1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct ctx_rq_wait { 81 struct completion comp; 82 atomic_t count; 83 }; 84 85 struct kioctx { 86 struct percpu_ref users; 87 atomic_t dead; 88 89 struct percpu_ref reqs; 90 91 unsigned long user_id; 92 93 struct __percpu kioctx_cpu *cpu; 94 95 /* 96 * For percpu reqs_available, number of slots we move to/from global 97 * counter at a time: 98 */ 99 unsigned req_batch; 100 /* 101 * This is what userspace passed to io_setup(), it's not used for 102 * anything but counting against the global max_reqs quota. 103 * 104 * The real limit is nr_events - 1, which will be larger (see 105 * aio_setup_ring()) 106 */ 107 unsigned max_reqs; 108 109 /* Size of ringbuffer, in units of struct io_event */ 110 unsigned nr_events; 111 112 unsigned long mmap_base; 113 unsigned long mmap_size; 114 115 struct page **ring_pages; 116 long nr_pages; 117 118 struct work_struct free_work; 119 120 /* 121 * signals when all in-flight requests are done 122 */ 123 struct ctx_rq_wait *rq_wait; 124 125 struct { 126 /* 127 * This counts the number of available slots in the ringbuffer, 128 * so we avoid overflowing it: it's decremented (if positive) 129 * when allocating a kiocb and incremented when the resulting 130 * io_event is pulled off the ringbuffer. 131 * 132 * We batch accesses to it with a percpu version. 133 */ 134 atomic_t reqs_available; 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 spinlock_t ctx_lock; 139 struct list_head active_reqs; /* used for cancellation */ 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 struct mutex ring_lock; 144 wait_queue_head_t wait; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 unsigned tail; 149 unsigned completed_events; 150 spinlock_t completion_lock; 151 } ____cacheline_aligned_in_smp; 152 153 struct page *internal_pages[AIO_RING_PAGES]; 154 struct file *aio_ring_file; 155 156 unsigned id; 157 }; 158 159 /* 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either 161 * cancelled or completed (this makes a certain amount of sense because 162 * successful cancellation - io_cancel() - does deliver the completion to 163 * userspace). 164 * 165 * And since most things don't implement kiocb cancellation and we'd really like 166 * kiocb completion to be lockless when possible, we use ki_cancel to 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel(). 169 */ 170 #define KIOCB_CANCELLED ((void *) (~0ULL)) 171 172 struct aio_kiocb { 173 struct kiocb common; 174 175 struct kioctx *ki_ctx; 176 kiocb_cancel_fn *ki_cancel; 177 178 struct iocb __user *ki_user_iocb; /* user's aiocb */ 179 __u64 ki_user_data; /* user's data for completion */ 180 181 struct list_head ki_list; /* the aio core uses this 182 * for cancellation */ 183 184 /* 185 * If the aio_resfd field of the userspace iocb is not zero, 186 * this is the underlying eventfd context to deliver events to. 187 */ 188 struct eventfd_ctx *ki_eventfd; 189 }; 190 191 /*------ sysctl variables----*/ 192 static DEFINE_SPINLOCK(aio_nr_lock); 193 unsigned long aio_nr; /* current system wide number of aio requests */ 194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 195 /*----end sysctl variables---*/ 196 197 static struct kmem_cache *kiocb_cachep; 198 static struct kmem_cache *kioctx_cachep; 199 200 static struct vfsmount *aio_mnt; 201 202 static const struct file_operations aio_ring_fops; 203 static const struct address_space_operations aio_ctx_aops; 204 205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 206 { 207 struct qstr this = QSTR_INIT("[aio]", 5); 208 struct file *file; 209 struct path path; 210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 211 if (IS_ERR(inode)) 212 return ERR_CAST(inode); 213 214 inode->i_mapping->a_ops = &aio_ctx_aops; 215 inode->i_mapping->private_data = ctx; 216 inode->i_size = PAGE_SIZE * nr_pages; 217 218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 219 if (!path.dentry) { 220 iput(inode); 221 return ERR_PTR(-ENOMEM); 222 } 223 path.mnt = mntget(aio_mnt); 224 225 d_instantiate(path.dentry, inode); 226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 227 if (IS_ERR(file)) { 228 path_put(&path); 229 return file; 230 } 231 232 file->f_flags = O_RDWR; 233 return file; 234 } 235 236 static struct dentry *aio_mount(struct file_system_type *fs_type, 237 int flags, const char *dev_name, void *data) 238 { 239 static const struct dentry_operations ops = { 240 .d_dname = simple_dname, 241 }; 242 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops, 243 AIO_RING_MAGIC); 244 245 if (!IS_ERR(root)) 246 root->d_sb->s_iflags |= SB_I_NOEXEC; 247 return root; 248 } 249 250 /* aio_setup 251 * Creates the slab caches used by the aio routines, panic on 252 * failure as this is done early during the boot sequence. 253 */ 254 static int __init aio_setup(void) 255 { 256 static struct file_system_type aio_fs = { 257 .name = "aio", 258 .mount = aio_mount, 259 .kill_sb = kill_anon_super, 260 }; 261 aio_mnt = kern_mount(&aio_fs); 262 if (IS_ERR(aio_mnt)) 263 panic("Failed to create aio fs mount."); 264 265 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 266 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 267 268 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 269 270 return 0; 271 } 272 __initcall(aio_setup); 273 274 static void put_aio_ring_file(struct kioctx *ctx) 275 { 276 struct file *aio_ring_file = ctx->aio_ring_file; 277 if (aio_ring_file) { 278 truncate_setsize(aio_ring_file->f_inode, 0); 279 280 /* Prevent further access to the kioctx from migratepages */ 281 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 282 aio_ring_file->f_inode->i_mapping->private_data = NULL; 283 ctx->aio_ring_file = NULL; 284 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 285 286 fput(aio_ring_file); 287 } 288 } 289 290 static void aio_free_ring(struct kioctx *ctx) 291 { 292 int i; 293 294 /* Disconnect the kiotx from the ring file. This prevents future 295 * accesses to the kioctx from page migration. 296 */ 297 put_aio_ring_file(ctx); 298 299 for (i = 0; i < ctx->nr_pages; i++) { 300 struct page *page; 301 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 302 page_count(ctx->ring_pages[i])); 303 page = ctx->ring_pages[i]; 304 if (!page) 305 continue; 306 ctx->ring_pages[i] = NULL; 307 put_page(page); 308 } 309 310 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 311 kfree(ctx->ring_pages); 312 ctx->ring_pages = NULL; 313 } 314 } 315 316 static int aio_ring_mremap(struct vm_area_struct *vma) 317 { 318 struct file *file = vma->vm_file; 319 struct mm_struct *mm = vma->vm_mm; 320 struct kioctx_table *table; 321 int i, res = -EINVAL; 322 323 spin_lock(&mm->ioctx_lock); 324 rcu_read_lock(); 325 table = rcu_dereference(mm->ioctx_table); 326 for (i = 0; i < table->nr; i++) { 327 struct kioctx *ctx; 328 329 ctx = table->table[i]; 330 if (ctx && ctx->aio_ring_file == file) { 331 if (!atomic_read(&ctx->dead)) { 332 ctx->user_id = ctx->mmap_base = vma->vm_start; 333 res = 0; 334 } 335 break; 336 } 337 } 338 339 rcu_read_unlock(); 340 spin_unlock(&mm->ioctx_lock); 341 return res; 342 } 343 344 static const struct vm_operations_struct aio_ring_vm_ops = { 345 .mremap = aio_ring_mremap, 346 #if IS_ENABLED(CONFIG_MMU) 347 .fault = filemap_fault, 348 .map_pages = filemap_map_pages, 349 .page_mkwrite = filemap_page_mkwrite, 350 #endif 351 }; 352 353 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 354 { 355 vma->vm_flags |= VM_DONTEXPAND; 356 vma->vm_ops = &aio_ring_vm_ops; 357 return 0; 358 } 359 360 static const struct file_operations aio_ring_fops = { 361 .mmap = aio_ring_mmap, 362 }; 363 364 #if IS_ENABLED(CONFIG_MIGRATION) 365 static int aio_migratepage(struct address_space *mapping, struct page *new, 366 struct page *old, enum migrate_mode mode) 367 { 368 struct kioctx *ctx; 369 unsigned long flags; 370 pgoff_t idx; 371 int rc; 372 373 rc = 0; 374 375 /* mapping->private_lock here protects against the kioctx teardown. */ 376 spin_lock(&mapping->private_lock); 377 ctx = mapping->private_data; 378 if (!ctx) { 379 rc = -EINVAL; 380 goto out; 381 } 382 383 /* The ring_lock mutex. The prevents aio_read_events() from writing 384 * to the ring's head, and prevents page migration from mucking in 385 * a partially initialized kiotx. 386 */ 387 if (!mutex_trylock(&ctx->ring_lock)) { 388 rc = -EAGAIN; 389 goto out; 390 } 391 392 idx = old->index; 393 if (idx < (pgoff_t)ctx->nr_pages) { 394 /* Make sure the old page hasn't already been changed */ 395 if (ctx->ring_pages[idx] != old) 396 rc = -EAGAIN; 397 } else 398 rc = -EINVAL; 399 400 if (rc != 0) 401 goto out_unlock; 402 403 /* Writeback must be complete */ 404 BUG_ON(PageWriteback(old)); 405 get_page(new); 406 407 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 408 if (rc != MIGRATEPAGE_SUCCESS) { 409 put_page(new); 410 goto out_unlock; 411 } 412 413 /* Take completion_lock to prevent other writes to the ring buffer 414 * while the old page is copied to the new. This prevents new 415 * events from being lost. 416 */ 417 spin_lock_irqsave(&ctx->completion_lock, flags); 418 migrate_page_copy(new, old); 419 BUG_ON(ctx->ring_pages[idx] != old); 420 ctx->ring_pages[idx] = new; 421 spin_unlock_irqrestore(&ctx->completion_lock, flags); 422 423 /* The old page is no longer accessible. */ 424 put_page(old); 425 426 out_unlock: 427 mutex_unlock(&ctx->ring_lock); 428 out: 429 spin_unlock(&mapping->private_lock); 430 return rc; 431 } 432 #endif 433 434 static const struct address_space_operations aio_ctx_aops = { 435 .set_page_dirty = __set_page_dirty_no_writeback, 436 #if IS_ENABLED(CONFIG_MIGRATION) 437 .migratepage = aio_migratepage, 438 #endif 439 }; 440 441 static int aio_setup_ring(struct kioctx *ctx) 442 { 443 struct aio_ring *ring; 444 unsigned nr_events = ctx->max_reqs; 445 struct mm_struct *mm = current->mm; 446 unsigned long size, unused; 447 int nr_pages; 448 int i; 449 struct file *file; 450 451 /* Compensate for the ring buffer's head/tail overlap entry */ 452 nr_events += 2; /* 1 is required, 2 for good luck */ 453 454 size = sizeof(struct aio_ring); 455 size += sizeof(struct io_event) * nr_events; 456 457 nr_pages = PFN_UP(size); 458 if (nr_pages < 0) 459 return -EINVAL; 460 461 file = aio_private_file(ctx, nr_pages); 462 if (IS_ERR(file)) { 463 ctx->aio_ring_file = NULL; 464 return -ENOMEM; 465 } 466 467 ctx->aio_ring_file = file; 468 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 469 / sizeof(struct io_event); 470 471 ctx->ring_pages = ctx->internal_pages; 472 if (nr_pages > AIO_RING_PAGES) { 473 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 474 GFP_KERNEL); 475 if (!ctx->ring_pages) { 476 put_aio_ring_file(ctx); 477 return -ENOMEM; 478 } 479 } 480 481 for (i = 0; i < nr_pages; i++) { 482 struct page *page; 483 page = find_or_create_page(file->f_inode->i_mapping, 484 i, GFP_HIGHUSER | __GFP_ZERO); 485 if (!page) 486 break; 487 pr_debug("pid(%d) page[%d]->count=%d\n", 488 current->pid, i, page_count(page)); 489 SetPageUptodate(page); 490 unlock_page(page); 491 492 ctx->ring_pages[i] = page; 493 } 494 ctx->nr_pages = i; 495 496 if (unlikely(i != nr_pages)) { 497 aio_free_ring(ctx); 498 return -ENOMEM; 499 } 500 501 ctx->mmap_size = nr_pages * PAGE_SIZE; 502 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 503 504 if (down_write_killable(&mm->mmap_sem)) { 505 ctx->mmap_size = 0; 506 aio_free_ring(ctx); 507 return -EINTR; 508 } 509 510 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 511 PROT_READ | PROT_WRITE, 512 MAP_SHARED, 0, &unused); 513 up_write(&mm->mmap_sem); 514 if (IS_ERR((void *)ctx->mmap_base)) { 515 ctx->mmap_size = 0; 516 aio_free_ring(ctx); 517 return -ENOMEM; 518 } 519 520 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 521 522 ctx->user_id = ctx->mmap_base; 523 ctx->nr_events = nr_events; /* trusted copy */ 524 525 ring = kmap_atomic(ctx->ring_pages[0]); 526 ring->nr = nr_events; /* user copy */ 527 ring->id = ~0U; 528 ring->head = ring->tail = 0; 529 ring->magic = AIO_RING_MAGIC; 530 ring->compat_features = AIO_RING_COMPAT_FEATURES; 531 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 532 ring->header_length = sizeof(struct aio_ring); 533 kunmap_atomic(ring); 534 flush_dcache_page(ctx->ring_pages[0]); 535 536 return 0; 537 } 538 539 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 540 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 541 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 542 543 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 544 { 545 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common); 546 struct kioctx *ctx = req->ki_ctx; 547 unsigned long flags; 548 549 spin_lock_irqsave(&ctx->ctx_lock, flags); 550 551 if (!req->ki_list.next) 552 list_add(&req->ki_list, &ctx->active_reqs); 553 554 req->ki_cancel = cancel; 555 556 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 557 } 558 EXPORT_SYMBOL(kiocb_set_cancel_fn); 559 560 static int kiocb_cancel(struct aio_kiocb *kiocb) 561 { 562 kiocb_cancel_fn *old, *cancel; 563 564 /* 565 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 566 * actually has a cancel function, hence the cmpxchg() 567 */ 568 569 cancel = ACCESS_ONCE(kiocb->ki_cancel); 570 do { 571 if (!cancel || cancel == KIOCB_CANCELLED) 572 return -EINVAL; 573 574 old = cancel; 575 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 576 } while (cancel != old); 577 578 return cancel(&kiocb->common); 579 } 580 581 static void free_ioctx(struct work_struct *work) 582 { 583 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 584 585 pr_debug("freeing %p\n", ctx); 586 587 aio_free_ring(ctx); 588 free_percpu(ctx->cpu); 589 percpu_ref_exit(&ctx->reqs); 590 percpu_ref_exit(&ctx->users); 591 kmem_cache_free(kioctx_cachep, ctx); 592 } 593 594 static void free_ioctx_reqs(struct percpu_ref *ref) 595 { 596 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 597 598 /* At this point we know that there are no any in-flight requests */ 599 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 600 complete(&ctx->rq_wait->comp); 601 602 INIT_WORK(&ctx->free_work, free_ioctx); 603 schedule_work(&ctx->free_work); 604 } 605 606 /* 607 * When this function runs, the kioctx has been removed from the "hash table" 608 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 609 * now it's safe to cancel any that need to be. 610 */ 611 static void free_ioctx_users(struct percpu_ref *ref) 612 { 613 struct kioctx *ctx = container_of(ref, struct kioctx, users); 614 struct aio_kiocb *req; 615 616 spin_lock_irq(&ctx->ctx_lock); 617 618 while (!list_empty(&ctx->active_reqs)) { 619 req = list_first_entry(&ctx->active_reqs, 620 struct aio_kiocb, ki_list); 621 622 list_del_init(&req->ki_list); 623 kiocb_cancel(req); 624 } 625 626 spin_unlock_irq(&ctx->ctx_lock); 627 628 percpu_ref_kill(&ctx->reqs); 629 percpu_ref_put(&ctx->reqs); 630 } 631 632 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 633 { 634 unsigned i, new_nr; 635 struct kioctx_table *table, *old; 636 struct aio_ring *ring; 637 638 spin_lock(&mm->ioctx_lock); 639 table = rcu_dereference_raw(mm->ioctx_table); 640 641 while (1) { 642 if (table) 643 for (i = 0; i < table->nr; i++) 644 if (!table->table[i]) { 645 ctx->id = i; 646 table->table[i] = ctx; 647 spin_unlock(&mm->ioctx_lock); 648 649 /* While kioctx setup is in progress, 650 * we are protected from page migration 651 * changes ring_pages by ->ring_lock. 652 */ 653 ring = kmap_atomic(ctx->ring_pages[0]); 654 ring->id = ctx->id; 655 kunmap_atomic(ring); 656 return 0; 657 } 658 659 new_nr = (table ? table->nr : 1) * 4; 660 spin_unlock(&mm->ioctx_lock); 661 662 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 663 new_nr, GFP_KERNEL); 664 if (!table) 665 return -ENOMEM; 666 667 table->nr = new_nr; 668 669 spin_lock(&mm->ioctx_lock); 670 old = rcu_dereference_raw(mm->ioctx_table); 671 672 if (!old) { 673 rcu_assign_pointer(mm->ioctx_table, table); 674 } else if (table->nr > old->nr) { 675 memcpy(table->table, old->table, 676 old->nr * sizeof(struct kioctx *)); 677 678 rcu_assign_pointer(mm->ioctx_table, table); 679 kfree_rcu(old, rcu); 680 } else { 681 kfree(table); 682 table = old; 683 } 684 } 685 } 686 687 static void aio_nr_sub(unsigned nr) 688 { 689 spin_lock(&aio_nr_lock); 690 if (WARN_ON(aio_nr - nr > aio_nr)) 691 aio_nr = 0; 692 else 693 aio_nr -= nr; 694 spin_unlock(&aio_nr_lock); 695 } 696 697 /* ioctx_alloc 698 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 699 */ 700 static struct kioctx *ioctx_alloc(unsigned nr_events) 701 { 702 struct mm_struct *mm = current->mm; 703 struct kioctx *ctx; 704 int err = -ENOMEM; 705 706 /* 707 * We keep track of the number of available ringbuffer slots, to prevent 708 * overflow (reqs_available), and we also use percpu counters for this. 709 * 710 * So since up to half the slots might be on other cpu's percpu counters 711 * and unavailable, double nr_events so userspace sees what they 712 * expected: additionally, we move req_batch slots to/from percpu 713 * counters at a time, so make sure that isn't 0: 714 */ 715 nr_events = max(nr_events, num_possible_cpus() * 4); 716 nr_events *= 2; 717 718 /* Prevent overflows */ 719 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 720 pr_debug("ENOMEM: nr_events too high\n"); 721 return ERR_PTR(-EINVAL); 722 } 723 724 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 725 return ERR_PTR(-EAGAIN); 726 727 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 728 if (!ctx) 729 return ERR_PTR(-ENOMEM); 730 731 ctx->max_reqs = nr_events; 732 733 spin_lock_init(&ctx->ctx_lock); 734 spin_lock_init(&ctx->completion_lock); 735 mutex_init(&ctx->ring_lock); 736 /* Protect against page migration throughout kiotx setup by keeping 737 * the ring_lock mutex held until setup is complete. */ 738 mutex_lock(&ctx->ring_lock); 739 init_waitqueue_head(&ctx->wait); 740 741 INIT_LIST_HEAD(&ctx->active_reqs); 742 743 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 744 goto err; 745 746 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 747 goto err; 748 749 ctx->cpu = alloc_percpu(struct kioctx_cpu); 750 if (!ctx->cpu) 751 goto err; 752 753 err = aio_setup_ring(ctx); 754 if (err < 0) 755 goto err; 756 757 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 758 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 759 if (ctx->req_batch < 1) 760 ctx->req_batch = 1; 761 762 /* limit the number of system wide aios */ 763 spin_lock(&aio_nr_lock); 764 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 765 aio_nr + nr_events < aio_nr) { 766 spin_unlock(&aio_nr_lock); 767 err = -EAGAIN; 768 goto err_ctx; 769 } 770 aio_nr += ctx->max_reqs; 771 spin_unlock(&aio_nr_lock); 772 773 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 774 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 775 776 err = ioctx_add_table(ctx, mm); 777 if (err) 778 goto err_cleanup; 779 780 /* Release the ring_lock mutex now that all setup is complete. */ 781 mutex_unlock(&ctx->ring_lock); 782 783 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 784 ctx, ctx->user_id, mm, ctx->nr_events); 785 return ctx; 786 787 err_cleanup: 788 aio_nr_sub(ctx->max_reqs); 789 err_ctx: 790 atomic_set(&ctx->dead, 1); 791 if (ctx->mmap_size) 792 vm_munmap(ctx->mmap_base, ctx->mmap_size); 793 aio_free_ring(ctx); 794 err: 795 mutex_unlock(&ctx->ring_lock); 796 free_percpu(ctx->cpu); 797 percpu_ref_exit(&ctx->reqs); 798 percpu_ref_exit(&ctx->users); 799 kmem_cache_free(kioctx_cachep, ctx); 800 pr_debug("error allocating ioctx %d\n", err); 801 return ERR_PTR(err); 802 } 803 804 /* kill_ioctx 805 * Cancels all outstanding aio requests on an aio context. Used 806 * when the processes owning a context have all exited to encourage 807 * the rapid destruction of the kioctx. 808 */ 809 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 810 struct ctx_rq_wait *wait) 811 { 812 struct kioctx_table *table; 813 814 spin_lock(&mm->ioctx_lock); 815 if (atomic_xchg(&ctx->dead, 1)) { 816 spin_unlock(&mm->ioctx_lock); 817 return -EINVAL; 818 } 819 820 table = rcu_dereference_raw(mm->ioctx_table); 821 WARN_ON(ctx != table->table[ctx->id]); 822 table->table[ctx->id] = NULL; 823 spin_unlock(&mm->ioctx_lock); 824 825 /* percpu_ref_kill() will do the necessary call_rcu() */ 826 wake_up_all(&ctx->wait); 827 828 /* 829 * It'd be more correct to do this in free_ioctx(), after all 830 * the outstanding kiocbs have finished - but by then io_destroy 831 * has already returned, so io_setup() could potentially return 832 * -EAGAIN with no ioctxs actually in use (as far as userspace 833 * could tell). 834 */ 835 aio_nr_sub(ctx->max_reqs); 836 837 if (ctx->mmap_size) 838 vm_munmap(ctx->mmap_base, ctx->mmap_size); 839 840 ctx->rq_wait = wait; 841 percpu_ref_kill(&ctx->users); 842 return 0; 843 } 844 845 /* 846 * exit_aio: called when the last user of mm goes away. At this point, there is 847 * no way for any new requests to be submited or any of the io_* syscalls to be 848 * called on the context. 849 * 850 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 851 * them. 852 */ 853 void exit_aio(struct mm_struct *mm) 854 { 855 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 856 struct ctx_rq_wait wait; 857 int i, skipped; 858 859 if (!table) 860 return; 861 862 atomic_set(&wait.count, table->nr); 863 init_completion(&wait.comp); 864 865 skipped = 0; 866 for (i = 0; i < table->nr; ++i) { 867 struct kioctx *ctx = table->table[i]; 868 869 if (!ctx) { 870 skipped++; 871 continue; 872 } 873 874 /* 875 * We don't need to bother with munmap() here - exit_mmap(mm) 876 * is coming and it'll unmap everything. And we simply can't, 877 * this is not necessarily our ->mm. 878 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 879 * that it needs to unmap the area, just set it to 0. 880 */ 881 ctx->mmap_size = 0; 882 kill_ioctx(mm, ctx, &wait); 883 } 884 885 if (!atomic_sub_and_test(skipped, &wait.count)) { 886 /* Wait until all IO for the context are done. */ 887 wait_for_completion(&wait.comp); 888 } 889 890 RCU_INIT_POINTER(mm->ioctx_table, NULL); 891 kfree(table); 892 } 893 894 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 895 { 896 struct kioctx_cpu *kcpu; 897 unsigned long flags; 898 899 local_irq_save(flags); 900 kcpu = this_cpu_ptr(ctx->cpu); 901 kcpu->reqs_available += nr; 902 903 while (kcpu->reqs_available >= ctx->req_batch * 2) { 904 kcpu->reqs_available -= ctx->req_batch; 905 atomic_add(ctx->req_batch, &ctx->reqs_available); 906 } 907 908 local_irq_restore(flags); 909 } 910 911 static bool get_reqs_available(struct kioctx *ctx) 912 { 913 struct kioctx_cpu *kcpu; 914 bool ret = false; 915 unsigned long flags; 916 917 local_irq_save(flags); 918 kcpu = this_cpu_ptr(ctx->cpu); 919 if (!kcpu->reqs_available) { 920 int old, avail = atomic_read(&ctx->reqs_available); 921 922 do { 923 if (avail < ctx->req_batch) 924 goto out; 925 926 old = avail; 927 avail = atomic_cmpxchg(&ctx->reqs_available, 928 avail, avail - ctx->req_batch); 929 } while (avail != old); 930 931 kcpu->reqs_available += ctx->req_batch; 932 } 933 934 ret = true; 935 kcpu->reqs_available--; 936 out: 937 local_irq_restore(flags); 938 return ret; 939 } 940 941 /* refill_reqs_available 942 * Updates the reqs_available reference counts used for tracking the 943 * number of free slots in the completion ring. This can be called 944 * from aio_complete() (to optimistically update reqs_available) or 945 * from aio_get_req() (the we're out of events case). It must be 946 * called holding ctx->completion_lock. 947 */ 948 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 949 unsigned tail) 950 { 951 unsigned events_in_ring, completed; 952 953 /* Clamp head since userland can write to it. */ 954 head %= ctx->nr_events; 955 if (head <= tail) 956 events_in_ring = tail - head; 957 else 958 events_in_ring = ctx->nr_events - (head - tail); 959 960 completed = ctx->completed_events; 961 if (events_in_ring < completed) 962 completed -= events_in_ring; 963 else 964 completed = 0; 965 966 if (!completed) 967 return; 968 969 ctx->completed_events -= completed; 970 put_reqs_available(ctx, completed); 971 } 972 973 /* user_refill_reqs_available 974 * Called to refill reqs_available when aio_get_req() encounters an 975 * out of space in the completion ring. 976 */ 977 static void user_refill_reqs_available(struct kioctx *ctx) 978 { 979 spin_lock_irq(&ctx->completion_lock); 980 if (ctx->completed_events) { 981 struct aio_ring *ring; 982 unsigned head; 983 984 /* Access of ring->head may race with aio_read_events_ring() 985 * here, but that's okay since whether we read the old version 986 * or the new version, and either will be valid. The important 987 * part is that head cannot pass tail since we prevent 988 * aio_complete() from updating tail by holding 989 * ctx->completion_lock. Even if head is invalid, the check 990 * against ctx->completed_events below will make sure we do the 991 * safe/right thing. 992 */ 993 ring = kmap_atomic(ctx->ring_pages[0]); 994 head = ring->head; 995 kunmap_atomic(ring); 996 997 refill_reqs_available(ctx, head, ctx->tail); 998 } 999 1000 spin_unlock_irq(&ctx->completion_lock); 1001 } 1002 1003 /* aio_get_req 1004 * Allocate a slot for an aio request. 1005 * Returns NULL if no requests are free. 1006 */ 1007 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1008 { 1009 struct aio_kiocb *req; 1010 1011 if (!get_reqs_available(ctx)) { 1012 user_refill_reqs_available(ctx); 1013 if (!get_reqs_available(ctx)) 1014 return NULL; 1015 } 1016 1017 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 1018 if (unlikely(!req)) 1019 goto out_put; 1020 1021 percpu_ref_get(&ctx->reqs); 1022 1023 req->ki_ctx = ctx; 1024 return req; 1025 out_put: 1026 put_reqs_available(ctx, 1); 1027 return NULL; 1028 } 1029 1030 static void kiocb_free(struct aio_kiocb *req) 1031 { 1032 if (req->common.ki_filp) 1033 fput(req->common.ki_filp); 1034 if (req->ki_eventfd != NULL) 1035 eventfd_ctx_put(req->ki_eventfd); 1036 kmem_cache_free(kiocb_cachep, req); 1037 } 1038 1039 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1040 { 1041 struct aio_ring __user *ring = (void __user *)ctx_id; 1042 struct mm_struct *mm = current->mm; 1043 struct kioctx *ctx, *ret = NULL; 1044 struct kioctx_table *table; 1045 unsigned id; 1046 1047 if (get_user(id, &ring->id)) 1048 return NULL; 1049 1050 rcu_read_lock(); 1051 table = rcu_dereference(mm->ioctx_table); 1052 1053 if (!table || id >= table->nr) 1054 goto out; 1055 1056 ctx = table->table[id]; 1057 if (ctx && ctx->user_id == ctx_id) { 1058 percpu_ref_get(&ctx->users); 1059 ret = ctx; 1060 } 1061 out: 1062 rcu_read_unlock(); 1063 return ret; 1064 } 1065 1066 /* aio_complete 1067 * Called when the io request on the given iocb is complete. 1068 */ 1069 static void aio_complete(struct kiocb *kiocb, long res, long res2) 1070 { 1071 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common); 1072 struct kioctx *ctx = iocb->ki_ctx; 1073 struct aio_ring *ring; 1074 struct io_event *ev_page, *event; 1075 unsigned tail, pos, head; 1076 unsigned long flags; 1077 1078 /* 1079 * Special case handling for sync iocbs: 1080 * - events go directly into the iocb for fast handling 1081 * - the sync task with the iocb in its stack holds the single iocb 1082 * ref, no other paths have a way to get another ref 1083 * - the sync task helpfully left a reference to itself in the iocb 1084 */ 1085 BUG_ON(is_sync_kiocb(kiocb)); 1086 1087 if (iocb->ki_list.next) { 1088 unsigned long flags; 1089 1090 spin_lock_irqsave(&ctx->ctx_lock, flags); 1091 list_del(&iocb->ki_list); 1092 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1093 } 1094 1095 /* 1096 * Add a completion event to the ring buffer. Must be done holding 1097 * ctx->completion_lock to prevent other code from messing with the tail 1098 * pointer since we might be called from irq context. 1099 */ 1100 spin_lock_irqsave(&ctx->completion_lock, flags); 1101 1102 tail = ctx->tail; 1103 pos = tail + AIO_EVENTS_OFFSET; 1104 1105 if (++tail >= ctx->nr_events) 1106 tail = 0; 1107 1108 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1109 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1110 1111 event->obj = (u64)(unsigned long)iocb->ki_user_iocb; 1112 event->data = iocb->ki_user_data; 1113 event->res = res; 1114 event->res2 = res2; 1115 1116 kunmap_atomic(ev_page); 1117 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1118 1119 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1120 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, 1121 res, res2); 1122 1123 /* after flagging the request as done, we 1124 * must never even look at it again 1125 */ 1126 smp_wmb(); /* make event visible before updating tail */ 1127 1128 ctx->tail = tail; 1129 1130 ring = kmap_atomic(ctx->ring_pages[0]); 1131 head = ring->head; 1132 ring->tail = tail; 1133 kunmap_atomic(ring); 1134 flush_dcache_page(ctx->ring_pages[0]); 1135 1136 ctx->completed_events++; 1137 if (ctx->completed_events > 1) 1138 refill_reqs_available(ctx, head, tail); 1139 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1140 1141 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1142 1143 /* 1144 * Check if the user asked us to deliver the result through an 1145 * eventfd. The eventfd_signal() function is safe to be called 1146 * from IRQ context. 1147 */ 1148 if (iocb->ki_eventfd != NULL) 1149 eventfd_signal(iocb->ki_eventfd, 1); 1150 1151 /* everything turned out well, dispose of the aiocb. */ 1152 kiocb_free(iocb); 1153 1154 /* 1155 * We have to order our ring_info tail store above and test 1156 * of the wait list below outside the wait lock. This is 1157 * like in wake_up_bit() where clearing a bit has to be 1158 * ordered with the unlocked test. 1159 */ 1160 smp_mb(); 1161 1162 if (waitqueue_active(&ctx->wait)) 1163 wake_up(&ctx->wait); 1164 1165 percpu_ref_put(&ctx->reqs); 1166 } 1167 1168 /* aio_read_events_ring 1169 * Pull an event off of the ioctx's event ring. Returns the number of 1170 * events fetched 1171 */ 1172 static long aio_read_events_ring(struct kioctx *ctx, 1173 struct io_event __user *event, long nr) 1174 { 1175 struct aio_ring *ring; 1176 unsigned head, tail, pos; 1177 long ret = 0; 1178 int copy_ret; 1179 1180 /* 1181 * The mutex can block and wake us up and that will cause 1182 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1183 * and repeat. This should be rare enough that it doesn't cause 1184 * peformance issues. See the comment in read_events() for more detail. 1185 */ 1186 sched_annotate_sleep(); 1187 mutex_lock(&ctx->ring_lock); 1188 1189 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1190 ring = kmap_atomic(ctx->ring_pages[0]); 1191 head = ring->head; 1192 tail = ring->tail; 1193 kunmap_atomic(ring); 1194 1195 /* 1196 * Ensure that once we've read the current tail pointer, that 1197 * we also see the events that were stored up to the tail. 1198 */ 1199 smp_rmb(); 1200 1201 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1202 1203 if (head == tail) 1204 goto out; 1205 1206 head %= ctx->nr_events; 1207 tail %= ctx->nr_events; 1208 1209 while (ret < nr) { 1210 long avail; 1211 struct io_event *ev; 1212 struct page *page; 1213 1214 avail = (head <= tail ? tail : ctx->nr_events) - head; 1215 if (head == tail) 1216 break; 1217 1218 avail = min(avail, nr - ret); 1219 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1220 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1221 1222 pos = head + AIO_EVENTS_OFFSET; 1223 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1224 pos %= AIO_EVENTS_PER_PAGE; 1225 1226 ev = kmap(page); 1227 copy_ret = copy_to_user(event + ret, ev + pos, 1228 sizeof(*ev) * avail); 1229 kunmap(page); 1230 1231 if (unlikely(copy_ret)) { 1232 ret = -EFAULT; 1233 goto out; 1234 } 1235 1236 ret += avail; 1237 head += avail; 1238 head %= ctx->nr_events; 1239 } 1240 1241 ring = kmap_atomic(ctx->ring_pages[0]); 1242 ring->head = head; 1243 kunmap_atomic(ring); 1244 flush_dcache_page(ctx->ring_pages[0]); 1245 1246 pr_debug("%li h%u t%u\n", ret, head, tail); 1247 out: 1248 mutex_unlock(&ctx->ring_lock); 1249 1250 return ret; 1251 } 1252 1253 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1254 struct io_event __user *event, long *i) 1255 { 1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1257 1258 if (ret > 0) 1259 *i += ret; 1260 1261 if (unlikely(atomic_read(&ctx->dead))) 1262 ret = -EINVAL; 1263 1264 if (!*i) 1265 *i = ret; 1266 1267 return ret < 0 || *i >= min_nr; 1268 } 1269 1270 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1271 struct io_event __user *event, 1272 struct timespec __user *timeout) 1273 { 1274 ktime_t until = { .tv64 = KTIME_MAX }; 1275 long ret = 0; 1276 1277 if (timeout) { 1278 struct timespec ts; 1279 1280 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1281 return -EFAULT; 1282 1283 until = timespec_to_ktime(ts); 1284 } 1285 1286 /* 1287 * Note that aio_read_events() is being called as the conditional - i.e. 1288 * we're calling it after prepare_to_wait() has set task state to 1289 * TASK_INTERRUPTIBLE. 1290 * 1291 * But aio_read_events() can block, and if it blocks it's going to flip 1292 * the task state back to TASK_RUNNING. 1293 * 1294 * This should be ok, provided it doesn't flip the state back to 1295 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1296 * will only happen if the mutex_lock() call blocks, and we then find 1297 * the ringbuffer empty. So in practice we should be ok, but it's 1298 * something to be aware of when touching this code. 1299 */ 1300 if (until.tv64 == 0) 1301 aio_read_events(ctx, min_nr, nr, event, &ret); 1302 else 1303 wait_event_interruptible_hrtimeout(ctx->wait, 1304 aio_read_events(ctx, min_nr, nr, event, &ret), 1305 until); 1306 1307 if (!ret && signal_pending(current)) 1308 ret = -EINTR; 1309 1310 return ret; 1311 } 1312 1313 /* sys_io_setup: 1314 * Create an aio_context capable of receiving at least nr_events. 1315 * ctxp must not point to an aio_context that already exists, and 1316 * must be initialized to 0 prior to the call. On successful 1317 * creation of the aio_context, *ctxp is filled in with the resulting 1318 * handle. May fail with -EINVAL if *ctxp is not initialized, 1319 * if the specified nr_events exceeds internal limits. May fail 1320 * with -EAGAIN if the specified nr_events exceeds the user's limit 1321 * of available events. May fail with -ENOMEM if insufficient kernel 1322 * resources are available. May fail with -EFAULT if an invalid 1323 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1324 * implemented. 1325 */ 1326 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1327 { 1328 struct kioctx *ioctx = NULL; 1329 unsigned long ctx; 1330 long ret; 1331 1332 ret = get_user(ctx, ctxp); 1333 if (unlikely(ret)) 1334 goto out; 1335 1336 ret = -EINVAL; 1337 if (unlikely(ctx || nr_events == 0)) { 1338 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1339 ctx, nr_events); 1340 goto out; 1341 } 1342 1343 ioctx = ioctx_alloc(nr_events); 1344 ret = PTR_ERR(ioctx); 1345 if (!IS_ERR(ioctx)) { 1346 ret = put_user(ioctx->user_id, ctxp); 1347 if (ret) 1348 kill_ioctx(current->mm, ioctx, NULL); 1349 percpu_ref_put(&ioctx->users); 1350 } 1351 1352 out: 1353 return ret; 1354 } 1355 1356 /* sys_io_destroy: 1357 * Destroy the aio_context specified. May cancel any outstanding 1358 * AIOs and block on completion. Will fail with -ENOSYS if not 1359 * implemented. May fail with -EINVAL if the context pointed to 1360 * is invalid. 1361 */ 1362 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1363 { 1364 struct kioctx *ioctx = lookup_ioctx(ctx); 1365 if (likely(NULL != ioctx)) { 1366 struct ctx_rq_wait wait; 1367 int ret; 1368 1369 init_completion(&wait.comp); 1370 atomic_set(&wait.count, 1); 1371 1372 /* Pass requests_done to kill_ioctx() where it can be set 1373 * in a thread-safe way. If we try to set it here then we have 1374 * a race condition if two io_destroy() called simultaneously. 1375 */ 1376 ret = kill_ioctx(current->mm, ioctx, &wait); 1377 percpu_ref_put(&ioctx->users); 1378 1379 /* Wait until all IO for the context are done. Otherwise kernel 1380 * keep using user-space buffers even if user thinks the context 1381 * is destroyed. 1382 */ 1383 if (!ret) 1384 wait_for_completion(&wait.comp); 1385 1386 return ret; 1387 } 1388 pr_debug("EINVAL: invalid context id\n"); 1389 return -EINVAL; 1390 } 1391 1392 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1393 1394 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len, 1395 struct iovec **iovec, 1396 bool compat, 1397 struct iov_iter *iter) 1398 { 1399 #ifdef CONFIG_COMPAT 1400 if (compat) 1401 return compat_import_iovec(rw, 1402 (struct compat_iovec __user *)buf, 1403 len, UIO_FASTIOV, iovec, iter); 1404 #endif 1405 return import_iovec(rw, (struct iovec __user *)buf, 1406 len, UIO_FASTIOV, iovec, iter); 1407 } 1408 1409 /* 1410 * aio_run_iocb: 1411 * Performs the initial checks and io submission. 1412 */ 1413 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1414 char __user *buf, size_t len, bool compat) 1415 { 1416 struct file *file = req->ki_filp; 1417 ssize_t ret; 1418 int rw; 1419 fmode_t mode; 1420 rw_iter_op *iter_op; 1421 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1422 struct iov_iter iter; 1423 1424 switch (opcode) { 1425 case IOCB_CMD_PREAD: 1426 case IOCB_CMD_PREADV: 1427 mode = FMODE_READ; 1428 rw = READ; 1429 iter_op = file->f_op->read_iter; 1430 goto rw_common; 1431 1432 case IOCB_CMD_PWRITE: 1433 case IOCB_CMD_PWRITEV: 1434 mode = FMODE_WRITE; 1435 rw = WRITE; 1436 iter_op = file->f_op->write_iter; 1437 goto rw_common; 1438 rw_common: 1439 if (unlikely(!(file->f_mode & mode))) 1440 return -EBADF; 1441 1442 if (!iter_op) 1443 return -EINVAL; 1444 1445 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV) 1446 ret = aio_setup_vectored_rw(rw, buf, len, 1447 &iovec, compat, &iter); 1448 else { 1449 ret = import_single_range(rw, buf, len, iovec, &iter); 1450 iovec = NULL; 1451 } 1452 if (!ret) 1453 ret = rw_verify_area(rw, file, &req->ki_pos, 1454 iov_iter_count(&iter)); 1455 if (ret < 0) { 1456 kfree(iovec); 1457 return ret; 1458 } 1459 1460 if (rw == WRITE) 1461 file_start_write(file); 1462 1463 ret = iter_op(req, &iter); 1464 1465 if (rw == WRITE) 1466 file_end_write(file); 1467 kfree(iovec); 1468 break; 1469 1470 case IOCB_CMD_FDSYNC: 1471 if (!file->f_op->aio_fsync) 1472 return -EINVAL; 1473 1474 ret = file->f_op->aio_fsync(req, 1); 1475 break; 1476 1477 case IOCB_CMD_FSYNC: 1478 if (!file->f_op->aio_fsync) 1479 return -EINVAL; 1480 1481 ret = file->f_op->aio_fsync(req, 0); 1482 break; 1483 1484 default: 1485 pr_debug("EINVAL: no operation provided\n"); 1486 return -EINVAL; 1487 } 1488 1489 if (ret != -EIOCBQUEUED) { 1490 /* 1491 * There's no easy way to restart the syscall since other AIO's 1492 * may be already running. Just fail this IO with EINTR. 1493 */ 1494 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1495 ret == -ERESTARTNOHAND || 1496 ret == -ERESTART_RESTARTBLOCK)) 1497 ret = -EINTR; 1498 aio_complete(req, ret, 0); 1499 } 1500 1501 return 0; 1502 } 1503 1504 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1505 struct iocb *iocb, bool compat) 1506 { 1507 struct aio_kiocb *req; 1508 ssize_t ret; 1509 1510 /* enforce forwards compatibility on users */ 1511 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1512 pr_debug("EINVAL: reserve field set\n"); 1513 return -EINVAL; 1514 } 1515 1516 /* prevent overflows */ 1517 if (unlikely( 1518 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1519 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1520 ((ssize_t)iocb->aio_nbytes < 0) 1521 )) { 1522 pr_debug("EINVAL: overflow check\n"); 1523 return -EINVAL; 1524 } 1525 1526 req = aio_get_req(ctx); 1527 if (unlikely(!req)) 1528 return -EAGAIN; 1529 1530 req->common.ki_filp = fget(iocb->aio_fildes); 1531 if (unlikely(!req->common.ki_filp)) { 1532 ret = -EBADF; 1533 goto out_put_req; 1534 } 1535 req->common.ki_pos = iocb->aio_offset; 1536 req->common.ki_complete = aio_complete; 1537 req->common.ki_flags = iocb_flags(req->common.ki_filp); 1538 1539 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1540 /* 1541 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1542 * instance of the file* now. The file descriptor must be 1543 * an eventfd() fd, and will be signaled for each completed 1544 * event using the eventfd_signal() function. 1545 */ 1546 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1547 if (IS_ERR(req->ki_eventfd)) { 1548 ret = PTR_ERR(req->ki_eventfd); 1549 req->ki_eventfd = NULL; 1550 goto out_put_req; 1551 } 1552 1553 req->common.ki_flags |= IOCB_EVENTFD; 1554 } 1555 1556 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1557 if (unlikely(ret)) { 1558 pr_debug("EFAULT: aio_key\n"); 1559 goto out_put_req; 1560 } 1561 1562 req->ki_user_iocb = user_iocb; 1563 req->ki_user_data = iocb->aio_data; 1564 1565 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode, 1566 (char __user *)(unsigned long)iocb->aio_buf, 1567 iocb->aio_nbytes, 1568 compat); 1569 if (ret) 1570 goto out_put_req; 1571 1572 return 0; 1573 out_put_req: 1574 put_reqs_available(ctx, 1); 1575 percpu_ref_put(&ctx->reqs); 1576 kiocb_free(req); 1577 return ret; 1578 } 1579 1580 long do_io_submit(aio_context_t ctx_id, long nr, 1581 struct iocb __user *__user *iocbpp, bool compat) 1582 { 1583 struct kioctx *ctx; 1584 long ret = 0; 1585 int i = 0; 1586 struct blk_plug plug; 1587 1588 if (unlikely(nr < 0)) 1589 return -EINVAL; 1590 1591 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1592 nr = LONG_MAX/sizeof(*iocbpp); 1593 1594 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1595 return -EFAULT; 1596 1597 ctx = lookup_ioctx(ctx_id); 1598 if (unlikely(!ctx)) { 1599 pr_debug("EINVAL: invalid context id\n"); 1600 return -EINVAL; 1601 } 1602 1603 blk_start_plug(&plug); 1604 1605 /* 1606 * AKPM: should this return a partial result if some of the IOs were 1607 * successfully submitted? 1608 */ 1609 for (i=0; i<nr; i++) { 1610 struct iocb __user *user_iocb; 1611 struct iocb tmp; 1612 1613 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1614 ret = -EFAULT; 1615 break; 1616 } 1617 1618 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1619 ret = -EFAULT; 1620 break; 1621 } 1622 1623 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1624 if (ret) 1625 break; 1626 } 1627 blk_finish_plug(&plug); 1628 1629 percpu_ref_put(&ctx->users); 1630 return i ? i : ret; 1631 } 1632 1633 /* sys_io_submit: 1634 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1635 * the number of iocbs queued. May return -EINVAL if the aio_context 1636 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1637 * *iocbpp[0] is not properly initialized, if the operation specified 1638 * is invalid for the file descriptor in the iocb. May fail with 1639 * -EFAULT if any of the data structures point to invalid data. May 1640 * fail with -EBADF if the file descriptor specified in the first 1641 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1642 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1643 * fail with -ENOSYS if not implemented. 1644 */ 1645 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1646 struct iocb __user * __user *, iocbpp) 1647 { 1648 return do_io_submit(ctx_id, nr, iocbpp, 0); 1649 } 1650 1651 /* lookup_kiocb 1652 * Finds a given iocb for cancellation. 1653 */ 1654 static struct aio_kiocb * 1655 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) 1656 { 1657 struct aio_kiocb *kiocb; 1658 1659 assert_spin_locked(&ctx->ctx_lock); 1660 1661 if (key != KIOCB_KEY) 1662 return NULL; 1663 1664 /* TODO: use a hash or array, this sucks. */ 1665 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 1666 if (kiocb->ki_user_iocb == iocb) 1667 return kiocb; 1668 } 1669 return NULL; 1670 } 1671 1672 /* sys_io_cancel: 1673 * Attempts to cancel an iocb previously passed to io_submit. If 1674 * the operation is successfully cancelled, the resulting event is 1675 * copied into the memory pointed to by result without being placed 1676 * into the completion queue and 0 is returned. May fail with 1677 * -EFAULT if any of the data structures pointed to are invalid. 1678 * May fail with -EINVAL if aio_context specified by ctx_id is 1679 * invalid. May fail with -EAGAIN if the iocb specified was not 1680 * cancelled. Will fail with -ENOSYS if not implemented. 1681 */ 1682 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1683 struct io_event __user *, result) 1684 { 1685 struct kioctx *ctx; 1686 struct aio_kiocb *kiocb; 1687 u32 key; 1688 int ret; 1689 1690 ret = get_user(key, &iocb->aio_key); 1691 if (unlikely(ret)) 1692 return -EFAULT; 1693 1694 ctx = lookup_ioctx(ctx_id); 1695 if (unlikely(!ctx)) 1696 return -EINVAL; 1697 1698 spin_lock_irq(&ctx->ctx_lock); 1699 1700 kiocb = lookup_kiocb(ctx, iocb, key); 1701 if (kiocb) 1702 ret = kiocb_cancel(kiocb); 1703 else 1704 ret = -EINVAL; 1705 1706 spin_unlock_irq(&ctx->ctx_lock); 1707 1708 if (!ret) { 1709 /* 1710 * The result argument is no longer used - the io_event is 1711 * always delivered via the ring buffer. -EINPROGRESS indicates 1712 * cancellation is progress: 1713 */ 1714 ret = -EINPROGRESS; 1715 } 1716 1717 percpu_ref_put(&ctx->users); 1718 1719 return ret; 1720 } 1721 1722 /* io_getevents: 1723 * Attempts to read at least min_nr events and up to nr events from 1724 * the completion queue for the aio_context specified by ctx_id. If 1725 * it succeeds, the number of read events is returned. May fail with 1726 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1727 * out of range, if timeout is out of range. May fail with -EFAULT 1728 * if any of the memory specified is invalid. May return 0 or 1729 * < min_nr if the timeout specified by timeout has elapsed 1730 * before sufficient events are available, where timeout == NULL 1731 * specifies an infinite timeout. Note that the timeout pointed to by 1732 * timeout is relative. Will fail with -ENOSYS if not implemented. 1733 */ 1734 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1735 long, min_nr, 1736 long, nr, 1737 struct io_event __user *, events, 1738 struct timespec __user *, timeout) 1739 { 1740 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1741 long ret = -EINVAL; 1742 1743 if (likely(ioctx)) { 1744 if (likely(min_nr <= nr && min_nr >= 0)) 1745 ret = read_events(ioctx, min_nr, nr, events, timeout); 1746 percpu_ref_put(&ioctx->users); 1747 } 1748 return ret; 1749 } 1750