1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 19 #define DEBUG 0 20 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/mm.h> 25 #include <linux/mman.h> 26 #include <linux/slab.h> 27 #include <linux/timer.h> 28 #include <linux/aio.h> 29 #include <linux/highmem.h> 30 #include <linux/workqueue.h> 31 #include <linux/security.h> 32 33 #include <asm/kmap_types.h> 34 #include <asm/uaccess.h> 35 #include <asm/mmu_context.h> 36 37 #if DEBUG > 1 38 #define dprintk printk 39 #else 40 #define dprintk(x...) do { ; } while (0) 41 #endif 42 43 /*------ sysctl variables----*/ 44 atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */ 45 unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 46 /*----end sysctl variables---*/ 47 48 static kmem_cache_t *kiocb_cachep; 49 static kmem_cache_t *kioctx_cachep; 50 51 static struct workqueue_struct *aio_wq; 52 53 /* Used for rare fput completion. */ 54 static void aio_fput_routine(void *); 55 static DECLARE_WORK(fput_work, aio_fput_routine, NULL); 56 57 static DEFINE_SPINLOCK(fput_lock); 58 static LIST_HEAD(fput_head); 59 60 static void aio_kick_handler(void *); 61 62 /* aio_setup 63 * Creates the slab caches used by the aio routines, panic on 64 * failure as this is done early during the boot sequence. 65 */ 66 static int __init aio_setup(void) 67 { 68 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb), 69 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 70 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx), 71 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 72 73 aio_wq = create_workqueue("aio"); 74 75 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 76 77 return 0; 78 } 79 80 static void aio_free_ring(struct kioctx *ctx) 81 { 82 struct aio_ring_info *info = &ctx->ring_info; 83 long i; 84 85 for (i=0; i<info->nr_pages; i++) 86 put_page(info->ring_pages[i]); 87 88 if (info->mmap_size) { 89 down_write(&ctx->mm->mmap_sem); 90 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 91 up_write(&ctx->mm->mmap_sem); 92 } 93 94 if (info->ring_pages && info->ring_pages != info->internal_pages) 95 kfree(info->ring_pages); 96 info->ring_pages = NULL; 97 info->nr = 0; 98 } 99 100 static int aio_setup_ring(struct kioctx *ctx) 101 { 102 struct aio_ring *ring; 103 struct aio_ring_info *info = &ctx->ring_info; 104 unsigned nr_events = ctx->max_reqs; 105 unsigned long size; 106 int nr_pages; 107 108 /* Compensate for the ring buffer's head/tail overlap entry */ 109 nr_events += 2; /* 1 is required, 2 for good luck */ 110 111 size = sizeof(struct aio_ring); 112 size += sizeof(struct io_event) * nr_events; 113 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 114 115 if (nr_pages < 0) 116 return -EINVAL; 117 118 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 119 120 info->nr = 0; 121 info->ring_pages = info->internal_pages; 122 if (nr_pages > AIO_RING_PAGES) { 123 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL); 124 if (!info->ring_pages) 125 return -ENOMEM; 126 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages); 127 } 128 129 info->mmap_size = nr_pages * PAGE_SIZE; 130 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 131 down_write(&ctx->mm->mmap_sem); 132 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 133 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 134 0); 135 if (IS_ERR((void *)info->mmap_base)) { 136 up_write(&ctx->mm->mmap_sem); 137 printk("mmap err: %ld\n", -info->mmap_base); 138 info->mmap_size = 0; 139 aio_free_ring(ctx); 140 return -EAGAIN; 141 } 142 143 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 144 info->nr_pages = get_user_pages(current, ctx->mm, 145 info->mmap_base, nr_pages, 146 1, 0, info->ring_pages, NULL); 147 up_write(&ctx->mm->mmap_sem); 148 149 if (unlikely(info->nr_pages != nr_pages)) { 150 aio_free_ring(ctx); 151 return -EAGAIN; 152 } 153 154 ctx->user_id = info->mmap_base; 155 156 info->nr = nr_events; /* trusted copy */ 157 158 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 159 ring->nr = nr_events; /* user copy */ 160 ring->id = ctx->user_id; 161 ring->head = ring->tail = 0; 162 ring->magic = AIO_RING_MAGIC; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 165 ring->header_length = sizeof(struct aio_ring); 166 kunmap_atomic(ring, KM_USER0); 167 168 return 0; 169 } 170 171 172 /* aio_ring_event: returns a pointer to the event at the given index from 173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 174 */ 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 178 179 #define aio_ring_event(info, nr, km) ({ \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 181 struct io_event *__event; \ 182 __event = kmap_atomic( \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \ 185 __event; \ 186 }) 187 188 #define put_aio_ring_event(event, km) do { \ 189 struct io_event *__event = (event); \ 190 (void)__event; \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 192 } while(0) 193 194 /* ioctx_alloc 195 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 196 */ 197 static struct kioctx *ioctx_alloc(unsigned nr_events) 198 { 199 struct mm_struct *mm; 200 struct kioctx *ctx; 201 202 /* Prevent overflows */ 203 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 204 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 205 pr_debug("ENOMEM: nr_events too high\n"); 206 return ERR_PTR(-EINVAL); 207 } 208 209 if (nr_events > aio_max_nr) 210 return ERR_PTR(-EAGAIN); 211 212 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL); 213 if (!ctx) 214 return ERR_PTR(-ENOMEM); 215 216 memset(ctx, 0, sizeof(*ctx)); 217 ctx->max_reqs = nr_events; 218 mm = ctx->mm = current->mm; 219 atomic_inc(&mm->mm_count); 220 221 atomic_set(&ctx->users, 1); 222 spin_lock_init(&ctx->ctx_lock); 223 spin_lock_init(&ctx->ring_info.ring_lock); 224 init_waitqueue_head(&ctx->wait); 225 226 INIT_LIST_HEAD(&ctx->active_reqs); 227 INIT_LIST_HEAD(&ctx->run_list); 228 INIT_WORK(&ctx->wq, aio_kick_handler, ctx); 229 230 if (aio_setup_ring(ctx) < 0) 231 goto out_freectx; 232 233 /* limit the number of system wide aios */ 234 atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */ 235 if (unlikely(atomic_read(&aio_nr) > aio_max_nr)) 236 goto out_cleanup; 237 238 /* now link into global list. kludge. FIXME */ 239 write_lock(&mm->ioctx_list_lock); 240 ctx->next = mm->ioctx_list; 241 mm->ioctx_list = ctx; 242 write_unlock(&mm->ioctx_list_lock); 243 244 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 245 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 246 return ctx; 247 248 out_cleanup: 249 atomic_sub(ctx->max_reqs, &aio_nr); 250 ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */ 251 __put_ioctx(ctx); 252 return ERR_PTR(-EAGAIN); 253 254 out_freectx: 255 mmdrop(mm); 256 kmem_cache_free(kioctx_cachep, ctx); 257 ctx = ERR_PTR(-ENOMEM); 258 259 dprintk("aio: error allocating ioctx %p\n", ctx); 260 return ctx; 261 } 262 263 /* aio_cancel_all 264 * Cancels all outstanding aio requests on an aio context. Used 265 * when the processes owning a context have all exited to encourage 266 * the rapid destruction of the kioctx. 267 */ 268 static void aio_cancel_all(struct kioctx *ctx) 269 { 270 int (*cancel)(struct kiocb *, struct io_event *); 271 struct io_event res; 272 spin_lock_irq(&ctx->ctx_lock); 273 ctx->dead = 1; 274 while (!list_empty(&ctx->active_reqs)) { 275 struct list_head *pos = ctx->active_reqs.next; 276 struct kiocb *iocb = list_kiocb(pos); 277 list_del_init(&iocb->ki_list); 278 cancel = iocb->ki_cancel; 279 kiocbSetCancelled(iocb); 280 if (cancel) { 281 iocb->ki_users++; 282 spin_unlock_irq(&ctx->ctx_lock); 283 cancel(iocb, &res); 284 spin_lock_irq(&ctx->ctx_lock); 285 } 286 } 287 spin_unlock_irq(&ctx->ctx_lock); 288 } 289 290 static void wait_for_all_aios(struct kioctx *ctx) 291 { 292 struct task_struct *tsk = current; 293 DECLARE_WAITQUEUE(wait, tsk); 294 295 if (!ctx->reqs_active) 296 return; 297 298 add_wait_queue(&ctx->wait, &wait); 299 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 300 while (ctx->reqs_active) { 301 schedule(); 302 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 303 } 304 __set_task_state(tsk, TASK_RUNNING); 305 remove_wait_queue(&ctx->wait, &wait); 306 } 307 308 /* wait_on_sync_kiocb: 309 * Waits on the given sync kiocb to complete. 310 */ 311 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb) 312 { 313 while (iocb->ki_users) { 314 set_current_state(TASK_UNINTERRUPTIBLE); 315 if (!iocb->ki_users) 316 break; 317 schedule(); 318 } 319 __set_current_state(TASK_RUNNING); 320 return iocb->ki_user_data; 321 } 322 323 /* exit_aio: called when the last user of mm goes away. At this point, 324 * there is no way for any new requests to be submited or any of the 325 * io_* syscalls to be called on the context. However, there may be 326 * outstanding requests which hold references to the context; as they 327 * go away, they will call put_ioctx and release any pinned memory 328 * associated with the request (held via struct page * references). 329 */ 330 void fastcall exit_aio(struct mm_struct *mm) 331 { 332 struct kioctx *ctx = mm->ioctx_list; 333 mm->ioctx_list = NULL; 334 while (ctx) { 335 struct kioctx *next = ctx->next; 336 ctx->next = NULL; 337 aio_cancel_all(ctx); 338 339 wait_for_all_aios(ctx); 340 /* 341 * this is an overkill, but ensures we don't leave 342 * the ctx on the aio_wq 343 */ 344 flush_workqueue(aio_wq); 345 346 if (1 != atomic_read(&ctx->users)) 347 printk(KERN_DEBUG 348 "exit_aio:ioctx still alive: %d %d %d\n", 349 atomic_read(&ctx->users), ctx->dead, 350 ctx->reqs_active); 351 put_ioctx(ctx); 352 ctx = next; 353 } 354 } 355 356 /* __put_ioctx 357 * Called when the last user of an aio context has gone away, 358 * and the struct needs to be freed. 359 */ 360 void fastcall __put_ioctx(struct kioctx *ctx) 361 { 362 unsigned nr_events = ctx->max_reqs; 363 364 if (unlikely(ctx->reqs_active)) 365 BUG(); 366 367 cancel_delayed_work(&ctx->wq); 368 flush_workqueue(aio_wq); 369 aio_free_ring(ctx); 370 mmdrop(ctx->mm); 371 ctx->mm = NULL; 372 pr_debug("__put_ioctx: freeing %p\n", ctx); 373 kmem_cache_free(kioctx_cachep, ctx); 374 375 atomic_sub(nr_events, &aio_nr); 376 } 377 378 /* aio_get_req 379 * Allocate a slot for an aio request. Increments the users count 380 * of the kioctx so that the kioctx stays around until all requests are 381 * complete. Returns NULL if no requests are free. 382 * 383 * Returns with kiocb->users set to 2. The io submit code path holds 384 * an extra reference while submitting the i/o. 385 * This prevents races between the aio code path referencing the 386 * req (after submitting it) and aio_complete() freeing the req. 387 */ 388 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx)); 389 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx) 390 { 391 struct kiocb *req = NULL; 392 struct aio_ring *ring; 393 int okay = 0; 394 395 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 396 if (unlikely(!req)) 397 return NULL; 398 399 req->ki_flags = 1 << KIF_LOCKED; 400 req->ki_users = 2; 401 req->ki_key = 0; 402 req->ki_ctx = ctx; 403 req->ki_cancel = NULL; 404 req->ki_retry = NULL; 405 req->ki_dtor = NULL; 406 req->private = NULL; 407 INIT_LIST_HEAD(&req->ki_run_list); 408 409 /* Check if the completion queue has enough free space to 410 * accept an event from this io. 411 */ 412 spin_lock_irq(&ctx->ctx_lock); 413 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 414 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 415 list_add(&req->ki_list, &ctx->active_reqs); 416 get_ioctx(ctx); 417 ctx->reqs_active++; 418 okay = 1; 419 } 420 kunmap_atomic(ring, KM_USER0); 421 spin_unlock_irq(&ctx->ctx_lock); 422 423 if (!okay) { 424 kmem_cache_free(kiocb_cachep, req); 425 req = NULL; 426 } 427 428 return req; 429 } 430 431 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 432 { 433 struct kiocb *req; 434 /* Handle a potential starvation case -- should be exceedingly rare as 435 * requests will be stuck on fput_head only if the aio_fput_routine is 436 * delayed and the requests were the last user of the struct file. 437 */ 438 req = __aio_get_req(ctx); 439 if (unlikely(NULL == req)) { 440 aio_fput_routine(NULL); 441 req = __aio_get_req(ctx); 442 } 443 return req; 444 } 445 446 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 447 { 448 if (req->ki_dtor) 449 req->ki_dtor(req); 450 kmem_cache_free(kiocb_cachep, req); 451 ctx->reqs_active--; 452 453 if (unlikely(!ctx->reqs_active && ctx->dead)) 454 wake_up(&ctx->wait); 455 } 456 457 static void aio_fput_routine(void *data) 458 { 459 spin_lock_irq(&fput_lock); 460 while (likely(!list_empty(&fput_head))) { 461 struct kiocb *req = list_kiocb(fput_head.next); 462 struct kioctx *ctx = req->ki_ctx; 463 464 list_del(&req->ki_list); 465 spin_unlock_irq(&fput_lock); 466 467 /* Complete the fput */ 468 __fput(req->ki_filp); 469 470 /* Link the iocb into the context's free list */ 471 spin_lock_irq(&ctx->ctx_lock); 472 really_put_req(ctx, req); 473 spin_unlock_irq(&ctx->ctx_lock); 474 475 put_ioctx(ctx); 476 spin_lock_irq(&fput_lock); 477 } 478 spin_unlock_irq(&fput_lock); 479 } 480 481 /* __aio_put_req 482 * Returns true if this put was the last user of the request. 483 */ 484 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 485 { 486 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 487 req, atomic_read(&req->ki_filp->f_count)); 488 489 req->ki_users --; 490 if (unlikely(req->ki_users < 0)) 491 BUG(); 492 if (likely(req->ki_users)) 493 return 0; 494 list_del(&req->ki_list); /* remove from active_reqs */ 495 req->ki_cancel = NULL; 496 req->ki_retry = NULL; 497 498 /* Must be done under the lock to serialise against cancellation. 499 * Call this aio_fput as it duplicates fput via the fput_work. 500 */ 501 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { 502 get_ioctx(ctx); 503 spin_lock(&fput_lock); 504 list_add(&req->ki_list, &fput_head); 505 spin_unlock(&fput_lock); 506 queue_work(aio_wq, &fput_work); 507 } else 508 really_put_req(ctx, req); 509 return 1; 510 } 511 512 /* aio_put_req 513 * Returns true if this put was the last user of the kiocb, 514 * false if the request is still in use. 515 */ 516 int fastcall aio_put_req(struct kiocb *req) 517 { 518 struct kioctx *ctx = req->ki_ctx; 519 int ret; 520 spin_lock_irq(&ctx->ctx_lock); 521 ret = __aio_put_req(ctx, req); 522 spin_unlock_irq(&ctx->ctx_lock); 523 if (ret) 524 put_ioctx(ctx); 525 return ret; 526 } 527 528 /* Lookup an ioctx id. ioctx_list is lockless for reads. 529 * FIXME: this is O(n) and is only suitable for development. 530 */ 531 struct kioctx *lookup_ioctx(unsigned long ctx_id) 532 { 533 struct kioctx *ioctx; 534 struct mm_struct *mm; 535 536 mm = current->mm; 537 read_lock(&mm->ioctx_list_lock); 538 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 539 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 540 get_ioctx(ioctx); 541 break; 542 } 543 read_unlock(&mm->ioctx_list_lock); 544 545 return ioctx; 546 } 547 548 /* 549 * use_mm 550 * Makes the calling kernel thread take on the specified 551 * mm context. 552 * Called by the retry thread execute retries within the 553 * iocb issuer's mm context, so that copy_from/to_user 554 * operations work seamlessly for aio. 555 * (Note: this routine is intended to be called only 556 * from a kernel thread context) 557 */ 558 static void use_mm(struct mm_struct *mm) 559 { 560 struct mm_struct *active_mm; 561 struct task_struct *tsk = current; 562 563 task_lock(tsk); 564 tsk->flags |= PF_BORROWED_MM; 565 active_mm = tsk->active_mm; 566 atomic_inc(&mm->mm_count); 567 tsk->mm = mm; 568 tsk->active_mm = mm; 569 activate_mm(active_mm, mm); 570 task_unlock(tsk); 571 572 mmdrop(active_mm); 573 } 574 575 /* 576 * unuse_mm 577 * Reverses the effect of use_mm, i.e. releases the 578 * specified mm context which was earlier taken on 579 * by the calling kernel thread 580 * (Note: this routine is intended to be called only 581 * from a kernel thread context) 582 * 583 * Comments: Called with ctx->ctx_lock held. This nests 584 * task_lock instead ctx_lock. 585 */ 586 static void unuse_mm(struct mm_struct *mm) 587 { 588 struct task_struct *tsk = current; 589 590 task_lock(tsk); 591 tsk->flags &= ~PF_BORROWED_MM; 592 tsk->mm = NULL; 593 /* active_mm is still 'mm' */ 594 enter_lazy_tlb(mm, tsk); 595 task_unlock(tsk); 596 } 597 598 /* 599 * Queue up a kiocb to be retried. Assumes that the kiocb 600 * has already been marked as kicked, and places it on 601 * the retry run list for the corresponding ioctx, if it 602 * isn't already queued. Returns 1 if it actually queued 603 * the kiocb (to tell the caller to activate the work 604 * queue to process it), or 0, if it found that it was 605 * already queued. 606 * 607 * Should be called with the spin lock iocb->ki_ctx->ctx_lock 608 * held 609 */ 610 static inline int __queue_kicked_iocb(struct kiocb *iocb) 611 { 612 struct kioctx *ctx = iocb->ki_ctx; 613 614 if (list_empty(&iocb->ki_run_list)) { 615 list_add_tail(&iocb->ki_run_list, 616 &ctx->run_list); 617 return 1; 618 } 619 return 0; 620 } 621 622 /* aio_run_iocb 623 * This is the core aio execution routine. It is 624 * invoked both for initial i/o submission and 625 * subsequent retries via the aio_kick_handler. 626 * Expects to be invoked with iocb->ki_ctx->lock 627 * already held. The lock is released and reaquired 628 * as needed during processing. 629 * 630 * Calls the iocb retry method (already setup for the 631 * iocb on initial submission) for operation specific 632 * handling, but takes care of most of common retry 633 * execution details for a given iocb. The retry method 634 * needs to be non-blocking as far as possible, to avoid 635 * holding up other iocbs waiting to be serviced by the 636 * retry kernel thread. 637 * 638 * The trickier parts in this code have to do with 639 * ensuring that only one retry instance is in progress 640 * for a given iocb at any time. Providing that guarantee 641 * simplifies the coding of individual aio operations as 642 * it avoids various potential races. 643 */ 644 static ssize_t aio_run_iocb(struct kiocb *iocb) 645 { 646 struct kioctx *ctx = iocb->ki_ctx; 647 ssize_t (*retry)(struct kiocb *); 648 ssize_t ret; 649 650 if (iocb->ki_retried++ > 1024*1024) { 651 printk("Maximal retry count. Bytes done %Zd\n", 652 iocb->ki_nbytes - iocb->ki_left); 653 return -EAGAIN; 654 } 655 656 if (!(iocb->ki_retried & 0xff)) { 657 pr_debug("%ld retry: %d of %d\n", iocb->ki_retried, 658 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes); 659 } 660 661 if (!(retry = iocb->ki_retry)) { 662 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 663 return 0; 664 } 665 666 /* 667 * We don't want the next retry iteration for this 668 * operation to start until this one has returned and 669 * updated the iocb state. However, wait_queue functions 670 * can trigger a kick_iocb from interrupt context in the 671 * meantime, indicating that data is available for the next 672 * iteration. We want to remember that and enable the 673 * next retry iteration _after_ we are through with 674 * this one. 675 * 676 * So, in order to be able to register a "kick", but 677 * prevent it from being queued now, we clear the kick 678 * flag, but make the kick code *think* that the iocb is 679 * still on the run list until we are actually done. 680 * When we are done with this iteration, we check if 681 * the iocb was kicked in the meantime and if so, queue 682 * it up afresh. 683 */ 684 685 kiocbClearKicked(iocb); 686 687 /* 688 * This is so that aio_complete knows it doesn't need to 689 * pull the iocb off the run list (We can't just call 690 * INIT_LIST_HEAD because we don't want a kick_iocb to 691 * queue this on the run list yet) 692 */ 693 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 694 spin_unlock_irq(&ctx->ctx_lock); 695 696 /* Quit retrying if the i/o has been cancelled */ 697 if (kiocbIsCancelled(iocb)) { 698 ret = -EINTR; 699 aio_complete(iocb, ret, 0); 700 /* must not access the iocb after this */ 701 goto out; 702 } 703 704 /* 705 * Now we are all set to call the retry method in async 706 * context. By setting this thread's io_wait context 707 * to point to the wait queue entry inside the currently 708 * running iocb for the duration of the retry, we ensure 709 * that async notification wakeups are queued by the 710 * operation instead of blocking waits, and when notified, 711 * cause the iocb to be kicked for continuation (through 712 * the aio_wake_function callback). 713 */ 714 BUG_ON(current->io_wait != NULL); 715 current->io_wait = &iocb->ki_wait; 716 ret = retry(iocb); 717 current->io_wait = NULL; 718 719 if (-EIOCBRETRY != ret) { 720 if (-EIOCBQUEUED != ret) { 721 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 722 aio_complete(iocb, ret, 0); 723 /* must not access the iocb after this */ 724 } 725 } else { 726 /* 727 * Issue an additional retry to avoid waiting forever if 728 * no waits were queued (e.g. in case of a short read). 729 */ 730 if (list_empty(&iocb->ki_wait.task_list)) 731 kiocbSetKicked(iocb); 732 } 733 out: 734 spin_lock_irq(&ctx->ctx_lock); 735 736 if (-EIOCBRETRY == ret) { 737 /* 738 * OK, now that we are done with this iteration 739 * and know that there is more left to go, 740 * this is where we let go so that a subsequent 741 * "kick" can start the next iteration 742 */ 743 744 /* will make __queue_kicked_iocb succeed from here on */ 745 INIT_LIST_HEAD(&iocb->ki_run_list); 746 /* we must queue the next iteration ourselves, if it 747 * has already been kicked */ 748 if (kiocbIsKicked(iocb)) { 749 __queue_kicked_iocb(iocb); 750 } 751 } 752 return ret; 753 } 754 755 /* 756 * __aio_run_iocbs: 757 * Process all pending retries queued on the ioctx 758 * run list. 759 * Assumes it is operating within the aio issuer's mm 760 * context. Expects to be called with ctx->ctx_lock held 761 */ 762 static int __aio_run_iocbs(struct kioctx *ctx) 763 { 764 struct kiocb *iocb; 765 LIST_HEAD(run_list); 766 767 list_splice_init(&ctx->run_list, &run_list); 768 while (!list_empty(&run_list)) { 769 iocb = list_entry(run_list.next, struct kiocb, 770 ki_run_list); 771 list_del(&iocb->ki_run_list); 772 /* 773 * Hold an extra reference while retrying i/o. 774 */ 775 iocb->ki_users++; /* grab extra reference */ 776 aio_run_iocb(iocb); 777 if (__aio_put_req(ctx, iocb)) /* drop extra ref */ 778 put_ioctx(ctx); 779 } 780 if (!list_empty(&ctx->run_list)) 781 return 1; 782 return 0; 783 } 784 785 static void aio_queue_work(struct kioctx * ctx) 786 { 787 unsigned long timeout; 788 /* 789 * if someone is waiting, get the work started right 790 * away, otherwise, use a longer delay 791 */ 792 smp_mb(); 793 if (waitqueue_active(&ctx->wait)) 794 timeout = 1; 795 else 796 timeout = HZ/10; 797 queue_delayed_work(aio_wq, &ctx->wq, timeout); 798 } 799 800 801 /* 802 * aio_run_iocbs: 803 * Process all pending retries queued on the ioctx 804 * run list. 805 * Assumes it is operating within the aio issuer's mm 806 * context. 807 */ 808 static inline void aio_run_iocbs(struct kioctx *ctx) 809 { 810 int requeue; 811 812 spin_lock_irq(&ctx->ctx_lock); 813 814 requeue = __aio_run_iocbs(ctx); 815 spin_unlock_irq(&ctx->ctx_lock); 816 if (requeue) 817 aio_queue_work(ctx); 818 } 819 820 /* 821 * just like aio_run_iocbs, but keeps running them until 822 * the list stays empty 823 */ 824 static inline void aio_run_all_iocbs(struct kioctx *ctx) 825 { 826 spin_lock_irq(&ctx->ctx_lock); 827 while (__aio_run_iocbs(ctx)) 828 ; 829 spin_unlock_irq(&ctx->ctx_lock); 830 } 831 832 /* 833 * aio_kick_handler: 834 * Work queue handler triggered to process pending 835 * retries on an ioctx. Takes on the aio issuer's 836 * mm context before running the iocbs, so that 837 * copy_xxx_user operates on the issuer's address 838 * space. 839 * Run on aiod's context. 840 */ 841 static void aio_kick_handler(void *data) 842 { 843 struct kioctx *ctx = data; 844 mm_segment_t oldfs = get_fs(); 845 int requeue; 846 847 set_fs(USER_DS); 848 use_mm(ctx->mm); 849 spin_lock_irq(&ctx->ctx_lock); 850 requeue =__aio_run_iocbs(ctx); 851 unuse_mm(ctx->mm); 852 spin_unlock_irq(&ctx->ctx_lock); 853 set_fs(oldfs); 854 /* 855 * we're in a worker thread already, don't use queue_delayed_work, 856 */ 857 if (requeue) 858 queue_work(aio_wq, &ctx->wq); 859 } 860 861 862 /* 863 * Called by kick_iocb to queue the kiocb for retry 864 * and if required activate the aio work queue to process 865 * it 866 */ 867 static void queue_kicked_iocb(struct kiocb *iocb) 868 { 869 struct kioctx *ctx = iocb->ki_ctx; 870 unsigned long flags; 871 int run = 0; 872 873 WARN_ON((!list_empty(&iocb->ki_wait.task_list))); 874 875 spin_lock_irqsave(&ctx->ctx_lock, flags); 876 run = __queue_kicked_iocb(iocb); 877 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 878 if (run) 879 aio_queue_work(ctx); 880 } 881 882 /* 883 * kick_iocb: 884 * Called typically from a wait queue callback context 885 * (aio_wake_function) to trigger a retry of the iocb. 886 * The retry is usually executed by aio workqueue 887 * threads (See aio_kick_handler). 888 */ 889 void fastcall kick_iocb(struct kiocb *iocb) 890 { 891 /* sync iocbs are easy: they can only ever be executing from a 892 * single context. */ 893 if (is_sync_kiocb(iocb)) { 894 kiocbSetKicked(iocb); 895 wake_up_process(iocb->ki_obj.tsk); 896 return; 897 } 898 899 /* If its already kicked we shouldn't queue it again */ 900 if (!kiocbTryKick(iocb)) { 901 queue_kicked_iocb(iocb); 902 } 903 } 904 EXPORT_SYMBOL(kick_iocb); 905 906 /* aio_complete 907 * Called when the io request on the given iocb is complete. 908 * Returns true if this is the last user of the request. The 909 * only other user of the request can be the cancellation code. 910 */ 911 int fastcall aio_complete(struct kiocb *iocb, long res, long res2) 912 { 913 struct kioctx *ctx = iocb->ki_ctx; 914 struct aio_ring_info *info; 915 struct aio_ring *ring; 916 struct io_event *event; 917 unsigned long flags; 918 unsigned long tail; 919 int ret; 920 921 /* Special case handling for sync iocbs: events go directly 922 * into the iocb for fast handling. Note that this will not 923 * work if we allow sync kiocbs to be cancelled. in which 924 * case the usage count checks will have to move under ctx_lock 925 * for all cases. 926 */ 927 if (is_sync_kiocb(iocb)) { 928 int ret; 929 930 iocb->ki_user_data = res; 931 if (iocb->ki_users == 1) { 932 iocb->ki_users = 0; 933 ret = 1; 934 } else { 935 spin_lock_irq(&ctx->ctx_lock); 936 iocb->ki_users--; 937 ret = (0 == iocb->ki_users); 938 spin_unlock_irq(&ctx->ctx_lock); 939 } 940 /* sync iocbs put the task here for us */ 941 wake_up_process(iocb->ki_obj.tsk); 942 return ret; 943 } 944 945 info = &ctx->ring_info; 946 947 /* add a completion event to the ring buffer. 948 * must be done holding ctx->ctx_lock to prevent 949 * other code from messing with the tail 950 * pointer since we might be called from irq 951 * context. 952 */ 953 spin_lock_irqsave(&ctx->ctx_lock, flags); 954 955 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 956 list_del_init(&iocb->ki_run_list); 957 958 /* 959 * cancelled requests don't get events, userland was given one 960 * when the event got cancelled. 961 */ 962 if (kiocbIsCancelled(iocb)) 963 goto put_rq; 964 965 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 966 967 tail = info->tail; 968 event = aio_ring_event(info, tail, KM_IRQ0); 969 if (++tail >= info->nr) 970 tail = 0; 971 972 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 973 event->data = iocb->ki_user_data; 974 event->res = res; 975 event->res2 = res2; 976 977 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 978 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 979 res, res2); 980 981 /* after flagging the request as done, we 982 * must never even look at it again 983 */ 984 smp_wmb(); /* make event visible before updating tail */ 985 986 info->tail = tail; 987 ring->tail = tail; 988 989 put_aio_ring_event(event, KM_IRQ0); 990 kunmap_atomic(ring, KM_IRQ1); 991 992 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 993 994 pr_debug("%ld retries: %d of %d\n", iocb->ki_retried, 995 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes); 996 put_rq: 997 /* everything turned out well, dispose of the aiocb. */ 998 ret = __aio_put_req(ctx, iocb); 999 1000 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1001 1002 if (waitqueue_active(&ctx->wait)) 1003 wake_up(&ctx->wait); 1004 1005 if (ret) 1006 put_ioctx(ctx); 1007 1008 return ret; 1009 } 1010 1011 /* aio_read_evt 1012 * Pull an event off of the ioctx's event ring. Returns the number of 1013 * events fetched (0 or 1 ;-) 1014 * FIXME: make this use cmpxchg. 1015 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1016 */ 1017 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1018 { 1019 struct aio_ring_info *info = &ioctx->ring_info; 1020 struct aio_ring *ring; 1021 unsigned long head; 1022 int ret = 0; 1023 1024 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1025 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1026 (unsigned long)ring->head, (unsigned long)ring->tail, 1027 (unsigned long)ring->nr); 1028 1029 if (ring->head == ring->tail) 1030 goto out; 1031 1032 spin_lock(&info->ring_lock); 1033 1034 head = ring->head % info->nr; 1035 if (head != ring->tail) { 1036 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1037 *ent = *evp; 1038 head = (head + 1) % info->nr; 1039 smp_mb(); /* finish reading the event before updatng the head */ 1040 ring->head = head; 1041 ret = 1; 1042 put_aio_ring_event(evp, KM_USER1); 1043 } 1044 spin_unlock(&info->ring_lock); 1045 1046 out: 1047 kunmap_atomic(ring, KM_USER0); 1048 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1049 (unsigned long)ring->head, (unsigned long)ring->tail); 1050 return ret; 1051 } 1052 1053 struct aio_timeout { 1054 struct timer_list timer; 1055 int timed_out; 1056 struct task_struct *p; 1057 }; 1058 1059 static void timeout_func(unsigned long data) 1060 { 1061 struct aio_timeout *to = (struct aio_timeout *)data; 1062 1063 to->timed_out = 1; 1064 wake_up_process(to->p); 1065 } 1066 1067 static inline void init_timeout(struct aio_timeout *to) 1068 { 1069 init_timer(&to->timer); 1070 to->timer.data = (unsigned long)to; 1071 to->timer.function = timeout_func; 1072 to->timed_out = 0; 1073 to->p = current; 1074 } 1075 1076 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1077 const struct timespec *ts) 1078 { 1079 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1080 if (time_after(to->timer.expires, jiffies)) 1081 add_timer(&to->timer); 1082 else 1083 to->timed_out = 1; 1084 } 1085 1086 static inline void clear_timeout(struct aio_timeout *to) 1087 { 1088 del_singleshot_timer_sync(&to->timer); 1089 } 1090 1091 static int read_events(struct kioctx *ctx, 1092 long min_nr, long nr, 1093 struct io_event __user *event, 1094 struct timespec __user *timeout) 1095 { 1096 long start_jiffies = jiffies; 1097 struct task_struct *tsk = current; 1098 DECLARE_WAITQUEUE(wait, tsk); 1099 int ret; 1100 int i = 0; 1101 struct io_event ent; 1102 struct aio_timeout to; 1103 int retry = 0; 1104 1105 /* needed to zero any padding within an entry (there shouldn't be 1106 * any, but C is fun! 1107 */ 1108 memset(&ent, 0, sizeof(ent)); 1109 retry: 1110 ret = 0; 1111 while (likely(i < nr)) { 1112 ret = aio_read_evt(ctx, &ent); 1113 if (unlikely(ret <= 0)) 1114 break; 1115 1116 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1117 ent.data, ent.obj, ent.res, ent.res2); 1118 1119 /* Could we split the check in two? */ 1120 ret = -EFAULT; 1121 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1122 dprintk("aio: lost an event due to EFAULT.\n"); 1123 break; 1124 } 1125 ret = 0; 1126 1127 /* Good, event copied to userland, update counts. */ 1128 event ++; 1129 i ++; 1130 } 1131 1132 if (min_nr <= i) 1133 return i; 1134 if (ret) 1135 return ret; 1136 1137 /* End fast path */ 1138 1139 /* racey check, but it gets redone */ 1140 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1141 retry = 1; 1142 aio_run_all_iocbs(ctx); 1143 goto retry; 1144 } 1145 1146 init_timeout(&to); 1147 if (timeout) { 1148 struct timespec ts; 1149 ret = -EFAULT; 1150 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1151 goto out; 1152 1153 set_timeout(start_jiffies, &to, &ts); 1154 } 1155 1156 while (likely(i < nr)) { 1157 add_wait_queue_exclusive(&ctx->wait, &wait); 1158 do { 1159 set_task_state(tsk, TASK_INTERRUPTIBLE); 1160 ret = aio_read_evt(ctx, &ent); 1161 if (ret) 1162 break; 1163 if (min_nr <= i) 1164 break; 1165 ret = 0; 1166 if (to.timed_out) /* Only check after read evt */ 1167 break; 1168 schedule(); 1169 if (signal_pending(tsk)) { 1170 ret = -EINTR; 1171 break; 1172 } 1173 /*ret = aio_read_evt(ctx, &ent);*/ 1174 } while (1) ; 1175 1176 set_task_state(tsk, TASK_RUNNING); 1177 remove_wait_queue(&ctx->wait, &wait); 1178 1179 if (unlikely(ret <= 0)) 1180 break; 1181 1182 ret = -EFAULT; 1183 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1184 dprintk("aio: lost an event due to EFAULT.\n"); 1185 break; 1186 } 1187 1188 /* Good, event copied to userland, update counts. */ 1189 event ++; 1190 i ++; 1191 } 1192 1193 if (timeout) 1194 clear_timeout(&to); 1195 out: 1196 return i ? i : ret; 1197 } 1198 1199 /* Take an ioctx and remove it from the list of ioctx's. Protects 1200 * against races with itself via ->dead. 1201 */ 1202 static void io_destroy(struct kioctx *ioctx) 1203 { 1204 struct mm_struct *mm = current->mm; 1205 struct kioctx **tmp; 1206 int was_dead; 1207 1208 /* delete the entry from the list is someone else hasn't already */ 1209 write_lock(&mm->ioctx_list_lock); 1210 was_dead = ioctx->dead; 1211 ioctx->dead = 1; 1212 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1213 tmp = &(*tmp)->next) 1214 ; 1215 if (*tmp) 1216 *tmp = ioctx->next; 1217 write_unlock(&mm->ioctx_list_lock); 1218 1219 dprintk("aio_release(%p)\n", ioctx); 1220 if (likely(!was_dead)) 1221 put_ioctx(ioctx); /* twice for the list */ 1222 1223 aio_cancel_all(ioctx); 1224 wait_for_all_aios(ioctx); 1225 put_ioctx(ioctx); /* once for the lookup */ 1226 } 1227 1228 /* sys_io_setup: 1229 * Create an aio_context capable of receiving at least nr_events. 1230 * ctxp must not point to an aio_context that already exists, and 1231 * must be initialized to 0 prior to the call. On successful 1232 * creation of the aio_context, *ctxp is filled in with the resulting 1233 * handle. May fail with -EINVAL if *ctxp is not initialized, 1234 * if the specified nr_events exceeds internal limits. May fail 1235 * with -EAGAIN if the specified nr_events exceeds the user's limit 1236 * of available events. May fail with -ENOMEM if insufficient kernel 1237 * resources are available. May fail with -EFAULT if an invalid 1238 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1239 * implemented. 1240 */ 1241 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1242 { 1243 struct kioctx *ioctx = NULL; 1244 unsigned long ctx; 1245 long ret; 1246 1247 ret = get_user(ctx, ctxp); 1248 if (unlikely(ret)) 1249 goto out; 1250 1251 ret = -EINVAL; 1252 if (unlikely(ctx || (int)nr_events <= 0)) { 1253 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n"); 1254 goto out; 1255 } 1256 1257 ioctx = ioctx_alloc(nr_events); 1258 ret = PTR_ERR(ioctx); 1259 if (!IS_ERR(ioctx)) { 1260 ret = put_user(ioctx->user_id, ctxp); 1261 if (!ret) 1262 return 0; 1263 1264 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1265 io_destroy(ioctx); 1266 } 1267 1268 out: 1269 return ret; 1270 } 1271 1272 /* sys_io_destroy: 1273 * Destroy the aio_context specified. May cancel any outstanding 1274 * AIOs and block on completion. Will fail with -ENOSYS if not 1275 * implemented. May fail with -EFAULT if the context pointed to 1276 * is invalid. 1277 */ 1278 asmlinkage long sys_io_destroy(aio_context_t ctx) 1279 { 1280 struct kioctx *ioctx = lookup_ioctx(ctx); 1281 if (likely(NULL != ioctx)) { 1282 io_destroy(ioctx); 1283 return 0; 1284 } 1285 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1286 return -EINVAL; 1287 } 1288 1289 /* 1290 * Default retry method for aio_read (also used for first time submit) 1291 * Responsible for updating iocb state as retries progress 1292 */ 1293 static ssize_t aio_pread(struct kiocb *iocb) 1294 { 1295 struct file *file = iocb->ki_filp; 1296 struct address_space *mapping = file->f_mapping; 1297 struct inode *inode = mapping->host; 1298 ssize_t ret = 0; 1299 1300 ret = file->f_op->aio_read(iocb, iocb->ki_buf, 1301 iocb->ki_left, iocb->ki_pos); 1302 1303 /* 1304 * Can't just depend on iocb->ki_left to determine 1305 * whether we are done. This may have been a short read. 1306 */ 1307 if (ret > 0) { 1308 iocb->ki_buf += ret; 1309 iocb->ki_left -= ret; 1310 /* 1311 * For pipes and sockets we return once we have 1312 * some data; for regular files we retry till we 1313 * complete the entire read or find that we can't 1314 * read any more data (e.g short reads). 1315 */ 1316 if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)) 1317 ret = -EIOCBRETRY; 1318 } 1319 1320 /* This means we must have transferred all that we could */ 1321 /* No need to retry anymore */ 1322 if ((ret == 0) || (iocb->ki_left == 0)) 1323 ret = iocb->ki_nbytes - iocb->ki_left; 1324 1325 return ret; 1326 } 1327 1328 /* 1329 * Default retry method for aio_write (also used for first time submit) 1330 * Responsible for updating iocb state as retries progress 1331 */ 1332 static ssize_t aio_pwrite(struct kiocb *iocb) 1333 { 1334 struct file *file = iocb->ki_filp; 1335 ssize_t ret = 0; 1336 1337 ret = file->f_op->aio_write(iocb, iocb->ki_buf, 1338 iocb->ki_left, iocb->ki_pos); 1339 1340 if (ret > 0) { 1341 iocb->ki_buf += ret; 1342 iocb->ki_left -= ret; 1343 1344 ret = -EIOCBRETRY; 1345 } 1346 1347 /* This means we must have transferred all that we could */ 1348 /* No need to retry anymore */ 1349 if ((ret == 0) || (iocb->ki_left == 0)) 1350 ret = iocb->ki_nbytes - iocb->ki_left; 1351 1352 return ret; 1353 } 1354 1355 static ssize_t aio_fdsync(struct kiocb *iocb) 1356 { 1357 struct file *file = iocb->ki_filp; 1358 ssize_t ret = -EINVAL; 1359 1360 if (file->f_op->aio_fsync) 1361 ret = file->f_op->aio_fsync(iocb, 1); 1362 return ret; 1363 } 1364 1365 static ssize_t aio_fsync(struct kiocb *iocb) 1366 { 1367 struct file *file = iocb->ki_filp; 1368 ssize_t ret = -EINVAL; 1369 1370 if (file->f_op->aio_fsync) 1371 ret = file->f_op->aio_fsync(iocb, 0); 1372 return ret; 1373 } 1374 1375 /* 1376 * aio_setup_iocb: 1377 * Performs the initial checks and aio retry method 1378 * setup for the kiocb at the time of io submission. 1379 */ 1380 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1381 { 1382 struct file *file = kiocb->ki_filp; 1383 ssize_t ret = 0; 1384 1385 switch (kiocb->ki_opcode) { 1386 case IOCB_CMD_PREAD: 1387 ret = -EBADF; 1388 if (unlikely(!(file->f_mode & FMODE_READ))) 1389 break; 1390 ret = -EFAULT; 1391 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1392 kiocb->ki_left))) 1393 break; 1394 ret = -EINVAL; 1395 if (file->f_op->aio_read) 1396 kiocb->ki_retry = aio_pread; 1397 break; 1398 case IOCB_CMD_PWRITE: 1399 ret = -EBADF; 1400 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1401 break; 1402 ret = -EFAULT; 1403 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1404 kiocb->ki_left))) 1405 break; 1406 ret = -EINVAL; 1407 if (file->f_op->aio_write) 1408 kiocb->ki_retry = aio_pwrite; 1409 break; 1410 case IOCB_CMD_FDSYNC: 1411 ret = -EINVAL; 1412 if (file->f_op->aio_fsync) 1413 kiocb->ki_retry = aio_fdsync; 1414 break; 1415 case IOCB_CMD_FSYNC: 1416 ret = -EINVAL; 1417 if (file->f_op->aio_fsync) 1418 kiocb->ki_retry = aio_fsync; 1419 break; 1420 default: 1421 dprintk("EINVAL: io_submit: no operation provided\n"); 1422 ret = -EINVAL; 1423 } 1424 1425 if (!kiocb->ki_retry) 1426 return ret; 1427 1428 return 0; 1429 } 1430 1431 /* 1432 * aio_wake_function: 1433 * wait queue callback function for aio notification, 1434 * Simply triggers a retry of the operation via kick_iocb. 1435 * 1436 * This callback is specified in the wait queue entry in 1437 * a kiocb (current->io_wait points to this wait queue 1438 * entry when an aio operation executes; it is used 1439 * instead of a synchronous wait when an i/o blocking 1440 * condition is encountered during aio). 1441 * 1442 * Note: 1443 * This routine is executed with the wait queue lock held. 1444 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1445 * the ioctx lock inside the wait queue lock. This is safe 1446 * because this callback isn't used for wait queues which 1447 * are nested inside ioctx lock (i.e. ctx->wait) 1448 */ 1449 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1450 int sync, void *key) 1451 { 1452 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1453 1454 list_del_init(&wait->task_list); 1455 kick_iocb(iocb); 1456 return 1; 1457 } 1458 1459 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1460 struct iocb *iocb) 1461 { 1462 struct kiocb *req; 1463 struct file *file; 1464 ssize_t ret; 1465 1466 /* enforce forwards compatibility on users */ 1467 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 || 1468 iocb->aio_reserved3)) { 1469 pr_debug("EINVAL: io_submit: reserve field set\n"); 1470 return -EINVAL; 1471 } 1472 1473 /* prevent overflows */ 1474 if (unlikely( 1475 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1476 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1477 ((ssize_t)iocb->aio_nbytes < 0) 1478 )) { 1479 pr_debug("EINVAL: io_submit: overflow check\n"); 1480 return -EINVAL; 1481 } 1482 1483 file = fget(iocb->aio_fildes); 1484 if (unlikely(!file)) 1485 return -EBADF; 1486 1487 req = aio_get_req(ctx); /* returns with 2 references to req */ 1488 if (unlikely(!req)) { 1489 fput(file); 1490 return -EAGAIN; 1491 } 1492 1493 req->ki_filp = file; 1494 ret = put_user(req->ki_key, &user_iocb->aio_key); 1495 if (unlikely(ret)) { 1496 dprintk("EFAULT: aio_key\n"); 1497 goto out_put_req; 1498 } 1499 1500 req->ki_obj.user = user_iocb; 1501 req->ki_user_data = iocb->aio_data; 1502 req->ki_pos = iocb->aio_offset; 1503 1504 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1505 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1506 req->ki_opcode = iocb->aio_lio_opcode; 1507 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1508 INIT_LIST_HEAD(&req->ki_wait.task_list); 1509 req->ki_retried = 0; 1510 1511 ret = aio_setup_iocb(req); 1512 1513 if (ret) 1514 goto out_put_req; 1515 1516 spin_lock_irq(&ctx->ctx_lock); 1517 if (likely(list_empty(&ctx->run_list))) { 1518 aio_run_iocb(req); 1519 } else { 1520 list_add_tail(&req->ki_run_list, &ctx->run_list); 1521 /* drain the run list */ 1522 while (__aio_run_iocbs(ctx)) 1523 ; 1524 } 1525 spin_unlock_irq(&ctx->ctx_lock); 1526 aio_put_req(req); /* drop extra ref to req */ 1527 return 0; 1528 1529 out_put_req: 1530 aio_put_req(req); /* drop extra ref to req */ 1531 aio_put_req(req); /* drop i/o ref to req */ 1532 return ret; 1533 } 1534 1535 /* sys_io_submit: 1536 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1537 * the number of iocbs queued. May return -EINVAL if the aio_context 1538 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1539 * *iocbpp[0] is not properly initialized, if the operation specified 1540 * is invalid for the file descriptor in the iocb. May fail with 1541 * -EFAULT if any of the data structures point to invalid data. May 1542 * fail with -EBADF if the file descriptor specified in the first 1543 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1544 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1545 * fail with -ENOSYS if not implemented. 1546 */ 1547 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1548 struct iocb __user * __user *iocbpp) 1549 { 1550 struct kioctx *ctx; 1551 long ret = 0; 1552 int i; 1553 1554 if (unlikely(nr < 0)) 1555 return -EINVAL; 1556 1557 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1558 return -EFAULT; 1559 1560 ctx = lookup_ioctx(ctx_id); 1561 if (unlikely(!ctx)) { 1562 pr_debug("EINVAL: io_submit: invalid context id\n"); 1563 return -EINVAL; 1564 } 1565 1566 /* 1567 * AKPM: should this return a partial result if some of the IOs were 1568 * successfully submitted? 1569 */ 1570 for (i=0; i<nr; i++) { 1571 struct iocb __user *user_iocb; 1572 struct iocb tmp; 1573 1574 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1575 ret = -EFAULT; 1576 break; 1577 } 1578 1579 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1580 ret = -EFAULT; 1581 break; 1582 } 1583 1584 ret = io_submit_one(ctx, user_iocb, &tmp); 1585 if (ret) 1586 break; 1587 } 1588 1589 put_ioctx(ctx); 1590 return i ? i : ret; 1591 } 1592 1593 /* lookup_kiocb 1594 * Finds a given iocb for cancellation. 1595 * MUST be called with ctx->ctx_lock held. 1596 */ 1597 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1598 u32 key) 1599 { 1600 struct list_head *pos; 1601 /* TODO: use a hash or array, this sucks. */ 1602 list_for_each(pos, &ctx->active_reqs) { 1603 struct kiocb *kiocb = list_kiocb(pos); 1604 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1605 return kiocb; 1606 } 1607 return NULL; 1608 } 1609 1610 /* sys_io_cancel: 1611 * Attempts to cancel an iocb previously passed to io_submit. If 1612 * the operation is successfully cancelled, the resulting event is 1613 * copied into the memory pointed to by result without being placed 1614 * into the completion queue and 0 is returned. May fail with 1615 * -EFAULT if any of the data structures pointed to are invalid. 1616 * May fail with -EINVAL if aio_context specified by ctx_id is 1617 * invalid. May fail with -EAGAIN if the iocb specified was not 1618 * cancelled. Will fail with -ENOSYS if not implemented. 1619 */ 1620 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1621 struct io_event __user *result) 1622 { 1623 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1624 struct kioctx *ctx; 1625 struct kiocb *kiocb; 1626 u32 key; 1627 int ret; 1628 1629 ret = get_user(key, &iocb->aio_key); 1630 if (unlikely(ret)) 1631 return -EFAULT; 1632 1633 ctx = lookup_ioctx(ctx_id); 1634 if (unlikely(!ctx)) 1635 return -EINVAL; 1636 1637 spin_lock_irq(&ctx->ctx_lock); 1638 ret = -EAGAIN; 1639 kiocb = lookup_kiocb(ctx, iocb, key); 1640 if (kiocb && kiocb->ki_cancel) { 1641 cancel = kiocb->ki_cancel; 1642 kiocb->ki_users ++; 1643 kiocbSetCancelled(kiocb); 1644 } else 1645 cancel = NULL; 1646 spin_unlock_irq(&ctx->ctx_lock); 1647 1648 if (NULL != cancel) { 1649 struct io_event tmp; 1650 pr_debug("calling cancel\n"); 1651 memset(&tmp, 0, sizeof(tmp)); 1652 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1653 tmp.data = kiocb->ki_user_data; 1654 ret = cancel(kiocb, &tmp); 1655 if (!ret) { 1656 /* Cancellation succeeded -- copy the result 1657 * into the user's buffer. 1658 */ 1659 if (copy_to_user(result, &tmp, sizeof(tmp))) 1660 ret = -EFAULT; 1661 } 1662 } else 1663 printk(KERN_DEBUG "iocb has no cancel operation\n"); 1664 1665 put_ioctx(ctx); 1666 1667 return ret; 1668 } 1669 1670 /* io_getevents: 1671 * Attempts to read at least min_nr events and up to nr events from 1672 * the completion queue for the aio_context specified by ctx_id. May 1673 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1674 * if nr is out of range, if when is out of range. May fail with 1675 * -EFAULT if any of the memory specified to is invalid. May return 1676 * 0 or < min_nr if no events are available and the timeout specified 1677 * by when has elapsed, where when == NULL specifies an infinite 1678 * timeout. Note that the timeout pointed to by when is relative and 1679 * will be updated if not NULL and the operation blocks. Will fail 1680 * with -ENOSYS if not implemented. 1681 */ 1682 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1683 long min_nr, 1684 long nr, 1685 struct io_event __user *events, 1686 struct timespec __user *timeout) 1687 { 1688 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1689 long ret = -EINVAL; 1690 1691 if (likely(ioctx)) { 1692 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1693 ret = read_events(ioctx, min_nr, nr, events, timeout); 1694 put_ioctx(ioctx); 1695 } 1696 1697 return ret; 1698 } 1699 1700 __initcall(aio_setup); 1701 1702 EXPORT_SYMBOL(aio_complete); 1703 EXPORT_SYMBOL(aio_put_req); 1704 EXPORT_SYMBOL(wait_on_sync_kiocb); 1705