xref: /linux/fs/aio.c (revision 776cfebb430c7b22c208b1b17add97f354d97cab)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 
19 #define DEBUG 0
20 
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 
37 #if DEBUG > 1
38 #define dprintk		printk
39 #else
40 #define dprintk(x...)	do { ; } while (0)
41 #endif
42 
43 /*------ sysctl variables----*/
44 atomic_t aio_nr = ATOMIC_INIT(0);	/* current system wide number of aio requests */
45 unsigned aio_max_nr = 0x10000;	/* system wide maximum number of aio requests */
46 /*----end sysctl variables---*/
47 
48 static kmem_cache_t	*kiocb_cachep;
49 static kmem_cache_t	*kioctx_cachep;
50 
51 static struct workqueue_struct *aio_wq;
52 
53 /* Used for rare fput completion. */
54 static void aio_fput_routine(void *);
55 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
56 
57 static DEFINE_SPINLOCK(fput_lock);
58 static LIST_HEAD(fput_head);
59 
60 static void aio_kick_handler(void *);
61 
62 /* aio_setup
63  *	Creates the slab caches used by the aio routines, panic on
64  *	failure as this is done early during the boot sequence.
65  */
66 static int __init aio_setup(void)
67 {
68 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
69 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
70 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
71 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
72 
73 	aio_wq = create_workqueue("aio");
74 
75 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
76 
77 	return 0;
78 }
79 
80 static void aio_free_ring(struct kioctx *ctx)
81 {
82 	struct aio_ring_info *info = &ctx->ring_info;
83 	long i;
84 
85 	for (i=0; i<info->nr_pages; i++)
86 		put_page(info->ring_pages[i]);
87 
88 	if (info->mmap_size) {
89 		down_write(&ctx->mm->mmap_sem);
90 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
91 		up_write(&ctx->mm->mmap_sem);
92 	}
93 
94 	if (info->ring_pages && info->ring_pages != info->internal_pages)
95 		kfree(info->ring_pages);
96 	info->ring_pages = NULL;
97 	info->nr = 0;
98 }
99 
100 static int aio_setup_ring(struct kioctx *ctx)
101 {
102 	struct aio_ring *ring;
103 	struct aio_ring_info *info = &ctx->ring_info;
104 	unsigned nr_events = ctx->max_reqs;
105 	unsigned long size;
106 	int nr_pages;
107 
108 	/* Compensate for the ring buffer's head/tail overlap entry */
109 	nr_events += 2;	/* 1 is required, 2 for good luck */
110 
111 	size = sizeof(struct aio_ring);
112 	size += sizeof(struct io_event) * nr_events;
113 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
114 
115 	if (nr_pages < 0)
116 		return -EINVAL;
117 
118 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
119 
120 	info->nr = 0;
121 	info->ring_pages = info->internal_pages;
122 	if (nr_pages > AIO_RING_PAGES) {
123 		info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
124 		if (!info->ring_pages)
125 			return -ENOMEM;
126 		memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
127 	}
128 
129 	info->mmap_size = nr_pages * PAGE_SIZE;
130 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
131 	down_write(&ctx->mm->mmap_sem);
132 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
133 				  PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
134 				  0);
135 	if (IS_ERR((void *)info->mmap_base)) {
136 		up_write(&ctx->mm->mmap_sem);
137 		printk("mmap err: %ld\n", -info->mmap_base);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 /* ioctx_alloc
195  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
196  */
197 static struct kioctx *ioctx_alloc(unsigned nr_events)
198 {
199 	struct mm_struct *mm;
200 	struct kioctx *ctx;
201 
202 	/* Prevent overflows */
203 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
204 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
205 		pr_debug("ENOMEM: nr_events too high\n");
206 		return ERR_PTR(-EINVAL);
207 	}
208 
209 	if (nr_events > aio_max_nr)
210 		return ERR_PTR(-EAGAIN);
211 
212 	ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
213 	if (!ctx)
214 		return ERR_PTR(-ENOMEM);
215 
216 	memset(ctx, 0, sizeof(*ctx));
217 	ctx->max_reqs = nr_events;
218 	mm = ctx->mm = current->mm;
219 	atomic_inc(&mm->mm_count);
220 
221 	atomic_set(&ctx->users, 1);
222 	spin_lock_init(&ctx->ctx_lock);
223 	spin_lock_init(&ctx->ring_info.ring_lock);
224 	init_waitqueue_head(&ctx->wait);
225 
226 	INIT_LIST_HEAD(&ctx->active_reqs);
227 	INIT_LIST_HEAD(&ctx->run_list);
228 	INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
229 
230 	if (aio_setup_ring(ctx) < 0)
231 		goto out_freectx;
232 
233 	/* limit the number of system wide aios */
234 	atomic_add(ctx->max_reqs, &aio_nr);	/* undone by __put_ioctx */
235 	if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
236 		goto out_cleanup;
237 
238 	/* now link into global list.  kludge.  FIXME */
239 	write_lock(&mm->ioctx_list_lock);
240 	ctx->next = mm->ioctx_list;
241 	mm->ioctx_list = ctx;
242 	write_unlock(&mm->ioctx_list_lock);
243 
244 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
245 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
246 	return ctx;
247 
248 out_cleanup:
249 	atomic_sub(ctx->max_reqs, &aio_nr);
250 	ctx->max_reqs = 0;	/* prevent __put_ioctx from sub'ing aio_nr */
251 	__put_ioctx(ctx);
252 	return ERR_PTR(-EAGAIN);
253 
254 out_freectx:
255 	mmdrop(mm);
256 	kmem_cache_free(kioctx_cachep, ctx);
257 	ctx = ERR_PTR(-ENOMEM);
258 
259 	dprintk("aio: error allocating ioctx %p\n", ctx);
260 	return ctx;
261 }
262 
263 /* aio_cancel_all
264  *	Cancels all outstanding aio requests on an aio context.  Used
265  *	when the processes owning a context have all exited to encourage
266  *	the rapid destruction of the kioctx.
267  */
268 static void aio_cancel_all(struct kioctx *ctx)
269 {
270 	int (*cancel)(struct kiocb *, struct io_event *);
271 	struct io_event res;
272 	spin_lock_irq(&ctx->ctx_lock);
273 	ctx->dead = 1;
274 	while (!list_empty(&ctx->active_reqs)) {
275 		struct list_head *pos = ctx->active_reqs.next;
276 		struct kiocb *iocb = list_kiocb(pos);
277 		list_del_init(&iocb->ki_list);
278 		cancel = iocb->ki_cancel;
279 		kiocbSetCancelled(iocb);
280 		if (cancel) {
281 			iocb->ki_users++;
282 			spin_unlock_irq(&ctx->ctx_lock);
283 			cancel(iocb, &res);
284 			spin_lock_irq(&ctx->ctx_lock);
285 		}
286 	}
287 	spin_unlock_irq(&ctx->ctx_lock);
288 }
289 
290 static void wait_for_all_aios(struct kioctx *ctx)
291 {
292 	struct task_struct *tsk = current;
293 	DECLARE_WAITQUEUE(wait, tsk);
294 
295 	if (!ctx->reqs_active)
296 		return;
297 
298 	add_wait_queue(&ctx->wait, &wait);
299 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
300 	while (ctx->reqs_active) {
301 		schedule();
302 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
303 	}
304 	__set_task_state(tsk, TASK_RUNNING);
305 	remove_wait_queue(&ctx->wait, &wait);
306 }
307 
308 /* wait_on_sync_kiocb:
309  *	Waits on the given sync kiocb to complete.
310  */
311 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
312 {
313 	while (iocb->ki_users) {
314 		set_current_state(TASK_UNINTERRUPTIBLE);
315 		if (!iocb->ki_users)
316 			break;
317 		schedule();
318 	}
319 	__set_current_state(TASK_RUNNING);
320 	return iocb->ki_user_data;
321 }
322 
323 /* exit_aio: called when the last user of mm goes away.  At this point,
324  * there is no way for any new requests to be submited or any of the
325  * io_* syscalls to be called on the context.  However, there may be
326  * outstanding requests which hold references to the context; as they
327  * go away, they will call put_ioctx and release any pinned memory
328  * associated with the request (held via struct page * references).
329  */
330 void fastcall exit_aio(struct mm_struct *mm)
331 {
332 	struct kioctx *ctx = mm->ioctx_list;
333 	mm->ioctx_list = NULL;
334 	while (ctx) {
335 		struct kioctx *next = ctx->next;
336 		ctx->next = NULL;
337 		aio_cancel_all(ctx);
338 
339 		wait_for_all_aios(ctx);
340 		/*
341 		 * this is an overkill, but ensures we don't leave
342 		 * the ctx on the aio_wq
343 		 */
344 		flush_workqueue(aio_wq);
345 
346 		if (1 != atomic_read(&ctx->users))
347 			printk(KERN_DEBUG
348 				"exit_aio:ioctx still alive: %d %d %d\n",
349 				atomic_read(&ctx->users), ctx->dead,
350 				ctx->reqs_active);
351 		put_ioctx(ctx);
352 		ctx = next;
353 	}
354 }
355 
356 /* __put_ioctx
357  *	Called when the last user of an aio context has gone away,
358  *	and the struct needs to be freed.
359  */
360 void fastcall __put_ioctx(struct kioctx *ctx)
361 {
362 	unsigned nr_events = ctx->max_reqs;
363 
364 	if (unlikely(ctx->reqs_active))
365 		BUG();
366 
367 	cancel_delayed_work(&ctx->wq);
368 	flush_workqueue(aio_wq);
369 	aio_free_ring(ctx);
370 	mmdrop(ctx->mm);
371 	ctx->mm = NULL;
372 	pr_debug("__put_ioctx: freeing %p\n", ctx);
373 	kmem_cache_free(kioctx_cachep, ctx);
374 
375 	atomic_sub(nr_events, &aio_nr);
376 }
377 
378 /* aio_get_req
379  *	Allocate a slot for an aio request.  Increments the users count
380  * of the kioctx so that the kioctx stays around until all requests are
381  * complete.  Returns NULL if no requests are free.
382  *
383  * Returns with kiocb->users set to 2.  The io submit code path holds
384  * an extra reference while submitting the i/o.
385  * This prevents races between the aio code path referencing the
386  * req (after submitting it) and aio_complete() freeing the req.
387  */
388 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
389 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
390 {
391 	struct kiocb *req = NULL;
392 	struct aio_ring *ring;
393 	int okay = 0;
394 
395 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
396 	if (unlikely(!req))
397 		return NULL;
398 
399 	req->ki_flags = 1 << KIF_LOCKED;
400 	req->ki_users = 2;
401 	req->ki_key = 0;
402 	req->ki_ctx = ctx;
403 	req->ki_cancel = NULL;
404 	req->ki_retry = NULL;
405 	req->ki_dtor = NULL;
406 	req->private = NULL;
407 	INIT_LIST_HEAD(&req->ki_run_list);
408 
409 	/* Check if the completion queue has enough free space to
410 	 * accept an event from this io.
411 	 */
412 	spin_lock_irq(&ctx->ctx_lock);
413 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
414 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
415 		list_add(&req->ki_list, &ctx->active_reqs);
416 		get_ioctx(ctx);
417 		ctx->reqs_active++;
418 		okay = 1;
419 	}
420 	kunmap_atomic(ring, KM_USER0);
421 	spin_unlock_irq(&ctx->ctx_lock);
422 
423 	if (!okay) {
424 		kmem_cache_free(kiocb_cachep, req);
425 		req = NULL;
426 	}
427 
428 	return req;
429 }
430 
431 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
432 {
433 	struct kiocb *req;
434 	/* Handle a potential starvation case -- should be exceedingly rare as
435 	 * requests will be stuck on fput_head only if the aio_fput_routine is
436 	 * delayed and the requests were the last user of the struct file.
437 	 */
438 	req = __aio_get_req(ctx);
439 	if (unlikely(NULL == req)) {
440 		aio_fput_routine(NULL);
441 		req = __aio_get_req(ctx);
442 	}
443 	return req;
444 }
445 
446 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
447 {
448 	if (req->ki_dtor)
449 		req->ki_dtor(req);
450 	kmem_cache_free(kiocb_cachep, req);
451 	ctx->reqs_active--;
452 
453 	if (unlikely(!ctx->reqs_active && ctx->dead))
454 		wake_up(&ctx->wait);
455 }
456 
457 static void aio_fput_routine(void *data)
458 {
459 	spin_lock_irq(&fput_lock);
460 	while (likely(!list_empty(&fput_head))) {
461 		struct kiocb *req = list_kiocb(fput_head.next);
462 		struct kioctx *ctx = req->ki_ctx;
463 
464 		list_del(&req->ki_list);
465 		spin_unlock_irq(&fput_lock);
466 
467 		/* Complete the fput */
468 		__fput(req->ki_filp);
469 
470 		/* Link the iocb into the context's free list */
471 		spin_lock_irq(&ctx->ctx_lock);
472 		really_put_req(ctx, req);
473 		spin_unlock_irq(&ctx->ctx_lock);
474 
475 		put_ioctx(ctx);
476 		spin_lock_irq(&fput_lock);
477 	}
478 	spin_unlock_irq(&fput_lock);
479 }
480 
481 /* __aio_put_req
482  *	Returns true if this put was the last user of the request.
483  */
484 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
485 {
486 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
487 		req, atomic_read(&req->ki_filp->f_count));
488 
489 	req->ki_users --;
490 	if (unlikely(req->ki_users < 0))
491 		BUG();
492 	if (likely(req->ki_users))
493 		return 0;
494 	list_del(&req->ki_list);		/* remove from active_reqs */
495 	req->ki_cancel = NULL;
496 	req->ki_retry = NULL;
497 
498 	/* Must be done under the lock to serialise against cancellation.
499 	 * Call this aio_fput as it duplicates fput via the fput_work.
500 	 */
501 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
502 		get_ioctx(ctx);
503 		spin_lock(&fput_lock);
504 		list_add(&req->ki_list, &fput_head);
505 		spin_unlock(&fput_lock);
506 		queue_work(aio_wq, &fput_work);
507 	} else
508 		really_put_req(ctx, req);
509 	return 1;
510 }
511 
512 /* aio_put_req
513  *	Returns true if this put was the last user of the kiocb,
514  *	false if the request is still in use.
515  */
516 int fastcall aio_put_req(struct kiocb *req)
517 {
518 	struct kioctx *ctx = req->ki_ctx;
519 	int ret;
520 	spin_lock_irq(&ctx->ctx_lock);
521 	ret = __aio_put_req(ctx, req);
522 	spin_unlock_irq(&ctx->ctx_lock);
523 	if (ret)
524 		put_ioctx(ctx);
525 	return ret;
526 }
527 
528 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
529  *	FIXME: this is O(n) and is only suitable for development.
530  */
531 struct kioctx *lookup_ioctx(unsigned long ctx_id)
532 {
533 	struct kioctx *ioctx;
534 	struct mm_struct *mm;
535 
536 	mm = current->mm;
537 	read_lock(&mm->ioctx_list_lock);
538 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
539 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
540 			get_ioctx(ioctx);
541 			break;
542 		}
543 	read_unlock(&mm->ioctx_list_lock);
544 
545 	return ioctx;
546 }
547 
548 /*
549  * use_mm
550  *	Makes the calling kernel thread take on the specified
551  *	mm context.
552  *	Called by the retry thread execute retries within the
553  *	iocb issuer's mm context, so that copy_from/to_user
554  *	operations work seamlessly for aio.
555  *	(Note: this routine is intended to be called only
556  *	from a kernel thread context)
557  */
558 static void use_mm(struct mm_struct *mm)
559 {
560 	struct mm_struct *active_mm;
561 	struct task_struct *tsk = current;
562 
563 	task_lock(tsk);
564 	tsk->flags |= PF_BORROWED_MM;
565 	active_mm = tsk->active_mm;
566 	atomic_inc(&mm->mm_count);
567 	tsk->mm = mm;
568 	tsk->active_mm = mm;
569 	activate_mm(active_mm, mm);
570 	task_unlock(tsk);
571 
572 	mmdrop(active_mm);
573 }
574 
575 /*
576  * unuse_mm
577  *	Reverses the effect of use_mm, i.e. releases the
578  *	specified mm context which was earlier taken on
579  *	by the calling kernel thread
580  *	(Note: this routine is intended to be called only
581  *	from a kernel thread context)
582  *
583  * Comments: Called with ctx->ctx_lock held. This nests
584  * task_lock instead ctx_lock.
585  */
586 static void unuse_mm(struct mm_struct *mm)
587 {
588 	struct task_struct *tsk = current;
589 
590 	task_lock(tsk);
591 	tsk->flags &= ~PF_BORROWED_MM;
592 	tsk->mm = NULL;
593 	/* active_mm is still 'mm' */
594 	enter_lazy_tlb(mm, tsk);
595 	task_unlock(tsk);
596 }
597 
598 /*
599  * Queue up a kiocb to be retried. Assumes that the kiocb
600  * has already been marked as kicked, and places it on
601  * the retry run list for the corresponding ioctx, if it
602  * isn't already queued. Returns 1 if it actually queued
603  * the kiocb (to tell the caller to activate the work
604  * queue to process it), or 0, if it found that it was
605  * already queued.
606  *
607  * Should be called with the spin lock iocb->ki_ctx->ctx_lock
608  * held
609  */
610 static inline int __queue_kicked_iocb(struct kiocb *iocb)
611 {
612 	struct kioctx *ctx = iocb->ki_ctx;
613 
614 	if (list_empty(&iocb->ki_run_list)) {
615 		list_add_tail(&iocb->ki_run_list,
616 			&ctx->run_list);
617 		return 1;
618 	}
619 	return 0;
620 }
621 
622 /* aio_run_iocb
623  *	This is the core aio execution routine. It is
624  *	invoked both for initial i/o submission and
625  *	subsequent retries via the aio_kick_handler.
626  *	Expects to be invoked with iocb->ki_ctx->lock
627  *	already held. The lock is released and reaquired
628  *	as needed during processing.
629  *
630  * Calls the iocb retry method (already setup for the
631  * iocb on initial submission) for operation specific
632  * handling, but takes care of most of common retry
633  * execution details for a given iocb. The retry method
634  * needs to be non-blocking as far as possible, to avoid
635  * holding up other iocbs waiting to be serviced by the
636  * retry kernel thread.
637  *
638  * The trickier parts in this code have to do with
639  * ensuring that only one retry instance is in progress
640  * for a given iocb at any time. Providing that guarantee
641  * simplifies the coding of individual aio operations as
642  * it avoids various potential races.
643  */
644 static ssize_t aio_run_iocb(struct kiocb *iocb)
645 {
646 	struct kioctx	*ctx = iocb->ki_ctx;
647 	ssize_t (*retry)(struct kiocb *);
648 	ssize_t ret;
649 
650 	if (iocb->ki_retried++ > 1024*1024) {
651 		printk("Maximal retry count.  Bytes done %Zd\n",
652 			iocb->ki_nbytes - iocb->ki_left);
653 		return -EAGAIN;
654 	}
655 
656 	if (!(iocb->ki_retried & 0xff)) {
657 		pr_debug("%ld retry: %d of %d\n", iocb->ki_retried,
658 			iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
659 	}
660 
661 	if (!(retry = iocb->ki_retry)) {
662 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
663 		return 0;
664 	}
665 
666 	/*
667 	 * We don't want the next retry iteration for this
668 	 * operation to start until this one has returned and
669 	 * updated the iocb state. However, wait_queue functions
670 	 * can trigger a kick_iocb from interrupt context in the
671 	 * meantime, indicating that data is available for the next
672 	 * iteration. We want to remember that and enable the
673 	 * next retry iteration _after_ we are through with
674 	 * this one.
675 	 *
676 	 * So, in order to be able to register a "kick", but
677 	 * prevent it from being queued now, we clear the kick
678 	 * flag, but make the kick code *think* that the iocb is
679 	 * still on the run list until we are actually done.
680 	 * When we are done with this iteration, we check if
681 	 * the iocb was kicked in the meantime and if so, queue
682 	 * it up afresh.
683 	 */
684 
685 	kiocbClearKicked(iocb);
686 
687 	/*
688 	 * This is so that aio_complete knows it doesn't need to
689 	 * pull the iocb off the run list (We can't just call
690 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
691 	 * queue this on the run list yet)
692 	 */
693 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
694 	spin_unlock_irq(&ctx->ctx_lock);
695 
696 	/* Quit retrying if the i/o has been cancelled */
697 	if (kiocbIsCancelled(iocb)) {
698 		ret = -EINTR;
699 		aio_complete(iocb, ret, 0);
700 		/* must not access the iocb after this */
701 		goto out;
702 	}
703 
704 	/*
705 	 * Now we are all set to call the retry method in async
706 	 * context. By setting this thread's io_wait context
707 	 * to point to the wait queue entry inside the currently
708 	 * running iocb for the duration of the retry, we ensure
709 	 * that async notification wakeups are queued by the
710 	 * operation instead of blocking waits, and when notified,
711 	 * cause the iocb to be kicked for continuation (through
712 	 * the aio_wake_function callback).
713 	 */
714 	BUG_ON(current->io_wait != NULL);
715 	current->io_wait = &iocb->ki_wait;
716 	ret = retry(iocb);
717 	current->io_wait = NULL;
718 
719 	if (-EIOCBRETRY != ret) {
720  		if (-EIOCBQUEUED != ret) {
721 			BUG_ON(!list_empty(&iocb->ki_wait.task_list));
722 			aio_complete(iocb, ret, 0);
723 			/* must not access the iocb after this */
724 		}
725 	} else {
726 		/*
727 		 * Issue an additional retry to avoid waiting forever if
728 		 * no waits were queued (e.g. in case of a short read).
729 		 */
730 		if (list_empty(&iocb->ki_wait.task_list))
731 			kiocbSetKicked(iocb);
732 	}
733 out:
734 	spin_lock_irq(&ctx->ctx_lock);
735 
736 	if (-EIOCBRETRY == ret) {
737 		/*
738 		 * OK, now that we are done with this iteration
739 		 * and know that there is more left to go,
740 		 * this is where we let go so that a subsequent
741 		 * "kick" can start the next iteration
742 		 */
743 
744 		/* will make __queue_kicked_iocb succeed from here on */
745 		INIT_LIST_HEAD(&iocb->ki_run_list);
746 		/* we must queue the next iteration ourselves, if it
747 		 * has already been kicked */
748 		if (kiocbIsKicked(iocb)) {
749 			__queue_kicked_iocb(iocb);
750 		}
751 	}
752 	return ret;
753 }
754 
755 /*
756  * __aio_run_iocbs:
757  * 	Process all pending retries queued on the ioctx
758  * 	run list.
759  * Assumes it is operating within the aio issuer's mm
760  * context. Expects to be called with ctx->ctx_lock held
761  */
762 static int __aio_run_iocbs(struct kioctx *ctx)
763 {
764 	struct kiocb *iocb;
765 	LIST_HEAD(run_list);
766 
767 	list_splice_init(&ctx->run_list, &run_list);
768 	while (!list_empty(&run_list)) {
769 		iocb = list_entry(run_list.next, struct kiocb,
770 			ki_run_list);
771 		list_del(&iocb->ki_run_list);
772 		/*
773 		 * Hold an extra reference while retrying i/o.
774 		 */
775 		iocb->ki_users++;       /* grab extra reference */
776 		aio_run_iocb(iocb);
777 		if (__aio_put_req(ctx, iocb))  /* drop extra ref */
778 			put_ioctx(ctx);
779  	}
780 	if (!list_empty(&ctx->run_list))
781 		return 1;
782 	return 0;
783 }
784 
785 static void aio_queue_work(struct kioctx * ctx)
786 {
787 	unsigned long timeout;
788 	/*
789 	 * if someone is waiting, get the work started right
790 	 * away, otherwise, use a longer delay
791 	 */
792 	smp_mb();
793 	if (waitqueue_active(&ctx->wait))
794 		timeout = 1;
795 	else
796 		timeout = HZ/10;
797 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
798 }
799 
800 
801 /*
802  * aio_run_iocbs:
803  * 	Process all pending retries queued on the ioctx
804  * 	run list.
805  * Assumes it is operating within the aio issuer's mm
806  * context.
807  */
808 static inline void aio_run_iocbs(struct kioctx *ctx)
809 {
810 	int requeue;
811 
812 	spin_lock_irq(&ctx->ctx_lock);
813 
814 	requeue = __aio_run_iocbs(ctx);
815 	spin_unlock_irq(&ctx->ctx_lock);
816 	if (requeue)
817 		aio_queue_work(ctx);
818 }
819 
820 /*
821  * just like aio_run_iocbs, but keeps running them until
822  * the list stays empty
823  */
824 static inline void aio_run_all_iocbs(struct kioctx *ctx)
825 {
826 	spin_lock_irq(&ctx->ctx_lock);
827 	while (__aio_run_iocbs(ctx))
828 		;
829 	spin_unlock_irq(&ctx->ctx_lock);
830 }
831 
832 /*
833  * aio_kick_handler:
834  * 	Work queue handler triggered to process pending
835  * 	retries on an ioctx. Takes on the aio issuer's
836  *	mm context before running the iocbs, so that
837  *	copy_xxx_user operates on the issuer's address
838  *      space.
839  * Run on aiod's context.
840  */
841 static void aio_kick_handler(void *data)
842 {
843 	struct kioctx *ctx = data;
844 	mm_segment_t oldfs = get_fs();
845 	int requeue;
846 
847 	set_fs(USER_DS);
848 	use_mm(ctx->mm);
849 	spin_lock_irq(&ctx->ctx_lock);
850 	requeue =__aio_run_iocbs(ctx);
851  	unuse_mm(ctx->mm);
852 	spin_unlock_irq(&ctx->ctx_lock);
853 	set_fs(oldfs);
854 	/*
855 	 * we're in a worker thread already, don't use queue_delayed_work,
856 	 */
857 	if (requeue)
858 		queue_work(aio_wq, &ctx->wq);
859 }
860 
861 
862 /*
863  * Called by kick_iocb to queue the kiocb for retry
864  * and if required activate the aio work queue to process
865  * it
866  */
867 static void queue_kicked_iocb(struct kiocb *iocb)
868 {
869  	struct kioctx	*ctx = iocb->ki_ctx;
870 	unsigned long flags;
871 	int run = 0;
872 
873 	WARN_ON((!list_empty(&iocb->ki_wait.task_list)));
874 
875 	spin_lock_irqsave(&ctx->ctx_lock, flags);
876 	run = __queue_kicked_iocb(iocb);
877 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
878 	if (run)
879 		aio_queue_work(ctx);
880 }
881 
882 /*
883  * kick_iocb:
884  *      Called typically from a wait queue callback context
885  *      (aio_wake_function) to trigger a retry of the iocb.
886  *      The retry is usually executed by aio workqueue
887  *      threads (See aio_kick_handler).
888  */
889 void fastcall kick_iocb(struct kiocb *iocb)
890 {
891 	/* sync iocbs are easy: they can only ever be executing from a
892 	 * single context. */
893 	if (is_sync_kiocb(iocb)) {
894 		kiocbSetKicked(iocb);
895 	        wake_up_process(iocb->ki_obj.tsk);
896 		return;
897 	}
898 
899 	/* If its already kicked we shouldn't queue it again */
900 	if (!kiocbTryKick(iocb)) {
901 		queue_kicked_iocb(iocb);
902 	}
903 }
904 EXPORT_SYMBOL(kick_iocb);
905 
906 /* aio_complete
907  *	Called when the io request on the given iocb is complete.
908  *	Returns true if this is the last user of the request.  The
909  *	only other user of the request can be the cancellation code.
910  */
911 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
912 {
913 	struct kioctx	*ctx = iocb->ki_ctx;
914 	struct aio_ring_info	*info;
915 	struct aio_ring	*ring;
916 	struct io_event	*event;
917 	unsigned long	flags;
918 	unsigned long	tail;
919 	int		ret;
920 
921 	/* Special case handling for sync iocbs: events go directly
922 	 * into the iocb for fast handling.  Note that this will not
923 	 * work if we allow sync kiocbs to be cancelled. in which
924 	 * case the usage count checks will have to move under ctx_lock
925 	 * for all cases.
926 	 */
927 	if (is_sync_kiocb(iocb)) {
928 		int ret;
929 
930 		iocb->ki_user_data = res;
931 		if (iocb->ki_users == 1) {
932 			iocb->ki_users = 0;
933 			ret = 1;
934 		} else {
935 			spin_lock_irq(&ctx->ctx_lock);
936 			iocb->ki_users--;
937 			ret = (0 == iocb->ki_users);
938 			spin_unlock_irq(&ctx->ctx_lock);
939 		}
940 		/* sync iocbs put the task here for us */
941 		wake_up_process(iocb->ki_obj.tsk);
942 		return ret;
943 	}
944 
945 	info = &ctx->ring_info;
946 
947 	/* add a completion event to the ring buffer.
948 	 * must be done holding ctx->ctx_lock to prevent
949 	 * other code from messing with the tail
950 	 * pointer since we might be called from irq
951 	 * context.
952 	 */
953 	spin_lock_irqsave(&ctx->ctx_lock, flags);
954 
955 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
956 		list_del_init(&iocb->ki_run_list);
957 
958 	/*
959 	 * cancelled requests don't get events, userland was given one
960 	 * when the event got cancelled.
961 	 */
962 	if (kiocbIsCancelled(iocb))
963 		goto put_rq;
964 
965 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
966 
967 	tail = info->tail;
968 	event = aio_ring_event(info, tail, KM_IRQ0);
969 	if (++tail >= info->nr)
970 		tail = 0;
971 
972 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
973 	event->data = iocb->ki_user_data;
974 	event->res = res;
975 	event->res2 = res2;
976 
977 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
978 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
979 		res, res2);
980 
981 	/* after flagging the request as done, we
982 	 * must never even look at it again
983 	 */
984 	smp_wmb();	/* make event visible before updating tail */
985 
986 	info->tail = tail;
987 	ring->tail = tail;
988 
989 	put_aio_ring_event(event, KM_IRQ0);
990 	kunmap_atomic(ring, KM_IRQ1);
991 
992 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
993 
994 	pr_debug("%ld retries: %d of %d\n", iocb->ki_retried,
995 		iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes);
996 put_rq:
997 	/* everything turned out well, dispose of the aiocb. */
998 	ret = __aio_put_req(ctx, iocb);
999 
1000 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1001 
1002 	if (waitqueue_active(&ctx->wait))
1003 		wake_up(&ctx->wait);
1004 
1005 	if (ret)
1006 		put_ioctx(ctx);
1007 
1008 	return ret;
1009 }
1010 
1011 /* aio_read_evt
1012  *	Pull an event off of the ioctx's event ring.  Returns the number of
1013  *	events fetched (0 or 1 ;-)
1014  *	FIXME: make this use cmpxchg.
1015  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1016  */
1017 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1018 {
1019 	struct aio_ring_info *info = &ioctx->ring_info;
1020 	struct aio_ring *ring;
1021 	unsigned long head;
1022 	int ret = 0;
1023 
1024 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1025 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1026 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1027 		 (unsigned long)ring->nr);
1028 
1029 	if (ring->head == ring->tail)
1030 		goto out;
1031 
1032 	spin_lock(&info->ring_lock);
1033 
1034 	head = ring->head % info->nr;
1035 	if (head != ring->tail) {
1036 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1037 		*ent = *evp;
1038 		head = (head + 1) % info->nr;
1039 		smp_mb(); /* finish reading the event before updatng the head */
1040 		ring->head = head;
1041 		ret = 1;
1042 		put_aio_ring_event(evp, KM_USER1);
1043 	}
1044 	spin_unlock(&info->ring_lock);
1045 
1046 out:
1047 	kunmap_atomic(ring, KM_USER0);
1048 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1049 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1050 	return ret;
1051 }
1052 
1053 struct aio_timeout {
1054 	struct timer_list	timer;
1055 	int			timed_out;
1056 	struct task_struct	*p;
1057 };
1058 
1059 static void timeout_func(unsigned long data)
1060 {
1061 	struct aio_timeout *to = (struct aio_timeout *)data;
1062 
1063 	to->timed_out = 1;
1064 	wake_up_process(to->p);
1065 }
1066 
1067 static inline void init_timeout(struct aio_timeout *to)
1068 {
1069 	init_timer(&to->timer);
1070 	to->timer.data = (unsigned long)to;
1071 	to->timer.function = timeout_func;
1072 	to->timed_out = 0;
1073 	to->p = current;
1074 }
1075 
1076 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1077 			       const struct timespec *ts)
1078 {
1079 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1080 	if (time_after(to->timer.expires, jiffies))
1081 		add_timer(&to->timer);
1082 	else
1083 		to->timed_out = 1;
1084 }
1085 
1086 static inline void clear_timeout(struct aio_timeout *to)
1087 {
1088 	del_singleshot_timer_sync(&to->timer);
1089 }
1090 
1091 static int read_events(struct kioctx *ctx,
1092 			long min_nr, long nr,
1093 			struct io_event __user *event,
1094 			struct timespec __user *timeout)
1095 {
1096 	long			start_jiffies = jiffies;
1097 	struct task_struct	*tsk = current;
1098 	DECLARE_WAITQUEUE(wait, tsk);
1099 	int			ret;
1100 	int			i = 0;
1101 	struct io_event		ent;
1102 	struct aio_timeout	to;
1103 	int			retry = 0;
1104 
1105 	/* needed to zero any padding within an entry (there shouldn't be
1106 	 * any, but C is fun!
1107 	 */
1108 	memset(&ent, 0, sizeof(ent));
1109 retry:
1110 	ret = 0;
1111 	while (likely(i < nr)) {
1112 		ret = aio_read_evt(ctx, &ent);
1113 		if (unlikely(ret <= 0))
1114 			break;
1115 
1116 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1117 			ent.data, ent.obj, ent.res, ent.res2);
1118 
1119 		/* Could we split the check in two? */
1120 		ret = -EFAULT;
1121 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1122 			dprintk("aio: lost an event due to EFAULT.\n");
1123 			break;
1124 		}
1125 		ret = 0;
1126 
1127 		/* Good, event copied to userland, update counts. */
1128 		event ++;
1129 		i ++;
1130 	}
1131 
1132 	if (min_nr <= i)
1133 		return i;
1134 	if (ret)
1135 		return ret;
1136 
1137 	/* End fast path */
1138 
1139 	/* racey check, but it gets redone */
1140 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1141 		retry = 1;
1142 		aio_run_all_iocbs(ctx);
1143 		goto retry;
1144 	}
1145 
1146 	init_timeout(&to);
1147 	if (timeout) {
1148 		struct timespec	ts;
1149 		ret = -EFAULT;
1150 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1151 			goto out;
1152 
1153 		set_timeout(start_jiffies, &to, &ts);
1154 	}
1155 
1156 	while (likely(i < nr)) {
1157 		add_wait_queue_exclusive(&ctx->wait, &wait);
1158 		do {
1159 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1160 			ret = aio_read_evt(ctx, &ent);
1161 			if (ret)
1162 				break;
1163 			if (min_nr <= i)
1164 				break;
1165 			ret = 0;
1166 			if (to.timed_out)	/* Only check after read evt */
1167 				break;
1168 			schedule();
1169 			if (signal_pending(tsk)) {
1170 				ret = -EINTR;
1171 				break;
1172 			}
1173 			/*ret = aio_read_evt(ctx, &ent);*/
1174 		} while (1) ;
1175 
1176 		set_task_state(tsk, TASK_RUNNING);
1177 		remove_wait_queue(&ctx->wait, &wait);
1178 
1179 		if (unlikely(ret <= 0))
1180 			break;
1181 
1182 		ret = -EFAULT;
1183 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1184 			dprintk("aio: lost an event due to EFAULT.\n");
1185 			break;
1186 		}
1187 
1188 		/* Good, event copied to userland, update counts. */
1189 		event ++;
1190 		i ++;
1191 	}
1192 
1193 	if (timeout)
1194 		clear_timeout(&to);
1195 out:
1196 	return i ? i : ret;
1197 }
1198 
1199 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1200  * against races with itself via ->dead.
1201  */
1202 static void io_destroy(struct kioctx *ioctx)
1203 {
1204 	struct mm_struct *mm = current->mm;
1205 	struct kioctx **tmp;
1206 	int was_dead;
1207 
1208 	/* delete the entry from the list is someone else hasn't already */
1209 	write_lock(&mm->ioctx_list_lock);
1210 	was_dead = ioctx->dead;
1211 	ioctx->dead = 1;
1212 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1213 	     tmp = &(*tmp)->next)
1214 		;
1215 	if (*tmp)
1216 		*tmp = ioctx->next;
1217 	write_unlock(&mm->ioctx_list_lock);
1218 
1219 	dprintk("aio_release(%p)\n", ioctx);
1220 	if (likely(!was_dead))
1221 		put_ioctx(ioctx);	/* twice for the list */
1222 
1223 	aio_cancel_all(ioctx);
1224 	wait_for_all_aios(ioctx);
1225 	put_ioctx(ioctx);	/* once for the lookup */
1226 }
1227 
1228 /* sys_io_setup:
1229  *	Create an aio_context capable of receiving at least nr_events.
1230  *	ctxp must not point to an aio_context that already exists, and
1231  *	must be initialized to 0 prior to the call.  On successful
1232  *	creation of the aio_context, *ctxp is filled in with the resulting
1233  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1234  *	if the specified nr_events exceeds internal limits.  May fail
1235  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1236  *	of available events.  May fail with -ENOMEM if insufficient kernel
1237  *	resources are available.  May fail with -EFAULT if an invalid
1238  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1239  *	implemented.
1240  */
1241 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1242 {
1243 	struct kioctx *ioctx = NULL;
1244 	unsigned long ctx;
1245 	long ret;
1246 
1247 	ret = get_user(ctx, ctxp);
1248 	if (unlikely(ret))
1249 		goto out;
1250 
1251 	ret = -EINVAL;
1252 	if (unlikely(ctx || (int)nr_events <= 0)) {
1253 		pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1254 		goto out;
1255 	}
1256 
1257 	ioctx = ioctx_alloc(nr_events);
1258 	ret = PTR_ERR(ioctx);
1259 	if (!IS_ERR(ioctx)) {
1260 		ret = put_user(ioctx->user_id, ctxp);
1261 		if (!ret)
1262 			return 0;
1263 
1264 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1265 		io_destroy(ioctx);
1266 	}
1267 
1268 out:
1269 	return ret;
1270 }
1271 
1272 /* sys_io_destroy:
1273  *	Destroy the aio_context specified.  May cancel any outstanding
1274  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1275  *	implemented.  May fail with -EFAULT if the context pointed to
1276  *	is invalid.
1277  */
1278 asmlinkage long sys_io_destroy(aio_context_t ctx)
1279 {
1280 	struct kioctx *ioctx = lookup_ioctx(ctx);
1281 	if (likely(NULL != ioctx)) {
1282 		io_destroy(ioctx);
1283 		return 0;
1284 	}
1285 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1286 	return -EINVAL;
1287 }
1288 
1289 /*
1290  * Default retry method for aio_read (also used for first time submit)
1291  * Responsible for updating iocb state as retries progress
1292  */
1293 static ssize_t aio_pread(struct kiocb *iocb)
1294 {
1295 	struct file *file = iocb->ki_filp;
1296 	struct address_space *mapping = file->f_mapping;
1297 	struct inode *inode = mapping->host;
1298 	ssize_t ret = 0;
1299 
1300 	ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1301 		iocb->ki_left, iocb->ki_pos);
1302 
1303 	/*
1304 	 * Can't just depend on iocb->ki_left to determine
1305 	 * whether we are done. This may have been a short read.
1306 	 */
1307 	if (ret > 0) {
1308 		iocb->ki_buf += ret;
1309 		iocb->ki_left -= ret;
1310 		/*
1311 		 * For pipes and sockets we return once we have
1312 		 * some data; for regular files we retry till we
1313 		 * complete the entire read or find that we can't
1314 		 * read any more data (e.g short reads).
1315 		 */
1316 		if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))
1317 			ret = -EIOCBRETRY;
1318 	}
1319 
1320 	/* This means we must have transferred all that we could */
1321 	/* No need to retry anymore */
1322 	if ((ret == 0) || (iocb->ki_left == 0))
1323 		ret = iocb->ki_nbytes - iocb->ki_left;
1324 
1325 	return ret;
1326 }
1327 
1328 /*
1329  * Default retry method for aio_write (also used for first time submit)
1330  * Responsible for updating iocb state as retries progress
1331  */
1332 static ssize_t aio_pwrite(struct kiocb *iocb)
1333 {
1334 	struct file *file = iocb->ki_filp;
1335 	ssize_t ret = 0;
1336 
1337 	ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1338 		iocb->ki_left, iocb->ki_pos);
1339 
1340 	if (ret > 0) {
1341 		iocb->ki_buf += ret;
1342 		iocb->ki_left -= ret;
1343 
1344 		ret = -EIOCBRETRY;
1345 	}
1346 
1347 	/* This means we must have transferred all that we could */
1348 	/* No need to retry anymore */
1349 	if ((ret == 0) || (iocb->ki_left == 0))
1350 		ret = iocb->ki_nbytes - iocb->ki_left;
1351 
1352 	return ret;
1353 }
1354 
1355 static ssize_t aio_fdsync(struct kiocb *iocb)
1356 {
1357 	struct file *file = iocb->ki_filp;
1358 	ssize_t ret = -EINVAL;
1359 
1360 	if (file->f_op->aio_fsync)
1361 		ret = file->f_op->aio_fsync(iocb, 1);
1362 	return ret;
1363 }
1364 
1365 static ssize_t aio_fsync(struct kiocb *iocb)
1366 {
1367 	struct file *file = iocb->ki_filp;
1368 	ssize_t ret = -EINVAL;
1369 
1370 	if (file->f_op->aio_fsync)
1371 		ret = file->f_op->aio_fsync(iocb, 0);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * aio_setup_iocb:
1377  *	Performs the initial checks and aio retry method
1378  *	setup for the kiocb at the time of io submission.
1379  */
1380 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1381 {
1382 	struct file *file = kiocb->ki_filp;
1383 	ssize_t ret = 0;
1384 
1385 	switch (kiocb->ki_opcode) {
1386 	case IOCB_CMD_PREAD:
1387 		ret = -EBADF;
1388 		if (unlikely(!(file->f_mode & FMODE_READ)))
1389 			break;
1390 		ret = -EFAULT;
1391 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1392 			kiocb->ki_left)))
1393 			break;
1394 		ret = -EINVAL;
1395 		if (file->f_op->aio_read)
1396 			kiocb->ki_retry = aio_pread;
1397 		break;
1398 	case IOCB_CMD_PWRITE:
1399 		ret = -EBADF;
1400 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1401 			break;
1402 		ret = -EFAULT;
1403 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1404 			kiocb->ki_left)))
1405 			break;
1406 		ret = -EINVAL;
1407 		if (file->f_op->aio_write)
1408 			kiocb->ki_retry = aio_pwrite;
1409 		break;
1410 	case IOCB_CMD_FDSYNC:
1411 		ret = -EINVAL;
1412 		if (file->f_op->aio_fsync)
1413 			kiocb->ki_retry = aio_fdsync;
1414 		break;
1415 	case IOCB_CMD_FSYNC:
1416 		ret = -EINVAL;
1417 		if (file->f_op->aio_fsync)
1418 			kiocb->ki_retry = aio_fsync;
1419 		break;
1420 	default:
1421 		dprintk("EINVAL: io_submit: no operation provided\n");
1422 		ret = -EINVAL;
1423 	}
1424 
1425 	if (!kiocb->ki_retry)
1426 		return ret;
1427 
1428 	return 0;
1429 }
1430 
1431 /*
1432  * aio_wake_function:
1433  * 	wait queue callback function for aio notification,
1434  * 	Simply triggers a retry of the operation via kick_iocb.
1435  *
1436  * 	This callback is specified in the wait queue entry in
1437  *	a kiocb	(current->io_wait points to this wait queue
1438  *	entry when an aio operation executes; it is used
1439  * 	instead of a synchronous wait when an i/o blocking
1440  *	condition is encountered during aio).
1441  *
1442  * Note:
1443  * This routine is executed with the wait queue lock held.
1444  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1445  * the ioctx lock inside the wait queue lock. This is safe
1446  * because this callback isn't used for wait queues which
1447  * are nested inside ioctx lock (i.e. ctx->wait)
1448  */
1449 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1450 			     int sync, void *key)
1451 {
1452 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1453 
1454 	list_del_init(&wait->task_list);
1455 	kick_iocb(iocb);
1456 	return 1;
1457 }
1458 
1459 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1460 			 struct iocb *iocb)
1461 {
1462 	struct kiocb *req;
1463 	struct file *file;
1464 	ssize_t ret;
1465 
1466 	/* enforce forwards compatibility on users */
1467 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1468 		     iocb->aio_reserved3)) {
1469 		pr_debug("EINVAL: io_submit: reserve field set\n");
1470 		return -EINVAL;
1471 	}
1472 
1473 	/* prevent overflows */
1474 	if (unlikely(
1475 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1476 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1477 	    ((ssize_t)iocb->aio_nbytes < 0)
1478 	   )) {
1479 		pr_debug("EINVAL: io_submit: overflow check\n");
1480 		return -EINVAL;
1481 	}
1482 
1483 	file = fget(iocb->aio_fildes);
1484 	if (unlikely(!file))
1485 		return -EBADF;
1486 
1487 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1488 	if (unlikely(!req)) {
1489 		fput(file);
1490 		return -EAGAIN;
1491 	}
1492 
1493 	req->ki_filp = file;
1494 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1495 	if (unlikely(ret)) {
1496 		dprintk("EFAULT: aio_key\n");
1497 		goto out_put_req;
1498 	}
1499 
1500 	req->ki_obj.user = user_iocb;
1501 	req->ki_user_data = iocb->aio_data;
1502 	req->ki_pos = iocb->aio_offset;
1503 
1504 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1505 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1506 	req->ki_opcode = iocb->aio_lio_opcode;
1507 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1508 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1509 	req->ki_retried = 0;
1510 
1511 	ret = aio_setup_iocb(req);
1512 
1513 	if (ret)
1514 		goto out_put_req;
1515 
1516 	spin_lock_irq(&ctx->ctx_lock);
1517 	if (likely(list_empty(&ctx->run_list))) {
1518 		aio_run_iocb(req);
1519 	} else {
1520 		list_add_tail(&req->ki_run_list, &ctx->run_list);
1521 		/* drain the run list */
1522 		while (__aio_run_iocbs(ctx))
1523 			;
1524 	}
1525 	spin_unlock_irq(&ctx->ctx_lock);
1526 	aio_put_req(req);	/* drop extra ref to req */
1527 	return 0;
1528 
1529 out_put_req:
1530 	aio_put_req(req);	/* drop extra ref to req */
1531 	aio_put_req(req);	/* drop i/o ref to req */
1532 	return ret;
1533 }
1534 
1535 /* sys_io_submit:
1536  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1537  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1538  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1539  *	*iocbpp[0] is not properly initialized, if the operation specified
1540  *	is invalid for the file descriptor in the iocb.  May fail with
1541  *	-EFAULT if any of the data structures point to invalid data.  May
1542  *	fail with -EBADF if the file descriptor specified in the first
1543  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1544  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1545  *	fail with -ENOSYS if not implemented.
1546  */
1547 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1548 			      struct iocb __user * __user *iocbpp)
1549 {
1550 	struct kioctx *ctx;
1551 	long ret = 0;
1552 	int i;
1553 
1554 	if (unlikely(nr < 0))
1555 		return -EINVAL;
1556 
1557 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1558 		return -EFAULT;
1559 
1560 	ctx = lookup_ioctx(ctx_id);
1561 	if (unlikely(!ctx)) {
1562 		pr_debug("EINVAL: io_submit: invalid context id\n");
1563 		return -EINVAL;
1564 	}
1565 
1566 	/*
1567 	 * AKPM: should this return a partial result if some of the IOs were
1568 	 * successfully submitted?
1569 	 */
1570 	for (i=0; i<nr; i++) {
1571 		struct iocb __user *user_iocb;
1572 		struct iocb tmp;
1573 
1574 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1575 			ret = -EFAULT;
1576 			break;
1577 		}
1578 
1579 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1580 			ret = -EFAULT;
1581 			break;
1582 		}
1583 
1584 		ret = io_submit_one(ctx, user_iocb, &tmp);
1585 		if (ret)
1586 			break;
1587 	}
1588 
1589 	put_ioctx(ctx);
1590 	return i ? i : ret;
1591 }
1592 
1593 /* lookup_kiocb
1594  *	Finds a given iocb for cancellation.
1595  *	MUST be called with ctx->ctx_lock held.
1596  */
1597 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1598 				  u32 key)
1599 {
1600 	struct list_head *pos;
1601 	/* TODO: use a hash or array, this sucks. */
1602 	list_for_each(pos, &ctx->active_reqs) {
1603 		struct kiocb *kiocb = list_kiocb(pos);
1604 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1605 			return kiocb;
1606 	}
1607 	return NULL;
1608 }
1609 
1610 /* sys_io_cancel:
1611  *	Attempts to cancel an iocb previously passed to io_submit.  If
1612  *	the operation is successfully cancelled, the resulting event is
1613  *	copied into the memory pointed to by result without being placed
1614  *	into the completion queue and 0 is returned.  May fail with
1615  *	-EFAULT if any of the data structures pointed to are invalid.
1616  *	May fail with -EINVAL if aio_context specified by ctx_id is
1617  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1618  *	cancelled.  Will fail with -ENOSYS if not implemented.
1619  */
1620 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1621 			      struct io_event __user *result)
1622 {
1623 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1624 	struct kioctx *ctx;
1625 	struct kiocb *kiocb;
1626 	u32 key;
1627 	int ret;
1628 
1629 	ret = get_user(key, &iocb->aio_key);
1630 	if (unlikely(ret))
1631 		return -EFAULT;
1632 
1633 	ctx = lookup_ioctx(ctx_id);
1634 	if (unlikely(!ctx))
1635 		return -EINVAL;
1636 
1637 	spin_lock_irq(&ctx->ctx_lock);
1638 	ret = -EAGAIN;
1639 	kiocb = lookup_kiocb(ctx, iocb, key);
1640 	if (kiocb && kiocb->ki_cancel) {
1641 		cancel = kiocb->ki_cancel;
1642 		kiocb->ki_users ++;
1643 		kiocbSetCancelled(kiocb);
1644 	} else
1645 		cancel = NULL;
1646 	spin_unlock_irq(&ctx->ctx_lock);
1647 
1648 	if (NULL != cancel) {
1649 		struct io_event tmp;
1650 		pr_debug("calling cancel\n");
1651 		memset(&tmp, 0, sizeof(tmp));
1652 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1653 		tmp.data = kiocb->ki_user_data;
1654 		ret = cancel(kiocb, &tmp);
1655 		if (!ret) {
1656 			/* Cancellation succeeded -- copy the result
1657 			 * into the user's buffer.
1658 			 */
1659 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1660 				ret = -EFAULT;
1661 		}
1662 	} else
1663 		printk(KERN_DEBUG "iocb has no cancel operation\n");
1664 
1665 	put_ioctx(ctx);
1666 
1667 	return ret;
1668 }
1669 
1670 /* io_getevents:
1671  *	Attempts to read at least min_nr events and up to nr events from
1672  *	the completion queue for the aio_context specified by ctx_id.  May
1673  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1674  *	if nr is out of range, if when is out of range.  May fail with
1675  *	-EFAULT if any of the memory specified to is invalid.  May return
1676  *	0 or < min_nr if no events are available and the timeout specified
1677  *	by when	has elapsed, where when == NULL specifies an infinite
1678  *	timeout.  Note that the timeout pointed to by when is relative and
1679  *	will be updated if not NULL and the operation blocks.  Will fail
1680  *	with -ENOSYS if not implemented.
1681  */
1682 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1683 				 long min_nr,
1684 				 long nr,
1685 				 struct io_event __user *events,
1686 				 struct timespec __user *timeout)
1687 {
1688 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1689 	long ret = -EINVAL;
1690 
1691 	if (likely(ioctx)) {
1692 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1693 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1694 		put_ioctx(ioctx);
1695 	}
1696 
1697 	return ret;
1698 }
1699 
1700 __initcall(aio_setup);
1701 
1702 EXPORT_SYMBOL(aio_complete);
1703 EXPORT_SYMBOL(aio_put_req);
1704 EXPORT_SYMBOL(wait_on_sync_kiocb);
1705