xref: /linux/fs/aio.c (revision 498d319bb512992ef0784c278fa03679f2f5649d)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;
56 	unsigned	tail;
57 
58 	unsigned	magic;
59 	unsigned	compat_features;
60 	unsigned	incompat_features;
61 	unsigned	header_length;	/* size of aio_ring */
62 
63 
64 	struct io_event		io_events[0];
65 }; /* 128 bytes + ring size */
66 
67 #define AIO_RING_PAGES	8
68 
69 struct kioctx_table {
70 	struct rcu_head	rcu;
71 	unsigned	nr;
72 	struct kioctx	*table[];
73 };
74 
75 struct kioctx_cpu {
76 	unsigned		reqs_available;
77 };
78 
79 struct kioctx {
80 	struct percpu_ref	users;
81 	atomic_t		dead;
82 
83 	unsigned long		user_id;
84 
85 	struct __percpu kioctx_cpu *cpu;
86 
87 	/*
88 	 * For percpu reqs_available, number of slots we move to/from global
89 	 * counter at a time:
90 	 */
91 	unsigned		req_batch;
92 	/*
93 	 * This is what userspace passed to io_setup(), it's not used for
94 	 * anything but counting against the global max_reqs quota.
95 	 *
96 	 * The real limit is nr_events - 1, which will be larger (see
97 	 * aio_setup_ring())
98 	 */
99 	unsigned		max_reqs;
100 
101 	/* Size of ringbuffer, in units of struct io_event */
102 	unsigned		nr_events;
103 
104 	unsigned long		mmap_base;
105 	unsigned long		mmap_size;
106 
107 	struct page		**ring_pages;
108 	long			nr_pages;
109 
110 	struct rcu_head		rcu_head;
111 	struct work_struct	free_work;
112 
113 	struct {
114 		/*
115 		 * This counts the number of available slots in the ringbuffer,
116 		 * so we avoid overflowing it: it's decremented (if positive)
117 		 * when allocating a kiocb and incremented when the resulting
118 		 * io_event is pulled off the ringbuffer.
119 		 *
120 		 * We batch accesses to it with a percpu version.
121 		 */
122 		atomic_t	reqs_available;
123 	} ____cacheline_aligned_in_smp;
124 
125 	struct {
126 		spinlock_t	ctx_lock;
127 		struct list_head active_reqs;	/* used for cancellation */
128 	} ____cacheline_aligned_in_smp;
129 
130 	struct {
131 		struct mutex	ring_lock;
132 		wait_queue_head_t wait;
133 	} ____cacheline_aligned_in_smp;
134 
135 	struct {
136 		unsigned	tail;
137 		spinlock_t	completion_lock;
138 	} ____cacheline_aligned_in_smp;
139 
140 	struct page		*internal_pages[AIO_RING_PAGES];
141 	struct file		*aio_ring_file;
142 
143 	unsigned		id;
144 };
145 
146 /*------ sysctl variables----*/
147 static DEFINE_SPINLOCK(aio_nr_lock);
148 unsigned long aio_nr;		/* current system wide number of aio requests */
149 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
150 /*----end sysctl variables---*/
151 
152 static struct kmem_cache	*kiocb_cachep;
153 static struct kmem_cache	*kioctx_cachep;
154 
155 static struct vfsmount *aio_mnt;
156 
157 static const struct file_operations aio_ring_fops;
158 static const struct address_space_operations aio_ctx_aops;
159 
160 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
161 {
162 	struct qstr this = QSTR_INIT("[aio]", 5);
163 	struct file *file;
164 	struct path path;
165 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
166 	if (IS_ERR(inode))
167 		return ERR_CAST(inode);
168 
169 	inode->i_mapping->a_ops = &aio_ctx_aops;
170 	inode->i_mapping->private_data = ctx;
171 	inode->i_size = PAGE_SIZE * nr_pages;
172 
173 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
174 	if (!path.dentry) {
175 		iput(inode);
176 		return ERR_PTR(-ENOMEM);
177 	}
178 	path.mnt = mntget(aio_mnt);
179 
180 	d_instantiate(path.dentry, inode);
181 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
182 	if (IS_ERR(file)) {
183 		path_put(&path);
184 		return file;
185 	}
186 
187 	file->f_flags = O_RDWR;
188 	file->private_data = ctx;
189 	return file;
190 }
191 
192 static struct dentry *aio_mount(struct file_system_type *fs_type,
193 				int flags, const char *dev_name, void *data)
194 {
195 	static const struct dentry_operations ops = {
196 		.d_dname	= simple_dname,
197 	};
198 	return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1);
199 }
200 
201 /* aio_setup
202  *	Creates the slab caches used by the aio routines, panic on
203  *	failure as this is done early during the boot sequence.
204  */
205 static int __init aio_setup(void)
206 {
207 	static struct file_system_type aio_fs = {
208 		.name		= "aio",
209 		.mount		= aio_mount,
210 		.kill_sb	= kill_anon_super,
211 	};
212 	aio_mnt = kern_mount(&aio_fs);
213 	if (IS_ERR(aio_mnt))
214 		panic("Failed to create aio fs mount.");
215 
216 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
217 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
218 
219 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
220 
221 	return 0;
222 }
223 __initcall(aio_setup);
224 
225 static void put_aio_ring_file(struct kioctx *ctx)
226 {
227 	struct file *aio_ring_file = ctx->aio_ring_file;
228 	if (aio_ring_file) {
229 		truncate_setsize(aio_ring_file->f_inode, 0);
230 
231 		/* Prevent further access to the kioctx from migratepages */
232 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
233 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
234 		ctx->aio_ring_file = NULL;
235 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
236 
237 		fput(aio_ring_file);
238 	}
239 }
240 
241 static void aio_free_ring(struct kioctx *ctx)
242 {
243 	int i;
244 
245 	for (i = 0; i < ctx->nr_pages; i++) {
246 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
247 				page_count(ctx->ring_pages[i]));
248 		put_page(ctx->ring_pages[i]);
249 	}
250 
251 	put_aio_ring_file(ctx);
252 
253 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
254 		kfree(ctx->ring_pages);
255 }
256 
257 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
258 {
259 	vma->vm_ops = &generic_file_vm_ops;
260 	return 0;
261 }
262 
263 static const struct file_operations aio_ring_fops = {
264 	.mmap = aio_ring_mmap,
265 };
266 
267 static int aio_set_page_dirty(struct page *page)
268 {
269 	return 0;
270 }
271 
272 #if IS_ENABLED(CONFIG_MIGRATION)
273 static int aio_migratepage(struct address_space *mapping, struct page *new,
274 			struct page *old, enum migrate_mode mode)
275 {
276 	struct kioctx *ctx;
277 	unsigned long flags;
278 	int rc;
279 
280 	/* Writeback must be complete */
281 	BUG_ON(PageWriteback(old));
282 	put_page(old);
283 
284 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
285 	if (rc != MIGRATEPAGE_SUCCESS) {
286 		get_page(old);
287 		return rc;
288 	}
289 
290 	get_page(new);
291 
292 	/* We can potentially race against kioctx teardown here.  Use the
293 	 * address_space's private data lock to protect the mapping's
294 	 * private_data.
295 	 */
296 	spin_lock(&mapping->private_lock);
297 	ctx = mapping->private_data;
298 	if (ctx) {
299 		pgoff_t idx;
300 		spin_lock_irqsave(&ctx->completion_lock, flags);
301 		migrate_page_copy(new, old);
302 		idx = old->index;
303 		if (idx < (pgoff_t)ctx->nr_pages)
304 			ctx->ring_pages[idx] = new;
305 		spin_unlock_irqrestore(&ctx->completion_lock, flags);
306 	} else
307 		rc = -EBUSY;
308 	spin_unlock(&mapping->private_lock);
309 
310 	return rc;
311 }
312 #endif
313 
314 static const struct address_space_operations aio_ctx_aops = {
315 	.set_page_dirty = aio_set_page_dirty,
316 #if IS_ENABLED(CONFIG_MIGRATION)
317 	.migratepage	= aio_migratepage,
318 #endif
319 };
320 
321 static int aio_setup_ring(struct kioctx *ctx)
322 {
323 	struct aio_ring *ring;
324 	unsigned nr_events = ctx->max_reqs;
325 	struct mm_struct *mm = current->mm;
326 	unsigned long size, populate;
327 	int nr_pages;
328 	int i;
329 	struct file *file;
330 
331 	/* Compensate for the ring buffer's head/tail overlap entry */
332 	nr_events += 2;	/* 1 is required, 2 for good luck */
333 
334 	size = sizeof(struct aio_ring);
335 	size += sizeof(struct io_event) * nr_events;
336 
337 	nr_pages = PFN_UP(size);
338 	if (nr_pages < 0)
339 		return -EINVAL;
340 
341 	file = aio_private_file(ctx, nr_pages);
342 	if (IS_ERR(file)) {
343 		ctx->aio_ring_file = NULL;
344 		return -EAGAIN;
345 	}
346 
347 	for (i = 0; i < nr_pages; i++) {
348 		struct page *page;
349 		page = find_or_create_page(file->f_inode->i_mapping,
350 					   i, GFP_HIGHUSER | __GFP_ZERO);
351 		if (!page)
352 			break;
353 		pr_debug("pid(%d) page[%d]->count=%d\n",
354 			 current->pid, i, page_count(page));
355 		SetPageUptodate(page);
356 		SetPageDirty(page);
357 		unlock_page(page);
358 	}
359 	ctx->aio_ring_file = file;
360 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
361 			/ sizeof(struct io_event);
362 
363 	ctx->ring_pages = ctx->internal_pages;
364 	if (nr_pages > AIO_RING_PAGES) {
365 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
366 					  GFP_KERNEL);
367 		if (!ctx->ring_pages)
368 			return -ENOMEM;
369 	}
370 
371 	ctx->mmap_size = nr_pages * PAGE_SIZE;
372 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
373 
374 	down_write(&mm->mmap_sem);
375 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
376 				       PROT_READ | PROT_WRITE,
377 				       MAP_SHARED | MAP_POPULATE, 0, &populate);
378 	if (IS_ERR((void *)ctx->mmap_base)) {
379 		up_write(&mm->mmap_sem);
380 		ctx->mmap_size = 0;
381 		aio_free_ring(ctx);
382 		return -EAGAIN;
383 	}
384 
385 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
386 
387 	/* We must do this while still holding mmap_sem for write, as we
388 	 * need to be protected against userspace attempting to mremap()
389 	 * or munmap() the ring buffer.
390 	 */
391 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
392 				       1, 0, ctx->ring_pages, NULL);
393 
394 	/* Dropping the reference here is safe as the page cache will hold
395 	 * onto the pages for us.  It is also required so that page migration
396 	 * can unmap the pages and get the right reference count.
397 	 */
398 	for (i = 0; i < ctx->nr_pages; i++)
399 		put_page(ctx->ring_pages[i]);
400 
401 	up_write(&mm->mmap_sem);
402 
403 	if (unlikely(ctx->nr_pages != nr_pages)) {
404 		aio_free_ring(ctx);
405 		return -EAGAIN;
406 	}
407 
408 	ctx->user_id = ctx->mmap_base;
409 	ctx->nr_events = nr_events; /* trusted copy */
410 
411 	ring = kmap_atomic(ctx->ring_pages[0]);
412 	ring->nr = nr_events;	/* user copy */
413 	ring->id = ~0U;
414 	ring->head = ring->tail = 0;
415 	ring->magic = AIO_RING_MAGIC;
416 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
417 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
418 	ring->header_length = sizeof(struct aio_ring);
419 	kunmap_atomic(ring);
420 	flush_dcache_page(ctx->ring_pages[0]);
421 
422 	return 0;
423 }
424 
425 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
426 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
427 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
428 
429 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
430 {
431 	struct kioctx *ctx = req->ki_ctx;
432 	unsigned long flags;
433 
434 	spin_lock_irqsave(&ctx->ctx_lock, flags);
435 
436 	if (!req->ki_list.next)
437 		list_add(&req->ki_list, &ctx->active_reqs);
438 
439 	req->ki_cancel = cancel;
440 
441 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
442 }
443 EXPORT_SYMBOL(kiocb_set_cancel_fn);
444 
445 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
446 {
447 	kiocb_cancel_fn *old, *cancel;
448 
449 	/*
450 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
451 	 * actually has a cancel function, hence the cmpxchg()
452 	 */
453 
454 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
455 	do {
456 		if (!cancel || cancel == KIOCB_CANCELLED)
457 			return -EINVAL;
458 
459 		old = cancel;
460 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
461 	} while (cancel != old);
462 
463 	return cancel(kiocb);
464 }
465 
466 static void free_ioctx_rcu(struct rcu_head *head)
467 {
468 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
469 
470 	free_percpu(ctx->cpu);
471 	kmem_cache_free(kioctx_cachep, ctx);
472 }
473 
474 /*
475  * When this function runs, the kioctx has been removed from the "hash table"
476  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
477  * now it's safe to cancel any that need to be.
478  */
479 static void free_ioctx(struct work_struct *work)
480 {
481 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
482 	struct aio_ring *ring;
483 	struct kiocb *req;
484 	unsigned cpu, avail;
485 	DEFINE_WAIT(wait);
486 
487 	spin_lock_irq(&ctx->ctx_lock);
488 
489 	while (!list_empty(&ctx->active_reqs)) {
490 		req = list_first_entry(&ctx->active_reqs,
491 				       struct kiocb, ki_list);
492 
493 		list_del_init(&req->ki_list);
494 		kiocb_cancel(ctx, req);
495 	}
496 
497 	spin_unlock_irq(&ctx->ctx_lock);
498 
499 	for_each_possible_cpu(cpu) {
500 		struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
501 
502 		atomic_add(kcpu->reqs_available, &ctx->reqs_available);
503 		kcpu->reqs_available = 0;
504 	}
505 
506 	while (1) {
507 		prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
508 
509 		ring = kmap_atomic(ctx->ring_pages[0]);
510 		avail = (ring->head <= ring->tail)
511 			 ? ring->tail - ring->head
512 			 : ctx->nr_events - ring->head + ring->tail;
513 
514 		atomic_add(avail, &ctx->reqs_available);
515 		ring->head = ring->tail;
516 		kunmap_atomic(ring);
517 
518 		if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
519 			break;
520 
521 		schedule();
522 	}
523 	finish_wait(&ctx->wait, &wait);
524 
525 	WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
526 
527 	aio_free_ring(ctx);
528 
529 	pr_debug("freeing %p\n", ctx);
530 
531 	/*
532 	 * Here the call_rcu() is between the wait_event() for reqs_active to
533 	 * hit 0, and freeing the ioctx.
534 	 *
535 	 * aio_complete() decrements reqs_active, but it has to touch the ioctx
536 	 * after to issue a wakeup so we use rcu.
537 	 */
538 	call_rcu(&ctx->rcu_head, free_ioctx_rcu);
539 }
540 
541 static void free_ioctx_ref(struct percpu_ref *ref)
542 {
543 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
544 
545 	INIT_WORK(&ctx->free_work, free_ioctx);
546 	schedule_work(&ctx->free_work);
547 }
548 
549 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
550 {
551 	unsigned i, new_nr;
552 	struct kioctx_table *table, *old;
553 	struct aio_ring *ring;
554 
555 	spin_lock(&mm->ioctx_lock);
556 	rcu_read_lock();
557 	table = rcu_dereference(mm->ioctx_table);
558 
559 	while (1) {
560 		if (table)
561 			for (i = 0; i < table->nr; i++)
562 				if (!table->table[i]) {
563 					ctx->id = i;
564 					table->table[i] = ctx;
565 					rcu_read_unlock();
566 					spin_unlock(&mm->ioctx_lock);
567 
568 					ring = kmap_atomic(ctx->ring_pages[0]);
569 					ring->id = ctx->id;
570 					kunmap_atomic(ring);
571 					return 0;
572 				}
573 
574 		new_nr = (table ? table->nr : 1) * 4;
575 
576 		rcu_read_unlock();
577 		spin_unlock(&mm->ioctx_lock);
578 
579 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
580 				new_nr, GFP_KERNEL);
581 		if (!table)
582 			return -ENOMEM;
583 
584 		table->nr = new_nr;
585 
586 		spin_lock(&mm->ioctx_lock);
587 		rcu_read_lock();
588 		old = rcu_dereference(mm->ioctx_table);
589 
590 		if (!old) {
591 			rcu_assign_pointer(mm->ioctx_table, table);
592 		} else if (table->nr > old->nr) {
593 			memcpy(table->table, old->table,
594 			       old->nr * sizeof(struct kioctx *));
595 
596 			rcu_assign_pointer(mm->ioctx_table, table);
597 			kfree_rcu(old, rcu);
598 		} else {
599 			kfree(table);
600 			table = old;
601 		}
602 	}
603 }
604 
605 /* ioctx_alloc
606  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
607  */
608 static struct kioctx *ioctx_alloc(unsigned nr_events)
609 {
610 	struct mm_struct *mm = current->mm;
611 	struct kioctx *ctx;
612 	int err = -ENOMEM;
613 
614 	/*
615 	 * We keep track of the number of available ringbuffer slots, to prevent
616 	 * overflow (reqs_available), and we also use percpu counters for this.
617 	 *
618 	 * So since up to half the slots might be on other cpu's percpu counters
619 	 * and unavailable, double nr_events so userspace sees what they
620 	 * expected: additionally, we move req_batch slots to/from percpu
621 	 * counters at a time, so make sure that isn't 0:
622 	 */
623 	nr_events = max(nr_events, num_possible_cpus() * 4);
624 	nr_events *= 2;
625 
626 	/* Prevent overflows */
627 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
628 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
629 		pr_debug("ENOMEM: nr_events too high\n");
630 		return ERR_PTR(-EINVAL);
631 	}
632 
633 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
634 		return ERR_PTR(-EAGAIN);
635 
636 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
637 	if (!ctx)
638 		return ERR_PTR(-ENOMEM);
639 
640 	ctx->max_reqs = nr_events;
641 
642 	if (percpu_ref_init(&ctx->users, free_ioctx_ref))
643 		goto out_freectx;
644 
645 	spin_lock_init(&ctx->ctx_lock);
646 	spin_lock_init(&ctx->completion_lock);
647 	mutex_init(&ctx->ring_lock);
648 	init_waitqueue_head(&ctx->wait);
649 
650 	INIT_LIST_HEAD(&ctx->active_reqs);
651 
652 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
653 	if (!ctx->cpu)
654 		goto out_freeref;
655 
656 	if (aio_setup_ring(ctx) < 0)
657 		goto out_freepcpu;
658 
659 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
660 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
661 	if (ctx->req_batch < 1)
662 		ctx->req_batch = 1;
663 
664 	/* limit the number of system wide aios */
665 	spin_lock(&aio_nr_lock);
666 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
667 	    aio_nr + nr_events < aio_nr) {
668 		spin_unlock(&aio_nr_lock);
669 		goto out_cleanup;
670 	}
671 	aio_nr += ctx->max_reqs;
672 	spin_unlock(&aio_nr_lock);
673 
674 	percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
675 
676 	err = ioctx_add_table(ctx, mm);
677 	if (err)
678 		goto out_cleanup_put;
679 
680 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
681 		 ctx, ctx->user_id, mm, ctx->nr_events);
682 	return ctx;
683 
684 out_cleanup_put:
685 	percpu_ref_put(&ctx->users);
686 out_cleanup:
687 	err = -EAGAIN;
688 	aio_free_ring(ctx);
689 out_freepcpu:
690 	free_percpu(ctx->cpu);
691 out_freeref:
692 	free_percpu(ctx->users.pcpu_count);
693 out_freectx:
694 	put_aio_ring_file(ctx);
695 	kmem_cache_free(kioctx_cachep, ctx);
696 	pr_debug("error allocating ioctx %d\n", err);
697 	return ERR_PTR(err);
698 }
699 
700 /* kill_ioctx
701  *	Cancels all outstanding aio requests on an aio context.  Used
702  *	when the processes owning a context have all exited to encourage
703  *	the rapid destruction of the kioctx.
704  */
705 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx)
706 {
707 	if (!atomic_xchg(&ctx->dead, 1)) {
708 		struct kioctx_table *table;
709 
710 		spin_lock(&mm->ioctx_lock);
711 		rcu_read_lock();
712 		table = rcu_dereference(mm->ioctx_table);
713 
714 		WARN_ON(ctx != table->table[ctx->id]);
715 		table->table[ctx->id] = NULL;
716 		rcu_read_unlock();
717 		spin_unlock(&mm->ioctx_lock);
718 
719 		/* percpu_ref_kill() will do the necessary call_rcu() */
720 		wake_up_all(&ctx->wait);
721 
722 		/*
723 		 * It'd be more correct to do this in free_ioctx(), after all
724 		 * the outstanding kiocbs have finished - but by then io_destroy
725 		 * has already returned, so io_setup() could potentially return
726 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
727 		 *  could tell).
728 		 */
729 		spin_lock(&aio_nr_lock);
730 		BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
731 		aio_nr -= ctx->max_reqs;
732 		spin_unlock(&aio_nr_lock);
733 
734 		if (ctx->mmap_size)
735 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
736 
737 		percpu_ref_kill(&ctx->users);
738 	}
739 }
740 
741 /* wait_on_sync_kiocb:
742  *	Waits on the given sync kiocb to complete.
743  */
744 ssize_t wait_on_sync_kiocb(struct kiocb *req)
745 {
746 	while (!req->ki_ctx) {
747 		set_current_state(TASK_UNINTERRUPTIBLE);
748 		if (req->ki_ctx)
749 			break;
750 		io_schedule();
751 	}
752 	__set_current_state(TASK_RUNNING);
753 	return req->ki_user_data;
754 }
755 EXPORT_SYMBOL(wait_on_sync_kiocb);
756 
757 /*
758  * exit_aio: called when the last user of mm goes away.  At this point, there is
759  * no way for any new requests to be submited or any of the io_* syscalls to be
760  * called on the context.
761  *
762  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
763  * them.
764  */
765 void exit_aio(struct mm_struct *mm)
766 {
767 	struct kioctx_table *table;
768 	struct kioctx *ctx;
769 	unsigned i = 0;
770 
771 	while (1) {
772 		rcu_read_lock();
773 		table = rcu_dereference(mm->ioctx_table);
774 
775 		do {
776 			if (!table || i >= table->nr) {
777 				rcu_read_unlock();
778 				rcu_assign_pointer(mm->ioctx_table, NULL);
779 				if (table)
780 					kfree(table);
781 				return;
782 			}
783 
784 			ctx = table->table[i++];
785 		} while (!ctx);
786 
787 		rcu_read_unlock();
788 
789 		/*
790 		 * We don't need to bother with munmap() here -
791 		 * exit_mmap(mm) is coming and it'll unmap everything.
792 		 * Since aio_free_ring() uses non-zero ->mmap_size
793 		 * as indicator that it needs to unmap the area,
794 		 * just set it to 0; aio_free_ring() is the only
795 		 * place that uses ->mmap_size, so it's safe.
796 		 */
797 		ctx->mmap_size = 0;
798 
799 		kill_ioctx(mm, ctx);
800 	}
801 }
802 
803 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
804 {
805 	struct kioctx_cpu *kcpu;
806 
807 	preempt_disable();
808 	kcpu = this_cpu_ptr(ctx->cpu);
809 
810 	kcpu->reqs_available += nr;
811 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
812 		kcpu->reqs_available -= ctx->req_batch;
813 		atomic_add(ctx->req_batch, &ctx->reqs_available);
814 	}
815 
816 	preempt_enable();
817 }
818 
819 static bool get_reqs_available(struct kioctx *ctx)
820 {
821 	struct kioctx_cpu *kcpu;
822 	bool ret = false;
823 
824 	preempt_disable();
825 	kcpu = this_cpu_ptr(ctx->cpu);
826 
827 	if (!kcpu->reqs_available) {
828 		int old, avail = atomic_read(&ctx->reqs_available);
829 
830 		do {
831 			if (avail < ctx->req_batch)
832 				goto out;
833 
834 			old = avail;
835 			avail = atomic_cmpxchg(&ctx->reqs_available,
836 					       avail, avail - ctx->req_batch);
837 		} while (avail != old);
838 
839 		kcpu->reqs_available += ctx->req_batch;
840 	}
841 
842 	ret = true;
843 	kcpu->reqs_available--;
844 out:
845 	preempt_enable();
846 	return ret;
847 }
848 
849 /* aio_get_req
850  *	Allocate a slot for an aio request.
851  * Returns NULL if no requests are free.
852  */
853 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
854 {
855 	struct kiocb *req;
856 
857 	if (!get_reqs_available(ctx))
858 		return NULL;
859 
860 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
861 	if (unlikely(!req))
862 		goto out_put;
863 
864 	req->ki_ctx = ctx;
865 	return req;
866 out_put:
867 	put_reqs_available(ctx, 1);
868 	return NULL;
869 }
870 
871 static void kiocb_free(struct kiocb *req)
872 {
873 	if (req->ki_filp)
874 		fput(req->ki_filp);
875 	if (req->ki_eventfd != NULL)
876 		eventfd_ctx_put(req->ki_eventfd);
877 	kmem_cache_free(kiocb_cachep, req);
878 }
879 
880 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
881 {
882 	struct aio_ring __user *ring  = (void __user *)ctx_id;
883 	struct mm_struct *mm = current->mm;
884 	struct kioctx *ctx, *ret = NULL;
885 	struct kioctx_table *table;
886 	unsigned id;
887 
888 	if (get_user(id, &ring->id))
889 		return NULL;
890 
891 	rcu_read_lock();
892 	table = rcu_dereference(mm->ioctx_table);
893 
894 	if (!table || id >= table->nr)
895 		goto out;
896 
897 	ctx = table->table[id];
898 	if (ctx && ctx->user_id == ctx_id) {
899 		percpu_ref_get(&ctx->users);
900 		ret = ctx;
901 	}
902 out:
903 	rcu_read_unlock();
904 	return ret;
905 }
906 
907 /* aio_complete
908  *	Called when the io request on the given iocb is complete.
909  */
910 void aio_complete(struct kiocb *iocb, long res, long res2)
911 {
912 	struct kioctx	*ctx = iocb->ki_ctx;
913 	struct aio_ring	*ring;
914 	struct io_event	*ev_page, *event;
915 	unsigned long	flags;
916 	unsigned tail, pos;
917 
918 	/*
919 	 * Special case handling for sync iocbs:
920 	 *  - events go directly into the iocb for fast handling
921 	 *  - the sync task with the iocb in its stack holds the single iocb
922 	 *    ref, no other paths have a way to get another ref
923 	 *  - the sync task helpfully left a reference to itself in the iocb
924 	 */
925 	if (is_sync_kiocb(iocb)) {
926 		iocb->ki_user_data = res;
927 		smp_wmb();
928 		iocb->ki_ctx = ERR_PTR(-EXDEV);
929 		wake_up_process(iocb->ki_obj.tsk);
930 		return;
931 	}
932 
933 	/*
934 	 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
935 	 * need to issue a wakeup after incrementing reqs_available.
936 	 */
937 	rcu_read_lock();
938 
939 	if (iocb->ki_list.next) {
940 		unsigned long flags;
941 
942 		spin_lock_irqsave(&ctx->ctx_lock, flags);
943 		list_del(&iocb->ki_list);
944 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
945 	}
946 
947 	/*
948 	 * Add a completion event to the ring buffer. Must be done holding
949 	 * ctx->completion_lock to prevent other code from messing with the tail
950 	 * pointer since we might be called from irq context.
951 	 */
952 	spin_lock_irqsave(&ctx->completion_lock, flags);
953 
954 	tail = ctx->tail;
955 	pos = tail + AIO_EVENTS_OFFSET;
956 
957 	if (++tail >= ctx->nr_events)
958 		tail = 0;
959 
960 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
961 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
962 
963 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
964 	event->data = iocb->ki_user_data;
965 	event->res = res;
966 	event->res2 = res2;
967 
968 	kunmap_atomic(ev_page);
969 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
970 
971 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
972 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
973 		 res, res2);
974 
975 	/* after flagging the request as done, we
976 	 * must never even look at it again
977 	 */
978 	smp_wmb();	/* make event visible before updating tail */
979 
980 	ctx->tail = tail;
981 
982 	ring = kmap_atomic(ctx->ring_pages[0]);
983 	ring->tail = tail;
984 	kunmap_atomic(ring);
985 	flush_dcache_page(ctx->ring_pages[0]);
986 
987 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
988 
989 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
990 
991 	/*
992 	 * Check if the user asked us to deliver the result through an
993 	 * eventfd. The eventfd_signal() function is safe to be called
994 	 * from IRQ context.
995 	 */
996 	if (iocb->ki_eventfd != NULL)
997 		eventfd_signal(iocb->ki_eventfd, 1);
998 
999 	/* everything turned out well, dispose of the aiocb. */
1000 	kiocb_free(iocb);
1001 
1002 	/*
1003 	 * We have to order our ring_info tail store above and test
1004 	 * of the wait list below outside the wait lock.  This is
1005 	 * like in wake_up_bit() where clearing a bit has to be
1006 	 * ordered with the unlocked test.
1007 	 */
1008 	smp_mb();
1009 
1010 	if (waitqueue_active(&ctx->wait))
1011 		wake_up(&ctx->wait);
1012 
1013 	rcu_read_unlock();
1014 }
1015 EXPORT_SYMBOL(aio_complete);
1016 
1017 /* aio_read_events
1018  *	Pull an event off of the ioctx's event ring.  Returns the number of
1019  *	events fetched
1020  */
1021 static long aio_read_events_ring(struct kioctx *ctx,
1022 				 struct io_event __user *event, long nr)
1023 {
1024 	struct aio_ring *ring;
1025 	unsigned head, tail, pos;
1026 	long ret = 0;
1027 	int copy_ret;
1028 
1029 	mutex_lock(&ctx->ring_lock);
1030 
1031 	ring = kmap_atomic(ctx->ring_pages[0]);
1032 	head = ring->head;
1033 	tail = ring->tail;
1034 	kunmap_atomic(ring);
1035 
1036 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1037 
1038 	if (head == tail)
1039 		goto out;
1040 
1041 	while (ret < nr) {
1042 		long avail;
1043 		struct io_event *ev;
1044 		struct page *page;
1045 
1046 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1047 		if (head == tail)
1048 			break;
1049 
1050 		avail = min(avail, nr - ret);
1051 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1052 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1053 
1054 		pos = head + AIO_EVENTS_OFFSET;
1055 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1056 		pos %= AIO_EVENTS_PER_PAGE;
1057 
1058 		ev = kmap(page);
1059 		copy_ret = copy_to_user(event + ret, ev + pos,
1060 					sizeof(*ev) * avail);
1061 		kunmap(page);
1062 
1063 		if (unlikely(copy_ret)) {
1064 			ret = -EFAULT;
1065 			goto out;
1066 		}
1067 
1068 		ret += avail;
1069 		head += avail;
1070 		head %= ctx->nr_events;
1071 	}
1072 
1073 	ring = kmap_atomic(ctx->ring_pages[0]);
1074 	ring->head = head;
1075 	kunmap_atomic(ring);
1076 	flush_dcache_page(ctx->ring_pages[0]);
1077 
1078 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1079 
1080 	put_reqs_available(ctx, ret);
1081 out:
1082 	mutex_unlock(&ctx->ring_lock);
1083 
1084 	return ret;
1085 }
1086 
1087 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1088 			    struct io_event __user *event, long *i)
1089 {
1090 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1091 
1092 	if (ret > 0)
1093 		*i += ret;
1094 
1095 	if (unlikely(atomic_read(&ctx->dead)))
1096 		ret = -EINVAL;
1097 
1098 	if (!*i)
1099 		*i = ret;
1100 
1101 	return ret < 0 || *i >= min_nr;
1102 }
1103 
1104 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1105 			struct io_event __user *event,
1106 			struct timespec __user *timeout)
1107 {
1108 	ktime_t until = { .tv64 = KTIME_MAX };
1109 	long ret = 0;
1110 
1111 	if (timeout) {
1112 		struct timespec	ts;
1113 
1114 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1115 			return -EFAULT;
1116 
1117 		until = timespec_to_ktime(ts);
1118 	}
1119 
1120 	/*
1121 	 * Note that aio_read_events() is being called as the conditional - i.e.
1122 	 * we're calling it after prepare_to_wait() has set task state to
1123 	 * TASK_INTERRUPTIBLE.
1124 	 *
1125 	 * But aio_read_events() can block, and if it blocks it's going to flip
1126 	 * the task state back to TASK_RUNNING.
1127 	 *
1128 	 * This should be ok, provided it doesn't flip the state back to
1129 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1130 	 * will only happen if the mutex_lock() call blocks, and we then find
1131 	 * the ringbuffer empty. So in practice we should be ok, but it's
1132 	 * something to be aware of when touching this code.
1133 	 */
1134 	wait_event_interruptible_hrtimeout(ctx->wait,
1135 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
1136 
1137 	if (!ret && signal_pending(current))
1138 		ret = -EINTR;
1139 
1140 	return ret;
1141 }
1142 
1143 /* sys_io_setup:
1144  *	Create an aio_context capable of receiving at least nr_events.
1145  *	ctxp must not point to an aio_context that already exists, and
1146  *	must be initialized to 0 prior to the call.  On successful
1147  *	creation of the aio_context, *ctxp is filled in with the resulting
1148  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1149  *	if the specified nr_events exceeds internal limits.  May fail
1150  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1151  *	of available events.  May fail with -ENOMEM if insufficient kernel
1152  *	resources are available.  May fail with -EFAULT if an invalid
1153  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1154  *	implemented.
1155  */
1156 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1157 {
1158 	struct kioctx *ioctx = NULL;
1159 	unsigned long ctx;
1160 	long ret;
1161 
1162 	ret = get_user(ctx, ctxp);
1163 	if (unlikely(ret))
1164 		goto out;
1165 
1166 	ret = -EINVAL;
1167 	if (unlikely(ctx || nr_events == 0)) {
1168 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1169 		         ctx, nr_events);
1170 		goto out;
1171 	}
1172 
1173 	ioctx = ioctx_alloc(nr_events);
1174 	ret = PTR_ERR(ioctx);
1175 	if (!IS_ERR(ioctx)) {
1176 		ret = put_user(ioctx->user_id, ctxp);
1177 		if (ret)
1178 			kill_ioctx(current->mm, ioctx);
1179 		percpu_ref_put(&ioctx->users);
1180 	}
1181 
1182 out:
1183 	return ret;
1184 }
1185 
1186 /* sys_io_destroy:
1187  *	Destroy the aio_context specified.  May cancel any outstanding
1188  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1189  *	implemented.  May fail with -EINVAL if the context pointed to
1190  *	is invalid.
1191  */
1192 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1193 {
1194 	struct kioctx *ioctx = lookup_ioctx(ctx);
1195 	if (likely(NULL != ioctx)) {
1196 		kill_ioctx(current->mm, ioctx);
1197 		percpu_ref_put(&ioctx->users);
1198 		return 0;
1199 	}
1200 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1201 	return -EINVAL;
1202 }
1203 
1204 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1205 			    unsigned long, loff_t);
1206 
1207 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1208 				     int rw, char __user *buf,
1209 				     unsigned long *nr_segs,
1210 				     struct iovec **iovec,
1211 				     bool compat)
1212 {
1213 	ssize_t ret;
1214 
1215 	*nr_segs = kiocb->ki_nbytes;
1216 
1217 #ifdef CONFIG_COMPAT
1218 	if (compat)
1219 		ret = compat_rw_copy_check_uvector(rw,
1220 				(struct compat_iovec __user *)buf,
1221 				*nr_segs, 1, *iovec, iovec);
1222 	else
1223 #endif
1224 		ret = rw_copy_check_uvector(rw,
1225 				(struct iovec __user *)buf,
1226 				*nr_segs, 1, *iovec, iovec);
1227 	if (ret < 0)
1228 		return ret;
1229 
1230 	/* ki_nbytes now reflect bytes instead of segs */
1231 	kiocb->ki_nbytes = ret;
1232 	return 0;
1233 }
1234 
1235 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1236 				       int rw, char __user *buf,
1237 				       unsigned long *nr_segs,
1238 				       struct iovec *iovec)
1239 {
1240 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1241 		return -EFAULT;
1242 
1243 	iovec->iov_base = buf;
1244 	iovec->iov_len = kiocb->ki_nbytes;
1245 	*nr_segs = 1;
1246 	return 0;
1247 }
1248 
1249 /*
1250  * aio_setup_iocb:
1251  *	Performs the initial checks and aio retry method
1252  *	setup for the kiocb at the time of io submission.
1253  */
1254 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1255 			    char __user *buf, bool compat)
1256 {
1257 	struct file *file = req->ki_filp;
1258 	ssize_t ret;
1259 	unsigned long nr_segs;
1260 	int rw;
1261 	fmode_t mode;
1262 	aio_rw_op *rw_op;
1263 	struct iovec inline_vec, *iovec = &inline_vec;
1264 
1265 	switch (opcode) {
1266 	case IOCB_CMD_PREAD:
1267 	case IOCB_CMD_PREADV:
1268 		mode	= FMODE_READ;
1269 		rw	= READ;
1270 		rw_op	= file->f_op->aio_read;
1271 		goto rw_common;
1272 
1273 	case IOCB_CMD_PWRITE:
1274 	case IOCB_CMD_PWRITEV:
1275 		mode	= FMODE_WRITE;
1276 		rw	= WRITE;
1277 		rw_op	= file->f_op->aio_write;
1278 		goto rw_common;
1279 rw_common:
1280 		if (unlikely(!(file->f_mode & mode)))
1281 			return -EBADF;
1282 
1283 		if (!rw_op)
1284 			return -EINVAL;
1285 
1286 		ret = (opcode == IOCB_CMD_PREADV ||
1287 		       opcode == IOCB_CMD_PWRITEV)
1288 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1289 						&iovec, compat)
1290 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1291 						  iovec);
1292 		if (ret)
1293 			return ret;
1294 
1295 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1296 		if (ret < 0) {
1297 			if (iovec != &inline_vec)
1298 				kfree(iovec);
1299 			return ret;
1300 		}
1301 
1302 		req->ki_nbytes = ret;
1303 
1304 		/* XXX: move/kill - rw_verify_area()? */
1305 		/* This matches the pread()/pwrite() logic */
1306 		if (req->ki_pos < 0) {
1307 			ret = -EINVAL;
1308 			break;
1309 		}
1310 
1311 		if (rw == WRITE)
1312 			file_start_write(file);
1313 
1314 		ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1315 
1316 		if (rw == WRITE)
1317 			file_end_write(file);
1318 		break;
1319 
1320 	case IOCB_CMD_FDSYNC:
1321 		if (!file->f_op->aio_fsync)
1322 			return -EINVAL;
1323 
1324 		ret = file->f_op->aio_fsync(req, 1);
1325 		break;
1326 
1327 	case IOCB_CMD_FSYNC:
1328 		if (!file->f_op->aio_fsync)
1329 			return -EINVAL;
1330 
1331 		ret = file->f_op->aio_fsync(req, 0);
1332 		break;
1333 
1334 	default:
1335 		pr_debug("EINVAL: no operation provided\n");
1336 		return -EINVAL;
1337 	}
1338 
1339 	if (iovec != &inline_vec)
1340 		kfree(iovec);
1341 
1342 	if (ret != -EIOCBQUEUED) {
1343 		/*
1344 		 * There's no easy way to restart the syscall since other AIO's
1345 		 * may be already running. Just fail this IO with EINTR.
1346 		 */
1347 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1348 			     ret == -ERESTARTNOHAND ||
1349 			     ret == -ERESTART_RESTARTBLOCK))
1350 			ret = -EINTR;
1351 		aio_complete(req, ret, 0);
1352 	}
1353 
1354 	return 0;
1355 }
1356 
1357 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1358 			 struct iocb *iocb, bool compat)
1359 {
1360 	struct kiocb *req;
1361 	ssize_t ret;
1362 
1363 	/* enforce forwards compatibility on users */
1364 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1365 		pr_debug("EINVAL: reserve field set\n");
1366 		return -EINVAL;
1367 	}
1368 
1369 	/* prevent overflows */
1370 	if (unlikely(
1371 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1372 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1373 	    ((ssize_t)iocb->aio_nbytes < 0)
1374 	   )) {
1375 		pr_debug("EINVAL: io_submit: overflow check\n");
1376 		return -EINVAL;
1377 	}
1378 
1379 	req = aio_get_req(ctx);
1380 	if (unlikely(!req))
1381 		return -EAGAIN;
1382 
1383 	req->ki_filp = fget(iocb->aio_fildes);
1384 	if (unlikely(!req->ki_filp)) {
1385 		ret = -EBADF;
1386 		goto out_put_req;
1387 	}
1388 
1389 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1390 		/*
1391 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1392 		 * instance of the file* now. The file descriptor must be
1393 		 * an eventfd() fd, and will be signaled for each completed
1394 		 * event using the eventfd_signal() function.
1395 		 */
1396 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1397 		if (IS_ERR(req->ki_eventfd)) {
1398 			ret = PTR_ERR(req->ki_eventfd);
1399 			req->ki_eventfd = NULL;
1400 			goto out_put_req;
1401 		}
1402 	}
1403 
1404 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1405 	if (unlikely(ret)) {
1406 		pr_debug("EFAULT: aio_key\n");
1407 		goto out_put_req;
1408 	}
1409 
1410 	req->ki_obj.user = user_iocb;
1411 	req->ki_user_data = iocb->aio_data;
1412 	req->ki_pos = iocb->aio_offset;
1413 	req->ki_nbytes = iocb->aio_nbytes;
1414 
1415 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1416 			   (char __user *)(unsigned long)iocb->aio_buf,
1417 			   compat);
1418 	if (ret)
1419 		goto out_put_req;
1420 
1421 	return 0;
1422 out_put_req:
1423 	put_reqs_available(ctx, 1);
1424 	kiocb_free(req);
1425 	return ret;
1426 }
1427 
1428 long do_io_submit(aio_context_t ctx_id, long nr,
1429 		  struct iocb __user *__user *iocbpp, bool compat)
1430 {
1431 	struct kioctx *ctx;
1432 	long ret = 0;
1433 	int i = 0;
1434 	struct blk_plug plug;
1435 
1436 	if (unlikely(nr < 0))
1437 		return -EINVAL;
1438 
1439 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1440 		nr = LONG_MAX/sizeof(*iocbpp);
1441 
1442 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1443 		return -EFAULT;
1444 
1445 	ctx = lookup_ioctx(ctx_id);
1446 	if (unlikely(!ctx)) {
1447 		pr_debug("EINVAL: invalid context id\n");
1448 		return -EINVAL;
1449 	}
1450 
1451 	blk_start_plug(&plug);
1452 
1453 	/*
1454 	 * AKPM: should this return a partial result if some of the IOs were
1455 	 * successfully submitted?
1456 	 */
1457 	for (i=0; i<nr; i++) {
1458 		struct iocb __user *user_iocb;
1459 		struct iocb tmp;
1460 
1461 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1462 			ret = -EFAULT;
1463 			break;
1464 		}
1465 
1466 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1467 			ret = -EFAULT;
1468 			break;
1469 		}
1470 
1471 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1472 		if (ret)
1473 			break;
1474 	}
1475 	blk_finish_plug(&plug);
1476 
1477 	percpu_ref_put(&ctx->users);
1478 	return i ? i : ret;
1479 }
1480 
1481 /* sys_io_submit:
1482  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1483  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1484  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1485  *	*iocbpp[0] is not properly initialized, if the operation specified
1486  *	is invalid for the file descriptor in the iocb.  May fail with
1487  *	-EFAULT if any of the data structures point to invalid data.  May
1488  *	fail with -EBADF if the file descriptor specified in the first
1489  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1490  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1491  *	fail with -ENOSYS if not implemented.
1492  */
1493 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1494 		struct iocb __user * __user *, iocbpp)
1495 {
1496 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1497 }
1498 
1499 /* lookup_kiocb
1500  *	Finds a given iocb for cancellation.
1501  */
1502 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1503 				  u32 key)
1504 {
1505 	struct list_head *pos;
1506 
1507 	assert_spin_locked(&ctx->ctx_lock);
1508 
1509 	if (key != KIOCB_KEY)
1510 		return NULL;
1511 
1512 	/* TODO: use a hash or array, this sucks. */
1513 	list_for_each(pos, &ctx->active_reqs) {
1514 		struct kiocb *kiocb = list_kiocb(pos);
1515 		if (kiocb->ki_obj.user == iocb)
1516 			return kiocb;
1517 	}
1518 	return NULL;
1519 }
1520 
1521 /* sys_io_cancel:
1522  *	Attempts to cancel an iocb previously passed to io_submit.  If
1523  *	the operation is successfully cancelled, the resulting event is
1524  *	copied into the memory pointed to by result without being placed
1525  *	into the completion queue and 0 is returned.  May fail with
1526  *	-EFAULT if any of the data structures pointed to are invalid.
1527  *	May fail with -EINVAL if aio_context specified by ctx_id is
1528  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1529  *	cancelled.  Will fail with -ENOSYS if not implemented.
1530  */
1531 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1532 		struct io_event __user *, result)
1533 {
1534 	struct kioctx *ctx;
1535 	struct kiocb *kiocb;
1536 	u32 key;
1537 	int ret;
1538 
1539 	ret = get_user(key, &iocb->aio_key);
1540 	if (unlikely(ret))
1541 		return -EFAULT;
1542 
1543 	ctx = lookup_ioctx(ctx_id);
1544 	if (unlikely(!ctx))
1545 		return -EINVAL;
1546 
1547 	spin_lock_irq(&ctx->ctx_lock);
1548 
1549 	kiocb = lookup_kiocb(ctx, iocb, key);
1550 	if (kiocb)
1551 		ret = kiocb_cancel(ctx, kiocb);
1552 	else
1553 		ret = -EINVAL;
1554 
1555 	spin_unlock_irq(&ctx->ctx_lock);
1556 
1557 	if (!ret) {
1558 		/*
1559 		 * The result argument is no longer used - the io_event is
1560 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1561 		 * cancellation is progress:
1562 		 */
1563 		ret = -EINPROGRESS;
1564 	}
1565 
1566 	percpu_ref_put(&ctx->users);
1567 
1568 	return ret;
1569 }
1570 
1571 /* io_getevents:
1572  *	Attempts to read at least min_nr events and up to nr events from
1573  *	the completion queue for the aio_context specified by ctx_id. If
1574  *	it succeeds, the number of read events is returned. May fail with
1575  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1576  *	out of range, if timeout is out of range.  May fail with -EFAULT
1577  *	if any of the memory specified is invalid.  May return 0 or
1578  *	< min_nr if the timeout specified by timeout has elapsed
1579  *	before sufficient events are available, where timeout == NULL
1580  *	specifies an infinite timeout. Note that the timeout pointed to by
1581  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1582  */
1583 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1584 		long, min_nr,
1585 		long, nr,
1586 		struct io_event __user *, events,
1587 		struct timespec __user *, timeout)
1588 {
1589 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1590 	long ret = -EINVAL;
1591 
1592 	if (likely(ioctx)) {
1593 		if (likely(min_nr <= nr && min_nr >= 0))
1594 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1595 		percpu_ref_put(&ioctx->users);
1596 	}
1597 	return ret;
1598 }
1599