xref: /linux/fs/aio.c (revision 656fe3ee455e8d8dfa1c18292c508da26b29a39c)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct folio		**ring_folios;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct folio		*internal_folios[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 };
243 
244 static void __init aio_sysctl_init(void)
245 {
246 	register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251 
252 static struct kmem_cache	*kiocb_cachep;
253 static struct kmem_cache	*kioctx_cachep;
254 
255 static struct vfsmount *aio_mnt;
256 
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259 
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 	struct file *file;
263 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 	if (IS_ERR(inode))
265 		return ERR_CAST(inode);
266 
267 	inode->i_mapping->a_ops = &aio_ctx_aops;
268 	inode->i_mapping->i_private_data = ctx;
269 	inode->i_size = PAGE_SIZE * nr_pages;
270 
271 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 				O_RDWR, &aio_ring_fops);
273 	if (IS_ERR(file))
274 		iput(inode);
275 	return file;
276 }
277 
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 	if (!init_pseudo(fc, AIO_RING_MAGIC))
281 		return -ENOMEM;
282 	fc->s_iflags |= SB_I_NOEXEC;
283 	return 0;
284 }
285 
286 /* aio_setup
287  *	Creates the slab caches used by the aio routines, panic on
288  *	failure as this is done early during the boot sequence.
289  */
290 static int __init aio_setup(void)
291 {
292 	static struct file_system_type aio_fs = {
293 		.name		= "aio",
294 		.init_fs_context = aio_init_fs_context,
295 		.kill_sb	= kill_anon_super,
296 	};
297 	aio_mnt = kern_mount(&aio_fs);
298 	if (IS_ERR(aio_mnt))
299 		panic("Failed to create aio fs mount.");
300 
301 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	aio_sysctl_init();
304 	return 0;
305 }
306 __initcall(aio_setup);
307 
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 	struct file *aio_ring_file = ctx->aio_ring_file;
311 	struct address_space *i_mapping;
312 
313 	if (aio_ring_file) {
314 		truncate_setsize(file_inode(aio_ring_file), 0);
315 
316 		/* Prevent further access to the kioctx from migratepages */
317 		i_mapping = aio_ring_file->f_mapping;
318 		spin_lock(&i_mapping->i_private_lock);
319 		i_mapping->i_private_data = NULL;
320 		ctx->aio_ring_file = NULL;
321 		spin_unlock(&i_mapping->i_private_lock);
322 
323 		fput(aio_ring_file);
324 	}
325 }
326 
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 	int i;
330 
331 	/* Disconnect the kiotx from the ring file.  This prevents future
332 	 * accesses to the kioctx from page migration.
333 	 */
334 	put_aio_ring_file(ctx);
335 
336 	for (i = 0; i < ctx->nr_pages; i++) {
337 		struct folio *folio = ctx->ring_folios[i];
338 
339 		if (!folio)
340 			continue;
341 
342 		pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
343 			 folio_ref_count(folio));
344 		ctx->ring_folios[i] = NULL;
345 		folio_put(folio);
346 	}
347 
348 	if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) {
349 		kfree(ctx->ring_folios);
350 		ctx->ring_folios = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc = 0;
414 
415 	/* mapping->i_private_lock here protects against the kioctx teardown.  */
416 	spin_lock(&mapping->i_private_lock);
417 	ctx = mapping->i_private_data;
418 	if (!ctx) {
419 		rc = -EINVAL;
420 		goto out;
421 	}
422 
423 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
424 	 * to the ring's head, and prevents page migration from mucking in
425 	 * a partially initialized kiotx.
426 	 */
427 	if (!mutex_trylock(&ctx->ring_lock)) {
428 		rc = -EAGAIN;
429 		goto out;
430 	}
431 
432 	idx = src->index;
433 	if (idx < (pgoff_t)ctx->nr_pages) {
434 		/* Make sure the old folio hasn't already been changed */
435 		if (ctx->ring_folios[idx] != src)
436 			rc = -EAGAIN;
437 	} else
438 		rc = -EINVAL;
439 
440 	if (rc != 0)
441 		goto out_unlock;
442 
443 	/* Writeback must be complete */
444 	BUG_ON(folio_test_writeback(src));
445 	folio_get(dst);
446 
447 	rc = folio_migrate_mapping(mapping, dst, src, 1);
448 	if (rc != MIGRATEPAGE_SUCCESS) {
449 		folio_put(dst);
450 		goto out_unlock;
451 	}
452 
453 	/* Take completion_lock to prevent other writes to the ring buffer
454 	 * while the old folio is copied to the new.  This prevents new
455 	 * events from being lost.
456 	 */
457 	spin_lock_irqsave(&ctx->completion_lock, flags);
458 	folio_migrate_copy(dst, src);
459 	BUG_ON(ctx->ring_folios[idx] != src);
460 	ctx->ring_folios[idx] = dst;
461 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
462 
463 	/* The old folio is no longer accessible. */
464 	folio_put(src);
465 
466 out_unlock:
467 	mutex_unlock(&ctx->ring_lock);
468 out:
469 	spin_unlock(&mapping->i_private_lock);
470 	return rc;
471 }
472 #else
473 #define aio_migrate_folio NULL
474 #endif
475 
476 static const struct address_space_operations aio_ctx_aops = {
477 	.dirty_folio	= noop_dirty_folio,
478 	.migrate_folio	= aio_migrate_folio,
479 };
480 
481 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
482 {
483 	struct aio_ring *ring;
484 	struct mm_struct *mm = current->mm;
485 	unsigned long size, unused;
486 	int nr_pages;
487 	int i;
488 	struct file *file;
489 
490 	/* Compensate for the ring buffer's head/tail overlap entry */
491 	nr_events += 2;	/* 1 is required, 2 for good luck */
492 
493 	size = sizeof(struct aio_ring);
494 	size += sizeof(struct io_event) * nr_events;
495 
496 	nr_pages = PFN_UP(size);
497 	if (nr_pages < 0)
498 		return -EINVAL;
499 
500 	file = aio_private_file(ctx, nr_pages);
501 	if (IS_ERR(file)) {
502 		ctx->aio_ring_file = NULL;
503 		return -ENOMEM;
504 	}
505 
506 	ctx->aio_ring_file = file;
507 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
508 			/ sizeof(struct io_event);
509 
510 	ctx->ring_folios = ctx->internal_folios;
511 	if (nr_pages > AIO_RING_PAGES) {
512 		ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *),
513 					   GFP_KERNEL);
514 		if (!ctx->ring_folios) {
515 			put_aio_ring_file(ctx);
516 			return -ENOMEM;
517 		}
518 	}
519 
520 	for (i = 0; i < nr_pages; i++) {
521 		struct folio *folio;
522 
523 		folio = __filemap_get_folio(file->f_mapping, i,
524 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
525 					    GFP_USER | __GFP_ZERO);
526 		if (IS_ERR(folio))
527 			break;
528 
529 		pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
530 			 folio_ref_count(folio));
531 		folio_end_read(folio, true);
532 
533 		ctx->ring_folios[i] = folio;
534 	}
535 	ctx->nr_pages = i;
536 
537 	if (unlikely(i != nr_pages)) {
538 		aio_free_ring(ctx);
539 		return -ENOMEM;
540 	}
541 
542 	ctx->mmap_size = nr_pages * PAGE_SIZE;
543 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
544 
545 	if (mmap_write_lock_killable(mm)) {
546 		ctx->mmap_size = 0;
547 		aio_free_ring(ctx);
548 		return -EINTR;
549 	}
550 
551 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
552 				 PROT_READ | PROT_WRITE,
553 				 MAP_SHARED, 0, 0, &unused, NULL);
554 	mmap_write_unlock(mm);
555 	if (IS_ERR((void *)ctx->mmap_base)) {
556 		ctx->mmap_size = 0;
557 		aio_free_ring(ctx);
558 		return -ENOMEM;
559 	}
560 
561 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
562 
563 	ctx->user_id = ctx->mmap_base;
564 	ctx->nr_events = nr_events; /* trusted copy */
565 
566 	ring = folio_address(ctx->ring_folios[0]);
567 	ring->nr = nr_events;	/* user copy */
568 	ring->id = ~0U;
569 	ring->head = ring->tail = 0;
570 	ring->magic = AIO_RING_MAGIC;
571 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
572 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
573 	ring->header_length = sizeof(struct aio_ring);
574 	flush_dcache_folio(ctx->ring_folios[0]);
575 
576 	return 0;
577 }
578 
579 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
580 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
581 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
582 
583 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
584 {
585 	struct aio_kiocb *req;
586 	struct kioctx *ctx;
587 	unsigned long flags;
588 
589 	/*
590 	 * kiocb didn't come from aio or is neither a read nor a write, hence
591 	 * ignore it.
592 	 */
593 	if (!(iocb->ki_flags & IOCB_AIO_RW))
594 		return;
595 
596 	req = container_of(iocb, struct aio_kiocb, rw);
597 
598 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
599 		return;
600 
601 	ctx = req->ki_ctx;
602 
603 	spin_lock_irqsave(&ctx->ctx_lock, flags);
604 	list_add_tail(&req->ki_list, &ctx->active_reqs);
605 	req->ki_cancel = cancel;
606 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
607 }
608 EXPORT_SYMBOL(kiocb_set_cancel_fn);
609 
610 /*
611  * free_ioctx() should be RCU delayed to synchronize against the RCU
612  * protected lookup_ioctx() and also needs process context to call
613  * aio_free_ring().  Use rcu_work.
614  */
615 static void free_ioctx(struct work_struct *work)
616 {
617 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
618 					  free_rwork);
619 	pr_debug("freeing %p\n", ctx);
620 
621 	aio_free_ring(ctx);
622 	free_percpu(ctx->cpu);
623 	percpu_ref_exit(&ctx->reqs);
624 	percpu_ref_exit(&ctx->users);
625 	kmem_cache_free(kioctx_cachep, ctx);
626 }
627 
628 static void free_ioctx_reqs(struct percpu_ref *ref)
629 {
630 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
631 
632 	/* At this point we know that there are no any in-flight requests */
633 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
634 		complete(&ctx->rq_wait->comp);
635 
636 	/* Synchronize against RCU protected table->table[] dereferences */
637 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
638 	queue_rcu_work(system_wq, &ctx->free_rwork);
639 }
640 
641 /*
642  * When this function runs, the kioctx has been removed from the "hash table"
643  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
644  * now it's safe to cancel any that need to be.
645  */
646 static void free_ioctx_users(struct percpu_ref *ref)
647 {
648 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
649 	struct aio_kiocb *req;
650 
651 	spin_lock_irq(&ctx->ctx_lock);
652 
653 	while (!list_empty(&ctx->active_reqs)) {
654 		req = list_first_entry(&ctx->active_reqs,
655 				       struct aio_kiocb, ki_list);
656 		req->ki_cancel(&req->rw);
657 		list_del_init(&req->ki_list);
658 	}
659 
660 	spin_unlock_irq(&ctx->ctx_lock);
661 
662 	percpu_ref_kill(&ctx->reqs);
663 	percpu_ref_put(&ctx->reqs);
664 }
665 
666 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
667 {
668 	unsigned i, new_nr;
669 	struct kioctx_table *table, *old;
670 	struct aio_ring *ring;
671 
672 	spin_lock(&mm->ioctx_lock);
673 	table = rcu_dereference_raw(mm->ioctx_table);
674 
675 	while (1) {
676 		if (table)
677 			for (i = 0; i < table->nr; i++)
678 				if (!rcu_access_pointer(table->table[i])) {
679 					ctx->id = i;
680 					rcu_assign_pointer(table->table[i], ctx);
681 					spin_unlock(&mm->ioctx_lock);
682 
683 					/* While kioctx setup is in progress,
684 					 * we are protected from page migration
685 					 * changes ring_folios by ->ring_lock.
686 					 */
687 					ring = folio_address(ctx->ring_folios[0]);
688 					ring->id = ctx->id;
689 					return 0;
690 				}
691 
692 		new_nr = (table ? table->nr : 1) * 4;
693 		spin_unlock(&mm->ioctx_lock);
694 
695 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
696 		if (!table)
697 			return -ENOMEM;
698 
699 		table->nr = new_nr;
700 
701 		spin_lock(&mm->ioctx_lock);
702 		old = rcu_dereference_raw(mm->ioctx_table);
703 
704 		if (!old) {
705 			rcu_assign_pointer(mm->ioctx_table, table);
706 		} else if (table->nr > old->nr) {
707 			memcpy(table->table, old->table,
708 			       old->nr * sizeof(struct kioctx *));
709 
710 			rcu_assign_pointer(mm->ioctx_table, table);
711 			kfree_rcu(old, rcu);
712 		} else {
713 			kfree(table);
714 			table = old;
715 		}
716 	}
717 }
718 
719 static void aio_nr_sub(unsigned nr)
720 {
721 	spin_lock(&aio_nr_lock);
722 	if (WARN_ON(aio_nr - nr > aio_nr))
723 		aio_nr = 0;
724 	else
725 		aio_nr -= nr;
726 	spin_unlock(&aio_nr_lock);
727 }
728 
729 /* ioctx_alloc
730  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
731  */
732 static struct kioctx *ioctx_alloc(unsigned nr_events)
733 {
734 	struct mm_struct *mm = current->mm;
735 	struct kioctx *ctx;
736 	int err = -ENOMEM;
737 
738 	/*
739 	 * Store the original nr_events -- what userspace passed to io_setup(),
740 	 * for counting against the global limit -- before it changes.
741 	 */
742 	unsigned int max_reqs = nr_events;
743 
744 	/*
745 	 * We keep track of the number of available ringbuffer slots, to prevent
746 	 * overflow (reqs_available), and we also use percpu counters for this.
747 	 *
748 	 * So since up to half the slots might be on other cpu's percpu counters
749 	 * and unavailable, double nr_events so userspace sees what they
750 	 * expected: additionally, we move req_batch slots to/from percpu
751 	 * counters at a time, so make sure that isn't 0:
752 	 */
753 	nr_events = max(nr_events, num_possible_cpus() * 4);
754 	nr_events *= 2;
755 
756 	/* Prevent overflows */
757 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
758 		pr_debug("ENOMEM: nr_events too high\n");
759 		return ERR_PTR(-EINVAL);
760 	}
761 
762 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
763 		return ERR_PTR(-EAGAIN);
764 
765 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
766 	if (!ctx)
767 		return ERR_PTR(-ENOMEM);
768 
769 	ctx->max_reqs = max_reqs;
770 
771 	spin_lock_init(&ctx->ctx_lock);
772 	spin_lock_init(&ctx->completion_lock);
773 	mutex_init(&ctx->ring_lock);
774 	/* Protect against page migration throughout kiotx setup by keeping
775 	 * the ring_lock mutex held until setup is complete. */
776 	mutex_lock(&ctx->ring_lock);
777 	init_waitqueue_head(&ctx->wait);
778 
779 	INIT_LIST_HEAD(&ctx->active_reqs);
780 
781 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
782 		goto err;
783 
784 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
785 		goto err;
786 
787 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
788 	if (!ctx->cpu)
789 		goto err;
790 
791 	err = aio_setup_ring(ctx, nr_events);
792 	if (err < 0)
793 		goto err;
794 
795 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
796 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
797 	if (ctx->req_batch < 1)
798 		ctx->req_batch = 1;
799 
800 	/* limit the number of system wide aios */
801 	spin_lock(&aio_nr_lock);
802 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
803 	    aio_nr + ctx->max_reqs < aio_nr) {
804 		spin_unlock(&aio_nr_lock);
805 		err = -EAGAIN;
806 		goto err_ctx;
807 	}
808 	aio_nr += ctx->max_reqs;
809 	spin_unlock(&aio_nr_lock);
810 
811 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
812 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
813 
814 	err = ioctx_add_table(ctx, mm);
815 	if (err)
816 		goto err_cleanup;
817 
818 	/* Release the ring_lock mutex now that all setup is complete. */
819 	mutex_unlock(&ctx->ring_lock);
820 
821 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
822 		 ctx, ctx->user_id, mm, ctx->nr_events);
823 	return ctx;
824 
825 err_cleanup:
826 	aio_nr_sub(ctx->max_reqs);
827 err_ctx:
828 	atomic_set(&ctx->dead, 1);
829 	if (ctx->mmap_size)
830 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
831 	aio_free_ring(ctx);
832 err:
833 	mutex_unlock(&ctx->ring_lock);
834 	free_percpu(ctx->cpu);
835 	percpu_ref_exit(&ctx->reqs);
836 	percpu_ref_exit(&ctx->users);
837 	kmem_cache_free(kioctx_cachep, ctx);
838 	pr_debug("error allocating ioctx %d\n", err);
839 	return ERR_PTR(err);
840 }
841 
842 /* kill_ioctx
843  *	Cancels all outstanding aio requests on an aio context.  Used
844  *	when the processes owning a context have all exited to encourage
845  *	the rapid destruction of the kioctx.
846  */
847 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
848 		      struct ctx_rq_wait *wait)
849 {
850 	struct kioctx_table *table;
851 
852 	spin_lock(&mm->ioctx_lock);
853 	if (atomic_xchg(&ctx->dead, 1)) {
854 		spin_unlock(&mm->ioctx_lock);
855 		return -EINVAL;
856 	}
857 
858 	table = rcu_dereference_raw(mm->ioctx_table);
859 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
860 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
861 	spin_unlock(&mm->ioctx_lock);
862 
863 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
864 	wake_up_all(&ctx->wait);
865 
866 	/*
867 	 * It'd be more correct to do this in free_ioctx(), after all
868 	 * the outstanding kiocbs have finished - but by then io_destroy
869 	 * has already returned, so io_setup() could potentially return
870 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
871 	 *  could tell).
872 	 */
873 	aio_nr_sub(ctx->max_reqs);
874 
875 	if (ctx->mmap_size)
876 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
877 
878 	ctx->rq_wait = wait;
879 	percpu_ref_kill(&ctx->users);
880 	return 0;
881 }
882 
883 /*
884  * exit_aio: called when the last user of mm goes away.  At this point, there is
885  * no way for any new requests to be submited or any of the io_* syscalls to be
886  * called on the context.
887  *
888  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
889  * them.
890  */
891 void exit_aio(struct mm_struct *mm)
892 {
893 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
894 	struct ctx_rq_wait wait;
895 	int i, skipped;
896 
897 	if (!table)
898 		return;
899 
900 	atomic_set(&wait.count, table->nr);
901 	init_completion(&wait.comp);
902 
903 	skipped = 0;
904 	for (i = 0; i < table->nr; ++i) {
905 		struct kioctx *ctx =
906 			rcu_dereference_protected(table->table[i], true);
907 
908 		if (!ctx) {
909 			skipped++;
910 			continue;
911 		}
912 
913 		/*
914 		 * We don't need to bother with munmap() here - exit_mmap(mm)
915 		 * is coming and it'll unmap everything. And we simply can't,
916 		 * this is not necessarily our ->mm.
917 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
918 		 * that it needs to unmap the area, just set it to 0.
919 		 */
920 		ctx->mmap_size = 0;
921 		kill_ioctx(mm, ctx, &wait);
922 	}
923 
924 	if (!atomic_sub_and_test(skipped, &wait.count)) {
925 		/* Wait until all IO for the context are done. */
926 		wait_for_completion(&wait.comp);
927 	}
928 
929 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
930 	kfree(table);
931 }
932 
933 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
934 {
935 	struct kioctx_cpu *kcpu;
936 	unsigned long flags;
937 
938 	local_irq_save(flags);
939 	kcpu = this_cpu_ptr(ctx->cpu);
940 	kcpu->reqs_available += nr;
941 
942 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
943 		kcpu->reqs_available -= ctx->req_batch;
944 		atomic_add(ctx->req_batch, &ctx->reqs_available);
945 	}
946 
947 	local_irq_restore(flags);
948 }
949 
950 static bool __get_reqs_available(struct kioctx *ctx)
951 {
952 	struct kioctx_cpu *kcpu;
953 	bool ret = false;
954 	unsigned long flags;
955 
956 	local_irq_save(flags);
957 	kcpu = this_cpu_ptr(ctx->cpu);
958 	if (!kcpu->reqs_available) {
959 		int avail = atomic_read(&ctx->reqs_available);
960 
961 		do {
962 			if (avail < ctx->req_batch)
963 				goto out;
964 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
965 					     &avail, avail - ctx->req_batch));
966 
967 		kcpu->reqs_available += ctx->req_batch;
968 	}
969 
970 	ret = true;
971 	kcpu->reqs_available--;
972 out:
973 	local_irq_restore(flags);
974 	return ret;
975 }
976 
977 /* refill_reqs_available
978  *	Updates the reqs_available reference counts used for tracking the
979  *	number of free slots in the completion ring.  This can be called
980  *	from aio_complete() (to optimistically update reqs_available) or
981  *	from aio_get_req() (the we're out of events case).  It must be
982  *	called holding ctx->completion_lock.
983  */
984 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
985                                   unsigned tail)
986 {
987 	unsigned events_in_ring, completed;
988 
989 	/* Clamp head since userland can write to it. */
990 	head %= ctx->nr_events;
991 	if (head <= tail)
992 		events_in_ring = tail - head;
993 	else
994 		events_in_ring = ctx->nr_events - (head - tail);
995 
996 	completed = ctx->completed_events;
997 	if (events_in_ring < completed)
998 		completed -= events_in_ring;
999 	else
1000 		completed = 0;
1001 
1002 	if (!completed)
1003 		return;
1004 
1005 	ctx->completed_events -= completed;
1006 	put_reqs_available(ctx, completed);
1007 }
1008 
1009 /* user_refill_reqs_available
1010  *	Called to refill reqs_available when aio_get_req() encounters an
1011  *	out of space in the completion ring.
1012  */
1013 static void user_refill_reqs_available(struct kioctx *ctx)
1014 {
1015 	spin_lock_irq(&ctx->completion_lock);
1016 	if (ctx->completed_events) {
1017 		struct aio_ring *ring;
1018 		unsigned head;
1019 
1020 		/* Access of ring->head may race with aio_read_events_ring()
1021 		 * here, but that's okay since whether we read the old version
1022 		 * or the new version, and either will be valid.  The important
1023 		 * part is that head cannot pass tail since we prevent
1024 		 * aio_complete() from updating tail by holding
1025 		 * ctx->completion_lock.  Even if head is invalid, the check
1026 		 * against ctx->completed_events below will make sure we do the
1027 		 * safe/right thing.
1028 		 */
1029 		ring = folio_address(ctx->ring_folios[0]);
1030 		head = ring->head;
1031 
1032 		refill_reqs_available(ctx, head, ctx->tail);
1033 	}
1034 
1035 	spin_unlock_irq(&ctx->completion_lock);
1036 }
1037 
1038 static bool get_reqs_available(struct kioctx *ctx)
1039 {
1040 	if (__get_reqs_available(ctx))
1041 		return true;
1042 	user_refill_reqs_available(ctx);
1043 	return __get_reqs_available(ctx);
1044 }
1045 
1046 /* aio_get_req
1047  *	Allocate a slot for an aio request.
1048  * Returns NULL if no requests are free.
1049  *
1050  * The refcount is initialized to 2 - one for the async op completion,
1051  * one for the synchronous code that does this.
1052  */
1053 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1054 {
1055 	struct aio_kiocb *req;
1056 
1057 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1058 	if (unlikely(!req))
1059 		return NULL;
1060 
1061 	if (unlikely(!get_reqs_available(ctx))) {
1062 		kmem_cache_free(kiocb_cachep, req);
1063 		return NULL;
1064 	}
1065 
1066 	percpu_ref_get(&ctx->reqs);
1067 	req->ki_ctx = ctx;
1068 	INIT_LIST_HEAD(&req->ki_list);
1069 	refcount_set(&req->ki_refcnt, 2);
1070 	req->ki_eventfd = NULL;
1071 	return req;
1072 }
1073 
1074 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1075 {
1076 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1077 	struct mm_struct *mm = current->mm;
1078 	struct kioctx *ctx, *ret = NULL;
1079 	struct kioctx_table *table;
1080 	unsigned id;
1081 
1082 	if (get_user(id, &ring->id))
1083 		return NULL;
1084 
1085 	rcu_read_lock();
1086 	table = rcu_dereference(mm->ioctx_table);
1087 
1088 	if (!table || id >= table->nr)
1089 		goto out;
1090 
1091 	id = array_index_nospec(id, table->nr);
1092 	ctx = rcu_dereference(table->table[id]);
1093 	if (ctx && ctx->user_id == ctx_id) {
1094 		if (percpu_ref_tryget_live(&ctx->users))
1095 			ret = ctx;
1096 	}
1097 out:
1098 	rcu_read_unlock();
1099 	return ret;
1100 }
1101 
1102 static inline void iocb_destroy(struct aio_kiocb *iocb)
1103 {
1104 	if (iocb->ki_eventfd)
1105 		eventfd_ctx_put(iocb->ki_eventfd);
1106 	if (iocb->ki_filp)
1107 		fput(iocb->ki_filp);
1108 	percpu_ref_put(&iocb->ki_ctx->reqs);
1109 	kmem_cache_free(kiocb_cachep, iocb);
1110 }
1111 
1112 struct aio_waiter {
1113 	struct wait_queue_entry	w;
1114 	size_t			min_nr;
1115 };
1116 
1117 /* aio_complete
1118  *	Called when the io request on the given iocb is complete.
1119  */
1120 static void aio_complete(struct aio_kiocb *iocb)
1121 {
1122 	struct kioctx	*ctx = iocb->ki_ctx;
1123 	struct aio_ring	*ring;
1124 	struct io_event	*ev_page, *event;
1125 	unsigned tail, pos, head, avail;
1126 	unsigned long	flags;
1127 
1128 	/*
1129 	 * Add a completion event to the ring buffer. Must be done holding
1130 	 * ctx->completion_lock to prevent other code from messing with the tail
1131 	 * pointer since we might be called from irq context.
1132 	 */
1133 	spin_lock_irqsave(&ctx->completion_lock, flags);
1134 
1135 	tail = ctx->tail;
1136 	pos = tail + AIO_EVENTS_OFFSET;
1137 
1138 	if (++tail >= ctx->nr_events)
1139 		tail = 0;
1140 
1141 	ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1142 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1143 
1144 	*event = iocb->ki_res;
1145 
1146 	flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1147 
1148 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1149 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1150 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1151 
1152 	/* after flagging the request as done, we
1153 	 * must never even look at it again
1154 	 */
1155 	smp_wmb();	/* make event visible before updating tail */
1156 
1157 	ctx->tail = tail;
1158 
1159 	ring = folio_address(ctx->ring_folios[0]);
1160 	head = ring->head;
1161 	ring->tail = tail;
1162 	flush_dcache_folio(ctx->ring_folios[0]);
1163 
1164 	ctx->completed_events++;
1165 	if (ctx->completed_events > 1)
1166 		refill_reqs_available(ctx, head, tail);
1167 
1168 	avail = tail > head
1169 		? tail - head
1170 		: tail + ctx->nr_events - head;
1171 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1172 
1173 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1174 
1175 	/*
1176 	 * Check if the user asked us to deliver the result through an
1177 	 * eventfd. The eventfd_signal() function is safe to be called
1178 	 * from IRQ context.
1179 	 */
1180 	if (iocb->ki_eventfd)
1181 		eventfd_signal(iocb->ki_eventfd);
1182 
1183 	/*
1184 	 * We have to order our ring_info tail store above and test
1185 	 * of the wait list below outside the wait lock.  This is
1186 	 * like in wake_up_bit() where clearing a bit has to be
1187 	 * ordered with the unlocked test.
1188 	 */
1189 	smp_mb();
1190 
1191 	if (waitqueue_active(&ctx->wait)) {
1192 		struct aio_waiter *curr, *next;
1193 		unsigned long flags;
1194 
1195 		spin_lock_irqsave(&ctx->wait.lock, flags);
1196 		list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1197 			if (avail >= curr->min_nr) {
1198 				wake_up_process(curr->w.private);
1199 				list_del_init_careful(&curr->w.entry);
1200 			}
1201 		spin_unlock_irqrestore(&ctx->wait.lock, flags);
1202 	}
1203 }
1204 
1205 static inline void iocb_put(struct aio_kiocb *iocb)
1206 {
1207 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1208 		aio_complete(iocb);
1209 		iocb_destroy(iocb);
1210 	}
1211 }
1212 
1213 /* aio_read_events_ring
1214  *	Pull an event off of the ioctx's event ring.  Returns the number of
1215  *	events fetched
1216  */
1217 static long aio_read_events_ring(struct kioctx *ctx,
1218 				 struct io_event __user *event, long nr)
1219 {
1220 	struct aio_ring *ring;
1221 	unsigned head, tail, pos;
1222 	long ret = 0;
1223 	int copy_ret;
1224 
1225 	/*
1226 	 * The mutex can block and wake us up and that will cause
1227 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1228 	 * and repeat. This should be rare enough that it doesn't cause
1229 	 * peformance issues. See the comment in read_events() for more detail.
1230 	 */
1231 	sched_annotate_sleep();
1232 	mutex_lock(&ctx->ring_lock);
1233 
1234 	/* Access to ->ring_folios here is protected by ctx->ring_lock. */
1235 	ring = folio_address(ctx->ring_folios[0]);
1236 	head = ring->head;
1237 	tail = ring->tail;
1238 
1239 	/*
1240 	 * Ensure that once we've read the current tail pointer, that
1241 	 * we also see the events that were stored up to the tail.
1242 	 */
1243 	smp_rmb();
1244 
1245 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1246 
1247 	if (head == tail)
1248 		goto out;
1249 
1250 	head %= ctx->nr_events;
1251 	tail %= ctx->nr_events;
1252 
1253 	while (ret < nr) {
1254 		long avail;
1255 		struct io_event *ev;
1256 		struct folio *folio;
1257 
1258 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1259 		if (head == tail)
1260 			break;
1261 
1262 		pos = head + AIO_EVENTS_OFFSET;
1263 		folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE];
1264 		pos %= AIO_EVENTS_PER_PAGE;
1265 
1266 		avail = min(avail, nr - ret);
1267 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1268 
1269 		ev = folio_address(folio);
1270 		copy_ret = copy_to_user(event + ret, ev + pos,
1271 					sizeof(*ev) * avail);
1272 
1273 		if (unlikely(copy_ret)) {
1274 			ret = -EFAULT;
1275 			goto out;
1276 		}
1277 
1278 		ret += avail;
1279 		head += avail;
1280 		head %= ctx->nr_events;
1281 	}
1282 
1283 	ring = folio_address(ctx->ring_folios[0]);
1284 	ring->head = head;
1285 	flush_dcache_folio(ctx->ring_folios[0]);
1286 
1287 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1288 out:
1289 	mutex_unlock(&ctx->ring_lock);
1290 
1291 	return ret;
1292 }
1293 
1294 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1295 			    struct io_event __user *event, long *i)
1296 {
1297 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1298 
1299 	if (ret > 0)
1300 		*i += ret;
1301 
1302 	if (unlikely(atomic_read(&ctx->dead)))
1303 		ret = -EINVAL;
1304 
1305 	if (!*i)
1306 		*i = ret;
1307 
1308 	return ret < 0 || *i >= min_nr;
1309 }
1310 
1311 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1312 			struct io_event __user *event,
1313 			ktime_t until)
1314 {
1315 	struct hrtimer_sleeper	t;
1316 	struct aio_waiter	w;
1317 	long ret = 0, ret2 = 0;
1318 
1319 	/*
1320 	 * Note that aio_read_events() is being called as the conditional - i.e.
1321 	 * we're calling it after prepare_to_wait() has set task state to
1322 	 * TASK_INTERRUPTIBLE.
1323 	 *
1324 	 * But aio_read_events() can block, and if it blocks it's going to flip
1325 	 * the task state back to TASK_RUNNING.
1326 	 *
1327 	 * This should be ok, provided it doesn't flip the state back to
1328 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1329 	 * will only happen if the mutex_lock() call blocks, and we then find
1330 	 * the ringbuffer empty. So in practice we should be ok, but it's
1331 	 * something to be aware of when touching this code.
1332 	 */
1333 	aio_read_events(ctx, min_nr, nr, event, &ret);
1334 	if (until == 0 || ret < 0 || ret >= min_nr)
1335 		return ret;
1336 
1337 	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1338 	if (until != KTIME_MAX) {
1339 		hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1340 		hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1341 	}
1342 
1343 	init_wait(&w.w);
1344 
1345 	while (1) {
1346 		unsigned long nr_got = ret;
1347 
1348 		w.min_nr = min_nr - ret;
1349 
1350 		ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1351 		if (!ret2 && !t.task)
1352 			ret2 = -ETIME;
1353 
1354 		if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1355 			break;
1356 
1357 		if (nr_got == ret)
1358 			schedule();
1359 	}
1360 
1361 	finish_wait(&ctx->wait, &w.w);
1362 	hrtimer_cancel(&t.timer);
1363 	destroy_hrtimer_on_stack(&t.timer);
1364 
1365 	return ret;
1366 }
1367 
1368 /* sys_io_setup:
1369  *	Create an aio_context capable of receiving at least nr_events.
1370  *	ctxp must not point to an aio_context that already exists, and
1371  *	must be initialized to 0 prior to the call.  On successful
1372  *	creation of the aio_context, *ctxp is filled in with the resulting
1373  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1374  *	if the specified nr_events exceeds internal limits.  May fail
1375  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1376  *	of available events.  May fail with -ENOMEM if insufficient kernel
1377  *	resources are available.  May fail with -EFAULT if an invalid
1378  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1379  *	implemented.
1380  */
1381 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1382 {
1383 	struct kioctx *ioctx = NULL;
1384 	unsigned long ctx;
1385 	long ret;
1386 
1387 	ret = get_user(ctx, ctxp);
1388 	if (unlikely(ret))
1389 		goto out;
1390 
1391 	ret = -EINVAL;
1392 	if (unlikely(ctx || nr_events == 0)) {
1393 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1394 		         ctx, nr_events);
1395 		goto out;
1396 	}
1397 
1398 	ioctx = ioctx_alloc(nr_events);
1399 	ret = PTR_ERR(ioctx);
1400 	if (!IS_ERR(ioctx)) {
1401 		ret = put_user(ioctx->user_id, ctxp);
1402 		if (ret)
1403 			kill_ioctx(current->mm, ioctx, NULL);
1404 		percpu_ref_put(&ioctx->users);
1405 	}
1406 
1407 out:
1408 	return ret;
1409 }
1410 
1411 #ifdef CONFIG_COMPAT
1412 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1413 {
1414 	struct kioctx *ioctx = NULL;
1415 	unsigned long ctx;
1416 	long ret;
1417 
1418 	ret = get_user(ctx, ctx32p);
1419 	if (unlikely(ret))
1420 		goto out;
1421 
1422 	ret = -EINVAL;
1423 	if (unlikely(ctx || nr_events == 0)) {
1424 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1425 		         ctx, nr_events);
1426 		goto out;
1427 	}
1428 
1429 	ioctx = ioctx_alloc(nr_events);
1430 	ret = PTR_ERR(ioctx);
1431 	if (!IS_ERR(ioctx)) {
1432 		/* truncating is ok because it's a user address */
1433 		ret = put_user((u32)ioctx->user_id, ctx32p);
1434 		if (ret)
1435 			kill_ioctx(current->mm, ioctx, NULL);
1436 		percpu_ref_put(&ioctx->users);
1437 	}
1438 
1439 out:
1440 	return ret;
1441 }
1442 #endif
1443 
1444 /* sys_io_destroy:
1445  *	Destroy the aio_context specified.  May cancel any outstanding
1446  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1447  *	implemented.  May fail with -EINVAL if the context pointed to
1448  *	is invalid.
1449  */
1450 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1451 {
1452 	struct kioctx *ioctx = lookup_ioctx(ctx);
1453 	if (likely(NULL != ioctx)) {
1454 		struct ctx_rq_wait wait;
1455 		int ret;
1456 
1457 		init_completion(&wait.comp);
1458 		atomic_set(&wait.count, 1);
1459 
1460 		/* Pass requests_done to kill_ioctx() where it can be set
1461 		 * in a thread-safe way. If we try to set it here then we have
1462 		 * a race condition if two io_destroy() called simultaneously.
1463 		 */
1464 		ret = kill_ioctx(current->mm, ioctx, &wait);
1465 		percpu_ref_put(&ioctx->users);
1466 
1467 		/* Wait until all IO for the context are done. Otherwise kernel
1468 		 * keep using user-space buffers even if user thinks the context
1469 		 * is destroyed.
1470 		 */
1471 		if (!ret)
1472 			wait_for_completion(&wait.comp);
1473 
1474 		return ret;
1475 	}
1476 	pr_debug("EINVAL: invalid context id\n");
1477 	return -EINVAL;
1478 }
1479 
1480 static void aio_remove_iocb(struct aio_kiocb *iocb)
1481 {
1482 	struct kioctx *ctx = iocb->ki_ctx;
1483 	unsigned long flags;
1484 
1485 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1486 	list_del(&iocb->ki_list);
1487 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1488 }
1489 
1490 static void aio_complete_rw(struct kiocb *kiocb, long res)
1491 {
1492 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1493 
1494 	if (!list_empty_careful(&iocb->ki_list))
1495 		aio_remove_iocb(iocb);
1496 
1497 	if (kiocb->ki_flags & IOCB_WRITE) {
1498 		struct inode *inode = file_inode(kiocb->ki_filp);
1499 
1500 		if (S_ISREG(inode->i_mode))
1501 			kiocb_end_write(kiocb);
1502 	}
1503 
1504 	iocb->ki_res.res = res;
1505 	iocb->ki_res.res2 = 0;
1506 	iocb_put(iocb);
1507 }
1508 
1509 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1510 {
1511 	int ret;
1512 
1513 	req->ki_complete = aio_complete_rw;
1514 	req->private = NULL;
1515 	req->ki_pos = iocb->aio_offset;
1516 	req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1517 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1518 		req->ki_flags |= IOCB_EVENTFD;
1519 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1520 		/*
1521 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1522 		 * aio_reqprio is interpreted as an I/O scheduling
1523 		 * class and priority.
1524 		 */
1525 		ret = ioprio_check_cap(iocb->aio_reqprio);
1526 		if (ret) {
1527 			pr_debug("aio ioprio check cap error: %d\n", ret);
1528 			return ret;
1529 		}
1530 
1531 		req->ki_ioprio = iocb->aio_reqprio;
1532 	} else
1533 		req->ki_ioprio = get_current_ioprio();
1534 
1535 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1536 	if (unlikely(ret))
1537 		return ret;
1538 
1539 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1540 	return 0;
1541 }
1542 
1543 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1544 		struct iovec **iovec, bool vectored, bool compat,
1545 		struct iov_iter *iter)
1546 {
1547 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1548 	size_t len = iocb->aio_nbytes;
1549 
1550 	if (!vectored) {
1551 		ssize_t ret = import_ubuf(rw, buf, len, iter);
1552 		*iovec = NULL;
1553 		return ret;
1554 	}
1555 
1556 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1557 }
1558 
1559 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1560 {
1561 	switch (ret) {
1562 	case -EIOCBQUEUED:
1563 		break;
1564 	case -ERESTARTSYS:
1565 	case -ERESTARTNOINTR:
1566 	case -ERESTARTNOHAND:
1567 	case -ERESTART_RESTARTBLOCK:
1568 		/*
1569 		 * There's no easy way to restart the syscall since other AIO's
1570 		 * may be already running. Just fail this IO with EINTR.
1571 		 */
1572 		ret = -EINTR;
1573 		fallthrough;
1574 	default:
1575 		req->ki_complete(req, ret);
1576 	}
1577 }
1578 
1579 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1580 			bool vectored, bool compat)
1581 {
1582 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1583 	struct iov_iter iter;
1584 	struct file *file;
1585 	int ret;
1586 
1587 	ret = aio_prep_rw(req, iocb);
1588 	if (ret)
1589 		return ret;
1590 	file = req->ki_filp;
1591 	if (unlikely(!(file->f_mode & FMODE_READ)))
1592 		return -EBADF;
1593 	if (unlikely(!file->f_op->read_iter))
1594 		return -EINVAL;
1595 
1596 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1597 	if (ret < 0)
1598 		return ret;
1599 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1600 	if (!ret)
1601 		aio_rw_done(req, file->f_op->read_iter(req, &iter));
1602 	kfree(iovec);
1603 	return ret;
1604 }
1605 
1606 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1607 			 bool vectored, bool compat)
1608 {
1609 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1610 	struct iov_iter iter;
1611 	struct file *file;
1612 	int ret;
1613 
1614 	ret = aio_prep_rw(req, iocb);
1615 	if (ret)
1616 		return ret;
1617 	file = req->ki_filp;
1618 
1619 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1620 		return -EBADF;
1621 	if (unlikely(!file->f_op->write_iter))
1622 		return -EINVAL;
1623 
1624 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1625 	if (ret < 0)
1626 		return ret;
1627 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1628 	if (!ret) {
1629 		if (S_ISREG(file_inode(file)->i_mode))
1630 			kiocb_start_write(req);
1631 		req->ki_flags |= IOCB_WRITE;
1632 		aio_rw_done(req, file->f_op->write_iter(req, &iter));
1633 	}
1634 	kfree(iovec);
1635 	return ret;
1636 }
1637 
1638 static void aio_fsync_work(struct work_struct *work)
1639 {
1640 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1641 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1642 
1643 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1644 	revert_creds(old_cred);
1645 	put_cred(iocb->fsync.creds);
1646 	iocb_put(iocb);
1647 }
1648 
1649 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1650 		     bool datasync)
1651 {
1652 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1653 			iocb->aio_rw_flags))
1654 		return -EINVAL;
1655 
1656 	if (unlikely(!req->file->f_op->fsync))
1657 		return -EINVAL;
1658 
1659 	req->creds = prepare_creds();
1660 	if (!req->creds)
1661 		return -ENOMEM;
1662 
1663 	req->datasync = datasync;
1664 	INIT_WORK(&req->work, aio_fsync_work);
1665 	schedule_work(&req->work);
1666 	return 0;
1667 }
1668 
1669 static void aio_poll_put_work(struct work_struct *work)
1670 {
1671 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1672 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1673 
1674 	iocb_put(iocb);
1675 }
1676 
1677 /*
1678  * Safely lock the waitqueue which the request is on, synchronizing with the
1679  * case where the ->poll() provider decides to free its waitqueue early.
1680  *
1681  * Returns true on success, meaning that req->head->lock was locked, req->wait
1682  * is on req->head, and an RCU read lock was taken.  Returns false if the
1683  * request was already removed from its waitqueue (which might no longer exist).
1684  */
1685 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1686 {
1687 	wait_queue_head_t *head;
1688 
1689 	/*
1690 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1691 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1692 	 * lock in the first place can race with the waitqueue being freed.
1693 	 *
1694 	 * We solve this as eventpoll does: by taking advantage of the fact that
1695 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1696 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1697 	 * non-NULL, we can then lock it without the memory being freed out from
1698 	 * under us, then check whether the request is still on the queue.
1699 	 *
1700 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1701 	 * case the caller deletes the entry from the queue, leaving it empty.
1702 	 * In that case, only RCU prevents the queue memory from being freed.
1703 	 */
1704 	rcu_read_lock();
1705 	head = smp_load_acquire(&req->head);
1706 	if (head) {
1707 		spin_lock(&head->lock);
1708 		if (!list_empty(&req->wait.entry))
1709 			return true;
1710 		spin_unlock(&head->lock);
1711 	}
1712 	rcu_read_unlock();
1713 	return false;
1714 }
1715 
1716 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1717 {
1718 	spin_unlock(&req->head->lock);
1719 	rcu_read_unlock();
1720 }
1721 
1722 static void aio_poll_complete_work(struct work_struct *work)
1723 {
1724 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1725 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1726 	struct poll_table_struct pt = { ._key = req->events };
1727 	struct kioctx *ctx = iocb->ki_ctx;
1728 	__poll_t mask = 0;
1729 
1730 	if (!READ_ONCE(req->cancelled))
1731 		mask = vfs_poll(req->file, &pt) & req->events;
1732 
1733 	/*
1734 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1735 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1736 	 * synchronize with them.  In the cancellation case the list_del_init
1737 	 * itself is not actually needed, but harmless so we keep it in to
1738 	 * avoid further branches in the fast path.
1739 	 */
1740 	spin_lock_irq(&ctx->ctx_lock);
1741 	if (poll_iocb_lock_wq(req)) {
1742 		if (!mask && !READ_ONCE(req->cancelled)) {
1743 			/*
1744 			 * The request isn't actually ready to be completed yet.
1745 			 * Reschedule completion if another wakeup came in.
1746 			 */
1747 			if (req->work_need_resched) {
1748 				schedule_work(&req->work);
1749 				req->work_need_resched = false;
1750 			} else {
1751 				req->work_scheduled = false;
1752 			}
1753 			poll_iocb_unlock_wq(req);
1754 			spin_unlock_irq(&ctx->ctx_lock);
1755 			return;
1756 		}
1757 		list_del_init(&req->wait.entry);
1758 		poll_iocb_unlock_wq(req);
1759 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1760 	list_del_init(&iocb->ki_list);
1761 	iocb->ki_res.res = mangle_poll(mask);
1762 	spin_unlock_irq(&ctx->ctx_lock);
1763 
1764 	iocb_put(iocb);
1765 }
1766 
1767 /* assumes we are called with irqs disabled */
1768 static int aio_poll_cancel(struct kiocb *iocb)
1769 {
1770 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1771 	struct poll_iocb *req = &aiocb->poll;
1772 
1773 	if (poll_iocb_lock_wq(req)) {
1774 		WRITE_ONCE(req->cancelled, true);
1775 		if (!req->work_scheduled) {
1776 			schedule_work(&aiocb->poll.work);
1777 			req->work_scheduled = true;
1778 		}
1779 		poll_iocb_unlock_wq(req);
1780 	} /* else, the request was force-cancelled by POLLFREE already */
1781 
1782 	return 0;
1783 }
1784 
1785 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1786 		void *key)
1787 {
1788 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1789 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1790 	__poll_t mask = key_to_poll(key);
1791 	unsigned long flags;
1792 
1793 	/* for instances that support it check for an event match first: */
1794 	if (mask && !(mask & req->events))
1795 		return 0;
1796 
1797 	/*
1798 	 * Complete the request inline if possible.  This requires that three
1799 	 * conditions be met:
1800 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1801 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1802 	 *	the events, so inline completion isn't possible.
1803 	 *   2. The completion work must not have already been scheduled.
1804 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1805 	 *	already hold the waitqueue lock, so this inverts the normal
1806 	 *	locking order.  Use irqsave/irqrestore because not all
1807 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1808 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1809 	 */
1810 	if (mask && !req->work_scheduled &&
1811 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1812 		struct kioctx *ctx = iocb->ki_ctx;
1813 
1814 		list_del_init(&req->wait.entry);
1815 		list_del(&iocb->ki_list);
1816 		iocb->ki_res.res = mangle_poll(mask);
1817 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1818 			iocb = NULL;
1819 			INIT_WORK(&req->work, aio_poll_put_work);
1820 			schedule_work(&req->work);
1821 		}
1822 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1823 		if (iocb)
1824 			iocb_put(iocb);
1825 	} else {
1826 		/*
1827 		 * Schedule the completion work if needed.  If it was already
1828 		 * scheduled, record that another wakeup came in.
1829 		 *
1830 		 * Don't remove the request from the waitqueue here, as it might
1831 		 * not actually be complete yet (we won't know until vfs_poll()
1832 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1833 		 * exception to this; see below.
1834 		 */
1835 		if (req->work_scheduled) {
1836 			req->work_need_resched = true;
1837 		} else {
1838 			schedule_work(&req->work);
1839 			req->work_scheduled = true;
1840 		}
1841 
1842 		/*
1843 		 * If the waitqueue is being freed early but we can't complete
1844 		 * the request inline, we have to tear down the request as best
1845 		 * we can.  That means immediately removing the request from its
1846 		 * waitqueue and preventing all further accesses to the
1847 		 * waitqueue via the request.  We also need to schedule the
1848 		 * completion work (done above).  Also mark the request as
1849 		 * cancelled, to potentially skip an unneeded call to ->poll().
1850 		 */
1851 		if (mask & POLLFREE) {
1852 			WRITE_ONCE(req->cancelled, true);
1853 			list_del_init(&req->wait.entry);
1854 
1855 			/*
1856 			 * Careful: this *must* be the last step, since as soon
1857 			 * as req->head is NULL'ed out, the request can be
1858 			 * completed and freed, since aio_poll_complete_work()
1859 			 * will no longer need to take the waitqueue lock.
1860 			 */
1861 			smp_store_release(&req->head, NULL);
1862 		}
1863 	}
1864 	return 1;
1865 }
1866 
1867 struct aio_poll_table {
1868 	struct poll_table_struct	pt;
1869 	struct aio_kiocb		*iocb;
1870 	bool				queued;
1871 	int				error;
1872 };
1873 
1874 static void
1875 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1876 		struct poll_table_struct *p)
1877 {
1878 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1879 
1880 	/* multiple wait queues per file are not supported */
1881 	if (unlikely(pt->queued)) {
1882 		pt->error = -EINVAL;
1883 		return;
1884 	}
1885 
1886 	pt->queued = true;
1887 	pt->error = 0;
1888 	pt->iocb->poll.head = head;
1889 	add_wait_queue(head, &pt->iocb->poll.wait);
1890 }
1891 
1892 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1893 {
1894 	struct kioctx *ctx = aiocb->ki_ctx;
1895 	struct poll_iocb *req = &aiocb->poll;
1896 	struct aio_poll_table apt;
1897 	bool cancel = false;
1898 	__poll_t mask;
1899 
1900 	/* reject any unknown events outside the normal event mask. */
1901 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1902 		return -EINVAL;
1903 	/* reject fields that are not defined for poll */
1904 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1905 		return -EINVAL;
1906 
1907 	INIT_WORK(&req->work, aio_poll_complete_work);
1908 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1909 
1910 	req->head = NULL;
1911 	req->cancelled = false;
1912 	req->work_scheduled = false;
1913 	req->work_need_resched = false;
1914 
1915 	apt.pt._qproc = aio_poll_queue_proc;
1916 	apt.pt._key = req->events;
1917 	apt.iocb = aiocb;
1918 	apt.queued = false;
1919 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1920 
1921 	/* initialized the list so that we can do list_empty checks */
1922 	INIT_LIST_HEAD(&req->wait.entry);
1923 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1924 
1925 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1926 	spin_lock_irq(&ctx->ctx_lock);
1927 	if (likely(apt.queued)) {
1928 		bool on_queue = poll_iocb_lock_wq(req);
1929 
1930 		if (!on_queue || req->work_scheduled) {
1931 			/*
1932 			 * aio_poll_wake() already either scheduled the async
1933 			 * completion work, or completed the request inline.
1934 			 */
1935 			if (apt.error) /* unsupported case: multiple queues */
1936 				cancel = true;
1937 			apt.error = 0;
1938 			mask = 0;
1939 		}
1940 		if (mask || apt.error) {
1941 			/* Steal to complete synchronously. */
1942 			list_del_init(&req->wait.entry);
1943 		} else if (cancel) {
1944 			/* Cancel if possible (may be too late though). */
1945 			WRITE_ONCE(req->cancelled, true);
1946 		} else if (on_queue) {
1947 			/*
1948 			 * Actually waiting for an event, so add the request to
1949 			 * active_reqs so that it can be cancelled if needed.
1950 			 */
1951 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1952 			aiocb->ki_cancel = aio_poll_cancel;
1953 		}
1954 		if (on_queue)
1955 			poll_iocb_unlock_wq(req);
1956 	}
1957 	if (mask) { /* no async, we'd stolen it */
1958 		aiocb->ki_res.res = mangle_poll(mask);
1959 		apt.error = 0;
1960 	}
1961 	spin_unlock_irq(&ctx->ctx_lock);
1962 	if (mask)
1963 		iocb_put(aiocb);
1964 	return apt.error;
1965 }
1966 
1967 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1968 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1969 			   bool compat)
1970 {
1971 	req->ki_filp = fget(iocb->aio_fildes);
1972 	if (unlikely(!req->ki_filp))
1973 		return -EBADF;
1974 
1975 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1976 		struct eventfd_ctx *eventfd;
1977 		/*
1978 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1979 		 * instance of the file* now. The file descriptor must be
1980 		 * an eventfd() fd, and will be signaled for each completed
1981 		 * event using the eventfd_signal() function.
1982 		 */
1983 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1984 		if (IS_ERR(eventfd))
1985 			return PTR_ERR(eventfd);
1986 
1987 		req->ki_eventfd = eventfd;
1988 	}
1989 
1990 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1991 		pr_debug("EFAULT: aio_key\n");
1992 		return -EFAULT;
1993 	}
1994 
1995 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1996 	req->ki_res.data = iocb->aio_data;
1997 	req->ki_res.res = 0;
1998 	req->ki_res.res2 = 0;
1999 
2000 	switch (iocb->aio_lio_opcode) {
2001 	case IOCB_CMD_PREAD:
2002 		return aio_read(&req->rw, iocb, false, compat);
2003 	case IOCB_CMD_PWRITE:
2004 		return aio_write(&req->rw, iocb, false, compat);
2005 	case IOCB_CMD_PREADV:
2006 		return aio_read(&req->rw, iocb, true, compat);
2007 	case IOCB_CMD_PWRITEV:
2008 		return aio_write(&req->rw, iocb, true, compat);
2009 	case IOCB_CMD_FSYNC:
2010 		return aio_fsync(&req->fsync, iocb, false);
2011 	case IOCB_CMD_FDSYNC:
2012 		return aio_fsync(&req->fsync, iocb, true);
2013 	case IOCB_CMD_POLL:
2014 		return aio_poll(req, iocb);
2015 	default:
2016 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2017 		return -EINVAL;
2018 	}
2019 }
2020 
2021 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2022 			 bool compat)
2023 {
2024 	struct aio_kiocb *req;
2025 	struct iocb iocb;
2026 	int err;
2027 
2028 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2029 		return -EFAULT;
2030 
2031 	/* enforce forwards compatibility on users */
2032 	if (unlikely(iocb.aio_reserved2)) {
2033 		pr_debug("EINVAL: reserve field set\n");
2034 		return -EINVAL;
2035 	}
2036 
2037 	/* prevent overflows */
2038 	if (unlikely(
2039 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2040 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2041 	    ((ssize_t)iocb.aio_nbytes < 0)
2042 	   )) {
2043 		pr_debug("EINVAL: overflow check\n");
2044 		return -EINVAL;
2045 	}
2046 
2047 	req = aio_get_req(ctx);
2048 	if (unlikely(!req))
2049 		return -EAGAIN;
2050 
2051 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2052 
2053 	/* Done with the synchronous reference */
2054 	iocb_put(req);
2055 
2056 	/*
2057 	 * If err is 0, we'd either done aio_complete() ourselves or have
2058 	 * arranged for that to be done asynchronously.  Anything non-zero
2059 	 * means that we need to destroy req ourselves.
2060 	 */
2061 	if (unlikely(err)) {
2062 		iocb_destroy(req);
2063 		put_reqs_available(ctx, 1);
2064 	}
2065 	return err;
2066 }
2067 
2068 /* sys_io_submit:
2069  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2070  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2071  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2072  *	*iocbpp[0] is not properly initialized, if the operation specified
2073  *	is invalid for the file descriptor in the iocb.  May fail with
2074  *	-EFAULT if any of the data structures point to invalid data.  May
2075  *	fail with -EBADF if the file descriptor specified in the first
2076  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2077  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2078  *	fail with -ENOSYS if not implemented.
2079  */
2080 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2081 		struct iocb __user * __user *, iocbpp)
2082 {
2083 	struct kioctx *ctx;
2084 	long ret = 0;
2085 	int i = 0;
2086 	struct blk_plug plug;
2087 
2088 	if (unlikely(nr < 0))
2089 		return -EINVAL;
2090 
2091 	ctx = lookup_ioctx(ctx_id);
2092 	if (unlikely(!ctx)) {
2093 		pr_debug("EINVAL: invalid context id\n");
2094 		return -EINVAL;
2095 	}
2096 
2097 	if (nr > ctx->nr_events)
2098 		nr = ctx->nr_events;
2099 
2100 	if (nr > AIO_PLUG_THRESHOLD)
2101 		blk_start_plug(&plug);
2102 	for (i = 0; i < nr; i++) {
2103 		struct iocb __user *user_iocb;
2104 
2105 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2106 			ret = -EFAULT;
2107 			break;
2108 		}
2109 
2110 		ret = io_submit_one(ctx, user_iocb, false);
2111 		if (ret)
2112 			break;
2113 	}
2114 	if (nr > AIO_PLUG_THRESHOLD)
2115 		blk_finish_plug(&plug);
2116 
2117 	percpu_ref_put(&ctx->users);
2118 	return i ? i : ret;
2119 }
2120 
2121 #ifdef CONFIG_COMPAT
2122 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2123 		       int, nr, compat_uptr_t __user *, iocbpp)
2124 {
2125 	struct kioctx *ctx;
2126 	long ret = 0;
2127 	int i = 0;
2128 	struct blk_plug plug;
2129 
2130 	if (unlikely(nr < 0))
2131 		return -EINVAL;
2132 
2133 	ctx = lookup_ioctx(ctx_id);
2134 	if (unlikely(!ctx)) {
2135 		pr_debug("EINVAL: invalid context id\n");
2136 		return -EINVAL;
2137 	}
2138 
2139 	if (nr > ctx->nr_events)
2140 		nr = ctx->nr_events;
2141 
2142 	if (nr > AIO_PLUG_THRESHOLD)
2143 		blk_start_plug(&plug);
2144 	for (i = 0; i < nr; i++) {
2145 		compat_uptr_t user_iocb;
2146 
2147 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2148 			ret = -EFAULT;
2149 			break;
2150 		}
2151 
2152 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2153 		if (ret)
2154 			break;
2155 	}
2156 	if (nr > AIO_PLUG_THRESHOLD)
2157 		blk_finish_plug(&plug);
2158 
2159 	percpu_ref_put(&ctx->users);
2160 	return i ? i : ret;
2161 }
2162 #endif
2163 
2164 /* sys_io_cancel:
2165  *	Attempts to cancel an iocb previously passed to io_submit.  If
2166  *	the operation is successfully cancelled, the resulting event is
2167  *	copied into the memory pointed to by result without being placed
2168  *	into the completion queue and 0 is returned.  May fail with
2169  *	-EFAULT if any of the data structures pointed to are invalid.
2170  *	May fail with -EINVAL if aio_context specified by ctx_id is
2171  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2172  *	cancelled.  Will fail with -ENOSYS if not implemented.
2173  */
2174 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2175 		struct io_event __user *, result)
2176 {
2177 	struct kioctx *ctx;
2178 	struct aio_kiocb *kiocb;
2179 	int ret = -EINVAL;
2180 	u32 key;
2181 	u64 obj = (u64)(unsigned long)iocb;
2182 
2183 	if (unlikely(get_user(key, &iocb->aio_key)))
2184 		return -EFAULT;
2185 	if (unlikely(key != KIOCB_KEY))
2186 		return -EINVAL;
2187 
2188 	ctx = lookup_ioctx(ctx_id);
2189 	if (unlikely(!ctx))
2190 		return -EINVAL;
2191 
2192 	spin_lock_irq(&ctx->ctx_lock);
2193 	/* TODO: use a hash or array, this sucks. */
2194 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2195 		if (kiocb->ki_res.obj == obj) {
2196 			ret = kiocb->ki_cancel(&kiocb->rw);
2197 			list_del_init(&kiocb->ki_list);
2198 			break;
2199 		}
2200 	}
2201 	spin_unlock_irq(&ctx->ctx_lock);
2202 
2203 	if (!ret) {
2204 		/*
2205 		 * The result argument is no longer used - the io_event is
2206 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2207 		 * cancellation is progress:
2208 		 */
2209 		ret = -EINPROGRESS;
2210 	}
2211 
2212 	percpu_ref_put(&ctx->users);
2213 
2214 	return ret;
2215 }
2216 
2217 static long do_io_getevents(aio_context_t ctx_id,
2218 		long min_nr,
2219 		long nr,
2220 		struct io_event __user *events,
2221 		struct timespec64 *ts)
2222 {
2223 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2224 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2225 	long ret = -EINVAL;
2226 
2227 	if (likely(ioctx)) {
2228 		if (likely(min_nr <= nr && min_nr >= 0))
2229 			ret = read_events(ioctx, min_nr, nr, events, until);
2230 		percpu_ref_put(&ioctx->users);
2231 	}
2232 
2233 	return ret;
2234 }
2235 
2236 /* io_getevents:
2237  *	Attempts to read at least min_nr events and up to nr events from
2238  *	the completion queue for the aio_context specified by ctx_id. If
2239  *	it succeeds, the number of read events is returned. May fail with
2240  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2241  *	out of range, if timeout is out of range.  May fail with -EFAULT
2242  *	if any of the memory specified is invalid.  May return 0 or
2243  *	< min_nr if the timeout specified by timeout has elapsed
2244  *	before sufficient events are available, where timeout == NULL
2245  *	specifies an infinite timeout. Note that the timeout pointed to by
2246  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2247  */
2248 #ifdef CONFIG_64BIT
2249 
2250 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2251 		long, min_nr,
2252 		long, nr,
2253 		struct io_event __user *, events,
2254 		struct __kernel_timespec __user *, timeout)
2255 {
2256 	struct timespec64	ts;
2257 	int			ret;
2258 
2259 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2260 		return -EFAULT;
2261 
2262 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2263 	if (!ret && signal_pending(current))
2264 		ret = -EINTR;
2265 	return ret;
2266 }
2267 
2268 #endif
2269 
2270 struct __aio_sigset {
2271 	const sigset_t __user	*sigmask;
2272 	size_t		sigsetsize;
2273 };
2274 
2275 SYSCALL_DEFINE6(io_pgetevents,
2276 		aio_context_t, ctx_id,
2277 		long, min_nr,
2278 		long, nr,
2279 		struct io_event __user *, events,
2280 		struct __kernel_timespec __user *, timeout,
2281 		const struct __aio_sigset __user *, usig)
2282 {
2283 	struct __aio_sigset	ksig = { NULL, };
2284 	struct timespec64	ts;
2285 	bool interrupted;
2286 	int ret;
2287 
2288 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2289 		return -EFAULT;
2290 
2291 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2292 		return -EFAULT;
2293 
2294 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2295 	if (ret)
2296 		return ret;
2297 
2298 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2299 
2300 	interrupted = signal_pending(current);
2301 	restore_saved_sigmask_unless(interrupted);
2302 	if (interrupted && !ret)
2303 		ret = -ERESTARTNOHAND;
2304 
2305 	return ret;
2306 }
2307 
2308 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2309 
2310 SYSCALL_DEFINE6(io_pgetevents_time32,
2311 		aio_context_t, ctx_id,
2312 		long, min_nr,
2313 		long, nr,
2314 		struct io_event __user *, events,
2315 		struct old_timespec32 __user *, timeout,
2316 		const struct __aio_sigset __user *, usig)
2317 {
2318 	struct __aio_sigset	ksig = { NULL, };
2319 	struct timespec64	ts;
2320 	bool interrupted;
2321 	int ret;
2322 
2323 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2324 		return -EFAULT;
2325 
2326 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2327 		return -EFAULT;
2328 
2329 
2330 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2331 	if (ret)
2332 		return ret;
2333 
2334 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2335 
2336 	interrupted = signal_pending(current);
2337 	restore_saved_sigmask_unless(interrupted);
2338 	if (interrupted && !ret)
2339 		ret = -ERESTARTNOHAND;
2340 
2341 	return ret;
2342 }
2343 
2344 #endif
2345 
2346 #if defined(CONFIG_COMPAT_32BIT_TIME)
2347 
2348 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2349 		__s32, min_nr,
2350 		__s32, nr,
2351 		struct io_event __user *, events,
2352 		struct old_timespec32 __user *, timeout)
2353 {
2354 	struct timespec64 t;
2355 	int ret;
2356 
2357 	if (timeout && get_old_timespec32(&t, timeout))
2358 		return -EFAULT;
2359 
2360 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2361 	if (!ret && signal_pending(current))
2362 		ret = -EINTR;
2363 	return ret;
2364 }
2365 
2366 #endif
2367 
2368 #ifdef CONFIG_COMPAT
2369 
2370 struct __compat_aio_sigset {
2371 	compat_uptr_t		sigmask;
2372 	compat_size_t		sigsetsize;
2373 };
2374 
2375 #if defined(CONFIG_COMPAT_32BIT_TIME)
2376 
2377 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2378 		compat_aio_context_t, ctx_id,
2379 		compat_long_t, min_nr,
2380 		compat_long_t, nr,
2381 		struct io_event __user *, events,
2382 		struct old_timespec32 __user *, timeout,
2383 		const struct __compat_aio_sigset __user *, usig)
2384 {
2385 	struct __compat_aio_sigset ksig = { 0, };
2386 	struct timespec64 t;
2387 	bool interrupted;
2388 	int ret;
2389 
2390 	if (timeout && get_old_timespec32(&t, timeout))
2391 		return -EFAULT;
2392 
2393 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2394 		return -EFAULT;
2395 
2396 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2397 	if (ret)
2398 		return ret;
2399 
2400 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2401 
2402 	interrupted = signal_pending(current);
2403 	restore_saved_sigmask_unless(interrupted);
2404 	if (interrupted && !ret)
2405 		ret = -ERESTARTNOHAND;
2406 
2407 	return ret;
2408 }
2409 
2410 #endif
2411 
2412 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2413 		compat_aio_context_t, ctx_id,
2414 		compat_long_t, min_nr,
2415 		compat_long_t, nr,
2416 		struct io_event __user *, events,
2417 		struct __kernel_timespec __user *, timeout,
2418 		const struct __compat_aio_sigset __user *, usig)
2419 {
2420 	struct __compat_aio_sigset ksig = { 0, };
2421 	struct timespec64 t;
2422 	bool interrupted;
2423 	int ret;
2424 
2425 	if (timeout && get_timespec64(&t, timeout))
2426 		return -EFAULT;
2427 
2428 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2429 		return -EFAULT;
2430 
2431 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2432 	if (ret)
2433 		return ret;
2434 
2435 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2436 
2437 	interrupted = signal_pending(current);
2438 	restore_saved_sigmask_unless(interrupted);
2439 	if (interrupted && !ret)
2440 		ret = -ERESTARTNOHAND;
2441 
2442 	return ret;
2443 }
2444 #endif
2445