 return ERR_PTR(-ENOMEM); 771 772 ctx->max_reqs = max_reqs; 773 774 spin_lock_init(&ctx->ctx_lock); 775 spin_lock_init(&ctx->completion_lock); 776 mutex_init(&ctx->ring_lock); 777 /* Protect against page migration throughout kiotx setup by keeping 778 * the ring_lock mutex held until setup is complete. */ 779 mutex_lock(&ctx->ring_lock); 780 init_waitqueue_head(&ctx->wait); 781 782 INIT_LIST_HEAD(&ctx->active_reqs); 783 784 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 785 goto err; 786 787 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 788 goto err; 789 790 ctx->cpu = alloc_percpu(struct kioctx_cpu); 791 if (!ctx->cpu) 792 goto err; 793 794 err = aio_setup_ring(ctx, nr_events); 795 if (err < 0) 796 goto err; 797 798 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 799 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 800 if (ctx->req_batch < 1) 801 ctx->req_batch = 1; 802 803 /* limit the number of system wide aios */ 804 spin_lock(&aio_nr_lock); 805 if (aio_nr + ctx->max_reqs > aio_max_nr || 806 aio_nr + ctx->max_reqs < aio_nr) { 807 spin_unlock(&aio_nr_lock); 808 err = -EAGAIN; 809 goto err_ctx; 810 } 811 aio_nr += ctx->max_reqs; 812 spin_unlock(&aio_nr_lock); 813 814 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 815 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 816 817 err = ioctx_add_table(ctx, mm); 818 if (err) 819 goto err_cleanup; 820 821 /* Release the ring_lock mutex now that all setup is complete. */ 822 mutex_unlock(&ctx->ring_lock); 823 824 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 825 ctx, ctx->user_id, mm, ctx->nr_events); 826 return ctx; 827 828 err_cleanup: 829 aio_nr_sub(ctx->max_reqs); 830 err_ctx: 831 atomic_set(&ctx->dead, 1); 832 if (ctx->mmap_size) 833 vm_munmap(ctx->mmap_base, ctx->mmap_size); 834 aio_free_ring(ctx); 835 err: 836 mutex_unlock(&ctx->ring_lock); 837 free_percpu(ctx->cpu); 838 percpu_ref_exit(&ctx->reqs); 839 percpu_ref_exit(&ctx->users); 840 kmem_cache_free(kioctx_cachep, ctx); 841 pr_debug("error allocating ioctx %d\n", err); 842 return ERR_PTR(err); 843 } 844 845 /* kill_ioctx 846 * Cancels all outstanding aio requests on an aio context. Used 847 * when the processes owning a context have all exited to encourage 848 * the rapid destruction of the kioctx. 849 */ 850 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 851 struct ctx_rq_wait *wait) 852 { 853 struct kioctx_table *table; 854 855 spin_lock(&mm->ioctx_lock); 856 if (atomic_xchg(&ctx->dead, 1)) { 857 spin_unlock(&mm->ioctx_lock); 858 return -EINVAL; 859 } 860 861 table = rcu_dereference_raw(mm->ioctx_table); 862 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 863 RCU_INIT_POINTER(table->table[ctx->id], NULL); 864 spin_unlock(&mm->ioctx_lock); 865 866 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 867 wake_up_all(&ctx->wait); 868 869 /* 870 * It'd be more correct to do this in free_ioctx(), after all 871 * the outstanding kiocbs have finished - but by then io_destroy 872 * has already returned, so io_setup() could potentially return 873 * -EAGAIN with no ioctxs actually in use (as far as userspace 874 * could tell). 875 */ 876 aio_nr_sub(ctx->max_reqs); 877 878 if (ctx->mmap_size) 879 vm_munmap(ctx->mmap_base, ctx->mmap_size); 880 881 ctx->rq_wait = wait; 882 percpu_ref_kill(&ctx->users); 883 return 0; 884 } 885 886 /* 887 * exit_aio: called when the last user of mm goes away. At this point, there is 888 * no way for any new requests to be submited or any of the io_* syscalls to be 889 * called on the context. 890 * 891 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 892 * them. 893 */ 894 void exit_aio(struct mm_struct *mm) 895 { 896 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 897 struct ctx_rq_wait wait; 898 int i, skipped; 899 900 if (!table) 901 return; 902 903 atomic_set(&wait.count, table->nr); 904 init_completion(&wait.comp); 905 906 skipped = 0; 907 for (i = 0; i < table->nr; ++i) { 908 struct kioctx *ctx = 909 rcu_dereference_protected(table->table[i], true); 910 911 if (!ctx) { 912 skipped++; 913 continue; 914 } 915 916 /* 917 * We don't need to bother with munmap() here - exit_mmap(mm) 918 * is coming and it'll unmap everything. And we simply can't, 919 * this is not necessarily our ->mm. 920 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 921 * that it needs to unmap the area, just set it to 0. 922 */ 923 ctx->mmap_size = 0; 924 kill_ioctx(mm, ctx, &wait); 925 } 926 927 if (!atomic_sub_and_test(skipped, &wait.count)) { 928 /* Wait until all IO for the context are done. */ 929 wait_for_completion(&wait.comp); 930 } 931 932 RCU_INIT_POINTER(mm->ioctx_table, NULL); 933 kfree(table); 934 } 935 936 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 937 { 938 struct kioctx_cpu *kcpu; 939 unsigned long flags; 940 941 local_irq_save(flags); 942 kcpu = this_cpu_ptr(ctx->cpu); 943 kcpu->reqs_available += nr; 944 945 while (kcpu->reqs_available >= ctx->req_batch * 2) { 946 kcpu->reqs_available -= ctx->req_batch; 947 atomic_add(ctx->req_batch, &ctx->reqs_available); 948 } 949 950 local_irq_restore(flags); 951 } 952 953 static bool __get_reqs_available(struct kioctx *ctx) 954 { 955 struct kioctx_cpu *kcpu; 956 bool ret = false; 957 unsigned long flags; 958 959 local_irq_save(flags); 960 kcpu = this_cpu_ptr(ctx->cpu); 961 if (!kcpu->reqs_available) { 962 int avail = atomic_read(&ctx->reqs_available); 963 964 do { 965 if (avail < ctx->req_batch) 966 goto out; 967 } while (!atomic_try_cmpxchg(&ctx->reqs_available, 968 &avail, avail - ctx->req_batch)); 969 970 kcpu->reqs_available += ctx->req_batch; 971 } 972 973 ret = true; 974 kcpu->reqs_available--; 975 out: 976 local_irq_restore(flags); 977 return ret; 978 } 979 980 /* refill_reqs_available 981 * Updates the reqs_available reference counts used for tracking the 982 * number of free slots in the completion ring. This can be called 983 * from aio_complete() (to optimistically update reqs_available) or 984 * from aio_get_req() (the we're out of events case). It must be 985 * called holding ctx->completion_lock. 986 */ 987 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 988 unsigned tail) 989 { 990 unsigned events_in_ring, completed; 991 992 /* Clamp head since userland can write to it. */ 993 head %= ctx->nr_events; 994 if (head <= tail) 995 events_in_ring = tail - head; 996 else 997 events_in_ring = ctx->nr_events - (head - tail); 998 999 completed = ctx->completed_events; 1000 if (events_in_ring < completed) 1001 completed -= events_in_ring; 1002 else 1003 completed = 0; 1004 1005 if (!completed) 1006 return; 1007 1008 ctx->completed_events -= completed; 1009 put_reqs_available(ctx, completed); 1010 } 1011 1012 /* user_refill_reqs_available 1013 * Called to refill reqs_available when aio_get_req() encounters an 1014 * out of space in the completion ring. 1015 */ 1016 static void user_refill_reqs_available(struct kioctx *ctx) 1017 { 1018 spin_lock_irq(&ctx->completion_lock); 1019 if (ctx->completed_events) { 1020 struct aio_ring *ring; 1021 unsigned head; 1022 1023 /* Access of ring->head may race with aio_read_events_ring() 1024 * here, but that's okay since whether we read the old version 1025 * or the new version, and either will be valid. The important 1026 * part is that head cannot pass tail since we prevent 1027 * aio_complete() from updating tail by holding 1028 * ctx->completion_lock. Even if head is invalid, the check 1029 * against ctx->completed_events below will make sure we do the 1030 * safe/right thing. 1031 */ 1032 ring = page_address(ctx->ring_pages[0]); 1033 head = ring->head; 1034 1035 refill_reqs_available(ctx, head, ctx->tail); 1036 } 1037 1038 spin_unlock_irq(&ctx->completion_lock); 1039 } 1040 1041 static bool get_reqs_available(struct kioctx *ctx) 1042 { 1043 if (__get_reqs_available(ctx)) 1044 return true; 1045 user_refill_reqs_available(ctx); 1046 return __get_reqs_available(ctx); 1047 } 1048 1049 /* aio_get_req 1050 * Allocate a slot for an aio request. 1051 * Returns NULL if no requests are free. 1052 * 1053 * The refcount is initialized to 2 - one for the async op completion, 1054 * one for the synchronous code that does this. 1055 */ 1056 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1057 { 1058 struct aio_kiocb *req; 1059 1060 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1061 if (unlikely(!req)) 1062 return NULL; 1063 1064 if (unlikely(!get_reqs_available(ctx))) { 1065 kmem_cache_free(kiocb_cachep, req); 1066 return NULL; 1067 } 1068 1069 percpu_ref_get(&ctx->reqs); 1070 req->ki_ctx = ctx; 1071 INIT_LIST_HEAD(&req->ki_list); 1072 refcount_set(&req->ki_refcnt, 2); 1073 req->ki_eventfd = NULL; 1074 return req; 1075 } 1076 1077 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1078 { 1079 struct aio_ring __user *ring = (void __user *)ctx_id; 1080 struct mm_struct *mm = current->mm; 1081 struct kioctx *ctx, *ret = NULL; 1082 struct kioctx_table *table; 1083 unsigned id; 1084 1085 if (get_user(id, &ring->id)) 1086 return NULL; 1087 1088 rcu_read_lock(); 1089 table = rcu_dereference(mm->ioctx_table); 1090 1091 if (!table || id >= table->nr) 1092 goto out; 1093 1094 id = array_index_nospec(id, table->nr); 1095 ctx = rcu_dereference(table->table[id]); 1096 if (ctx && ctx->user_id == ctx_id) { 1097 if (percpu_ref_tryget_live(&ctx->users)) 1098 ret = ctx; 1099 } 1100 out: 1101 rcu_read_unlock(); 1102 return ret; 1103 } 1104 1105 static inline void iocb_destroy(struct aio_kiocb *iocb) 1106 { 1107 if (iocb->ki_eventfd) 1108 eventfd_ctx_put(iocb->ki_eventfd); 1109 if (iocb->ki_filp) 1110 fput(iocb->ki_filp); 1111 percpu_ref_put(&iocb->ki_ctx->reqs); 1112 kmem_cache_free(kiocb_cachep, iocb); 1113 } 1114 1115 struct aio_waiter { 1116 struct wait_queue_entry w; 1117 size_t min_nr; 1118 }; 1119 1120 /* aio_complete 1121 * Called when the io request on the given iocb is complete. 1122 */ 1123 static void aio_complete(struct aio_kiocb *iocb) 1124 { 1125 struct kioctx *ctx = iocb->ki_ctx; 1126 struct aio_ring *ring; 1127 struct io_event *ev_page, *event; 1128 unsigned tail, pos, head, avail; 1129 unsigned long flags; 1130 1131 /* 1132 * Add a completion event to the ring buffer. Must be done holding 1133 * ctx->completion_lock to prevent other code from messing with the tail 1134 * pointer since we might be called from irq context. 1135 */ 1136 spin_lock_irqsave(&ctx->completion_lock, flags); 1137 1138 tail = ctx->tail; 1139 pos = tail + AIO_EVENTS_OFFSET; 1140 1141 if (++tail >= ctx->nr_events) 1142 tail = 0; 1143 1144 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1145 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1146 1147 *event = iocb->ki_res; 1148 1149 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1150 1151 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1152 (void __user *)(unsigned long)iocb->ki_res.obj, 1153 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1154 1155 /* after flagging the request as done, we 1156 * must never even look at it again 1157 */ 1158 smp_wmb(); /* make event visible before updating tail */ 1159 1160 ctx->tail = tail; 1161 1162 ring = page_address(ctx->ring_pages[0]); 1163 head = ring->head; 1164 ring->tail = tail; 1165 flush_dcache_page(ctx->ring_pages[0]); 1166 1167 ctx->completed_events++; 1168 if (ctx->completed_events > 1) 1169 refill_reqs_available(ctx, head, tail); 1170 1171 avail = tail > head 1172 ? tail - head 1173 : tail + ctx->nr_events - head; 1174 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1175 1176 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1177 1178 /* 1179 * Check if the user asked us to deliver the result through an 1180 * eventfd. The eventfd_signal() function is safe to be called 1181 * from IRQ context. 1182 */ 1183 if (iocb->ki_eventfd) 1184 eventfd_signal(iocb->ki_eventfd); 1185 1186 /* 1187 * We have to order our ring_info tail store above and test 1188 * of the wait list below outside the wait lock. This is 1189 * like in wake_up_bit() where clearing a bit has to be 1190 * ordered with the unlocked test. 1191 */ 1192 smp_mb(); 1193 1194 if (waitqueue_active(&ctx->wait)) { 1195 struct aio_waiter *curr, *next; 1196 unsigned long flags; 1197 1198 spin_lock_irqsave(&ctx->wait.lock, flags); 1199 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry) 1200 if (avail >= curr->min_nr) { 1201 list_del_init_careful(&curr->w.entry); 1202 wake_up_process(curr->w.private); 1203 } 1204 spin_unlock_irqrestore(&ctx->wait.lock, flags); 1205 } 1206 } 1207 1208 static inline void iocb_put(struct aio_kiocb *iocb) 1209 { 1210 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1211 aio_complete(iocb); 1212 iocb_destroy(iocb); 1213 } 1214 } 1215 1216 /* aio_read_events_ring 1217 * Pull an event off of the ioctx's event ring. Returns the number of 1218 * events fetched 1219 */ 1220 static long aio_read_events_ring(struct kioctx *ctx, 1221 struct io_event __user *event, long nr) 1222 { 1223 struct aio_ring *ring; 1224 unsigned head, tail, pos; 1225 long ret = 0; 1226 int copy_ret; 1227 1228 /* 1229 * The mutex can block and wake us up and that will cause 1230 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1231 * and repeat. This should be rare enough that it doesn't cause 1232 * peformance issues. See the comment in read_events() for more detail. 1233 */ 1234 sched_annotate_sleep(); 1235 mutex_lock(&ctx->ring_lock); 1236 1237 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1238 ring = page_address(ctx->ring_pages[0]); 1239 head = ring->head; 1240 tail = ring->tail; 1241 1242 /* 1243 * Ensure that once we've read the current tail pointer, that 1244 * we also see the events that were stored up to the tail. 1245 */ 1246 smp_rmb(); 1247 1248 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1249 1250 if (head == tail) 1251 goto out; 1252 1253 head %= ctx->nr_events; 1254 tail %= ctx->nr_events; 1255 1256 while (ret < nr) { 1257 long avail; 1258 struct io_event *ev; 1259 struct page *page; 1260 1261 avail = (head <= tail ? tail : ctx->nr_events) - head; 1262 if (head == tail) 1263 break; 1264 1265 pos = head + AIO_EVENTS_OFFSET; 1266 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1267 pos %= AIO_EVENTS_PER_PAGE; 1268 1269 avail = min(avail, nr - ret); 1270 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1271 1272 ev = page_address(page); 1273 copy_ret = copy_to_user(event + ret, ev + pos, 1274 sizeof(*ev) * avail); 1275 1276 if (unlikely(copy_ret)) { 1277 ret = -EFAULT; 1278 goto out; 1279 } 1280 1281 ret += avail; 1282 head += avail; 1283 head %= ctx->nr_events; 1284 } 1285 1286 ring = page_address(ctx->ring_pages[0]); 1287 ring->head = head; 1288 flush_dcache_page(ctx->ring_pages[0]); 1289 1290 pr_debug("%li h%u t%u\n", ret, head, tail); 1291 out: 1292 mutex_unlock(&ctx->ring_lock); 1293 1294 return ret; 1295 } 1296 1297 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1298 struct io_event __user *event, long *i) 1299 { 1300 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1301 1302 if (ret > 0) 1303 *i += ret; 1304 1305 if (unlikely(atomic_read(&ctx->dead))) 1306 ret = -EINVAL; 1307 1308 if (!*i) 1309 *i = ret; 1310 1311 return ret < 0 || *i >= min_nr; 1312 } 1313 1314 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1315 struct io_event __user *event, 1316 ktime_t until) 1317 { 1318 struct hrtimer_sleeper t; 1319 struct aio_waiter w; 1320 long ret = 0, ret2 = 0; 1321 1322 /* 1323 * Note that aio_read_events() is being called as the conditional - i.e. 1324 * we're calling it after prepare_to_wait() has set task state to 1325 * TASK_INTERRUPTIBLE. 1326 * 1327 * But aio_read_events() can block, and if it blocks it's going to flip 1328 * the task state back to TASK_RUNNING. 1329 * 1330 * This should be ok, provided it doesn't flip the state back to 1331 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1332 * will only happen if the mutex_lock() call blocks, and we then find 1333 * the ringbuffer empty. So in practice we should be ok, but it's 1334 * something to be aware of when touching this code. 1335 */ 1336 aio_read_events(ctx, min_nr, nr, event, &ret); 1337 if (until == 0 || ret < 0 || ret >= min_nr) 1338 return ret; 1339 1340 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1341 if (until != KTIME_MAX) { 1342 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns); 1343 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL); 1344 } 1345 1346 init_wait(&w.w); 1347 1348 while (1) { 1349 unsigned long nr_got = ret; 1350 1351 w.min_nr = min_nr - ret; 1352 1353 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE); 1354 if (!ret2 && !t.task) 1355 ret2 = -ETIME; 1356 1357 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2) 1358 break; 1359 1360 if (nr_got == ret) 1361 schedule(); 1362 } 1363 1364 finish_wait(&ctx->wait, &w.w); 1365 hrtimer_cancel(&t.timer); 1366 destroy_hrtimer_on_stack(&t.timer); 1367 1368 return ret; 1369 } 1370 1371 /* sys_io_setup: 1372 * Create an aio_context capable of receiving at least nr_events. 1373 * ctxp must not point to an aio_context that already exists, and 1374 * must be initialized to 0 prior to the call. On successful 1375 * creation of the aio_context, *ctxp is filled in with the resulting 1376 * handle. May fail with -EINVAL if *ctxp is not initialized, 1377 * if the specified nr_events exceeds internal limits. May fail 1378 * with -EAGAIN if the specified nr_events exceeds the user's limit 1379 * of available events. May fail with -ENOMEM if insufficient kernel 1380 * resources are available. May fail with -EFAULT if an invalid 1381 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1382 * implemented. 1383 */ 1384 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1385 { 1386 struct kioctx *ioctx = NULL; 1387 unsigned long ctx; 1388 long ret; 1389 1390 ret = get_user(ctx, ctxp); 1391 if (unlikely(ret)) 1392 goto out; 1393 1394 ret = -EINVAL; 1395 if (unlikely(ctx || nr_events == 0)) { 1396 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1397 ctx, nr_events); 1398 goto out; 1399 } 1400 1401 ioctx = ioctx_alloc(nr_events); 1402 ret = PTR_ERR(ioctx); 1403 if (!IS_ERR(ioctx)) { 1404 ret = put_user(ioctx->user_id, ctxp); 1405 if (ret) 1406 kill_ioctx(current->mm, ioctx, NULL); 1407 percpu_ref_put(&ioctx->users); 1408 } 1409 1410 out: 1411 return ret; 1412 } 1413 1414 #ifdef CONFIG_COMPAT 1415 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1416 { 1417 struct kioctx *ioctx = NULL; 1418 unsigned long ctx; 1419 long ret; 1420 1421 ret = get_user(ctx, ctx32p); 1422 if (unlikely(ret)) 1423 goto out; 1424 1425 ret = -EINVAL; 1426 if (unlikely(ctx || nr_events == 0)) { 1427 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1428 ctx, nr_events); 1429 goto out; 1430 } 1431 1432 ioctx = ioctx_alloc(nr_events); 1433 ret = PTR_ERR(ioctx); 1434 if (!IS_ERR(ioctx)) { 1435 /* truncating is ok because it's a user address */ 1436 ret = put_user((u32)ioctx->user_id, ctx32p); 1437 if (ret) 1438 kill_ioctx(current->mm, ioctx, NULL); 1439 percpu_ref_put(&ioctx->users); 1440 } 1441 1442 out: 1443 return ret; 1444 } 1445 #endif 1446 1447 /* sys_io_destroy: 1448 * Destroy the aio_context specified. May cancel any outstanding 1449 * AIOs and block on completion. Will fail with -ENOSYS if not 1450 * implemented. May fail with -EINVAL if the context pointed to 1451 * is invalid. 1452 */ 1453 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1454 { 1455 struct kioctx *ioctx = lookup_ioctx(ctx); 1456 if (likely(NULL != ioctx)) { 1457 struct ctx_rq_wait wait; 1458 int ret; 1459 1460 init_completion(&wait.comp); 1461 atomic_set(&wait.count, 1); 1462 1463 /* Pass requests_done to kill_ioctx() where it can be set 1464 * in a thread-safe way. If we try to set it here then we have 1465 * a race condition if two io_destroy() called simultaneously. 1466 */ 1467 ret = kill_ioctx(current->mm, ioctx, &wait); 1468 percpu_ref_put(&ioctx->users); 1469 1470 /* Wait until all IO for the context are done. Otherwise kernel 1471 * keep using user-space buffers even if user thinks the context 1472 * is destroyed. 1473 */ 1474 if (!ret) 1475 wait_for_completion(&wait.comp); 1476 1477 return ret; 1478 } 1479 pr_debug("EINVAL: invalid context id\n"); 1480 return -EINVAL; 1481 } 1482 1483 static void aio_remove_iocb(struct aio_kiocb *iocb) 1484 { 1485 struct kioctx *ctx = iocb->ki_ctx; 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&ctx->ctx_lock, flags); 1489 list_del(&iocb->ki_list); 1490 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1491 } 1492 1493 static void aio_complete_rw(struct kiocb *kiocb, long res) 1494 { 1495 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1496 1497 if (!list_empty_careful(&iocb->ki_list)) 1498 aio_remove_iocb(iocb); 1499 1500 if (kiocb->ki_flags & IOCB_WRITE) { 1501 struct inode *inode = file_inode(kiocb->ki_filp); 1502 1503 if (S_ISREG(inode->i_mode)) 1504 kiocb_end_write(kiocb); 1505 } 1506 1507 iocb->ki_res.res = res; 1508 iocb->ki_res.res2 = 0; 1509 iocb_put(iocb); 1510 } 1511 1512 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1513 { 1514 int ret; 1515 1516 req->ki_complete = aio_complete_rw; 1517 req->private = NULL; 1518 req->ki_pos = iocb->aio_offset; 1519 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW; 1520 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1521 req->ki_flags |= IOCB_EVENTFD; 1522 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1523 /* 1524 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1525 * aio_reqprio is interpreted as an I/O scheduling 1526 * class and priority. 1527 */ 1528 ret = ioprio_check_cap(iocb->aio_reqprio); 1529 if (ret) { 1530 pr_debug("aio ioprio check cap error: %d\n", ret); 1531 return ret; 1532 } 1533 1534 req->ki_ioprio = iocb->aio_reqprio; 1535 } else 1536 req->ki_ioprio = get_current_ioprio(); 1537 1538 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1539 if (unlikely(ret)) 1540 return ret; 1541 1542 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1543 return 0; 1544 } 1545 1546 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1547 struct iovec **iovec, bool vectored, bool compat, 1548 struct iov_iter *iter) 1549 { 1550 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1551 size_t len = iocb->aio_nbytes; 1552 1553 if (!vectored) { 1554 ssize_t ret = import_ubuf(rw, buf, len, iter); 1555 *iovec = NULL; 1556 return ret; 1557 } 1558 1559 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1560 } 1561 1562 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1563 { 1564 switch (ret) { 1565 case -EIOCBQUEUED: 1566 break; 1567 case -ERESTARTSYS: 1568 case -ERESTARTNOINTR: 1569 case -ERESTARTNOHAND: 1570 case -ERESTART_RESTARTBLOCK: 1571 /* 1572 * There's no easy way to restart the syscall since other AIO's 1573 * may be already running. Just fail this IO with EINTR. 1574 */ 1575 ret = -EINTR; 1576 fallthrough; 1577 default: 1578 req->ki_complete(req, ret); 1579 } 1580 } 1581 1582 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1583 bool vectored, bool compat) 1584 { 1585 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1586 struct iov_iter iter; 1587 struct file *file; 1588 int ret; 1589 1590 ret = aio_prep_rw(req, iocb); 1591 if (ret) 1592 return ret; 1593 file = req->ki_filp; 1594 if (unlikely(!(file->f_mode & FMODE_READ))) 1595 return -EBADF; 1596 if (unlikely(!file->f_op->read_iter)) 1597 return -EINVAL; 1598 1599 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); 1600 if (ret < 0) 1601 return ret; 1602 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1603 if (!ret) 1604 aio_rw_done(req, call_read_iter(file, req, &iter)); 1605 kfree(iovec); 1606 return ret; 1607 } 1608 1609 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1610 bool vectored, bool compat) 1611 { 1612 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1613 struct iov_iter iter; 1614 struct file *file; 1615 int ret; 1616 1617 ret = aio_prep_rw(req, iocb); 1618 if (ret) 1619 return ret; 1620 file = req->ki_filp; 1621 1622 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1623 return -EBADF; 1624 if (unlikely(!file->f_op->write_iter)) 1625 return -EINVAL; 1626 1627 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); 1628 if (ret < 0) 1629 return ret; 1630 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1631 if (!ret) { 1632 if (S_ISREG(file_inode(file)->i_mode)) 1633 kiocb_start_write(req); 1634 req->ki_flags |= IOCB_WRITE; 1635 aio_rw_done(req, call_write_iter(file, req, &iter)); 1636 } 1637 kfree(iovec); 1638 return ret; 1639 } 1640 1641 static void aio_fsync_work(struct work_struct *work) 1642 { 1643 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1644 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1645 1646 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1647 revert_creds(old_cred); 1648 put_cred(iocb->fsync.creds); 1649 iocb_put(iocb); 1650 } 1651 1652 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1653 bool datasync) 1654 { 1655 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1656 iocb->aio_rw_flags)) 1657 return -EINVAL; 1658 1659 if (unlikely(!req->file->f_op->fsync)) 1660 return -EINVAL; 1661 1662 req->creds = prepare_creds(); 1663 if (!req->creds) 1664 return -ENOMEM; 1665 1666 req->datasync = datasync; 1667 INIT_WORK(&req->work, aio_fsync_work); 1668 schedule_work(&req->work); 1669 return 0; 1670 } 1671 1672 static void aio_poll_put_work(struct work_struct *work) 1673 { 1674 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1675 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1676 1677 iocb_put(iocb); 1678 } 1679 1680 /* 1681 * Safely lock the waitqueue which the request is on, synchronizing with the 1682 * case where the ->poll() provider decides to free its waitqueue early. 1683 * 1684 * Returns true on success, meaning that req->head->lock was locked, req->wait 1685 * is on req->head, and an RCU read lock was taken. Returns false if the 1686 * request was already removed from its waitqueue (which might no longer exist). 1687 */ 1688 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1689 { 1690 wait_queue_head_t *head; 1691 1692 /* 1693 * While we hold the waitqueue lock and the waitqueue is nonempty, 1694 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1695 * lock in the first place can race with the waitqueue being freed. 1696 * 1697 * We solve this as eventpoll does: by taking advantage of the fact that 1698 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1699 * we enter rcu_read_lock() and see that the pointer to the queue is 1700 * non-NULL, we can then lock it without the memory being freed out from 1701 * under us, then check whether the request is still on the queue. 1702 * 1703 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1704 * case the caller deletes the entry from the queue, leaving it empty. 1705 * In that case, only RCU prevents the queue memory from being freed. 1706 */ 1707 rcu_read_lock(); 1708 head = smp_load_acquire(&req->head); 1709 if (head) { 1710 spin_lock(&head->lock); 1711 if (!list_empty(&req->wait.entry)) 1712 return true; 1713 spin_unlock(&head->lock); 1714 } 1715 rcu_read_unlock(); 1716 return false; 1717 } 1718 1719 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1720 { 1721 spin_unlock(&req->head->lock); 1722 rcu_read_unlock(); 1723 } 1724 1725 static void aio_poll_complete_work(struct work_struct *work) 1726 { 1727 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1728 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1729 struct poll_table_struct pt = { ._key = req->events }; 1730 struct kioctx *ctx = iocb->ki_ctx; 1731 __poll_t mask = 0; 1732 1733 if (!READ_ONCE(req->cancelled)) 1734 mask = vfs_poll(req->file, &pt) & req->events; 1735 1736 /* 1737 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1738 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1739 * synchronize with them. In the cancellation case the list_del_init 1740 * itself is not actually needed, but harmless so we keep it in to 1741 * avoid further branches in the fast path. 1742 */ 1743 spin_lock_irq(&ctx->ctx_lock); 1744 if (poll_iocb_lock_wq(req)) { 1745 if (!mask && !READ_ONCE(req->cancelled)) { 1746 /* 1747 * The request isn't actually ready to be completed yet. 1748 * Reschedule completion if another wakeup came in. 1749 */ 1750 if (req->work_need_resched) { 1751 schedule_work(&req->work); 1752 req->work_need_resched = false; 1753 } else { 1754 req->work_scheduled = false; 1755 } 1756 poll_iocb_unlock_wq(req); 1757 spin_unlock_irq(&ctx->ctx_lock); 1758 return; 1759 } 1760 list_del_init(&req->wait.entry); 1761 poll_iocb_unlock_wq(req); 1762 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1763 list_del_init(&iocb->ki_list); 1764 iocb->ki_res.res = mangle_poll(mask); 1765 spin_unlock_irq(&ctx->ctx_lock); 1766 1767 iocb_put(iocb); 1768 } 1769 1770 /* assumes we are called with irqs disabled */ 1771 static int aio_poll_cancel(struct kiocb *iocb) 1772 { 1773 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1774 struct poll_iocb *req = &aiocb->poll; 1775 1776 if (poll_iocb_lock_wq(req)) { 1777 WRITE_ONCE(req->cancelled, true); 1778 if (!req->work_scheduled) { 1779 schedule_work(&aiocb->poll.work); 1780 req->work_scheduled = true; 1781 } 1782 poll_iocb_unlock_wq(req); 1783 } /* else, the request was force-cancelled by POLLFREE already */ 1784 1785 return 0; 1786 } 1787 1788 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1789 void *key) 1790 { 1791 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1792 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1793 __poll_t mask = key_to_poll(key); 1794 unsigned long flags; 1795 1796 /* for instances that support it check for an event match first: */ 1797 if (mask && !(mask & req->events)) 1798 return 0; 1799 1800 /* 1801 * Complete the request inline if possible. This requires that three 1802 * conditions be met: 1803 * 1. An event mask must have been passed. If a plain wakeup was done 1804 * instead, then mask == 0 and we have to call vfs_poll() to get 1805 * the events, so inline completion isn't possible. 1806 * 2. The completion work must not have already been scheduled. 1807 * 3. ctx_lock must not be busy. We have to use trylock because we 1808 * already hold the waitqueue lock, so this inverts the normal 1809 * locking order. Use irqsave/irqrestore because not all 1810 * filesystems (e.g. fuse) call this function with IRQs disabled, 1811 * yet IRQs have to be disabled before ctx_lock is obtained. 1812 */ 1813 if (mask && !req->work_scheduled && 1814 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1815 struct kioctx *ctx = iocb->ki_ctx; 1816 1817 list_del_init(&req->wait.entry); 1818 list_del(&iocb->ki_list); 1819 iocb->ki_res.res = mangle_poll(mask); 1820 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1821 iocb = NULL; 1822 INIT_WORK(&req->work, aio_poll_put_work); 1823 schedule_work(&req->work); 1824 } 1825 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1826 if (iocb) 1827 iocb_put(iocb); 1828 } else { 1829 /* 1830 * Schedule the completion work if needed. If it was already 1831 * scheduled, record that another wakeup came in. 1832 * 1833 * Don't remove the request from the waitqueue here, as it might 1834 * not actually be complete yet (we won't know until vfs_poll() 1835 * is called), and we must not miss any wakeups. POLLFREE is an 1836 * exception to this; see below. 1837 */ 1838 if (req->work_scheduled) { 1839 req->work_need_resched = true; 1840 } else { 1841 schedule_work(&req->work); 1842 req->work_scheduled = true; 1843 } 1844 1845 /* 1846 * If the waitqueue is being freed early but we can't complete 1847 * the request inline, we have to tear down the request as best 1848 * we can. That means immediately removing the request from its 1849 * waitqueue and preventing all further accesses to the 1850 * waitqueue via the request. We also need to schedule the 1851 * completion work (done above). Also mark the request as 1852 * cancelled, to potentially skip an unneeded call to ->poll(). 1853 */ 1854 if (mask & POLLFREE) { 1855 WRITE_ONCE(req->cancelled, true); 1856 list_del_init(&req->wait.entry); 1857 1858 /* 1859 * Careful: this *must* be the last step, since as soon 1860 * as req->head is NULL'ed out, the request can be 1861 * completed and freed, since aio_poll_complete_work() 1862 * will no longer need to take the waitqueue lock. 1863 */ 1864 smp_store_release(&req->head, NULL); 1865 } 1866 } 1867 return 1; 1868 } 1869 1870 struct aio_poll_table { 1871 struct poll_table_struct pt; 1872 struct aio_kiocb *iocb; 1873 bool queued; 1874 int error; 1875 }; 1876 1877 static void 1878 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1879 struct poll_table_struct *p) 1880 { 1881 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1882 1883 /* multiple wait queues per file are not supported */ 1884 if (unlikely(pt->queued)) { 1885 pt->error = -EINVAL; 1886 return; 1887 } 1888 1889 pt->queued = true; 1890 pt->error = 0; 1891 pt->iocb->poll.head = head; 1892 add_wait_queue(head, &pt->iocb->poll.wait); 1893 } 1894 1895 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1896 { 1897 struct kioctx *ctx = aiocb->ki_ctx; 1898 struct poll_iocb *req = &aiocb->poll; 1899 struct aio_poll_table apt; 1900 bool cancel = false; 1901 __poll_t mask; 1902 1903 /* reject any unknown events outside the normal event mask. */ 1904 if ((u16)iocb->aio_buf != iocb->aio_buf) 1905 return -EINVAL; 1906 /* reject fields that are not defined for poll */ 1907 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1908 return -EINVAL; 1909 1910 INIT_WORK(&req->work, aio_poll_complete_work); 1911 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1912 1913 req->head = NULL; 1914 req->cancelled = false; 1915 req->work_scheduled = false; 1916 req->work_need_resched = false; 1917 1918 apt.pt._qproc = aio_poll_queue_proc; 1919 apt.pt._key = req->events; 1920 apt.iocb = aiocb; 1921 apt.queued = false; 1922 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1923 1924 /* initialized the list so that we can do list_empty checks */ 1925 INIT_LIST_HEAD(&req->wait.entry); 1926 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1927 1928 mask = vfs_poll(req->file, &apt.pt) & req->events; 1929 spin_lock_irq(&ctx->ctx_lock); 1930 if (likely(apt.queued)) { 1931 bool on_queue = poll_iocb_lock_wq(req); 1932 1933 if (!on_queue || req->work_scheduled) { 1934 /* 1935 * aio_poll_wake() already either scheduled the async 1936 * completion work, or completed the request inline. 1937 */ 1938 if (apt.error) /* unsupported case: multiple queues */ 1939 cancel = true; 1940 apt.error = 0; 1941 mask = 0; 1942 } 1943 if (mask || apt.error) { 1944 /* Steal to complete synchronously. */ 1945 list_del_init(&req->wait.entry); 1946 } else if (cancel) { 1947 /* Cancel if possible (may be too late though). */ 1948 WRITE_ONCE(req->cancelled, true); 1949 } else if (on_queue) { 1950 /* 1951 * Actually waiting for an event, so add the request to 1952 * active_reqs so that it can be cancelled if needed. 1953 */ 1954 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1955 aiocb->ki_cancel = aio_poll_cancel; 1956 } 1957 if (on_queue) 1958 poll_iocb_unlock_wq(req); 1959 } 1960 if (mask) { /* no async, we'd stolen it */ 1961 aiocb->ki_res.res = mangle_poll(mask); 1962 apt.error = 0; 1963 } 1964 spin_unlock_irq(&ctx->ctx_lock); 1965 if (mask) 1966 iocb_put(aiocb); 1967 return apt.error; 1968 } 1969 1970 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1971 struct iocb __user *user_iocb, struct aio_kiocb *req, 1972 bool compat) 1973 { 1974 req->ki_filp = fget(iocb->aio_fildes); 1975 if (unlikely(!req->ki_filp)) 1976 return -EBADF; 1977 1978 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1979 struct eventfd_ctx *eventfd; 1980 /* 1981 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1982 * instance of the file* now. The file descriptor must be 1983 * an eventfd() fd, and will be signaled for each completed 1984 * event using the eventfd_signal() function. 1985 */ 1986 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1987 if (IS_ERR(eventfd)) 1988 return PTR_ERR(eventfd); 1989 1990 req->ki_eventfd = eventfd; 1991 } 1992 1993 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1994 pr_debug("EFAULT: aio_key\n"); 1995 return -EFAULT; 1996 } 1997 1998 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1999 req->ki_res.data = iocb->aio_data; 2000 req->ki_res.res = 0; 2001 req->ki_res.res2 = 0; 2002 2003 switch (iocb->aio_lio_opcode) { 2004 case IOCB_CMD_PREAD: 2005 return aio_read(&req->rw, iocb, false, compat); 2006 case IOCB_CMD_PWRITE: 2007 return aio_write(&req->rw, iocb, false, compat); 2008 case IOCB_CMD_PREADV: 2009 return aio_read(&req->rw, iocb, true, compat); 2010 case IOCB_CMD_PWRITEV: 2011 return aio_write(&req->rw, iocb, true, compat); 2012 case IOCB_CMD_FSYNC: 2013 return aio_fsync(&req->fsync, iocb, false); 2014 case IOCB_CMD_FDSYNC: 2015 return aio_fsync(&req->fsync, iocb, true); 2016 case IOCB_CMD_POLL: 2017 return aio_poll(req, iocb); 2018 default: 2019 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 2020 return -EINVAL; 2021 } 2022 } 2023 2024 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 2025 bool compat) 2026 { 2027 struct aio_kiocb *req; 2028 struct iocb iocb; 2029 int err; 2030 2031 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 2032 return -EFAULT; 2033 2034 /* enforce forwards compatibility on users */ 2035 if (unlikely(iocb.aio_reserved2)) { 2036 pr_debug("EINVAL: reserve field set\n"); 2037 return -EINVAL; 2038 } 2039 2040 /* prevent overflows */ 2041 if (unlikely( 2042 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 2043 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 2044 ((ssize_t)iocb.aio_nbytes < 0) 2045 )) { 2046 pr_debug("EINVAL: overflow check\n"); 2047 return -EINVAL; 2048 } 2049 2050 req = aio_get_req(ctx); 2051 if (unlikely(!req)) 2052 return -EAGAIN; 2053 2054 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2055 2056 /* Done with the synchronous reference */ 2057 iocb_put(req); 2058 2059 /* 2060 * If err is 0, we'd either done aio_complete() ourselves or have 2061 * arranged for that to be done asynchronously. Anything non-zero 2062 * means that we need to destroy req ourselves. 2063 */ 2064 if (unlikely(err)) { 2065 iocb_destroy(req); 2066 put_reqs_available(ctx, 1); 2067 } 2068 return err; 2069 } 2070 2071 /* sys_io_submit: 2072 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2073 * the number of iocbs queued. May return -EINVAL if the aio_context 2074 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2075 * *iocbpp[0] is not properly initialized, if the operation specified 2076 * is invalid for the file descriptor in the iocb. May fail with 2077 * -EFAULT if any of the data structures point to invalid data. May 2078 * fail with -EBADF if the file descriptor specified in the first 2079 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2080 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2081 * fail with -ENOSYS if not implemented. 2082 */ 2083 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2084 struct iocb __user * __user *, iocbpp) 2085 { 2086 struct kioctx *ctx; 2087 long ret = 0; 2088 int i = 0; 2089 struct blk_plug plug; 2090 2091 if (unlikely(nr < 0)) 2092 return -EINVAL; 2093 2094 ctx = lookup_ioctx(ctx_id); 2095 if (unlikely(!ctx)) { 2096 pr_debug("EINVAL: invalid context id\n"); 2097 return -EINVAL; 2098 } 2099 2100 if (nr > ctx->nr_events) 2101 nr = ctx->nr_events; 2102 2103 if (nr > AIO_PLUG_THRESHOLD) 2104 blk_start_plug(&plug); 2105 for (i = 0; i < nr; i++) { 2106 struct iocb __user *user_iocb; 2107 2108 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2109 ret = -EFAULT; 2110 break; 2111 } 2112 2113 ret = io_submit_one(ctx, user_iocb, false); 2114 if (ret) 2115 break; 2116 } 2117 if (nr > AIO_PLUG_THRESHOLD) 2118 blk_finish_plug(&plug); 2119 2120 percpu_ref_put(&ctx->users); 2121 return i ? i : ret; 2122 } 2123 2124 #ifdef CONFIG_COMPAT 2125 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2126 int, nr, compat_uptr_t __user *, iocbpp) 2127 { 2128 struct kioctx *ctx; 2129 long ret = 0; 2130 int i = 0; 2131 struct blk_plug plug; 2132 2133 if (unlikely(nr < 0)) 2134 return -EINVAL; 2135 2136 ctx = lookup_ioctx(ctx_id); 2137 if (unlikely(!ctx)) { 2138 pr_debug("EINVAL: invalid context id\n"); 2139 return -EINVAL; 2140 } 2141 2142 if (nr > ctx->nr_events) 2143 nr = ctx->nr_events; 2144 2145 if (nr > AIO_PLUG_THRESHOLD) 2146 blk_start_plug(&plug); 2147 for (i = 0; i < nr; i++) { 2148 compat_uptr_t user_iocb; 2149 2150 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2151 ret = -EFAULT; 2152 break; 2153 } 2154 2155 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2156 if (ret) 2157 break; 2158 } 2159 if (nr > AIO_PLUG_THRESHOLD) 2160 blk_finish_plug(&plug); 2161 2162 percpu_ref_put(&ctx->users); 2163 return i ? i : ret; 2164 } 2165 #endif 2166 2167 /* sys_io_cancel: 2168 * Attempts to cancel an iocb previously passed to io_submit. If 2169 * the operation is successfully cancelled, the resulting event is 2170 * copied into the memory pointed to by result without being placed 2171 * into the completion queue and 0 is returned. May fail with 2172 * -EFAULT if any of the data structures pointed to are invalid. 2173 * May fail with -EINVAL if aio_context specified by ctx_id is 2174 * invalid. May fail with -EAGAIN if the iocb specified was not 2175 * cancelled. Will fail with -ENOSYS if not implemented. 2176 */ 2177 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2178 struct io_event __user *, result) 2179 { 2180 struct kioctx *ctx; 2181 struct aio_kiocb *kiocb; 2182 int ret = -EINVAL; 2183 u32 key; 2184 u64 obj = (u64)(unsigned long)iocb; 2185 2186 if (unlikely(get_user(key, &iocb->aio_key))) 2187 return -EFAULT; 2188 if (unlikely(key != KIOCB_KEY)) 2189 return -EINVAL; 2190 2191 ctx = lookup_ioctx(ctx_id); 2192 if (unlikely(!ctx)) 2193 return -EINVAL; 2194 2195 spin_lock_irq(&ctx->ctx_lock); 2196 /* TODO: use a hash or array, this sucks. */ 2197 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2198 if (kiocb->ki_res.obj == obj) { 2199 ret = kiocb->ki_cancel(&kiocb->rw); 2200 list_del_init(&kiocb->ki_list); 2201 break; 2202 } 2203 } 2204 spin_unlock_irq(&ctx->ctx_lock); 2205 2206 if (!ret) { 2207 /* 2208 * The result argument is no longer used - the io_event is 2209 * always delivered via the ring buffer. -EINPROGRESS indicates 2210 * cancellation is progress: 2211 */ 2212 ret = -EINPROGRESS; 2213 } 2214 2215 percpu_ref_put(&ctx->users); 2216 2217 return ret; 2218 } 2219 2220 static long do_io_getevents(aio_context_t ctx_id, 2221 long min_nr, 2222 long nr, 2223 struct io_event __user *events, 2224 struct timespec64 *ts) 2225 { 2226 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2227 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2228 long ret = -EINVAL; 2229 2230 if (likely(ioctx)) { 2231 if (likely(min_nr <= nr && min_nr >= 0)) 2232 ret = read_events(ioctx, min_nr, nr, events, until); 2233 percpu_ref_put(&ioctx->users); 2234 } 2235 2236 return ret; 2237 } 2238 2239 /* io_getevents: 2240 * Attempts to read at least min_nr events and up to nr events from 2241 * the completion queue for the aio_context specified by ctx_id. If 2242 * it succeeds, the number of read events is returned. May fail with 2243 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2244 * out of range, if timeout is out of range. May fail with -EFAULT 2245 * if any of the memory specified is invalid. May return 0 or 2246 * < min_nr if the timeout specified by timeout has elapsed 2247 * before sufficient events are available, where timeout == NULL 2248 * specifies an infinite timeout. Note that the timeout pointed to by 2249 * timeout is relative. Will fail with -ENOSYS if not implemented. 2250 */ 2251 #ifdef CONFIG_64BIT 2252 2253 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2254 long, min_nr, 2255 long, nr, 2256 struct io_event __user *, events, 2257 struct __kernel_timespec __user *, timeout) 2258 { 2259 struct timespec64 ts; 2260 int ret; 2261 2262 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2263 return -EFAULT; 2264 2265 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2266 if (!ret && signal_pending(current)) 2267 ret = -EINTR; 2268 return ret; 2269 } 2270 2271 #endif 2272 2273 struct __aio_sigset { 2274 const sigset_t __user *sigmask; 2275 size_t sigsetsize; 2276 }; 2277 2278 SYSCALL_DEFINE6(io_pgetevents, 2279 aio_context_t, ctx_id, 2280 long, min_nr, 2281 long, nr, 2282 struct io_event __user *, events, 2283 struct __kernel_timespec __user *, timeout, 2284 const struct __aio_sigset __user *, usig) 2285 { 2286 struct __aio_sigset ksig = { NULL, }; 2287 struct timespec64 ts; 2288 bool interrupted; 2289 int ret; 2290 2291 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2292 return -EFAULT; 2293 2294 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2295 return -EFAULT; 2296 2297 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2298 if (ret) 2299 return ret; 2300 2301 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2302 2303 interrupted = signal_pending(current); 2304 restore_saved_sigmask_unless(interrupted); 2305 if (interrupted && !ret) 2306 ret = -ERESTARTNOHAND; 2307 2308 return ret; 2309 } 2310 2311 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2312 2313 SYSCALL_DEFINE6(io_pgetevents_time32, 2314 aio_context_t, ctx_id, 2315 long, min_nr, 2316 long, nr, 2317 struct io_event __user *, events, 2318 struct old_timespec32 __user *, timeout, 2319 const struct __aio_sigset __user *, usig) 2320 { 2321 struct __aio_sigset ksig = { NULL, }; 2322 struct timespec64 ts; 2323 bool interrupted; 2324 int ret; 2325 2326 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2327 return -EFAULT; 2328 2329 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2330 return -EFAULT; 2331 2332 2333 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2334 if (ret) 2335 return ret; 2336 2337 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2338 2339 interrupted = signal_pending(current); 2340 restore_saved_sigmask_unless(interrupted); 2341 if (interrupted && !ret) 2342 ret = -ERESTARTNOHAND; 2343 2344 return ret; 2345 } 2346 2347 #endif 2348 2349 #if defined(CONFIG_COMPAT_32BIT_TIME) 2350 2351 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2352 __s32, min_nr, 2353 __s32, nr, 2354 struct io_event __user *, events, 2355 struct old_timespec32 __user *, timeout) 2356 { 2357 struct timespec64 t; 2358 int ret; 2359 2360 if (timeout && get_old_timespec32(&t, timeout)) 2361 return -EFAULT; 2362 2363 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2364 if (!ret && signal_pending(current)) 2365 ret = -EINTR; 2366 return ret; 2367 } 2368 2369 #endif 2370 2371 #ifdef CONFIG_COMPAT 2372 2373 struct __compat_aio_sigset { 2374 compat_uptr_t sigmask; 2375 compat_size_t sigsetsize; 2376 }; 2377 2378 #if defined(CONFIG_COMPAT_32BIT_TIME) 2379 2380 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2381 compat_aio_context_t, ctx_id, 2382 compat_long_t, min_nr, 2383 compat_long_t, nr, 2384 struct io_event __user *, events, 2385 struct old_timespec32 __user *, timeout, 2386 const struct __compat_aio_sigset __user *, usig) 2387 { 2388 struct __compat_aio_sigset ksig = { 0, }; 2389 struct timespec64 t; 2390 bool interrupted; 2391 int ret; 2392 2393 if (timeout && get_old_timespec32(&t, timeout)) 2394 return -EFAULT; 2395 2396 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2397 return -EFAULT; 2398 2399 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2400 if (ret) 2401 return ret; 2402 2403 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2404 2405 interrupted = signal_pending(current); 2406 restore_saved_sigmask_unless(interrupted); 2407 if (interrupted && !ret) 2408 ret = -ERESTARTNOHAND; 2409 2410 return ret; 2411 } 2412 2413 #endif 2414 2415 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2416 compat_aio_context_t, ctx_id, 2417 compat_long_t, min_nr, 2418 compat_long_t, nr, 2419 struct io_event __user *, events, 2420 struct __kernel_timespec __user *, timeout, 2421 const struct __compat_aio_sigset __user *, usig) 2422 { 2423 struct __compat_aio_sigset ksig = { 0, }; 2424 struct timespec64 t; 2425 bool interrupted; 2426 int ret; 2427 2428 if (timeout && get_timespec64(&t, timeout)) 2429 return -EFAULT; 2430 2431 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2432 return -EFAULT; 2433 2434 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2435 if (ret) 2436 return ret; 2437 2438 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2439 2440 interrupted = signal_pending(current); 2441 restore_saved_sigmask_unless(interrupted); 2442 if (interrupted && !ret) 2443 ret = -ERESTARTNOHAND; 2444 2445 return ret; 2446 } 2447 #endif 2448