1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[] __counted_by(nr); 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 }; 243 244 static void __init aio_sysctl_init(void) 245 { 246 register_sysctl_init("fs", aio_sysctls); 247 } 248 #else 249 #define aio_sysctl_init() do { } while (0) 250 #endif 251 252 static struct kmem_cache *kiocb_cachep; 253 static struct kmem_cache *kioctx_cachep; 254 255 static struct vfsmount *aio_mnt; 256 257 static const struct file_operations aio_ring_fops; 258 static const struct address_space_operations aio_ctx_aops; 259 260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 261 { 262 struct file *file; 263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 264 if (IS_ERR(inode)) 265 return ERR_CAST(inode); 266 267 inode->i_mapping->a_ops = &aio_ctx_aops; 268 inode->i_mapping->i_private_data = ctx; 269 inode->i_size = PAGE_SIZE * nr_pages; 270 271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 272 O_RDWR, &aio_ring_fops); 273 if (IS_ERR(file)) 274 iput(inode); 275 return file; 276 } 277 278 static int aio_init_fs_context(struct fs_context *fc) 279 { 280 if (!init_pseudo(fc, AIO_RING_MAGIC)) 281 return -ENOMEM; 282 fc->s_iflags |= SB_I_NOEXEC; 283 return 0; 284 } 285 286 /* aio_setup 287 * Creates the slab caches used by the aio routines, panic on 288 * failure as this is done early during the boot sequence. 289 */ 290 static int __init aio_setup(void) 291 { 292 static struct file_system_type aio_fs = { 293 .name = "aio", 294 .init_fs_context = aio_init_fs_context, 295 .kill_sb = kill_anon_super, 296 }; 297 aio_mnt = kern_mount(&aio_fs); 298 if (IS_ERR(aio_mnt)) 299 panic("Failed to create aio fs mount."); 300 301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 aio_sysctl_init(); 304 return 0; 305 } 306 __initcall(aio_setup); 307 308 static void put_aio_ring_file(struct kioctx *ctx) 309 { 310 struct file *aio_ring_file = ctx->aio_ring_file; 311 struct address_space *i_mapping; 312 313 if (aio_ring_file) { 314 truncate_setsize(file_inode(aio_ring_file), 0); 315 316 /* Prevent further access to the kioctx from migratepages */ 317 i_mapping = aio_ring_file->f_mapping; 318 spin_lock(&i_mapping->i_private_lock); 319 i_mapping->i_private_data = NULL; 320 ctx->aio_ring_file = NULL; 321 spin_unlock(&i_mapping->i_private_lock); 322 323 fput(aio_ring_file); 324 } 325 } 326 327 static void aio_free_ring(struct kioctx *ctx) 328 { 329 int i; 330 331 /* Disconnect the kiotx from the ring file. This prevents future 332 * accesses to the kioctx from page migration. 333 */ 334 put_aio_ring_file(ctx); 335 336 for (i = 0; i < ctx->nr_pages; i++) { 337 struct page *page; 338 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 339 page_count(ctx->ring_pages[i])); 340 page = ctx->ring_pages[i]; 341 if (!page) 342 continue; 343 ctx->ring_pages[i] = NULL; 344 put_page(page); 345 } 346 347 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 348 kfree(ctx->ring_pages); 349 ctx->ring_pages = NULL; 350 } 351 } 352 353 static int aio_ring_mremap(struct vm_area_struct *vma) 354 { 355 struct file *file = vma->vm_file; 356 struct mm_struct *mm = vma->vm_mm; 357 struct kioctx_table *table; 358 int i, res = -EINVAL; 359 360 spin_lock(&mm->ioctx_lock); 361 rcu_read_lock(); 362 table = rcu_dereference(mm->ioctx_table); 363 if (!table) 364 goto out_unlock; 365 366 for (i = 0; i < table->nr; i++) { 367 struct kioctx *ctx; 368 369 ctx = rcu_dereference(table->table[i]); 370 if (ctx && ctx->aio_ring_file == file) { 371 if (!atomic_read(&ctx->dead)) { 372 ctx->user_id = ctx->mmap_base = vma->vm_start; 373 res = 0; 374 } 375 break; 376 } 377 } 378 379 out_unlock: 380 rcu_read_unlock(); 381 spin_unlock(&mm->ioctx_lock); 382 return res; 383 } 384 385 static const struct vm_operations_struct aio_ring_vm_ops = { 386 .mremap = aio_ring_mremap, 387 #if IS_ENABLED(CONFIG_MMU) 388 .fault = filemap_fault, 389 .map_pages = filemap_map_pages, 390 .page_mkwrite = filemap_page_mkwrite, 391 #endif 392 }; 393 394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 395 { 396 vm_flags_set(vma, VM_DONTEXPAND); 397 vma->vm_ops = &aio_ring_vm_ops; 398 return 0; 399 } 400 401 static const struct file_operations aio_ring_fops = { 402 .mmap = aio_ring_mmap, 403 }; 404 405 #if IS_ENABLED(CONFIG_MIGRATION) 406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, 407 struct folio *src, enum migrate_mode mode) 408 { 409 struct kioctx *ctx; 410 unsigned long flags; 411 pgoff_t idx; 412 int rc; 413 414 /* 415 * We cannot support the _NO_COPY case here, because copy needs to 416 * happen under the ctx->completion_lock. That does not work with the 417 * migration workflow of MIGRATE_SYNC_NO_COPY. 418 */ 419 if (mode == MIGRATE_SYNC_NO_COPY) 420 return -EINVAL; 421 422 rc = 0; 423 424 /* mapping->i_private_lock here protects against the kioctx teardown. */ 425 spin_lock(&mapping->i_private_lock); 426 ctx = mapping->i_private_data; 427 if (!ctx) { 428 rc = -EINVAL; 429 goto out; 430 } 431 432 /* The ring_lock mutex. The prevents aio_read_events() from writing 433 * to the ring's head, and prevents page migration from mucking in 434 * a partially initialized kiotx. 435 */ 436 if (!mutex_trylock(&ctx->ring_lock)) { 437 rc = -EAGAIN; 438 goto out; 439 } 440 441 idx = src->index; 442 if (idx < (pgoff_t)ctx->nr_pages) { 443 /* Make sure the old folio hasn't already been changed */ 444 if (ctx->ring_pages[idx] != &src->page) 445 rc = -EAGAIN; 446 } else 447 rc = -EINVAL; 448 449 if (rc != 0) 450 goto out_unlock; 451 452 /* Writeback must be complete */ 453 BUG_ON(folio_test_writeback(src)); 454 folio_get(dst); 455 456 rc = folio_migrate_mapping(mapping, dst, src, 1); 457 if (rc != MIGRATEPAGE_SUCCESS) { 458 folio_put(dst); 459 goto out_unlock; 460 } 461 462 /* Take completion_lock to prevent other writes to the ring buffer 463 * while the old folio is copied to the new. This prevents new 464 * events from being lost. 465 */ 466 spin_lock_irqsave(&ctx->completion_lock, flags); 467 folio_migrate_copy(dst, src); 468 BUG_ON(ctx->ring_pages[idx] != &src->page); 469 ctx->ring_pages[idx] = &dst->page; 470 spin_unlock_irqrestore(&ctx->completion_lock, flags); 471 472 /* The old folio is no longer accessible. */ 473 folio_put(src); 474 475 out_unlock: 476 mutex_unlock(&ctx->ring_lock); 477 out: 478 spin_unlock(&mapping->i_private_lock); 479 return rc; 480 } 481 #else 482 #define aio_migrate_folio NULL 483 #endif 484 485 static const struct address_space_operations aio_ctx_aops = { 486 .dirty_folio = noop_dirty_folio, 487 .migrate_folio = aio_migrate_folio, 488 }; 489 490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 491 { 492 struct aio_ring *ring; 493 struct mm_struct *mm = current->mm; 494 unsigned long size, unused; 495 int nr_pages; 496 int i; 497 struct file *file; 498 499 /* Compensate for the ring buffer's head/tail overlap entry */ 500 nr_events += 2; /* 1 is required, 2 for good luck */ 501 502 size = sizeof(struct aio_ring); 503 size += sizeof(struct io_event) * nr_events; 504 505 nr_pages = PFN_UP(size); 506 if (nr_pages < 0) 507 return -EINVAL; 508 509 file = aio_private_file(ctx, nr_pages); 510 if (IS_ERR(file)) { 511 ctx->aio_ring_file = NULL; 512 return -ENOMEM; 513 } 514 515 ctx->aio_ring_file = file; 516 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 517 / sizeof(struct io_event); 518 519 ctx->ring_pages = ctx->internal_pages; 520 if (nr_pages > AIO_RING_PAGES) { 521 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 522 GFP_KERNEL); 523 if (!ctx->ring_pages) { 524 put_aio_ring_file(ctx); 525 return -ENOMEM; 526 } 527 } 528 529 for (i = 0; i < nr_pages; i++) { 530 struct page *page; 531 page = find_or_create_page(file->f_mapping, 532 i, GFP_USER | __GFP_ZERO); 533 if (!page) 534 break; 535 pr_debug("pid(%d) page[%d]->count=%d\n", 536 current->pid, i, page_count(page)); 537 SetPageUptodate(page); 538 unlock_page(page); 539 540 ctx->ring_pages[i] = page; 541 } 542 ctx->nr_pages = i; 543 544 if (unlikely(i != nr_pages)) { 545 aio_free_ring(ctx); 546 return -ENOMEM; 547 } 548 549 ctx->mmap_size = nr_pages * PAGE_SIZE; 550 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 551 552 if (mmap_write_lock_killable(mm)) { 553 ctx->mmap_size = 0; 554 aio_free_ring(ctx); 555 return -EINTR; 556 } 557 558 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 559 PROT_READ | PROT_WRITE, 560 MAP_SHARED, 0, 0, &unused, NULL); 561 mmap_write_unlock(mm); 562 if (IS_ERR((void *)ctx->mmap_base)) { 563 ctx->mmap_size = 0; 564 aio_free_ring(ctx); 565 return -ENOMEM; 566 } 567 568 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 569 570 ctx->user_id = ctx->mmap_base; 571 ctx->nr_events = nr_events; /* trusted copy */ 572 573 ring = page_address(ctx->ring_pages[0]); 574 ring->nr = nr_events; /* user copy */ 575 ring->id = ~0U; 576 ring->head = ring->tail = 0; 577 ring->magic = AIO_RING_MAGIC; 578 ring->compat_features = AIO_RING_COMPAT_FEATURES; 579 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 580 ring->header_length = sizeof(struct aio_ring); 581 flush_dcache_page(ctx->ring_pages[0]); 582 583 return 0; 584 } 585 586 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 587 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 588 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 589 590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 591 { 592 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 593 struct kioctx *ctx = req->ki_ctx; 594 unsigned long flags; 595 596 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 597 return; 598 599 spin_lock_irqsave(&ctx->ctx_lock, flags); 600 list_add_tail(&req->ki_list, &ctx->active_reqs); 601 req->ki_cancel = cancel; 602 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 603 } 604 EXPORT_SYMBOL(kiocb_set_cancel_fn); 605 606 /* 607 * free_ioctx() should be RCU delayed to synchronize against the RCU 608 * protected lookup_ioctx() and also needs process context to call 609 * aio_free_ring(). Use rcu_work. 610 */ 611 static void free_ioctx(struct work_struct *work) 612 { 613 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 614 free_rwork); 615 pr_debug("freeing %p\n", ctx); 616 617 aio_free_ring(ctx); 618 free_percpu(ctx->cpu); 619 percpu_ref_exit(&ctx->reqs); 620 percpu_ref_exit(&ctx->users); 621 kmem_cache_free(kioctx_cachep, ctx); 622 } 623 624 static void free_ioctx_reqs(struct percpu_ref *ref) 625 { 626 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 627 628 /* At this point we know that there are no any in-flight requests */ 629 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 630 complete(&ctx->rq_wait->comp); 631 632 /* Synchronize against RCU protected table->table[] dereferences */ 633 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 634 queue_rcu_work(system_wq, &ctx->free_rwork); 635 } 636 637 /* 638 * When this function runs, the kioctx has been removed from the "hash table" 639 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 640 * now it's safe to cancel any that need to be. 641 */ 642 static void free_ioctx_users(struct percpu_ref *ref) 643 { 644 struct kioctx *ctx = container_of(ref, struct kioctx, users); 645 struct aio_kiocb *req; 646 647 spin_lock_irq(&ctx->ctx_lock); 648 649 while (!list_empty(&ctx->active_reqs)) { 650 req = list_first_entry(&ctx->active_reqs, 651 struct aio_kiocb, ki_list); 652 req->ki_cancel(&req->rw); 653 list_del_init(&req->ki_list); 654 } 655 656 spin_unlock_irq(&ctx->ctx_lock); 657 658 percpu_ref_kill(&ctx->reqs); 659 percpu_ref_put(&ctx->reqs); 660 } 661 662 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 663 { 664 unsigned i, new_nr; 665 struct kioctx_table *table, *old; 666 struct aio_ring *ring; 667 668 spin_lock(&mm->ioctx_lock); 669 table = rcu_dereference_raw(mm->ioctx_table); 670 671 while (1) { 672 if (table) 673 for (i = 0; i < table->nr; i++) 674 if (!rcu_access_pointer(table->table[i])) { 675 ctx->id = i; 676 rcu_assign_pointer(table->table[i], ctx); 677 spin_unlock(&mm->ioctx_lock); 678 679 /* While kioctx setup is in progress, 680 * we are protected from page migration 681 * changes ring_pages by ->ring_lock. 682 */ 683 ring = page_address(ctx->ring_pages[0]); 684 ring->id = ctx->id; 685 return 0; 686 } 687 688 new_nr = (table ? table->nr : 1) * 4; 689 spin_unlock(&mm->ioctx_lock); 690 691 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 692 if (!table) 693 return -ENOMEM; 694 695 table->nr = new_nr; 696 697 spin_lock(&mm->ioctx_lock); 698 old = rcu_dereference_raw(mm->ioctx_table); 699 700 if (!old) { 701 rcu_assign_pointer(mm->ioctx_table, table); 702 } else if (table->nr > old->nr) { 703 memcpy(table->table, old->table, 704 old->nr * sizeof(struct kioctx *)); 705 706 rcu_assign_pointer(mm->ioctx_table, table); 707 kfree_rcu(old, rcu); 708 } else { 709 kfree(table); 710 table = old; 711 } 712 } 713 } 714 715 static void aio_nr_sub(unsigned nr) 716 { 717 spin_lock(&aio_nr_lock); 718 if (WARN_ON(aio_nr - nr > aio_nr)) 719 aio_nr = 0; 720 else 721 aio_nr -= nr; 722 spin_unlock(&aio_nr_lock); 723 } 724 725 /* ioctx_alloc 726 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 727 */ 728 static struct kioctx *ioctx_alloc(unsigned nr_events) 729 { 730 struct mm_struct *mm = current->mm; 731 struct kioctx *ctx; 732 int err = -ENOMEM; 733 734 /* 735 * Store the original nr_events -- what userspace passed to io_setup(), 736 * for counting against the global limit -- before it changes. 737 */ 738 unsigned int max_reqs = nr_events; 739 740 /* 741 * We keep track of the number of available ringbuffer slots, to prevent 742 * overflow (reqs_available), and we also use percpu counters for this. 743 * 744 * So since up to half the slots might be on other cpu's percpu counters 745 * and unavailable, double nr_events so userspace sees what they 746 * expected: additionally, we move req_batch slots to/from percpu 747 * counters at a time, so make sure that isn't 0: 748 */ 749 nr_events = max(nr_events, num_possible_cpus() * 4); 750 nr_events *= 2; 751 752 /* Prevent overflows */ 753 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 754 pr_debug("ENOMEM: nr_events too high\n"); 755 return ERR_PTR(-EINVAL); 756 } 757 758 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 759 return ERR_PTR(-EAGAIN); 760 761 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 762 if (!ctx) 763 return ERR_PTR(-ENOMEM); 764 765 ctx->max_reqs = max_reqs; 766 767 spin_lock_init(&ctx->ctx_lock); 768 spin_lock_init(&ctx->completion_lock); 769 mutex_init(&ctx->ring_lock); 770 /* Protect against page migration throughout kiotx setup by keeping 771 * the ring_lock mutex held until setup is complete. */ 772 mutex_lock(&ctx->ring_lock); 773 init_waitqueue_head(&ctx->wait); 774 775 INIT_LIST_HEAD(&ctx->active_reqs); 776 777 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 778 goto err; 779 780 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 781 goto err; 782 783 ctx->cpu = alloc_percpu(struct kioctx_cpu); 784 if (!ctx->cpu) 785 goto err; 786 787 err = aio_setup_ring(ctx, nr_events); 788 if (err < 0) 789 goto err; 790 791 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 792 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 793 if (ctx->req_batch < 1) 794 ctx->req_batch = 1; 795 796 /* limit the number of system wide aios */ 797 spin_lock(&aio_nr_lock); 798 if (aio_nr + ctx->max_reqs > aio_max_nr || 799 aio_nr + ctx->max_reqs < aio_nr) { 800 spin_unlock(&aio_nr_lock); 801 err = -EAGAIN; 802 goto err_ctx; 803 } 804 aio_nr += ctx->max_reqs; 805 spin_unlock(&aio_nr_lock); 806 807 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 808 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 809 810 err = ioctx_add_table(ctx, mm); 811 if (err) 812 goto err_cleanup; 813 814 /* Release the ring_lock mutex now that all setup is complete. */ 815 mutex_unlock(&ctx->ring_lock); 816 817 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 818 ctx, ctx->user_id, mm, ctx->nr_events); 819 return ctx; 820 821 err_cleanup: 822 aio_nr_sub(ctx->max_reqs); 823 err_ctx: 824 atomic_set(&ctx->dead, 1); 825 if (ctx->mmap_size) 826 vm_munmap(ctx->mmap_base, ctx->mmap_size); 827 aio_free_ring(ctx); 828 err: 829 mutex_unlock(&ctx->ring_lock); 830 free_percpu(ctx->cpu); 831 percpu_ref_exit(&ctx->reqs); 832 percpu_ref_exit(&ctx->users); 833 kmem_cache_free(kioctx_cachep, ctx); 834 pr_debug("error allocating ioctx %d\n", err); 835 return ERR_PTR(err); 836 } 837 838 /* kill_ioctx 839 * Cancels all outstanding aio requests on an aio context. Used 840 * when the processes owning a context have all exited to encourage 841 * the rapid destruction of the kioctx. 842 */ 843 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 844 struct ctx_rq_wait *wait) 845 { 846 struct kioctx_table *table; 847 848 spin_lock(&mm->ioctx_lock); 849 if (atomic_xchg(&ctx->dead, 1)) { 850 spin_unlock(&mm->ioctx_lock); 851 return -EINVAL; 852 } 853 854 table = rcu_dereference_raw(mm->ioctx_table); 855 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 856 RCU_INIT_POINTER(table->table[ctx->id], NULL); 857 spin_unlock(&mm->ioctx_lock); 858 859 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 860 wake_up_all(&ctx->wait); 861 862 /* 863 * It'd be more correct to do this in free_ioctx(), after all 864 * the outstanding kiocbs have finished - but by then io_destroy 865 * has already returned, so io_setup() could potentially return 866 * -EAGAIN with no ioctxs actually in use (as far as userspace 867 * could tell). 868 */ 869 aio_nr_sub(ctx->max_reqs); 870 871 if (ctx->mmap_size) 872 vm_munmap(ctx->mmap_base, ctx->mmap_size); 873 874 ctx->rq_wait = wait; 875 percpu_ref_kill(&ctx->users); 876 return 0; 877 } 878 879 /* 880 * exit_aio: called when the last user of mm goes away. At this point, there is 881 * no way for any new requests to be submited or any of the io_* syscalls to be 882 * called on the context. 883 * 884 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 885 * them. 886 */ 887 void exit_aio(struct mm_struct *mm) 888 { 889 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 890 struct ctx_rq_wait wait; 891 int i, skipped; 892 893 if (!table) 894 return; 895 896 atomic_set(&wait.count, table->nr); 897 init_completion(&wait.comp); 898 899 skipped = 0; 900 for (i = 0; i < table->nr; ++i) { 901 struct kioctx *ctx = 902 rcu_dereference_protected(table->table[i], true); 903 904 if (!ctx) { 905 skipped++; 906 continue; 907 } 908 909 /* 910 * We don't need to bother with munmap() here - exit_mmap(mm) 911 * is coming and it'll unmap everything. And we simply can't, 912 * this is not necessarily our ->mm. 913 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 914 * that it needs to unmap the area, just set it to 0. 915 */ 916 ctx->mmap_size = 0; 917 kill_ioctx(mm, ctx, &wait); 918 } 919 920 if (!atomic_sub_and_test(skipped, &wait.count)) { 921 /* Wait until all IO for the context are done. */ 922 wait_for_completion(&wait.comp); 923 } 924 925 RCU_INIT_POINTER(mm->ioctx_table, NULL); 926 kfree(table); 927 } 928 929 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 930 { 931 struct kioctx_cpu *kcpu; 932 unsigned long flags; 933 934 local_irq_save(flags); 935 kcpu = this_cpu_ptr(ctx->cpu); 936 kcpu->reqs_available += nr; 937 938 while (kcpu->reqs_available >= ctx->req_batch * 2) { 939 kcpu->reqs_available -= ctx->req_batch; 940 atomic_add(ctx->req_batch, &ctx->reqs_available); 941 } 942 943 local_irq_restore(flags); 944 } 945 946 static bool __get_reqs_available(struct kioctx *ctx) 947 { 948 struct kioctx_cpu *kcpu; 949 bool ret = false; 950 unsigned long flags; 951 952 local_irq_save(flags); 953 kcpu = this_cpu_ptr(ctx->cpu); 954 if (!kcpu->reqs_available) { 955 int avail = atomic_read(&ctx->reqs_available); 956 957 do { 958 if (avail < ctx->req_batch) 959 goto out; 960 } while (!atomic_try_cmpxchg(&ctx->reqs_available, 961 &avail, avail - ctx->req_batch)); 962 963 kcpu->reqs_available += ctx->req_batch; 964 } 965 966 ret = true; 967 kcpu->reqs_available--; 968 out: 969 local_irq_restore(flags); 970 return ret; 971 } 972 973 /* refill_reqs_available 974 * Updates the reqs_available reference counts used for tracking the 975 * number of free slots in the completion ring. This can be called 976 * from aio_complete() (to optimistically update reqs_available) or 977 * from aio_get_req() (the we're out of events case). It must be 978 * called holding ctx->completion_lock. 979 */ 980 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 981 unsigned tail) 982 { 983 unsigned events_in_ring, completed; 984 985 /* Clamp head since userland can write to it. */ 986 head %= ctx->nr_events; 987 if (head <= tail) 988 events_in_ring = tail - head; 989 else 990 events_in_ring = ctx->nr_events - (head - tail); 991 992 completed = ctx->completed_events; 993 if (events_in_ring < completed) 994 completed -= events_in_ring; 995 else 996 completed = 0; 997 998 if (!completed) 999 return; 1000 1001 ctx->completed_events -= completed; 1002 put_reqs_available(ctx, completed); 1003 } 1004 1005 /* user_refill_reqs_available 1006 * Called to refill reqs_available when aio_get_req() encounters an 1007 * out of space in the completion ring. 1008 */ 1009 static void user_refill_reqs_available(struct kioctx *ctx) 1010 { 1011 spin_lock_irq(&ctx->completion_lock); 1012 if (ctx->completed_events) { 1013 struct aio_ring *ring; 1014 unsigned head; 1015 1016 /* Access of ring->head may race with aio_read_events_ring() 1017 * here, but that's okay since whether we read the old version 1018 * or the new version, and either will be valid. The important 1019 * part is that head cannot pass tail since we prevent 1020 * aio_complete() from updating tail by holding 1021 * ctx->completion_lock. Even if head is invalid, the check 1022 * against ctx->completed_events below will make sure we do the 1023 * safe/right thing. 1024 */ 1025 ring = page_address(ctx->ring_pages[0]); 1026 head = ring->head; 1027 1028 refill_reqs_available(ctx, head, ctx->tail); 1029 } 1030 1031 spin_unlock_irq(&ctx->completion_lock); 1032 } 1033 1034 static bool get_reqs_available(struct kioctx *ctx) 1035 { 1036 if (__get_reqs_available(ctx)) 1037 return true; 1038 user_refill_reqs_available(ctx); 1039 return __get_reqs_available(ctx); 1040 } 1041 1042 /* aio_get_req 1043 * Allocate a slot for an aio request. 1044 * Returns NULL if no requests are free. 1045 * 1046 * The refcount is initialized to 2 - one for the async op completion, 1047 * one for the synchronous code that does this. 1048 */ 1049 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1050 { 1051 struct aio_kiocb *req; 1052 1053 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1054 if (unlikely(!req)) 1055 return NULL; 1056 1057 if (unlikely(!get_reqs_available(ctx))) { 1058 kmem_cache_free(kiocb_cachep, req); 1059 return NULL; 1060 } 1061 1062 percpu_ref_get(&ctx->reqs); 1063 req->ki_ctx = ctx; 1064 INIT_LIST_HEAD(&req->ki_list); 1065 refcount_set(&req->ki_refcnt, 2); 1066 req->ki_eventfd = NULL; 1067 return req; 1068 } 1069 1070 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1071 { 1072 struct aio_ring __user *ring = (void __user *)ctx_id; 1073 struct mm_struct *mm = current->mm; 1074 struct kioctx *ctx, *ret = NULL; 1075 struct kioctx_table *table; 1076 unsigned id; 1077 1078 if (get_user(id, &ring->id)) 1079 return NULL; 1080 1081 rcu_read_lock(); 1082 table = rcu_dereference(mm->ioctx_table); 1083 1084 if (!table || id >= table->nr) 1085 goto out; 1086 1087 id = array_index_nospec(id, table->nr); 1088 ctx = rcu_dereference(table->table[id]); 1089 if (ctx && ctx->user_id == ctx_id) { 1090 if (percpu_ref_tryget_live(&ctx->users)) 1091 ret = ctx; 1092 } 1093 out: 1094 rcu_read_unlock(); 1095 return ret; 1096 } 1097 1098 static inline void iocb_destroy(struct aio_kiocb *iocb) 1099 { 1100 if (iocb->ki_eventfd) 1101 eventfd_ctx_put(iocb->ki_eventfd); 1102 if (iocb->ki_filp) 1103 fput(iocb->ki_filp); 1104 percpu_ref_put(&iocb->ki_ctx->reqs); 1105 kmem_cache_free(kiocb_cachep, iocb); 1106 } 1107 1108 struct aio_waiter { 1109 struct wait_queue_entry w; 1110 size_t min_nr; 1111 }; 1112 1113 /* aio_complete 1114 * Called when the io request on the given iocb is complete. 1115 */ 1116 static void aio_complete(struct aio_kiocb *iocb) 1117 { 1118 struct kioctx *ctx = iocb->ki_ctx; 1119 struct aio_ring *ring; 1120 struct io_event *ev_page, *event; 1121 unsigned tail, pos, head, avail; 1122 unsigned long flags; 1123 1124 /* 1125 * Add a completion event to the ring buffer. Must be done holding 1126 * ctx->completion_lock to prevent other code from messing with the tail 1127 * pointer since we might be called from irq context. 1128 */ 1129 spin_lock_irqsave(&ctx->completion_lock, flags); 1130 1131 tail = ctx->tail; 1132 pos = tail + AIO_EVENTS_OFFSET; 1133 1134 if (++tail >= ctx->nr_events) 1135 tail = 0; 1136 1137 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1138 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1139 1140 *event = iocb->ki_res; 1141 1142 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1143 1144 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1145 (void __user *)(unsigned long)iocb->ki_res.obj, 1146 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1147 1148 /* after flagging the request as done, we 1149 * must never even look at it again 1150 */ 1151 smp_wmb(); /* make event visible before updating tail */ 1152 1153 ctx->tail = tail; 1154 1155 ring = page_address(ctx->ring_pages[0]); 1156 head = ring->head; 1157 ring->tail = tail; 1158 flush_dcache_page(ctx->ring_pages[0]); 1159 1160 ctx->completed_events++; 1161 if (ctx->completed_events > 1) 1162 refill_reqs_available(ctx, head, tail); 1163 1164 avail = tail > head 1165 ? tail - head 1166 : tail + ctx->nr_events - head; 1167 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1168 1169 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1170 1171 /* 1172 * Check if the user asked us to deliver the result through an 1173 * eventfd. The eventfd_signal() function is safe to be called 1174 * from IRQ context. 1175 */ 1176 if (iocb->ki_eventfd) 1177 eventfd_signal(iocb->ki_eventfd); 1178 1179 /* 1180 * We have to order our ring_info tail store above and test 1181 * of the wait list below outside the wait lock. This is 1182 * like in wake_up_bit() where clearing a bit has to be 1183 * ordered with the unlocked test. 1184 */ 1185 smp_mb(); 1186 1187 if (waitqueue_active(&ctx->wait)) { 1188 struct aio_waiter *curr, *next; 1189 unsigned long flags; 1190 1191 spin_lock_irqsave(&ctx->wait.lock, flags); 1192 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry) 1193 if (avail >= curr->min_nr) { 1194 list_del_init_careful(&curr->w.entry); 1195 wake_up_process(curr->w.private); 1196 } 1197 spin_unlock_irqrestore(&ctx->wait.lock, flags); 1198 } 1199 } 1200 1201 static inline void iocb_put(struct aio_kiocb *iocb) 1202 { 1203 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1204 aio_complete(iocb); 1205 iocb_destroy(iocb); 1206 } 1207 } 1208 1209 /* aio_read_events_ring 1210 * Pull an event off of the ioctx's event ring. Returns the number of 1211 * events fetched 1212 */ 1213 static long aio_read_events_ring(struct kioctx *ctx, 1214 struct io_event __user *event, long nr) 1215 { 1216 struct aio_ring *ring; 1217 unsigned head, tail, pos; 1218 long ret = 0; 1219 int copy_ret; 1220 1221 /* 1222 * The mutex can block and wake us up and that will cause 1223 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1224 * and repeat. This should be rare enough that it doesn't cause 1225 * peformance issues. See the comment in read_events() for more detail. 1226 */ 1227 sched_annotate_sleep(); 1228 mutex_lock(&ctx->ring_lock); 1229 1230 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1231 ring = page_address(ctx->ring_pages[0]); 1232 head = ring->head; 1233 tail = ring->tail; 1234 1235 /* 1236 * Ensure that once we've read the current tail pointer, that 1237 * we also see the events that were stored up to the tail. 1238 */ 1239 smp_rmb(); 1240 1241 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1242 1243 if (head == tail) 1244 goto out; 1245 1246 head %= ctx->nr_events; 1247 tail %= ctx->nr_events; 1248 1249 while (ret < nr) { 1250 long avail; 1251 struct io_event *ev; 1252 struct page *page; 1253 1254 avail = (head <= tail ? tail : ctx->nr_events) - head; 1255 if (head == tail) 1256 break; 1257 1258 pos = head + AIO_EVENTS_OFFSET; 1259 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1260 pos %= AIO_EVENTS_PER_PAGE; 1261 1262 avail = min(avail, nr - ret); 1263 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1264 1265 ev = page_address(page); 1266 copy_ret = copy_to_user(event + ret, ev + pos, 1267 sizeof(*ev) * avail); 1268 1269 if (unlikely(copy_ret)) { 1270 ret = -EFAULT; 1271 goto out; 1272 } 1273 1274 ret += avail; 1275 head += avail; 1276 head %= ctx->nr_events; 1277 } 1278 1279 ring = page_address(ctx->ring_pages[0]); 1280 ring->head = head; 1281 flush_dcache_page(ctx->ring_pages[0]); 1282 1283 pr_debug("%li h%u t%u\n", ret, head, tail); 1284 out: 1285 mutex_unlock(&ctx->ring_lock); 1286 1287 return ret; 1288 } 1289 1290 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1291 struct io_event __user *event, long *i) 1292 { 1293 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1294 1295 if (ret > 0) 1296 *i += ret; 1297 1298 if (unlikely(atomic_read(&ctx->dead))) 1299 ret = -EINVAL; 1300 1301 if (!*i) 1302 *i = ret; 1303 1304 return ret < 0 || *i >= min_nr; 1305 } 1306 1307 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1308 struct io_event __user *event, 1309 ktime_t until) 1310 { 1311 struct hrtimer_sleeper t; 1312 struct aio_waiter w; 1313 long ret = 0, ret2 = 0; 1314 1315 /* 1316 * Note that aio_read_events() is being called as the conditional - i.e. 1317 * we're calling it after prepare_to_wait() has set task state to 1318 * TASK_INTERRUPTIBLE. 1319 * 1320 * But aio_read_events() can block, and if it blocks it's going to flip 1321 * the task state back to TASK_RUNNING. 1322 * 1323 * This should be ok, provided it doesn't flip the state back to 1324 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1325 * will only happen if the mutex_lock() call blocks, and we then find 1326 * the ringbuffer empty. So in practice we should be ok, but it's 1327 * something to be aware of when touching this code. 1328 */ 1329 aio_read_events(ctx, min_nr, nr, event, &ret); 1330 if (until == 0 || ret < 0 || ret >= min_nr) 1331 return ret; 1332 1333 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1334 if (until != KTIME_MAX) { 1335 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns); 1336 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL); 1337 } 1338 1339 init_wait(&w.w); 1340 1341 while (1) { 1342 unsigned long nr_got = ret; 1343 1344 w.min_nr = min_nr - ret; 1345 1346 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE); 1347 if (!ret2 && !t.task) 1348 ret2 = -ETIME; 1349 1350 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2) 1351 break; 1352 1353 if (nr_got == ret) 1354 schedule(); 1355 } 1356 1357 finish_wait(&ctx->wait, &w.w); 1358 hrtimer_cancel(&t.timer); 1359 destroy_hrtimer_on_stack(&t.timer); 1360 1361 return ret; 1362 } 1363 1364 /* sys_io_setup: 1365 * Create an aio_context capable of receiving at least nr_events. 1366 * ctxp must not point to an aio_context that already exists, and 1367 * must be initialized to 0 prior to the call. On successful 1368 * creation of the aio_context, *ctxp is filled in with the resulting 1369 * handle. May fail with -EINVAL if *ctxp is not initialized, 1370 * if the specified nr_events exceeds internal limits. May fail 1371 * with -EAGAIN if the specified nr_events exceeds the user's limit 1372 * of available events. May fail with -ENOMEM if insufficient kernel 1373 * resources are available. May fail with -EFAULT if an invalid 1374 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1375 * implemented. 1376 */ 1377 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1378 { 1379 struct kioctx *ioctx = NULL; 1380 unsigned long ctx; 1381 long ret; 1382 1383 ret = get_user(ctx, ctxp); 1384 if (unlikely(ret)) 1385 goto out; 1386 1387 ret = -EINVAL; 1388 if (unlikely(ctx || nr_events == 0)) { 1389 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1390 ctx, nr_events); 1391 goto out; 1392 } 1393 1394 ioctx = ioctx_alloc(nr_events); 1395 ret = PTR_ERR(ioctx); 1396 if (!IS_ERR(ioctx)) { 1397 ret = put_user(ioctx->user_id, ctxp); 1398 if (ret) 1399 kill_ioctx(current->mm, ioctx, NULL); 1400 percpu_ref_put(&ioctx->users); 1401 } 1402 1403 out: 1404 return ret; 1405 } 1406 1407 #ifdef CONFIG_COMPAT 1408 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1409 { 1410 struct kioctx *ioctx = NULL; 1411 unsigned long ctx; 1412 long ret; 1413 1414 ret = get_user(ctx, ctx32p); 1415 if (unlikely(ret)) 1416 goto out; 1417 1418 ret = -EINVAL; 1419 if (unlikely(ctx || nr_events == 0)) { 1420 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1421 ctx, nr_events); 1422 goto out; 1423 } 1424 1425 ioctx = ioctx_alloc(nr_events); 1426 ret = PTR_ERR(ioctx); 1427 if (!IS_ERR(ioctx)) { 1428 /* truncating is ok because it's a user address */ 1429 ret = put_user((u32)ioctx->user_id, ctx32p); 1430 if (ret) 1431 kill_ioctx(current->mm, ioctx, NULL); 1432 percpu_ref_put(&ioctx->users); 1433 } 1434 1435 out: 1436 return ret; 1437 } 1438 #endif 1439 1440 /* sys_io_destroy: 1441 * Destroy the aio_context specified. May cancel any outstanding 1442 * AIOs and block on completion. Will fail with -ENOSYS if not 1443 * implemented. May fail with -EINVAL if the context pointed to 1444 * is invalid. 1445 */ 1446 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1447 { 1448 struct kioctx *ioctx = lookup_ioctx(ctx); 1449 if (likely(NULL != ioctx)) { 1450 struct ctx_rq_wait wait; 1451 int ret; 1452 1453 init_completion(&wait.comp); 1454 atomic_set(&wait.count, 1); 1455 1456 /* Pass requests_done to kill_ioctx() where it can be set 1457 * in a thread-safe way. If we try to set it here then we have 1458 * a race condition if two io_destroy() called simultaneously. 1459 */ 1460 ret = kill_ioctx(current->mm, ioctx, &wait); 1461 percpu_ref_put(&ioctx->users); 1462 1463 /* Wait until all IO for the context are done. Otherwise kernel 1464 * keep using user-space buffers even if user thinks the context 1465 * is destroyed. 1466 */ 1467 if (!ret) 1468 wait_for_completion(&wait.comp); 1469 1470 return ret; 1471 } 1472 pr_debug("EINVAL: invalid context id\n"); 1473 return -EINVAL; 1474 } 1475 1476 static void aio_remove_iocb(struct aio_kiocb *iocb) 1477 { 1478 struct kioctx *ctx = iocb->ki_ctx; 1479 unsigned long flags; 1480 1481 spin_lock_irqsave(&ctx->ctx_lock, flags); 1482 list_del(&iocb->ki_list); 1483 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1484 } 1485 1486 static void aio_complete_rw(struct kiocb *kiocb, long res) 1487 { 1488 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1489 1490 if (!list_empty_careful(&iocb->ki_list)) 1491 aio_remove_iocb(iocb); 1492 1493 if (kiocb->ki_flags & IOCB_WRITE) { 1494 struct inode *inode = file_inode(kiocb->ki_filp); 1495 1496 if (S_ISREG(inode->i_mode)) 1497 kiocb_end_write(kiocb); 1498 } 1499 1500 iocb->ki_res.res = res; 1501 iocb->ki_res.res2 = 0; 1502 iocb_put(iocb); 1503 } 1504 1505 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1506 { 1507 int ret; 1508 1509 req->ki_complete = aio_complete_rw; 1510 req->private = NULL; 1511 req->ki_pos = iocb->aio_offset; 1512 req->ki_flags = req->ki_filp->f_iocb_flags; 1513 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1514 req->ki_flags |= IOCB_EVENTFD; 1515 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1516 /* 1517 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1518 * aio_reqprio is interpreted as an I/O scheduling 1519 * class and priority. 1520 */ 1521 ret = ioprio_check_cap(iocb->aio_reqprio); 1522 if (ret) { 1523 pr_debug("aio ioprio check cap error: %d\n", ret); 1524 return ret; 1525 } 1526 1527 req->ki_ioprio = iocb->aio_reqprio; 1528 } else 1529 req->ki_ioprio = get_current_ioprio(); 1530 1531 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1532 if (unlikely(ret)) 1533 return ret; 1534 1535 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1536 return 0; 1537 } 1538 1539 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1540 struct iovec **iovec, bool vectored, bool compat, 1541 struct iov_iter *iter) 1542 { 1543 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1544 size_t len = iocb->aio_nbytes; 1545 1546 if (!vectored) { 1547 ssize_t ret = import_ubuf(rw, buf, len, iter); 1548 *iovec = NULL; 1549 return ret; 1550 } 1551 1552 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1553 } 1554 1555 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1556 { 1557 switch (ret) { 1558 case -EIOCBQUEUED: 1559 break; 1560 case -ERESTARTSYS: 1561 case -ERESTARTNOINTR: 1562 case -ERESTARTNOHAND: 1563 case -ERESTART_RESTARTBLOCK: 1564 /* 1565 * There's no easy way to restart the syscall since other AIO's 1566 * may be already running. Just fail this IO with EINTR. 1567 */ 1568 ret = -EINTR; 1569 fallthrough; 1570 default: 1571 req->ki_complete(req, ret); 1572 } 1573 } 1574 1575 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1576 bool vectored, bool compat) 1577 { 1578 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1579 struct iov_iter iter; 1580 struct file *file; 1581 int ret; 1582 1583 ret = aio_prep_rw(req, iocb); 1584 if (ret) 1585 return ret; 1586 file = req->ki_filp; 1587 if (unlikely(!(file->f_mode & FMODE_READ))) 1588 return -EBADF; 1589 if (unlikely(!file->f_op->read_iter)) 1590 return -EINVAL; 1591 1592 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); 1593 if (ret < 0) 1594 return ret; 1595 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1596 if (!ret) 1597 aio_rw_done(req, call_read_iter(file, req, &iter)); 1598 kfree(iovec); 1599 return ret; 1600 } 1601 1602 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1603 bool vectored, bool compat) 1604 { 1605 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1606 struct iov_iter iter; 1607 struct file *file; 1608 int ret; 1609 1610 ret = aio_prep_rw(req, iocb); 1611 if (ret) 1612 return ret; 1613 file = req->ki_filp; 1614 1615 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1616 return -EBADF; 1617 if (unlikely(!file->f_op->write_iter)) 1618 return -EINVAL; 1619 1620 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); 1621 if (ret < 0) 1622 return ret; 1623 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1624 if (!ret) { 1625 if (S_ISREG(file_inode(file)->i_mode)) 1626 kiocb_start_write(req); 1627 req->ki_flags |= IOCB_WRITE; 1628 aio_rw_done(req, call_write_iter(file, req, &iter)); 1629 } 1630 kfree(iovec); 1631 return ret; 1632 } 1633 1634 static void aio_fsync_work(struct work_struct *work) 1635 { 1636 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1637 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1638 1639 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1640 revert_creds(old_cred); 1641 put_cred(iocb->fsync.creds); 1642 iocb_put(iocb); 1643 } 1644 1645 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1646 bool datasync) 1647 { 1648 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1649 iocb->aio_rw_flags)) 1650 return -EINVAL; 1651 1652 if (unlikely(!req->file->f_op->fsync)) 1653 return -EINVAL; 1654 1655 req->creds = prepare_creds(); 1656 if (!req->creds) 1657 return -ENOMEM; 1658 1659 req->datasync = datasync; 1660 INIT_WORK(&req->work, aio_fsync_work); 1661 schedule_work(&req->work); 1662 return 0; 1663 } 1664 1665 static void aio_poll_put_work(struct work_struct *work) 1666 { 1667 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1668 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1669 1670 iocb_put(iocb); 1671 } 1672 1673 /* 1674 * Safely lock the waitqueue which the request is on, synchronizing with the 1675 * case where the ->poll() provider decides to free its waitqueue early. 1676 * 1677 * Returns true on success, meaning that req->head->lock was locked, req->wait 1678 * is on req->head, and an RCU read lock was taken. Returns false if the 1679 * request was already removed from its waitqueue (which might no longer exist). 1680 */ 1681 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1682 { 1683 wait_queue_head_t *head; 1684 1685 /* 1686 * While we hold the waitqueue lock and the waitqueue is nonempty, 1687 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1688 * lock in the first place can race with the waitqueue being freed. 1689 * 1690 * We solve this as eventpoll does: by taking advantage of the fact that 1691 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1692 * we enter rcu_read_lock() and see that the pointer to the queue is 1693 * non-NULL, we can then lock it without the memory being freed out from 1694 * under us, then check whether the request is still on the queue. 1695 * 1696 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1697 * case the caller deletes the entry from the queue, leaving it empty. 1698 * In that case, only RCU prevents the queue memory from being freed. 1699 */ 1700 rcu_read_lock(); 1701 head = smp_load_acquire(&req->head); 1702 if (head) { 1703 spin_lock(&head->lock); 1704 if (!list_empty(&req->wait.entry)) 1705 return true; 1706 spin_unlock(&head->lock); 1707 } 1708 rcu_read_unlock(); 1709 return false; 1710 } 1711 1712 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1713 { 1714 spin_unlock(&req->head->lock); 1715 rcu_read_unlock(); 1716 } 1717 1718 static void aio_poll_complete_work(struct work_struct *work) 1719 { 1720 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1721 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1722 struct poll_table_struct pt = { ._key = req->events }; 1723 struct kioctx *ctx = iocb->ki_ctx; 1724 __poll_t mask = 0; 1725 1726 if (!READ_ONCE(req->cancelled)) 1727 mask = vfs_poll(req->file, &pt) & req->events; 1728 1729 /* 1730 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1731 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1732 * synchronize with them. In the cancellation case the list_del_init 1733 * itself is not actually needed, but harmless so we keep it in to 1734 * avoid further branches in the fast path. 1735 */ 1736 spin_lock_irq(&ctx->ctx_lock); 1737 if (poll_iocb_lock_wq(req)) { 1738 if (!mask && !READ_ONCE(req->cancelled)) { 1739 /* 1740 * The request isn't actually ready to be completed yet. 1741 * Reschedule completion if another wakeup came in. 1742 */ 1743 if (req->work_need_resched) { 1744 schedule_work(&req->work); 1745 req->work_need_resched = false; 1746 } else { 1747 req->work_scheduled = false; 1748 } 1749 poll_iocb_unlock_wq(req); 1750 spin_unlock_irq(&ctx->ctx_lock); 1751 return; 1752 } 1753 list_del_init(&req->wait.entry); 1754 poll_iocb_unlock_wq(req); 1755 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1756 list_del_init(&iocb->ki_list); 1757 iocb->ki_res.res = mangle_poll(mask); 1758 spin_unlock_irq(&ctx->ctx_lock); 1759 1760 iocb_put(iocb); 1761 } 1762 1763 /* assumes we are called with irqs disabled */ 1764 static int aio_poll_cancel(struct kiocb *iocb) 1765 { 1766 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1767 struct poll_iocb *req = &aiocb->poll; 1768 1769 if (poll_iocb_lock_wq(req)) { 1770 WRITE_ONCE(req->cancelled, true); 1771 if (!req->work_scheduled) { 1772 schedule_work(&aiocb->poll.work); 1773 req->work_scheduled = true; 1774 } 1775 poll_iocb_unlock_wq(req); 1776 } /* else, the request was force-cancelled by POLLFREE already */ 1777 1778 return 0; 1779 } 1780 1781 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1782 void *key) 1783 { 1784 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1785 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1786 __poll_t mask = key_to_poll(key); 1787 unsigned long flags; 1788 1789 /* for instances that support it check for an event match first: */ 1790 if (mask && !(mask & req->events)) 1791 return 0; 1792 1793 /* 1794 * Complete the request inline if possible. This requires that three 1795 * conditions be met: 1796 * 1. An event mask must have been passed. If a plain wakeup was done 1797 * instead, then mask == 0 and we have to call vfs_poll() to get 1798 * the events, so inline completion isn't possible. 1799 * 2. The completion work must not have already been scheduled. 1800 * 3. ctx_lock must not be busy. We have to use trylock because we 1801 * already hold the waitqueue lock, so this inverts the normal 1802 * locking order. Use irqsave/irqrestore because not all 1803 * filesystems (e.g. fuse) call this function with IRQs disabled, 1804 * yet IRQs have to be disabled before ctx_lock is obtained. 1805 */ 1806 if (mask && !req->work_scheduled && 1807 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1808 struct kioctx *ctx = iocb->ki_ctx; 1809 1810 list_del_init(&req->wait.entry); 1811 list_del(&iocb->ki_list); 1812 iocb->ki_res.res = mangle_poll(mask); 1813 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1814 iocb = NULL; 1815 INIT_WORK(&req->work, aio_poll_put_work); 1816 schedule_work(&req->work); 1817 } 1818 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1819 if (iocb) 1820 iocb_put(iocb); 1821 } else { 1822 /* 1823 * Schedule the completion work if needed. If it was already 1824 * scheduled, record that another wakeup came in. 1825 * 1826 * Don't remove the request from the waitqueue here, as it might 1827 * not actually be complete yet (we won't know until vfs_poll() 1828 * is called), and we must not miss any wakeups. POLLFREE is an 1829 * exception to this; see below. 1830 */ 1831 if (req->work_scheduled) { 1832 req->work_need_resched = true; 1833 } else { 1834 schedule_work(&req->work); 1835 req->work_scheduled = true; 1836 } 1837 1838 /* 1839 * If the waitqueue is being freed early but we can't complete 1840 * the request inline, we have to tear down the request as best 1841 * we can. That means immediately removing the request from its 1842 * waitqueue and preventing all further accesses to the 1843 * waitqueue via the request. We also need to schedule the 1844 * completion work (done above). Also mark the request as 1845 * cancelled, to potentially skip an unneeded call to ->poll(). 1846 */ 1847 if (mask & POLLFREE) { 1848 WRITE_ONCE(req->cancelled, true); 1849 list_del_init(&req->wait.entry); 1850 1851 /* 1852 * Careful: this *must* be the last step, since as soon 1853 * as req->head is NULL'ed out, the request can be 1854 * completed and freed, since aio_poll_complete_work() 1855 * will no longer need to take the waitqueue lock. 1856 */ 1857 smp_store_release(&req->head, NULL); 1858 } 1859 } 1860 return 1; 1861 } 1862 1863 struct aio_poll_table { 1864 struct poll_table_struct pt; 1865 struct aio_kiocb *iocb; 1866 bool queued; 1867 int error; 1868 }; 1869 1870 static void 1871 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1872 struct poll_table_struct *p) 1873 { 1874 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1875 1876 /* multiple wait queues per file are not supported */ 1877 if (unlikely(pt->queued)) { 1878 pt->error = -EINVAL; 1879 return; 1880 } 1881 1882 pt->queued = true; 1883 pt->error = 0; 1884 pt->iocb->poll.head = head; 1885 add_wait_queue(head, &pt->iocb->poll.wait); 1886 } 1887 1888 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1889 { 1890 struct kioctx *ctx = aiocb->ki_ctx; 1891 struct poll_iocb *req = &aiocb->poll; 1892 struct aio_poll_table apt; 1893 bool cancel = false; 1894 __poll_t mask; 1895 1896 /* reject any unknown events outside the normal event mask. */ 1897 if ((u16)iocb->aio_buf != iocb->aio_buf) 1898 return -EINVAL; 1899 /* reject fields that are not defined for poll */ 1900 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1901 return -EINVAL; 1902 1903 INIT_WORK(&req->work, aio_poll_complete_work); 1904 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1905 1906 req->head = NULL; 1907 req->cancelled = false; 1908 req->work_scheduled = false; 1909 req->work_need_resched = false; 1910 1911 apt.pt._qproc = aio_poll_queue_proc; 1912 apt.pt._key = req->events; 1913 apt.iocb = aiocb; 1914 apt.queued = false; 1915 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1916 1917 /* initialized the list so that we can do list_empty checks */ 1918 INIT_LIST_HEAD(&req->wait.entry); 1919 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1920 1921 mask = vfs_poll(req->file, &apt.pt) & req->events; 1922 spin_lock_irq(&ctx->ctx_lock); 1923 if (likely(apt.queued)) { 1924 bool on_queue = poll_iocb_lock_wq(req); 1925 1926 if (!on_queue || req->work_scheduled) { 1927 /* 1928 * aio_poll_wake() already either scheduled the async 1929 * completion work, or completed the request inline. 1930 */ 1931 if (apt.error) /* unsupported case: multiple queues */ 1932 cancel = true; 1933 apt.error = 0; 1934 mask = 0; 1935 } 1936 if (mask || apt.error) { 1937 /* Steal to complete synchronously. */ 1938 list_del_init(&req->wait.entry); 1939 } else if (cancel) { 1940 /* Cancel if possible (may be too late though). */ 1941 WRITE_ONCE(req->cancelled, true); 1942 } else if (on_queue) { 1943 /* 1944 * Actually waiting for an event, so add the request to 1945 * active_reqs so that it can be cancelled if needed. 1946 */ 1947 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1948 aiocb->ki_cancel = aio_poll_cancel; 1949 } 1950 if (on_queue) 1951 poll_iocb_unlock_wq(req); 1952 } 1953 if (mask) { /* no async, we'd stolen it */ 1954 aiocb->ki_res.res = mangle_poll(mask); 1955 apt.error = 0; 1956 } 1957 spin_unlock_irq(&ctx->ctx_lock); 1958 if (mask) 1959 iocb_put(aiocb); 1960 return apt.error; 1961 } 1962 1963 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1964 struct iocb __user *user_iocb, struct aio_kiocb *req, 1965 bool compat) 1966 { 1967 req->ki_filp = fget(iocb->aio_fildes); 1968 if (unlikely(!req->ki_filp)) 1969 return -EBADF; 1970 1971 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1972 struct eventfd_ctx *eventfd; 1973 /* 1974 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1975 * instance of the file* now. The file descriptor must be 1976 * an eventfd() fd, and will be signaled for each completed 1977 * event using the eventfd_signal() function. 1978 */ 1979 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1980 if (IS_ERR(eventfd)) 1981 return PTR_ERR(eventfd); 1982 1983 req->ki_eventfd = eventfd; 1984 } 1985 1986 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1987 pr_debug("EFAULT: aio_key\n"); 1988 return -EFAULT; 1989 } 1990 1991 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1992 req->ki_res.data = iocb->aio_data; 1993 req->ki_res.res = 0; 1994 req->ki_res.res2 = 0; 1995 1996 switch (iocb->aio_lio_opcode) { 1997 case IOCB_CMD_PREAD: 1998 return aio_read(&req->rw, iocb, false, compat); 1999 case IOCB_CMD_PWRITE: 2000 return aio_write(&req->rw, iocb, false, compat); 2001 case IOCB_CMD_PREADV: 2002 return aio_read(&req->rw, iocb, true, compat); 2003 case IOCB_CMD_PWRITEV: 2004 return aio_write(&req->rw, iocb, true, compat); 2005 case IOCB_CMD_FSYNC: 2006 return aio_fsync(&req->fsync, iocb, false); 2007 case IOCB_CMD_FDSYNC: 2008 return aio_fsync(&req->fsync, iocb, true); 2009 case IOCB_CMD_POLL: 2010 return aio_poll(req, iocb); 2011 default: 2012 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 2013 return -EINVAL; 2014 } 2015 } 2016 2017 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 2018 bool compat) 2019 { 2020 struct aio_kiocb *req; 2021 struct iocb iocb; 2022 int err; 2023 2024 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 2025 return -EFAULT; 2026 2027 /* enforce forwards compatibility on users */ 2028 if (unlikely(iocb.aio_reserved2)) { 2029 pr_debug("EINVAL: reserve field set\n"); 2030 return -EINVAL; 2031 } 2032 2033 /* prevent overflows */ 2034 if (unlikely( 2035 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 2036 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 2037 ((ssize_t)iocb.aio_nbytes < 0) 2038 )) { 2039 pr_debug("EINVAL: overflow check\n"); 2040 return -EINVAL; 2041 } 2042 2043 req = aio_get_req(ctx); 2044 if (unlikely(!req)) 2045 return -EAGAIN; 2046 2047 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2048 2049 /* Done with the synchronous reference */ 2050 iocb_put(req); 2051 2052 /* 2053 * If err is 0, we'd either done aio_complete() ourselves or have 2054 * arranged for that to be done asynchronously. Anything non-zero 2055 * means that we need to destroy req ourselves. 2056 */ 2057 if (unlikely(err)) { 2058 iocb_destroy(req); 2059 put_reqs_available(ctx, 1); 2060 } 2061 return err; 2062 } 2063 2064 /* sys_io_submit: 2065 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2066 * the number of iocbs queued. May return -EINVAL if the aio_context 2067 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2068 * *iocbpp[0] is not properly initialized, if the operation specified 2069 * is invalid for the file descriptor in the iocb. May fail with 2070 * -EFAULT if any of the data structures point to invalid data. May 2071 * fail with -EBADF if the file descriptor specified in the first 2072 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2073 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2074 * fail with -ENOSYS if not implemented. 2075 */ 2076 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2077 struct iocb __user * __user *, iocbpp) 2078 { 2079 struct kioctx *ctx; 2080 long ret = 0; 2081 int i = 0; 2082 struct blk_plug plug; 2083 2084 if (unlikely(nr < 0)) 2085 return -EINVAL; 2086 2087 ctx = lookup_ioctx(ctx_id); 2088 if (unlikely(!ctx)) { 2089 pr_debug("EINVAL: invalid context id\n"); 2090 return -EINVAL; 2091 } 2092 2093 if (nr > ctx->nr_events) 2094 nr = ctx->nr_events; 2095 2096 if (nr > AIO_PLUG_THRESHOLD) 2097 blk_start_plug(&plug); 2098 for (i = 0; i < nr; i++) { 2099 struct iocb __user *user_iocb; 2100 2101 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2102 ret = -EFAULT; 2103 break; 2104 } 2105 2106 ret = io_submit_one(ctx, user_iocb, false); 2107 if (ret) 2108 break; 2109 } 2110 if (nr > AIO_PLUG_THRESHOLD) 2111 blk_finish_plug(&plug); 2112 2113 percpu_ref_put(&ctx->users); 2114 return i ? i : ret; 2115 } 2116 2117 #ifdef CONFIG_COMPAT 2118 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2119 int, nr, compat_uptr_t __user *, iocbpp) 2120 { 2121 struct kioctx *ctx; 2122 long ret = 0; 2123 int i = 0; 2124 struct blk_plug plug; 2125 2126 if (unlikely(nr < 0)) 2127 return -EINVAL; 2128 2129 ctx = lookup_ioctx(ctx_id); 2130 if (unlikely(!ctx)) { 2131 pr_debug("EINVAL: invalid context id\n"); 2132 return -EINVAL; 2133 } 2134 2135 if (nr > ctx->nr_events) 2136 nr = ctx->nr_events; 2137 2138 if (nr > AIO_PLUG_THRESHOLD) 2139 blk_start_plug(&plug); 2140 for (i = 0; i < nr; i++) { 2141 compat_uptr_t user_iocb; 2142 2143 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2144 ret = -EFAULT; 2145 break; 2146 } 2147 2148 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2149 if (ret) 2150 break; 2151 } 2152 if (nr > AIO_PLUG_THRESHOLD) 2153 blk_finish_plug(&plug); 2154 2155 percpu_ref_put(&ctx->users); 2156 return i ? i : ret; 2157 } 2158 #endif 2159 2160 /* sys_io_cancel: 2161 * Attempts to cancel an iocb previously passed to io_submit. If 2162 * the operation is successfully cancelled, the resulting event is 2163 * copied into the memory pointed to by result without being placed 2164 * into the completion queue and 0 is returned. May fail with 2165 * -EFAULT if any of the data structures pointed to are invalid. 2166 * May fail with -EINVAL if aio_context specified by ctx_id is 2167 * invalid. May fail with -EAGAIN if the iocb specified was not 2168 * cancelled. Will fail with -ENOSYS if not implemented. 2169 */ 2170 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2171 struct io_event __user *, result) 2172 { 2173 struct kioctx *ctx; 2174 struct aio_kiocb *kiocb; 2175 int ret = -EINVAL; 2176 u32 key; 2177 u64 obj = (u64)(unsigned long)iocb; 2178 2179 if (unlikely(get_user(key, &iocb->aio_key))) 2180 return -EFAULT; 2181 if (unlikely(key != KIOCB_KEY)) 2182 return -EINVAL; 2183 2184 ctx = lookup_ioctx(ctx_id); 2185 if (unlikely(!ctx)) 2186 return -EINVAL; 2187 2188 spin_lock_irq(&ctx->ctx_lock); 2189 /* TODO: use a hash or array, this sucks. */ 2190 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2191 if (kiocb->ki_res.obj == obj) { 2192 ret = kiocb->ki_cancel(&kiocb->rw); 2193 list_del_init(&kiocb->ki_list); 2194 break; 2195 } 2196 } 2197 spin_unlock_irq(&ctx->ctx_lock); 2198 2199 if (!ret) { 2200 /* 2201 * The result argument is no longer used - the io_event is 2202 * always delivered via the ring buffer. -EINPROGRESS indicates 2203 * cancellation is progress: 2204 */ 2205 ret = -EINPROGRESS; 2206 } 2207 2208 percpu_ref_put(&ctx->users); 2209 2210 return ret; 2211 } 2212 2213 static long do_io_getevents(aio_context_t ctx_id, 2214 long min_nr, 2215 long nr, 2216 struct io_event __user *events, 2217 struct timespec64 *ts) 2218 { 2219 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2220 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2221 long ret = -EINVAL; 2222 2223 if (likely(ioctx)) { 2224 if (likely(min_nr <= nr && min_nr >= 0)) 2225 ret = read_events(ioctx, min_nr, nr, events, until); 2226 percpu_ref_put(&ioctx->users); 2227 } 2228 2229 return ret; 2230 } 2231 2232 /* io_getevents: 2233 * Attempts to read at least min_nr events and up to nr events from 2234 * the completion queue for the aio_context specified by ctx_id. If 2235 * it succeeds, the number of read events is returned. May fail with 2236 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2237 * out of range, if timeout is out of range. May fail with -EFAULT 2238 * if any of the memory specified is invalid. May return 0 or 2239 * < min_nr if the timeout specified by timeout has elapsed 2240 * before sufficient events are available, where timeout == NULL 2241 * specifies an infinite timeout. Note that the timeout pointed to by 2242 * timeout is relative. Will fail with -ENOSYS if not implemented. 2243 */ 2244 #ifdef CONFIG_64BIT 2245 2246 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2247 long, min_nr, 2248 long, nr, 2249 struct io_event __user *, events, 2250 struct __kernel_timespec __user *, timeout) 2251 { 2252 struct timespec64 ts; 2253 int ret; 2254 2255 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2256 return -EFAULT; 2257 2258 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2259 if (!ret && signal_pending(current)) 2260 ret = -EINTR; 2261 return ret; 2262 } 2263 2264 #endif 2265 2266 struct __aio_sigset { 2267 const sigset_t __user *sigmask; 2268 size_t sigsetsize; 2269 }; 2270 2271 SYSCALL_DEFINE6(io_pgetevents, 2272 aio_context_t, ctx_id, 2273 long, min_nr, 2274 long, nr, 2275 struct io_event __user *, events, 2276 struct __kernel_timespec __user *, timeout, 2277 const struct __aio_sigset __user *, usig) 2278 { 2279 struct __aio_sigset ksig = { NULL, }; 2280 struct timespec64 ts; 2281 bool interrupted; 2282 int ret; 2283 2284 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2285 return -EFAULT; 2286 2287 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2288 return -EFAULT; 2289 2290 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2291 if (ret) 2292 return ret; 2293 2294 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2295 2296 interrupted = signal_pending(current); 2297 restore_saved_sigmask_unless(interrupted); 2298 if (interrupted && !ret) 2299 ret = -ERESTARTNOHAND; 2300 2301 return ret; 2302 } 2303 2304 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2305 2306 SYSCALL_DEFINE6(io_pgetevents_time32, 2307 aio_context_t, ctx_id, 2308 long, min_nr, 2309 long, nr, 2310 struct io_event __user *, events, 2311 struct old_timespec32 __user *, timeout, 2312 const struct __aio_sigset __user *, usig) 2313 { 2314 struct __aio_sigset ksig = { NULL, }; 2315 struct timespec64 ts; 2316 bool interrupted; 2317 int ret; 2318 2319 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2320 return -EFAULT; 2321 2322 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2323 return -EFAULT; 2324 2325 2326 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2327 if (ret) 2328 return ret; 2329 2330 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2331 2332 interrupted = signal_pending(current); 2333 restore_saved_sigmask_unless(interrupted); 2334 if (interrupted && !ret) 2335 ret = -ERESTARTNOHAND; 2336 2337 return ret; 2338 } 2339 2340 #endif 2341 2342 #if defined(CONFIG_COMPAT_32BIT_TIME) 2343 2344 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2345 __s32, min_nr, 2346 __s32, nr, 2347 struct io_event __user *, events, 2348 struct old_timespec32 __user *, timeout) 2349 { 2350 struct timespec64 t; 2351 int ret; 2352 2353 if (timeout && get_old_timespec32(&t, timeout)) 2354 return -EFAULT; 2355 2356 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2357 if (!ret && signal_pending(current)) 2358 ret = -EINTR; 2359 return ret; 2360 } 2361 2362 #endif 2363 2364 #ifdef CONFIG_COMPAT 2365 2366 struct __compat_aio_sigset { 2367 compat_uptr_t sigmask; 2368 compat_size_t sigsetsize; 2369 }; 2370 2371 #if defined(CONFIG_COMPAT_32BIT_TIME) 2372 2373 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2374 compat_aio_context_t, ctx_id, 2375 compat_long_t, min_nr, 2376 compat_long_t, nr, 2377 struct io_event __user *, events, 2378 struct old_timespec32 __user *, timeout, 2379 const struct __compat_aio_sigset __user *, usig) 2380 { 2381 struct __compat_aio_sigset ksig = { 0, }; 2382 struct timespec64 t; 2383 bool interrupted; 2384 int ret; 2385 2386 if (timeout && get_old_timespec32(&t, timeout)) 2387 return -EFAULT; 2388 2389 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2390 return -EFAULT; 2391 2392 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2393 if (ret) 2394 return ret; 2395 2396 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2397 2398 interrupted = signal_pending(current); 2399 restore_saved_sigmask_unless(interrupted); 2400 if (interrupted && !ret) 2401 ret = -ERESTARTNOHAND; 2402 2403 return ret; 2404 } 2405 2406 #endif 2407 2408 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2409 compat_aio_context_t, ctx_id, 2410 compat_long_t, min_nr, 2411 compat_long_t, nr, 2412 struct io_event __user *, events, 2413 struct __kernel_timespec __user *, timeout, 2414 const struct __compat_aio_sigset __user *, usig) 2415 { 2416 struct __compat_aio_sigset ksig = { 0, }; 2417 struct timespec64 t; 2418 bool interrupted; 2419 int ret; 2420 2421 if (timeout && get_timespec64(&t, timeout)) 2422 return -EFAULT; 2423 2424 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2425 return -EFAULT; 2426 2427 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2428 if (ret) 2429 return ret; 2430 2431 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2432 2433 interrupted = signal_pending(current); 2434 restore_saved_sigmask_unless(interrupted); 2435 if (interrupted && !ret) 2436 ret = -ERESTARTNOHAND; 2437 2438 return ret; 2439 } 2440 #endif 2441