1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[] __counted_by(nr); 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct folio **ring_folios; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct folio *internal_folios[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 }; 243 244 static void __init aio_sysctl_init(void) 245 { 246 register_sysctl_init("fs", aio_sysctls); 247 } 248 #else 249 #define aio_sysctl_init() do { } while (0) 250 #endif 251 252 static struct kmem_cache *kiocb_cachep; 253 static struct kmem_cache *kioctx_cachep; 254 255 static struct vfsmount *aio_mnt; 256 257 static const struct file_operations aio_ring_fops; 258 static const struct address_space_operations aio_ctx_aops; 259 260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 261 { 262 struct file *file; 263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 264 if (IS_ERR(inode)) 265 return ERR_CAST(inode); 266 267 inode->i_mapping->a_ops = &aio_ctx_aops; 268 inode->i_mapping->i_private_data = ctx; 269 inode->i_size = PAGE_SIZE * nr_pages; 270 271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 272 O_RDWR, &aio_ring_fops); 273 if (IS_ERR(file)) 274 iput(inode); 275 return file; 276 } 277 278 static int aio_init_fs_context(struct fs_context *fc) 279 { 280 if (!init_pseudo(fc, AIO_RING_MAGIC)) 281 return -ENOMEM; 282 fc->s_iflags |= SB_I_NOEXEC; 283 return 0; 284 } 285 286 /* aio_setup 287 * Creates the slab caches used by the aio routines, panic on 288 * failure as this is done early during the boot sequence. 289 */ 290 static int __init aio_setup(void) 291 { 292 static struct file_system_type aio_fs = { 293 .name = "aio", 294 .init_fs_context = aio_init_fs_context, 295 .kill_sb = kill_anon_super, 296 }; 297 aio_mnt = kern_mount(&aio_fs); 298 if (IS_ERR(aio_mnt)) 299 panic("Failed to create aio fs mount."); 300 301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 aio_sysctl_init(); 304 return 0; 305 } 306 __initcall(aio_setup); 307 308 static void put_aio_ring_file(struct kioctx *ctx) 309 { 310 struct file *aio_ring_file = ctx->aio_ring_file; 311 struct address_space *i_mapping; 312 313 if (aio_ring_file) { 314 truncate_setsize(file_inode(aio_ring_file), 0); 315 316 /* Prevent further access to the kioctx from migratepages */ 317 i_mapping = aio_ring_file->f_mapping; 318 spin_lock(&i_mapping->i_private_lock); 319 i_mapping->i_private_data = NULL; 320 ctx->aio_ring_file = NULL; 321 spin_unlock(&i_mapping->i_private_lock); 322 323 fput(aio_ring_file); 324 } 325 } 326 327 static void aio_free_ring(struct kioctx *ctx) 328 { 329 int i; 330 331 /* Disconnect the kiotx from the ring file. This prevents future 332 * accesses to the kioctx from page migration. 333 */ 334 put_aio_ring_file(ctx); 335 336 for (i = 0; i < ctx->nr_pages; i++) { 337 struct folio *folio = ctx->ring_folios[i]; 338 339 if (!folio) 340 continue; 341 342 pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i, 343 folio_ref_count(folio)); 344 ctx->ring_folios[i] = NULL; 345 folio_put(folio); 346 } 347 348 if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) { 349 kfree(ctx->ring_folios); 350 ctx->ring_folios = NULL; 351 } 352 } 353 354 static int aio_ring_mremap(struct vm_area_struct *vma) 355 { 356 struct file *file = vma->vm_file; 357 struct mm_struct *mm = vma->vm_mm; 358 struct kioctx_table *table; 359 int i, res = -EINVAL; 360 361 spin_lock(&mm->ioctx_lock); 362 rcu_read_lock(); 363 table = rcu_dereference(mm->ioctx_table); 364 if (!table) 365 goto out_unlock; 366 367 for (i = 0; i < table->nr; i++) { 368 struct kioctx *ctx; 369 370 ctx = rcu_dereference(table->table[i]); 371 if (ctx && ctx->aio_ring_file == file) { 372 if (!atomic_read(&ctx->dead)) { 373 ctx->user_id = ctx->mmap_base = vma->vm_start; 374 res = 0; 375 } 376 break; 377 } 378 } 379 380 out_unlock: 381 rcu_read_unlock(); 382 spin_unlock(&mm->ioctx_lock); 383 return res; 384 } 385 386 static const struct vm_operations_struct aio_ring_vm_ops = { 387 .mremap = aio_ring_mremap, 388 #if IS_ENABLED(CONFIG_MMU) 389 .fault = filemap_fault, 390 .map_pages = filemap_map_pages, 391 .page_mkwrite = filemap_page_mkwrite, 392 #endif 393 }; 394 395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 396 { 397 vm_flags_set(vma, VM_DONTEXPAND); 398 vma->vm_ops = &aio_ring_vm_ops; 399 return 0; 400 } 401 402 static const struct file_operations aio_ring_fops = { 403 .mmap = aio_ring_mmap, 404 }; 405 406 #if IS_ENABLED(CONFIG_MIGRATION) 407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, 408 struct folio *src, enum migrate_mode mode) 409 { 410 struct kioctx *ctx; 411 unsigned long flags; 412 pgoff_t idx; 413 int rc = 0; 414 415 /* mapping->i_private_lock here protects against the kioctx teardown. */ 416 spin_lock(&mapping->i_private_lock); 417 ctx = mapping->i_private_data; 418 if (!ctx) { 419 rc = -EINVAL; 420 goto out; 421 } 422 423 /* The ring_lock mutex. The prevents aio_read_events() from writing 424 * to the ring's head, and prevents page migration from mucking in 425 * a partially initialized kiotx. 426 */ 427 if (!mutex_trylock(&ctx->ring_lock)) { 428 rc = -EAGAIN; 429 goto out; 430 } 431 432 idx = src->index; 433 if (idx < (pgoff_t)ctx->nr_pages) { 434 /* Make sure the old folio hasn't already been changed */ 435 if (ctx->ring_folios[idx] != src) 436 rc = -EAGAIN; 437 } else 438 rc = -EINVAL; 439 440 if (rc != 0) 441 goto out_unlock; 442 443 /* Writeback must be complete */ 444 BUG_ON(folio_test_writeback(src)); 445 folio_get(dst); 446 447 rc = folio_migrate_mapping(mapping, dst, src, 1); 448 if (rc != MIGRATEPAGE_SUCCESS) { 449 folio_put(dst); 450 goto out_unlock; 451 } 452 453 /* Take completion_lock to prevent other writes to the ring buffer 454 * while the old folio is copied to the new. This prevents new 455 * events from being lost. 456 */ 457 spin_lock_irqsave(&ctx->completion_lock, flags); 458 folio_migrate_copy(dst, src); 459 BUG_ON(ctx->ring_folios[idx] != src); 460 ctx->ring_folios[idx] = dst; 461 spin_unlock_irqrestore(&ctx->completion_lock, flags); 462 463 /* The old folio is no longer accessible. */ 464 folio_put(src); 465 466 out_unlock: 467 mutex_unlock(&ctx->ring_lock); 468 out: 469 spin_unlock(&mapping->i_private_lock); 470 return rc; 471 } 472 #else 473 #define aio_migrate_folio NULL 474 #endif 475 476 static const struct address_space_operations aio_ctx_aops = { 477 .dirty_folio = noop_dirty_folio, 478 .migrate_folio = aio_migrate_folio, 479 }; 480 481 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 482 { 483 struct aio_ring *ring; 484 struct mm_struct *mm = current->mm; 485 unsigned long size, unused; 486 int nr_pages; 487 int i; 488 struct file *file; 489 490 /* Compensate for the ring buffer's head/tail overlap entry */ 491 nr_events += 2; /* 1 is required, 2 for good luck */ 492 493 size = sizeof(struct aio_ring); 494 size += sizeof(struct io_event) * nr_events; 495 496 nr_pages = PFN_UP(size); 497 if (nr_pages < 0) 498 return -EINVAL; 499 500 file = aio_private_file(ctx, nr_pages); 501 if (IS_ERR(file)) { 502 ctx->aio_ring_file = NULL; 503 return -ENOMEM; 504 } 505 506 ctx->aio_ring_file = file; 507 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 508 / sizeof(struct io_event); 509 510 ctx->ring_folios = ctx->internal_folios; 511 if (nr_pages > AIO_RING_PAGES) { 512 ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *), 513 GFP_KERNEL); 514 if (!ctx->ring_folios) { 515 put_aio_ring_file(ctx); 516 return -ENOMEM; 517 } 518 } 519 520 for (i = 0; i < nr_pages; i++) { 521 struct folio *folio; 522 523 folio = __filemap_get_folio(file->f_mapping, i, 524 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, 525 GFP_USER | __GFP_ZERO); 526 if (IS_ERR(folio)) 527 break; 528 529 pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i, 530 folio_ref_count(folio)); 531 folio_end_read(folio, true); 532 533 ctx->ring_folios[i] = folio; 534 } 535 ctx->nr_pages = i; 536 537 if (unlikely(i != nr_pages)) { 538 aio_free_ring(ctx); 539 return -ENOMEM; 540 } 541 542 ctx->mmap_size = nr_pages * PAGE_SIZE; 543 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 544 545 if (mmap_write_lock_killable(mm)) { 546 ctx->mmap_size = 0; 547 aio_free_ring(ctx); 548 return -EINTR; 549 } 550 551 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 552 PROT_READ | PROT_WRITE, 553 MAP_SHARED, 0, 0, &unused, NULL); 554 mmap_write_unlock(mm); 555 if (IS_ERR((void *)ctx->mmap_base)) { 556 ctx->mmap_size = 0; 557 aio_free_ring(ctx); 558 return -ENOMEM; 559 } 560 561 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 562 563 ctx->user_id = ctx->mmap_base; 564 ctx->nr_events = nr_events; /* trusted copy */ 565 566 ring = folio_address(ctx->ring_folios[0]); 567 ring->nr = nr_events; /* user copy */ 568 ring->id = ~0U; 569 ring->head = ring->tail = 0; 570 ring->magic = AIO_RING_MAGIC; 571 ring->compat_features = AIO_RING_COMPAT_FEATURES; 572 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 573 ring->header_length = sizeof(struct aio_ring); 574 flush_dcache_folio(ctx->ring_folios[0]); 575 576 return 0; 577 } 578 579 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 580 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 581 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 582 583 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 584 { 585 struct aio_kiocb *req; 586 struct kioctx *ctx; 587 unsigned long flags; 588 589 /* 590 * kiocb didn't come from aio or is neither a read nor a write, hence 591 * ignore it. 592 */ 593 if (!(iocb->ki_flags & IOCB_AIO_RW)) 594 return; 595 596 req = container_of(iocb, struct aio_kiocb, rw); 597 598 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 599 return; 600 601 ctx = req->ki_ctx; 602 603 spin_lock_irqsave(&ctx->ctx_lock, flags); 604 list_add_tail(&req->ki_list, &ctx->active_reqs); 605 req->ki_cancel = cancel; 606 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 607 } 608 EXPORT_SYMBOL(kiocb_set_cancel_fn); 609 610 /* 611 * free_ioctx() should be RCU delayed to synchronize against the RCU 612 * protected lookup_ioctx() and also needs process context to call 613 * aio_free_ring(). Use rcu_work. 614 */ 615 static void free_ioctx(struct work_struct *work) 616 { 617 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 618 free_rwork); 619 pr_debug("freeing %p\n", ctx); 620 621 aio_free_ring(ctx); 622 free_percpu(ctx->cpu); 623 percpu_ref_exit(&ctx->reqs); 624 percpu_ref_exit(&ctx->users); 625 kmem_cache_free(kioctx_cachep, ctx); 626 } 627 628 static void free_ioctx_reqs(struct percpu_ref *ref) 629 { 630 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 631 632 /* At this point we know that there are no any in-flight requests */ 633 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 634 complete(&ctx->rq_wait->comp); 635 636 /* Synchronize against RCU protected table->table[] dereferences */ 637 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 638 queue_rcu_work(system_wq, &ctx->free_rwork); 639 } 640 641 /* 642 * When this function runs, the kioctx has been removed from the "hash table" 643 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 644 * now it's safe to cancel any that need to be. 645 */ 646 static void free_ioctx_users(struct percpu_ref *ref) 647 { 648 struct kioctx *ctx = container_of(ref, struct kioctx, users); 649 struct aio_kiocb *req; 650 651 spin_lock_irq(&ctx->ctx_lock); 652 653 while (!list_empty(&ctx->active_reqs)) { 654 req = list_first_entry(&ctx->active_reqs, 655 struct aio_kiocb, ki_list); 656 req->ki_cancel(&req->rw); 657 list_del_init(&req->ki_list); 658 } 659 660 spin_unlock_irq(&ctx->ctx_lock); 661 662 percpu_ref_kill(&ctx->reqs); 663 percpu_ref_put(&ctx->reqs); 664 } 665 666 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 667 { 668 unsigned i, new_nr; 669 struct kioctx_table *table, *old; 670 struct aio_ring *ring; 671 672 spin_lock(&mm->ioctx_lock); 673 table = rcu_dereference_raw(mm->ioctx_table); 674 675 while (1) { 676 if (table) 677 for (i = 0; i < table->nr; i++) 678 if (!rcu_access_pointer(table->table[i])) { 679 ctx->id = i; 680 rcu_assign_pointer(table->table[i], ctx); 681 spin_unlock(&mm->ioctx_lock); 682 683 /* While kioctx setup is in progress, 684 * we are protected from page migration 685 * changes ring_folios by ->ring_lock. 686 */ 687 ring = folio_address(ctx->ring_folios[0]); 688 ring->id = ctx->id; 689 return 0; 690 } 691 692 new_nr = (table ? table->nr : 1) * 4; 693 spin_unlock(&mm->ioctx_lock); 694 695 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 696 if (!table) 697 return -ENOMEM; 698 699 table->nr = new_nr; 700 701 spin_lock(&mm->ioctx_lock); 702 old = rcu_dereference_raw(mm->ioctx_table); 703 704 if (!old) { 705 rcu_assign_pointer(mm->ioctx_table, table); 706 } else if (table->nr > old->nr) { 707 memcpy(table->table, old->table, 708 old->nr * sizeof(struct kioctx *)); 709 710 rcu_assign_pointer(mm->ioctx_table, table); 711 kfree_rcu(old, rcu); 712 } else { 713 kfree(table); 714 table = old; 715 } 716 } 717 } 718 719 static void aio_nr_sub(unsigned nr) 720 { 721 spin_lock(&aio_nr_lock); 722 if (WARN_ON(aio_nr - nr > aio_nr)) 723 aio_nr = 0; 724 else 725 aio_nr -= nr; 726 spin_unlock(&aio_nr_lock); 727 } 728 729 /* ioctx_alloc 730 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 731 */ 732 static struct kioctx *ioctx_alloc(unsigned nr_events) 733 { 734 struct mm_struct *mm = current->mm; 735 struct kioctx *ctx; 736 int err = -ENOMEM; 737 738 /* 739 * Store the original nr_events -- what userspace passed to io_setup(), 740 * for counting against the global limit -- before it changes. 741 */ 742 unsigned int max_reqs = nr_events; 743 744 /* 745 * We keep track of the number of available ringbuffer slots, to prevent 746 * overflow (reqs_available), and we also use percpu counters for this. 747 * 748 * So since up to half the slots might be on other cpu's percpu counters 749 * and unavailable, double nr_events so userspace sees what they 750 * expected: additionally, we move req_batch slots to/from percpu 751 * counters at a time, so make sure that isn't 0: 752 */ 753 nr_events = max(nr_events, num_possible_cpus() * 4); 754 nr_events *= 2; 755 756 /* Prevent overflows */ 757 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 758 pr_debug("ENOMEM: nr_events too high\n"); 759 return ERR_PTR(-EINVAL); 760 } 761 762 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 763 return ERR_PTR(-EAGAIN); 764 765 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 766 if (!ctx) 767 return ERR_PTR(-ENOMEM); 768 769 ctx->max_reqs = max_reqs; 770 771 spin_lock_init(&ctx->ctx_lock); 772 spin_lock_init(&ctx->completion_lock); 773 mutex_init(&ctx->ring_lock); 774 /* Protect against page migration throughout kiotx setup by keeping 775 * the ring_lock mutex held until setup is complete. */ 776 mutex_lock(&ctx->ring_lock); 777 init_waitqueue_head(&ctx->wait); 778 779 INIT_LIST_HEAD(&ctx->active_reqs); 780 781 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 782 goto err; 783 784 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 785 goto err; 786 787 ctx->cpu = alloc_percpu(struct kioctx_cpu); 788 if (!ctx->cpu) 789 goto err; 790 791 err = aio_setup_ring(ctx, nr_events); 792 if (err < 0) 793 goto err; 794 795 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 796 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 797 if (ctx->req_batch < 1) 798 ctx->req_batch = 1; 799 800 /* limit the number of system wide aios */ 801 spin_lock(&aio_nr_lock); 802 if (aio_nr + ctx->max_reqs > aio_max_nr || 803 aio_nr + ctx->max_reqs < aio_nr) { 804 spin_unlock(&aio_nr_lock); 805 err = -EAGAIN; 806 goto err_ctx; 807 } 808 aio_nr += ctx->max_reqs; 809 spin_unlock(&aio_nr_lock); 810 811 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 812 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 813 814 err = ioctx_add_table(ctx, mm); 815 if (err) 816 goto err_cleanup; 817 818 /* Release the ring_lock mutex now that all setup is complete. */ 819 mutex_unlock(&ctx->ring_lock); 820 821 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 822 ctx, ctx->user_id, mm, ctx->nr_events); 823 return ctx; 824 825 err_cleanup: 826 aio_nr_sub(ctx->max_reqs); 827 err_ctx: 828 atomic_set(&ctx->dead, 1); 829 if (ctx->mmap_size) 830 vm_munmap(ctx->mmap_base, ctx->mmap_size); 831 aio_free_ring(ctx); 832 err: 833 mutex_unlock(&ctx->ring_lock); 834 free_percpu(ctx->cpu); 835 percpu_ref_exit(&ctx->reqs); 836 percpu_ref_exit(&ctx->users); 837 kmem_cache_free(kioctx_cachep, ctx); 838 pr_debug("error allocating ioctx %d\n", err); 839 return ERR_PTR(err); 840 } 841 842 /* kill_ioctx 843 * Cancels all outstanding aio requests on an aio context. Used 844 * when the processes owning a context have all exited to encourage 845 * the rapid destruction of the kioctx. 846 */ 847 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 848 struct ctx_rq_wait *wait) 849 { 850 struct kioctx_table *table; 851 852 spin_lock(&mm->ioctx_lock); 853 if (atomic_xchg(&ctx->dead, 1)) { 854 spin_unlock(&mm->ioctx_lock); 855 return -EINVAL; 856 } 857 858 table = rcu_dereference_raw(mm->ioctx_table); 859 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 860 RCU_INIT_POINTER(table->table[ctx->id], NULL); 861 spin_unlock(&mm->ioctx_lock); 862 863 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 864 wake_up_all(&ctx->wait); 865 866 /* 867 * It'd be more correct to do this in free_ioctx(), after all 868 * the outstanding kiocbs have finished - but by then io_destroy 869 * has already returned, so io_setup() could potentially return 870 * -EAGAIN with no ioctxs actually in use (as far as userspace 871 * could tell). 872 */ 873 aio_nr_sub(ctx->max_reqs); 874 875 if (ctx->mmap_size) 876 vm_munmap(ctx->mmap_base, ctx->mmap_size); 877 878 ctx->rq_wait = wait; 879 percpu_ref_kill(&ctx->users); 880 return 0; 881 } 882 883 /* 884 * exit_aio: called when the last user of mm goes away. At this point, there is 885 * no way for any new requests to be submited or any of the io_* syscalls to be 886 * called on the context. 887 * 888 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 889 * them. 890 */ 891 void exit_aio(struct mm_struct *mm) 892 { 893 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 894 struct ctx_rq_wait wait; 895 int i, skipped; 896 897 if (!table) 898 return; 899 900 atomic_set(&wait.count, table->nr); 901 init_completion(&wait.comp); 902 903 skipped = 0; 904 for (i = 0; i < table->nr; ++i) { 905 struct kioctx *ctx = 906 rcu_dereference_protected(table->table[i], true); 907 908 if (!ctx) { 909 skipped++; 910 continue; 911 } 912 913 /* 914 * We don't need to bother with munmap() here - exit_mmap(mm) 915 * is coming and it'll unmap everything. And we simply can't, 916 * this is not necessarily our ->mm. 917 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 918 * that it needs to unmap the area, just set it to 0. 919 */ 920 ctx->mmap_size = 0; 921 kill_ioctx(mm, ctx, &wait); 922 } 923 924 if (!atomic_sub_and_test(skipped, &wait.count)) { 925 /* Wait until all IO for the context are done. */ 926 wait_for_completion(&wait.comp); 927 } 928 929 RCU_INIT_POINTER(mm->ioctx_table, NULL); 930 kfree(table); 931 } 932 933 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 934 { 935 struct kioctx_cpu *kcpu; 936 unsigned long flags; 937 938 local_irq_save(flags); 939 kcpu = this_cpu_ptr(ctx->cpu); 940 kcpu->reqs_available += nr; 941 942 while (kcpu->reqs_available >= ctx->req_batch * 2) { 943 kcpu->reqs_available -= ctx->req_batch; 944 atomic_add(ctx->req_batch, &ctx->reqs_available); 945 } 946 947 local_irq_restore(flags); 948 } 949 950 static bool __get_reqs_available(struct kioctx *ctx) 951 { 952 struct kioctx_cpu *kcpu; 953 bool ret = false; 954 unsigned long flags; 955 956 local_irq_save(flags); 957 kcpu = this_cpu_ptr(ctx->cpu); 958 if (!kcpu->reqs_available) { 959 int avail = atomic_read(&ctx->reqs_available); 960 961 do { 962 if (avail < ctx->req_batch) 963 goto out; 964 } while (!atomic_try_cmpxchg(&ctx->reqs_available, 965 &avail, avail - ctx->req_batch)); 966 967 kcpu->reqs_available += ctx->req_batch; 968 } 969 970 ret = true; 971 kcpu->reqs_available--; 972 out: 973 local_irq_restore(flags); 974 return ret; 975 } 976 977 /* refill_reqs_available 978 * Updates the reqs_available reference counts used for tracking the 979 * number of free slots in the completion ring. This can be called 980 * from aio_complete() (to optimistically update reqs_available) or 981 * from aio_get_req() (the we're out of events case). It must be 982 * called holding ctx->completion_lock. 983 */ 984 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 985 unsigned tail) 986 { 987 unsigned events_in_ring, completed; 988 989 /* Clamp head since userland can write to it. */ 990 head %= ctx->nr_events; 991 if (head <= tail) 992 events_in_ring = tail - head; 993 else 994 events_in_ring = ctx->nr_events - (head - tail); 995 996 completed = ctx->completed_events; 997 if (events_in_ring < completed) 998 completed -= events_in_ring; 999 else 1000 completed = 0; 1001 1002 if (!completed) 1003 return; 1004 1005 ctx->completed_events -= completed; 1006 put_reqs_available(ctx, completed); 1007 } 1008 1009 /* user_refill_reqs_available 1010 * Called to refill reqs_available when aio_get_req() encounters an 1011 * out of space in the completion ring. 1012 */ 1013 static void user_refill_reqs_available(struct kioctx *ctx) 1014 { 1015 spin_lock_irq(&ctx->completion_lock); 1016 if (ctx->completed_events) { 1017 struct aio_ring *ring; 1018 unsigned head; 1019 1020 /* Access of ring->head may race with aio_read_events_ring() 1021 * here, but that's okay since whether we read the old version 1022 * or the new version, and either will be valid. The important 1023 * part is that head cannot pass tail since we prevent 1024 * aio_complete() from updating tail by holding 1025 * ctx->completion_lock. Even if head is invalid, the check 1026 * against ctx->completed_events below will make sure we do the 1027 * safe/right thing. 1028 */ 1029 ring = folio_address(ctx->ring_folios[0]); 1030 head = ring->head; 1031 1032 refill_reqs_available(ctx, head, ctx->tail); 1033 } 1034 1035 spin_unlock_irq(&ctx->completion_lock); 1036 } 1037 1038 static bool get_reqs_available(struct kioctx *ctx) 1039 { 1040 if (__get_reqs_available(ctx)) 1041 return true; 1042 user_refill_reqs_available(ctx); 1043 return __get_reqs_available(ctx); 1044 } 1045 1046 /* aio_get_req 1047 * Allocate a slot for an aio request. 1048 * Returns NULL if no requests are free. 1049 * 1050 * The refcount is initialized to 2 - one for the async op completion, 1051 * one for the synchronous code that does this. 1052 */ 1053 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1054 { 1055 struct aio_kiocb *req; 1056 1057 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1058 if (unlikely(!req)) 1059 return NULL; 1060 1061 if (unlikely(!get_reqs_available(ctx))) { 1062 kmem_cache_free(kiocb_cachep, req); 1063 return NULL; 1064 } 1065 1066 percpu_ref_get(&ctx->reqs); 1067 req->ki_ctx = ctx; 1068 INIT_LIST_HEAD(&req->ki_list); 1069 refcount_set(&req->ki_refcnt, 2); 1070 req->ki_eventfd = NULL; 1071 return req; 1072 } 1073 1074 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1075 { 1076 struct aio_ring __user *ring = (void __user *)ctx_id; 1077 struct mm_struct *mm = current->mm; 1078 struct kioctx *ctx, *ret = NULL; 1079 struct kioctx_table *table; 1080 unsigned id; 1081 1082 if (get_user(id, &ring->id)) 1083 return NULL; 1084 1085 rcu_read_lock(); 1086 table = rcu_dereference(mm->ioctx_table); 1087 1088 if (!table || id >= table->nr) 1089 goto out; 1090 1091 id = array_index_nospec(id, table->nr); 1092 ctx = rcu_dereference(table->table[id]); 1093 if (ctx && ctx->user_id == ctx_id) { 1094 if (percpu_ref_tryget_live(&ctx->users)) 1095 ret = ctx; 1096 } 1097 out: 1098 rcu_read_unlock(); 1099 return ret; 1100 } 1101 1102 static inline void iocb_destroy(struct aio_kiocb *iocb) 1103 { 1104 if (iocb->ki_eventfd) 1105 eventfd_ctx_put(iocb->ki_eventfd); 1106 if (iocb->ki_filp) 1107 fput(iocb->ki_filp); 1108 percpu_ref_put(&iocb->ki_ctx->reqs); 1109 kmem_cache_free(kiocb_cachep, iocb); 1110 } 1111 1112 struct aio_waiter { 1113 struct wait_queue_entry w; 1114 size_t min_nr; 1115 }; 1116 1117 /* aio_complete 1118 * Called when the io request on the given iocb is complete. 1119 */ 1120 static void aio_complete(struct aio_kiocb *iocb) 1121 { 1122 struct kioctx *ctx = iocb->ki_ctx; 1123 struct aio_ring *ring; 1124 struct io_event *ev_page, *event; 1125 unsigned tail, pos, head, avail; 1126 unsigned long flags; 1127 1128 /* 1129 * Add a completion event to the ring buffer. Must be done holding 1130 * ctx->completion_lock to prevent other code from messing with the tail 1131 * pointer since we might be called from irq context. 1132 */ 1133 spin_lock_irqsave(&ctx->completion_lock, flags); 1134 1135 tail = ctx->tail; 1136 pos = tail + AIO_EVENTS_OFFSET; 1137 1138 if (++tail >= ctx->nr_events) 1139 tail = 0; 1140 1141 ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]); 1142 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1143 1144 *event = iocb->ki_res; 1145 1146 flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]); 1147 1148 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1149 (void __user *)(unsigned long)iocb->ki_res.obj, 1150 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1151 1152 /* after flagging the request as done, we 1153 * must never even look at it again 1154 */ 1155 smp_wmb(); /* make event visible before updating tail */ 1156 1157 ctx->tail = tail; 1158 1159 ring = folio_address(ctx->ring_folios[0]); 1160 head = ring->head; 1161 ring->tail = tail; 1162 flush_dcache_folio(ctx->ring_folios[0]); 1163 1164 ctx->completed_events++; 1165 if (ctx->completed_events > 1) 1166 refill_reqs_available(ctx, head, tail); 1167 1168 avail = tail > head 1169 ? tail - head 1170 : tail + ctx->nr_events - head; 1171 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1172 1173 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1174 1175 /* 1176 * Check if the user asked us to deliver the result through an 1177 * eventfd. The eventfd_signal() function is safe to be called 1178 * from IRQ context. 1179 */ 1180 if (iocb->ki_eventfd) 1181 eventfd_signal(iocb->ki_eventfd); 1182 1183 /* 1184 * We have to order our ring_info tail store above and test 1185 * of the wait list below outside the wait lock. This is 1186 * like in wake_up_bit() where clearing a bit has to be 1187 * ordered with the unlocked test. 1188 */ 1189 smp_mb(); 1190 1191 if (waitqueue_active(&ctx->wait)) { 1192 struct aio_waiter *curr, *next; 1193 unsigned long flags; 1194 1195 spin_lock_irqsave(&ctx->wait.lock, flags); 1196 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry) 1197 if (avail >= curr->min_nr) { 1198 wake_up_process(curr->w.private); 1199 list_del_init_careful(&curr->w.entry); 1200 } 1201 spin_unlock_irqrestore(&ctx->wait.lock, flags); 1202 } 1203 } 1204 1205 static inline void iocb_put(struct aio_kiocb *iocb) 1206 { 1207 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1208 aio_complete(iocb); 1209 iocb_destroy(iocb); 1210 } 1211 } 1212 1213 /* aio_read_events_ring 1214 * Pull an event off of the ioctx's event ring. Returns the number of 1215 * events fetched 1216 */ 1217 static long aio_read_events_ring(struct kioctx *ctx, 1218 struct io_event __user *event, long nr) 1219 { 1220 struct aio_ring *ring; 1221 unsigned head, tail, pos; 1222 long ret = 0; 1223 int copy_ret; 1224 1225 /* 1226 * The mutex can block and wake us up and that will cause 1227 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1228 * and repeat. This should be rare enough that it doesn't cause 1229 * peformance issues. See the comment in read_events() for more detail. 1230 */ 1231 sched_annotate_sleep(); 1232 mutex_lock(&ctx->ring_lock); 1233 1234 /* Access to ->ring_folios here is protected by ctx->ring_lock. */ 1235 ring = folio_address(ctx->ring_folios[0]); 1236 head = ring->head; 1237 tail = ring->tail; 1238 1239 /* 1240 * Ensure that once we've read the current tail pointer, that 1241 * we also see the events that were stored up to the tail. 1242 */ 1243 smp_rmb(); 1244 1245 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1246 1247 if (head == tail) 1248 goto out; 1249 1250 head %= ctx->nr_events; 1251 tail %= ctx->nr_events; 1252 1253 while (ret < nr) { 1254 long avail; 1255 struct io_event *ev; 1256 struct folio *folio; 1257 1258 avail = (head <= tail ? tail : ctx->nr_events) - head; 1259 if (head == tail) 1260 break; 1261 1262 pos = head + AIO_EVENTS_OFFSET; 1263 folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]; 1264 pos %= AIO_EVENTS_PER_PAGE; 1265 1266 avail = min(avail, nr - ret); 1267 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1268 1269 ev = folio_address(folio); 1270 copy_ret = copy_to_user(event + ret, ev + pos, 1271 sizeof(*ev) * avail); 1272 1273 if (unlikely(copy_ret)) { 1274 ret = -EFAULT; 1275 goto out; 1276 } 1277 1278 ret += avail; 1279 head += avail; 1280 head %= ctx->nr_events; 1281 } 1282 1283 ring = folio_address(ctx->ring_folios[0]); 1284 ring->head = head; 1285 flush_dcache_folio(ctx->ring_folios[0]); 1286 1287 pr_debug("%li h%u t%u\n", ret, head, tail); 1288 out: 1289 mutex_unlock(&ctx->ring_lock); 1290 1291 return ret; 1292 } 1293 1294 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1295 struct io_event __user *event, long *i) 1296 { 1297 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1298 1299 if (ret > 0) 1300 *i += ret; 1301 1302 if (unlikely(atomic_read(&ctx->dead))) 1303 ret = -EINVAL; 1304 1305 if (!*i) 1306 *i = ret; 1307 1308 return ret < 0 || *i >= min_nr; 1309 } 1310 1311 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1312 struct io_event __user *event, 1313 ktime_t until) 1314 { 1315 struct hrtimer_sleeper t; 1316 struct aio_waiter w; 1317 long ret = 0, ret2 = 0; 1318 1319 /* 1320 * Note that aio_read_events() is being called as the conditional - i.e. 1321 * we're calling it after prepare_to_wait() has set task state to 1322 * TASK_INTERRUPTIBLE. 1323 * 1324 * But aio_read_events() can block, and if it blocks it's going to flip 1325 * the task state back to TASK_RUNNING. 1326 * 1327 * This should be ok, provided it doesn't flip the state back to 1328 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1329 * will only happen if the mutex_lock() call blocks, and we then find 1330 * the ringbuffer empty. So in practice we should be ok, but it's 1331 * something to be aware of when touching this code. 1332 */ 1333 aio_read_events(ctx, min_nr, nr, event, &ret); 1334 if (until == 0 || ret < 0 || ret >= min_nr) 1335 return ret; 1336 1337 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1338 if (until != KTIME_MAX) { 1339 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns); 1340 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL); 1341 } 1342 1343 init_wait(&w.w); 1344 1345 while (1) { 1346 unsigned long nr_got = ret; 1347 1348 w.min_nr = min_nr - ret; 1349 1350 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE); 1351 if (!ret2 && !t.task) 1352 ret2 = -ETIME; 1353 1354 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2) 1355 break; 1356 1357 if (nr_got == ret) 1358 schedule(); 1359 } 1360 1361 finish_wait(&ctx->wait, &w.w); 1362 hrtimer_cancel(&t.timer); 1363 destroy_hrtimer_on_stack(&t.timer); 1364 1365 return ret; 1366 } 1367 1368 /* sys_io_setup: 1369 * Create an aio_context capable of receiving at least nr_events. 1370 * ctxp must not point to an aio_context that already exists, and 1371 * must be initialized to 0 prior to the call. On successful 1372 * creation of the aio_context, *ctxp is filled in with the resulting 1373 * handle. May fail with -EINVAL if *ctxp is not initialized, 1374 * if the specified nr_events exceeds internal limits. May fail 1375 * with -EAGAIN if the specified nr_events exceeds the user's limit 1376 * of available events. May fail with -ENOMEM if insufficient kernel 1377 * resources are available. May fail with -EFAULT if an invalid 1378 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1379 * implemented. 1380 */ 1381 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1382 { 1383 struct kioctx *ioctx = NULL; 1384 unsigned long ctx; 1385 long ret; 1386 1387 ret = get_user(ctx, ctxp); 1388 if (unlikely(ret)) 1389 goto out; 1390 1391 ret = -EINVAL; 1392 if (unlikely(ctx || nr_events == 0)) { 1393 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1394 ctx, nr_events); 1395 goto out; 1396 } 1397 1398 ioctx = ioctx_alloc(nr_events); 1399 ret = PTR_ERR(ioctx); 1400 if (!IS_ERR(ioctx)) { 1401 ret = put_user(ioctx->user_id, ctxp); 1402 if (ret) 1403 kill_ioctx(current->mm, ioctx, NULL); 1404 percpu_ref_put(&ioctx->users); 1405 } 1406 1407 out: 1408 return ret; 1409 } 1410 1411 #ifdef CONFIG_COMPAT 1412 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1413 { 1414 struct kioctx *ioctx = NULL; 1415 unsigned long ctx; 1416 long ret; 1417 1418 ret = get_user(ctx, ctx32p); 1419 if (unlikely(ret)) 1420 goto out; 1421 1422 ret = -EINVAL; 1423 if (unlikely(ctx || nr_events == 0)) { 1424 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1425 ctx, nr_events); 1426 goto out; 1427 } 1428 1429 ioctx = ioctx_alloc(nr_events); 1430 ret = PTR_ERR(ioctx); 1431 if (!IS_ERR(ioctx)) { 1432 /* truncating is ok because it's a user address */ 1433 ret = put_user((u32)ioctx->user_id, ctx32p); 1434 if (ret) 1435 kill_ioctx(current->mm, ioctx, NULL); 1436 percpu_ref_put(&ioctx->users); 1437 } 1438 1439 out: 1440 return ret; 1441 } 1442 #endif 1443 1444 /* sys_io_destroy: 1445 * Destroy the aio_context specified. May cancel any outstanding 1446 * AIOs and block on completion. Will fail with -ENOSYS if not 1447 * implemented. May fail with -EINVAL if the context pointed to 1448 * is invalid. 1449 */ 1450 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1451 { 1452 struct kioctx *ioctx = lookup_ioctx(ctx); 1453 if (likely(NULL != ioctx)) { 1454 struct ctx_rq_wait wait; 1455 int ret; 1456 1457 init_completion(&wait.comp); 1458 atomic_set(&wait.count, 1); 1459 1460 /* Pass requests_done to kill_ioctx() where it can be set 1461 * in a thread-safe way. If we try to set it here then we have 1462 * a race condition if two io_destroy() called simultaneously. 1463 */ 1464 ret = kill_ioctx(current->mm, ioctx, &wait); 1465 percpu_ref_put(&ioctx->users); 1466 1467 /* Wait until all IO for the context are done. Otherwise kernel 1468 * keep using user-space buffers even if user thinks the context 1469 * is destroyed. 1470 */ 1471 if (!ret) 1472 wait_for_completion(&wait.comp); 1473 1474 return ret; 1475 } 1476 pr_debug("EINVAL: invalid context id\n"); 1477 return -EINVAL; 1478 } 1479 1480 static void aio_remove_iocb(struct aio_kiocb *iocb) 1481 { 1482 struct kioctx *ctx = iocb->ki_ctx; 1483 unsigned long flags; 1484 1485 spin_lock_irqsave(&ctx->ctx_lock, flags); 1486 list_del(&iocb->ki_list); 1487 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1488 } 1489 1490 static void aio_complete_rw(struct kiocb *kiocb, long res) 1491 { 1492 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1493 1494 if (!list_empty_careful(&iocb->ki_list)) 1495 aio_remove_iocb(iocb); 1496 1497 if (kiocb->ki_flags & IOCB_WRITE) { 1498 struct inode *inode = file_inode(kiocb->ki_filp); 1499 1500 if (S_ISREG(inode->i_mode)) 1501 kiocb_end_write(kiocb); 1502 } 1503 1504 iocb->ki_res.res = res; 1505 iocb->ki_res.res2 = 0; 1506 iocb_put(iocb); 1507 } 1508 1509 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1510 { 1511 int ret; 1512 1513 req->ki_complete = aio_complete_rw; 1514 req->private = NULL; 1515 req->ki_pos = iocb->aio_offset; 1516 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW; 1517 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1518 req->ki_flags |= IOCB_EVENTFD; 1519 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1520 /* 1521 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1522 * aio_reqprio is interpreted as an I/O scheduling 1523 * class and priority. 1524 */ 1525 ret = ioprio_check_cap(iocb->aio_reqprio); 1526 if (ret) { 1527 pr_debug("aio ioprio check cap error: %d\n", ret); 1528 return ret; 1529 } 1530 1531 req->ki_ioprio = iocb->aio_reqprio; 1532 } else 1533 req->ki_ioprio = get_current_ioprio(); 1534 1535 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1536 if (unlikely(ret)) 1537 return ret; 1538 1539 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1540 return 0; 1541 } 1542 1543 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1544 struct iovec **iovec, bool vectored, bool compat, 1545 struct iov_iter *iter) 1546 { 1547 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1548 size_t len = iocb->aio_nbytes; 1549 1550 if (!vectored) { 1551 ssize_t ret = import_ubuf(rw, buf, len, iter); 1552 *iovec = NULL; 1553 return ret; 1554 } 1555 1556 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1557 } 1558 1559 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1560 { 1561 switch (ret) { 1562 case -EIOCBQUEUED: 1563 break; 1564 case -ERESTARTSYS: 1565 case -ERESTARTNOINTR: 1566 case -ERESTARTNOHAND: 1567 case -ERESTART_RESTARTBLOCK: 1568 /* 1569 * There's no easy way to restart the syscall since other AIO's 1570 * may be already running. Just fail this IO with EINTR. 1571 */ 1572 ret = -EINTR; 1573 fallthrough; 1574 default: 1575 req->ki_complete(req, ret); 1576 } 1577 } 1578 1579 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1580 bool vectored, bool compat) 1581 { 1582 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1583 struct iov_iter iter; 1584 struct file *file; 1585 int ret; 1586 1587 ret = aio_prep_rw(req, iocb); 1588 if (ret) 1589 return ret; 1590 file = req->ki_filp; 1591 if (unlikely(!(file->f_mode & FMODE_READ))) 1592 return -EBADF; 1593 if (unlikely(!file->f_op->read_iter)) 1594 return -EINVAL; 1595 1596 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); 1597 if (ret < 0) 1598 return ret; 1599 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1600 if (!ret) 1601 aio_rw_done(req, file->f_op->read_iter(req, &iter)); 1602 kfree(iovec); 1603 return ret; 1604 } 1605 1606 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1607 bool vectored, bool compat) 1608 { 1609 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1610 struct iov_iter iter; 1611 struct file *file; 1612 int ret; 1613 1614 ret = aio_prep_rw(req, iocb); 1615 if (ret) 1616 return ret; 1617 file = req->ki_filp; 1618 1619 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1620 return -EBADF; 1621 if (unlikely(!file->f_op->write_iter)) 1622 return -EINVAL; 1623 1624 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); 1625 if (ret < 0) 1626 return ret; 1627 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1628 if (!ret) { 1629 if (S_ISREG(file_inode(file)->i_mode)) 1630 kiocb_start_write(req); 1631 req->ki_flags |= IOCB_WRITE; 1632 aio_rw_done(req, file->f_op->write_iter(req, &iter)); 1633 } 1634 kfree(iovec); 1635 return ret; 1636 } 1637 1638 static void aio_fsync_work(struct work_struct *work) 1639 { 1640 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1641 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1642 1643 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1644 revert_creds(old_cred); 1645 put_cred(iocb->fsync.creds); 1646 iocb_put(iocb); 1647 } 1648 1649 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1650 bool datasync) 1651 { 1652 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1653 iocb->aio_rw_flags)) 1654 return -EINVAL; 1655 1656 if (unlikely(!req->file->f_op->fsync)) 1657 return -EINVAL; 1658 1659 req->creds = prepare_creds(); 1660 if (!req->creds) 1661 return -ENOMEM; 1662 1663 req->datasync = datasync; 1664 INIT_WORK(&req->work, aio_fsync_work); 1665 schedule_work(&req->work); 1666 return 0; 1667 } 1668 1669 static void aio_poll_put_work(struct work_struct *work) 1670 { 1671 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1672 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1673 1674 iocb_put(iocb); 1675 } 1676 1677 /* 1678 * Safely lock the waitqueue which the request is on, synchronizing with the 1679 * case where the ->poll() provider decides to free its waitqueue early. 1680 * 1681 * Returns true on success, meaning that req->head->lock was locked, req->wait 1682 * is on req->head, and an RCU read lock was taken. Returns false if the 1683 * request was already removed from its waitqueue (which might no longer exist). 1684 */ 1685 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1686 { 1687 wait_queue_head_t *head; 1688 1689 /* 1690 * While we hold the waitqueue lock and the waitqueue is nonempty, 1691 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1692 * lock in the first place can race with the waitqueue being freed. 1693 * 1694 * We solve this as eventpoll does: by taking advantage of the fact that 1695 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1696 * we enter rcu_read_lock() and see that the pointer to the queue is 1697 * non-NULL, we can then lock it without the memory being freed out from 1698 * under us, then check whether the request is still on the queue. 1699 * 1700 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1701 * case the caller deletes the entry from the queue, leaving it empty. 1702 * In that case, only RCU prevents the queue memory from being freed. 1703 */ 1704 rcu_read_lock(); 1705 head = smp_load_acquire(&req->head); 1706 if (head) { 1707 spin_lock(&head->lock); 1708 if (!list_empty(&req->wait.entry)) 1709 return true; 1710 spin_unlock(&head->lock); 1711 } 1712 rcu_read_unlock(); 1713 return false; 1714 } 1715 1716 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1717 { 1718 spin_unlock(&req->head->lock); 1719 rcu_read_unlock(); 1720 } 1721 1722 static void aio_poll_complete_work(struct work_struct *work) 1723 { 1724 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1725 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1726 struct poll_table_struct pt = { ._key = req->events }; 1727 struct kioctx *ctx = iocb->ki_ctx; 1728 __poll_t mask = 0; 1729 1730 if (!READ_ONCE(req->cancelled)) 1731 mask = vfs_poll(req->file, &pt) & req->events; 1732 1733 /* 1734 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1735 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1736 * synchronize with them. In the cancellation case the list_del_init 1737 * itself is not actually needed, but harmless so we keep it in to 1738 * avoid further branches in the fast path. 1739 */ 1740 spin_lock_irq(&ctx->ctx_lock); 1741 if (poll_iocb_lock_wq(req)) { 1742 if (!mask && !READ_ONCE(req->cancelled)) { 1743 /* 1744 * The request isn't actually ready to be completed yet. 1745 * Reschedule completion if another wakeup came in. 1746 */ 1747 if (req->work_need_resched) { 1748 schedule_work(&req->work); 1749 req->work_need_resched = false; 1750 } else { 1751 req->work_scheduled = false; 1752 } 1753 poll_iocb_unlock_wq(req); 1754 spin_unlock_irq(&ctx->ctx_lock); 1755 return; 1756 } 1757 list_del_init(&req->wait.entry); 1758 poll_iocb_unlock_wq(req); 1759 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1760 list_del_init(&iocb->ki_list); 1761 iocb->ki_res.res = mangle_poll(mask); 1762 spin_unlock_irq(&ctx->ctx_lock); 1763 1764 iocb_put(iocb); 1765 } 1766 1767 /* assumes we are called with irqs disabled */ 1768 static int aio_poll_cancel(struct kiocb *iocb) 1769 { 1770 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1771 struct poll_iocb *req = &aiocb->poll; 1772 1773 if (poll_iocb_lock_wq(req)) { 1774 WRITE_ONCE(req->cancelled, true); 1775 if (!req->work_scheduled) { 1776 schedule_work(&aiocb->poll.work); 1777 req->work_scheduled = true; 1778 } 1779 poll_iocb_unlock_wq(req); 1780 } /* else, the request was force-cancelled by POLLFREE already */ 1781 1782 return 0; 1783 } 1784 1785 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1786 void *key) 1787 { 1788 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1789 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1790 __poll_t mask = key_to_poll(key); 1791 unsigned long flags; 1792 1793 /* for instances that support it check for an event match first: */ 1794 if (mask && !(mask & req->events)) 1795 return 0; 1796 1797 /* 1798 * Complete the request inline if possible. This requires that three 1799 * conditions be met: 1800 * 1. An event mask must have been passed. If a plain wakeup was done 1801 * instead, then mask == 0 and we have to call vfs_poll() to get 1802 * the events, so inline completion isn't possible. 1803 * 2. The completion work must not have already been scheduled. 1804 * 3. ctx_lock must not be busy. We have to use trylock because we 1805 * already hold the waitqueue lock, so this inverts the normal 1806 * locking order. Use irqsave/irqrestore because not all 1807 * filesystems (e.g. fuse) call this function with IRQs disabled, 1808 * yet IRQs have to be disabled before ctx_lock is obtained. 1809 */ 1810 if (mask && !req->work_scheduled && 1811 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1812 struct kioctx *ctx = iocb->ki_ctx; 1813 1814 list_del_init(&req->wait.entry); 1815 list_del(&iocb->ki_list); 1816 iocb->ki_res.res = mangle_poll(mask); 1817 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1818 iocb = NULL; 1819 INIT_WORK(&req->work, aio_poll_put_work); 1820 schedule_work(&req->work); 1821 } 1822 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1823 if (iocb) 1824 iocb_put(iocb); 1825 } else { 1826 /* 1827 * Schedule the completion work if needed. If it was already 1828 * scheduled, record that another wakeup came in. 1829 * 1830 * Don't remove the request from the waitqueue here, as it might 1831 * not actually be complete yet (we won't know until vfs_poll() 1832 * is called), and we must not miss any wakeups. POLLFREE is an 1833 * exception to this; see below. 1834 */ 1835 if (req->work_scheduled) { 1836 req->work_need_resched = true; 1837 } else { 1838 schedule_work(&req->work); 1839 req->work_scheduled = true; 1840 } 1841 1842 /* 1843 * If the waitqueue is being freed early but we can't complete 1844 * the request inline, we have to tear down the request as best 1845 * we can. That means immediately removing the request from its 1846 * waitqueue and preventing all further accesses to the 1847 * waitqueue via the request. We also need to schedule the 1848 * completion work (done above). Also mark the request as 1849 * cancelled, to potentially skip an unneeded call to ->poll(). 1850 */ 1851 if (mask & POLLFREE) { 1852 WRITE_ONCE(req->cancelled, true); 1853 list_del_init(&req->wait.entry); 1854 1855 /* 1856 * Careful: this *must* be the last step, since as soon 1857 * as req->head is NULL'ed out, the request can be 1858 * completed and freed, since aio_poll_complete_work() 1859 * will no longer need to take the waitqueue lock. 1860 */ 1861 smp_store_release(&req->head, NULL); 1862 } 1863 } 1864 return 1; 1865 } 1866 1867 struct aio_poll_table { 1868 struct poll_table_struct pt; 1869 struct aio_kiocb *iocb; 1870 bool queued; 1871 int error; 1872 }; 1873 1874 static void 1875 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1876 struct poll_table_struct *p) 1877 { 1878 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1879 1880 /* multiple wait queues per file are not supported */ 1881 if (unlikely(pt->queued)) { 1882 pt->error = -EINVAL; 1883 return; 1884 } 1885 1886 pt->queued = true; 1887 pt->error = 0; 1888 pt->iocb->poll.head = head; 1889 add_wait_queue(head, &pt->iocb->poll.wait); 1890 } 1891 1892 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1893 { 1894 struct kioctx *ctx = aiocb->ki_ctx; 1895 struct poll_iocb *req = &aiocb->poll; 1896 struct aio_poll_table apt; 1897 bool cancel = false; 1898 __poll_t mask; 1899 1900 /* reject any unknown events outside the normal event mask. */ 1901 if ((u16)iocb->aio_buf != iocb->aio_buf) 1902 return -EINVAL; 1903 /* reject fields that are not defined for poll */ 1904 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1905 return -EINVAL; 1906 1907 INIT_WORK(&req->work, aio_poll_complete_work); 1908 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1909 1910 req->head = NULL; 1911 req->cancelled = false; 1912 req->work_scheduled = false; 1913 req->work_need_resched = false; 1914 1915 apt.pt._qproc = aio_poll_queue_proc; 1916 apt.pt._key = req->events; 1917 apt.iocb = aiocb; 1918 apt.queued = false; 1919 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1920 1921 /* initialized the list so that we can do list_empty checks */ 1922 INIT_LIST_HEAD(&req->wait.entry); 1923 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1924 1925 mask = vfs_poll(req->file, &apt.pt) & req->events; 1926 spin_lock_irq(&ctx->ctx_lock); 1927 if (likely(apt.queued)) { 1928 bool on_queue = poll_iocb_lock_wq(req); 1929 1930 if (!on_queue || req->work_scheduled) { 1931 /* 1932 * aio_poll_wake() already either scheduled the async 1933 * completion work, or completed the request inline. 1934 */ 1935 if (apt.error) /* unsupported case: multiple queues */ 1936 cancel = true; 1937 apt.error = 0; 1938 mask = 0; 1939 } 1940 if (mask || apt.error) { 1941 /* Steal to complete synchronously. */ 1942 list_del_init(&req->wait.entry); 1943 } else if (cancel) { 1944 /* Cancel if possible (may be too late though). */ 1945 WRITE_ONCE(req->cancelled, true); 1946 } else if (on_queue) { 1947 /* 1948 * Actually waiting for an event, so add the request to 1949 * active_reqs so that it can be cancelled if needed. 1950 */ 1951 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1952 aiocb->ki_cancel = aio_poll_cancel; 1953 } 1954 if (on_queue) 1955 poll_iocb_unlock_wq(req); 1956 } 1957 if (mask) { /* no async, we'd stolen it */ 1958 aiocb->ki_res.res = mangle_poll(mask); 1959 apt.error = 0; 1960 } 1961 spin_unlock_irq(&ctx->ctx_lock); 1962 if (mask) 1963 iocb_put(aiocb); 1964 return apt.error; 1965 } 1966 1967 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1968 struct iocb __user *user_iocb, struct aio_kiocb *req, 1969 bool compat) 1970 { 1971 req->ki_filp = fget(iocb->aio_fildes); 1972 if (unlikely(!req->ki_filp)) 1973 return -EBADF; 1974 1975 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1976 struct eventfd_ctx *eventfd; 1977 /* 1978 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1979 * instance of the file* now. The file descriptor must be 1980 * an eventfd() fd, and will be signaled for each completed 1981 * event using the eventfd_signal() function. 1982 */ 1983 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1984 if (IS_ERR(eventfd)) 1985 return PTR_ERR(eventfd); 1986 1987 req->ki_eventfd = eventfd; 1988 } 1989 1990 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1991 pr_debug("EFAULT: aio_key\n"); 1992 return -EFAULT; 1993 } 1994 1995 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1996 req->ki_res.data = iocb->aio_data; 1997 req->ki_res.res = 0; 1998 req->ki_res.res2 = 0; 1999 2000 switch (iocb->aio_lio_opcode) { 2001 case IOCB_CMD_PREAD: 2002 return aio_read(&req->rw, iocb, false, compat); 2003 case IOCB_CMD_PWRITE: 2004 return aio_write(&req->rw, iocb, false, compat); 2005 case IOCB_CMD_PREADV: 2006 return aio_read(&req->rw, iocb, true, compat); 2007 case IOCB_CMD_PWRITEV: 2008 return aio_write(&req->rw, iocb, true, compat); 2009 case IOCB_CMD_FSYNC: 2010 return aio_fsync(&req->fsync, iocb, false); 2011 case IOCB_CMD_FDSYNC: 2012 return aio_fsync(&req->fsync, iocb, true); 2013 case IOCB_CMD_POLL: 2014 return aio_poll(req, iocb); 2015 default: 2016 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 2017 return -EINVAL; 2018 } 2019 } 2020 2021 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 2022 bool compat) 2023 { 2024 struct aio_kiocb *req; 2025 struct iocb iocb; 2026 int err; 2027 2028 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 2029 return -EFAULT; 2030 2031 /* enforce forwards compatibility on users */ 2032 if (unlikely(iocb.aio_reserved2)) { 2033 pr_debug("EINVAL: reserve field set\n"); 2034 return -EINVAL; 2035 } 2036 2037 /* prevent overflows */ 2038 if (unlikely( 2039 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 2040 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 2041 ((ssize_t)iocb.aio_nbytes < 0) 2042 )) { 2043 pr_debug("EINVAL: overflow check\n"); 2044 return -EINVAL; 2045 } 2046 2047 req = aio_get_req(ctx); 2048 if (unlikely(!req)) 2049 return -EAGAIN; 2050 2051 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2052 2053 /* Done with the synchronous reference */ 2054 iocb_put(req); 2055 2056 /* 2057 * If err is 0, we'd either done aio_complete() ourselves or have 2058 * arranged for that to be done asynchronously. Anything non-zero 2059 * means that we need to destroy req ourselves. 2060 */ 2061 if (unlikely(err)) { 2062 iocb_destroy(req); 2063 put_reqs_available(ctx, 1); 2064 } 2065 return err; 2066 } 2067 2068 /* sys_io_submit: 2069 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2070 * the number of iocbs queued. May return -EINVAL if the aio_context 2071 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2072 * *iocbpp[0] is not properly initialized, if the operation specified 2073 * is invalid for the file descriptor in the iocb. May fail with 2074 * -EFAULT if any of the data structures point to invalid data. May 2075 * fail with -EBADF if the file descriptor specified in the first 2076 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2077 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2078 * fail with -ENOSYS if not implemented. 2079 */ 2080 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2081 struct iocb __user * __user *, iocbpp) 2082 { 2083 struct kioctx *ctx; 2084 long ret = 0; 2085 int i = 0; 2086 struct blk_plug plug; 2087 2088 if (unlikely(nr < 0)) 2089 return -EINVAL; 2090 2091 ctx = lookup_ioctx(ctx_id); 2092 if (unlikely(!ctx)) { 2093 pr_debug("EINVAL: invalid context id\n"); 2094 return -EINVAL; 2095 } 2096 2097 if (nr > ctx->nr_events) 2098 nr = ctx->nr_events; 2099 2100 if (nr > AIO_PLUG_THRESHOLD) 2101 blk_start_plug(&plug); 2102 for (i = 0; i < nr; i++) { 2103 struct iocb __user *user_iocb; 2104 2105 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2106 ret = -EFAULT; 2107 break; 2108 } 2109 2110 ret = io_submit_one(ctx, user_iocb, false); 2111 if (ret) 2112 break; 2113 } 2114 if (nr > AIO_PLUG_THRESHOLD) 2115 blk_finish_plug(&plug); 2116 2117 percpu_ref_put(&ctx->users); 2118 return i ? i : ret; 2119 } 2120 2121 #ifdef CONFIG_COMPAT 2122 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2123 int, nr, compat_uptr_t __user *, iocbpp) 2124 { 2125 struct kioctx *ctx; 2126 long ret = 0; 2127 int i = 0; 2128 struct blk_plug plug; 2129 2130 if (unlikely(nr < 0)) 2131 return -EINVAL; 2132 2133 ctx = lookup_ioctx(ctx_id); 2134 if (unlikely(!ctx)) { 2135 pr_debug("EINVAL: invalid context id\n"); 2136 return -EINVAL; 2137 } 2138 2139 if (nr > ctx->nr_events) 2140 nr = ctx->nr_events; 2141 2142 if (nr > AIO_PLUG_THRESHOLD) 2143 blk_start_plug(&plug); 2144 for (i = 0; i < nr; i++) { 2145 compat_uptr_t user_iocb; 2146 2147 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2148 ret = -EFAULT; 2149 break; 2150 } 2151 2152 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2153 if (ret) 2154 break; 2155 } 2156 if (nr > AIO_PLUG_THRESHOLD) 2157 blk_finish_plug(&plug); 2158 2159 percpu_ref_put(&ctx->users); 2160 return i ? i : ret; 2161 } 2162 #endif 2163 2164 /* sys_io_cancel: 2165 * Attempts to cancel an iocb previously passed to io_submit. If 2166 * the operation is successfully cancelled, the resulting event is 2167 * copied into the memory pointed to by result without being placed 2168 * into the completion queue and 0 is returned. May fail with 2169 * -EFAULT if any of the data structures pointed to are invalid. 2170 * May fail with -EINVAL if aio_context specified by ctx_id is 2171 * invalid. May fail with -EAGAIN if the iocb specified was not 2172 * cancelled. Will fail with -ENOSYS if not implemented. 2173 */ 2174 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2175 struct io_event __user *, result) 2176 { 2177 struct kioctx *ctx; 2178 struct aio_kiocb *kiocb; 2179 int ret = -EINVAL; 2180 u32 key; 2181 u64 obj = (u64)(unsigned long)iocb; 2182 2183 if (unlikely(get_user(key, &iocb->aio_key))) 2184 return -EFAULT; 2185 if (unlikely(key != KIOCB_KEY)) 2186 return -EINVAL; 2187 2188 ctx = lookup_ioctx(ctx_id); 2189 if (unlikely(!ctx)) 2190 return -EINVAL; 2191 2192 spin_lock_irq(&ctx->ctx_lock); 2193 /* TODO: use a hash or array, this sucks. */ 2194 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2195 if (kiocb->ki_res.obj == obj) { 2196 ret = kiocb->ki_cancel(&kiocb->rw); 2197 list_del_init(&kiocb->ki_list); 2198 break; 2199 } 2200 } 2201 spin_unlock_irq(&ctx->ctx_lock); 2202 2203 if (!ret) { 2204 /* 2205 * The result argument is no longer used - the io_event is 2206 * always delivered via the ring buffer. -EINPROGRESS indicates 2207 * cancellation is progress: 2208 */ 2209 ret = -EINPROGRESS; 2210 } 2211 2212 percpu_ref_put(&ctx->users); 2213 2214 return ret; 2215 } 2216 2217 static long do_io_getevents(aio_context_t ctx_id, 2218 long min_nr, 2219 long nr, 2220 struct io_event __user *events, 2221 struct timespec64 *ts) 2222 { 2223 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2224 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2225 long ret = -EINVAL; 2226 2227 if (likely(ioctx)) { 2228 if (likely(min_nr <= nr && min_nr >= 0)) 2229 ret = read_events(ioctx, min_nr, nr, events, until); 2230 percpu_ref_put(&ioctx->users); 2231 } 2232 2233 return ret; 2234 } 2235 2236 /* io_getevents: 2237 * Attempts to read at least min_nr events and up to nr events from 2238 * the completion queue for the aio_context specified by ctx_id. If 2239 * it succeeds, the number of read events is returned. May fail with 2240 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2241 * out of range, if timeout is out of range. May fail with -EFAULT 2242 * if any of the memory specified is invalid. May return 0 or 2243 * < min_nr if the timeout specified by timeout has elapsed 2244 * before sufficient events are available, where timeout == NULL 2245 * specifies an infinite timeout. Note that the timeout pointed to by 2246 * timeout is relative. Will fail with -ENOSYS if not implemented. 2247 */ 2248 #ifdef CONFIG_64BIT 2249 2250 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2251 long, min_nr, 2252 long, nr, 2253 struct io_event __user *, events, 2254 struct __kernel_timespec __user *, timeout) 2255 { 2256 struct timespec64 ts; 2257 int ret; 2258 2259 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2260 return -EFAULT; 2261 2262 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2263 if (!ret && signal_pending(current)) 2264 ret = -EINTR; 2265 return ret; 2266 } 2267 2268 #endif 2269 2270 struct __aio_sigset { 2271 const sigset_t __user *sigmask; 2272 size_t sigsetsize; 2273 }; 2274 2275 SYSCALL_DEFINE6(io_pgetevents, 2276 aio_context_t, ctx_id, 2277 long, min_nr, 2278 long, nr, 2279 struct io_event __user *, events, 2280 struct __kernel_timespec __user *, timeout, 2281 const struct __aio_sigset __user *, usig) 2282 { 2283 struct __aio_sigset ksig = { NULL, }; 2284 struct timespec64 ts; 2285 bool interrupted; 2286 int ret; 2287 2288 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2289 return -EFAULT; 2290 2291 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2292 return -EFAULT; 2293 2294 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2295 if (ret) 2296 return ret; 2297 2298 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2299 2300 interrupted = signal_pending(current); 2301 restore_saved_sigmask_unless(interrupted); 2302 if (interrupted && !ret) 2303 ret = -ERESTARTNOHAND; 2304 2305 return ret; 2306 } 2307 2308 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2309 2310 SYSCALL_DEFINE6(io_pgetevents_time32, 2311 aio_context_t, ctx_id, 2312 long, min_nr, 2313 long, nr, 2314 struct io_event __user *, events, 2315 struct old_timespec32 __user *, timeout, 2316 const struct __aio_sigset __user *, usig) 2317 { 2318 struct __aio_sigset ksig = { NULL, }; 2319 struct timespec64 ts; 2320 bool interrupted; 2321 int ret; 2322 2323 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2324 return -EFAULT; 2325 2326 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2327 return -EFAULT; 2328 2329 2330 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2331 if (ret) 2332 return ret; 2333 2334 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2335 2336 interrupted = signal_pending(current); 2337 restore_saved_sigmask_unless(interrupted); 2338 if (interrupted && !ret) 2339 ret = -ERESTARTNOHAND; 2340 2341 return ret; 2342 } 2343 2344 #endif 2345 2346 #if defined(CONFIG_COMPAT_32BIT_TIME) 2347 2348 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2349 __s32, min_nr, 2350 __s32, nr, 2351 struct io_event __user *, events, 2352 struct old_timespec32 __user *, timeout) 2353 { 2354 struct timespec64 t; 2355 int ret; 2356 2357 if (timeout && get_old_timespec32(&t, timeout)) 2358 return -EFAULT; 2359 2360 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2361 if (!ret && signal_pending(current)) 2362 ret = -EINTR; 2363 return ret; 2364 } 2365 2366 #endif 2367 2368 #ifdef CONFIG_COMPAT 2369 2370 struct __compat_aio_sigset { 2371 compat_uptr_t sigmask; 2372 compat_size_t sigsetsize; 2373 }; 2374 2375 #if defined(CONFIG_COMPAT_32BIT_TIME) 2376 2377 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2378 compat_aio_context_t, ctx_id, 2379 compat_long_t, min_nr, 2380 compat_long_t, nr, 2381 struct io_event __user *, events, 2382 struct old_timespec32 __user *, timeout, 2383 const struct __compat_aio_sigset __user *, usig) 2384 { 2385 struct __compat_aio_sigset ksig = { 0, }; 2386 struct timespec64 t; 2387 bool interrupted; 2388 int ret; 2389 2390 if (timeout && get_old_timespec32(&t, timeout)) 2391 return -EFAULT; 2392 2393 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2394 return -EFAULT; 2395 2396 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2397 if (ret) 2398 return ret; 2399 2400 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2401 2402 interrupted = signal_pending(current); 2403 restore_saved_sigmask_unless(interrupted); 2404 if (interrupted && !ret) 2405 ret = -ERESTARTNOHAND; 2406 2407 return ret; 2408 } 2409 2410 #endif 2411 2412 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2413 compat_aio_context_t, ctx_id, 2414 compat_long_t, min_nr, 2415 compat_long_t, nr, 2416 struct io_event __user *, events, 2417 struct __kernel_timespec __user *, timeout, 2418 const struct __compat_aio_sigset __user *, usig) 2419 { 2420 struct __compat_aio_sigset ksig = { 0, }; 2421 struct timespec64 t; 2422 bool interrupted; 2423 int ret; 2424 2425 if (timeout && get_timespec64(&t, timeout)) 2426 return -EFAULT; 2427 2428 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2429 return -EFAULT; 2430 2431 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2432 if (ret) 2433 return ret; 2434 2435 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2436 2437 interrupted = signal_pending(current); 2438 restore_saved_sigmask_unless(interrupted); 2439 if (interrupted && !ret) 2440 ret = -ERESTARTNOHAND; 2441 2442 return ret; 2443 } 2444 #endif 2445