1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; 56 unsigned tail; 57 58 unsigned magic; 59 unsigned compat_features; 60 unsigned incompat_features; 61 unsigned header_length; /* size of aio_ring */ 62 63 64 struct io_event io_events[0]; 65 }; /* 128 bytes + ring size */ 66 67 #define AIO_RING_PAGES 8 68 69 struct kioctx_table { 70 struct rcu_head rcu; 71 unsigned nr; 72 struct kioctx *table[]; 73 }; 74 75 struct kioctx_cpu { 76 unsigned reqs_available; 77 }; 78 79 struct kioctx { 80 struct percpu_ref users; 81 atomic_t dead; 82 83 unsigned long user_id; 84 85 struct __percpu kioctx_cpu *cpu; 86 87 /* 88 * For percpu reqs_available, number of slots we move to/from global 89 * counter at a time: 90 */ 91 unsigned req_batch; 92 /* 93 * This is what userspace passed to io_setup(), it's not used for 94 * anything but counting against the global max_reqs quota. 95 * 96 * The real limit is nr_events - 1, which will be larger (see 97 * aio_setup_ring()) 98 */ 99 unsigned max_reqs; 100 101 /* Size of ringbuffer, in units of struct io_event */ 102 unsigned nr_events; 103 104 unsigned long mmap_base; 105 unsigned long mmap_size; 106 107 struct page **ring_pages; 108 long nr_pages; 109 110 struct rcu_head rcu_head; 111 struct work_struct free_work; 112 113 struct { 114 /* 115 * This counts the number of available slots in the ringbuffer, 116 * so we avoid overflowing it: it's decremented (if positive) 117 * when allocating a kiocb and incremented when the resulting 118 * io_event is pulled off the ringbuffer. 119 * 120 * We batch accesses to it with a percpu version. 121 */ 122 atomic_t reqs_available; 123 } ____cacheline_aligned_in_smp; 124 125 struct { 126 spinlock_t ctx_lock; 127 struct list_head active_reqs; /* used for cancellation */ 128 } ____cacheline_aligned_in_smp; 129 130 struct { 131 struct mutex ring_lock; 132 wait_queue_head_t wait; 133 } ____cacheline_aligned_in_smp; 134 135 struct { 136 unsigned tail; 137 spinlock_t completion_lock; 138 } ____cacheline_aligned_in_smp; 139 140 struct page *internal_pages[AIO_RING_PAGES]; 141 struct file *aio_ring_file; 142 143 unsigned id; 144 }; 145 146 /*------ sysctl variables----*/ 147 static DEFINE_SPINLOCK(aio_nr_lock); 148 unsigned long aio_nr; /* current system wide number of aio requests */ 149 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 150 /*----end sysctl variables---*/ 151 152 static struct kmem_cache *kiocb_cachep; 153 static struct kmem_cache *kioctx_cachep; 154 155 static struct vfsmount *aio_mnt; 156 157 static const struct file_operations aio_ring_fops; 158 static const struct address_space_operations aio_ctx_aops; 159 160 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 161 { 162 struct qstr this = QSTR_INIT("[aio]", 5); 163 struct file *file; 164 struct path path; 165 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 166 if (IS_ERR(inode)) 167 return ERR_CAST(inode); 168 169 inode->i_mapping->a_ops = &aio_ctx_aops; 170 inode->i_mapping->private_data = ctx; 171 inode->i_size = PAGE_SIZE * nr_pages; 172 173 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 174 if (!path.dentry) { 175 iput(inode); 176 return ERR_PTR(-ENOMEM); 177 } 178 path.mnt = mntget(aio_mnt); 179 180 d_instantiate(path.dentry, inode); 181 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 182 if (IS_ERR(file)) { 183 path_put(&path); 184 return file; 185 } 186 187 file->f_flags = O_RDWR; 188 file->private_data = ctx; 189 return file; 190 } 191 192 static struct dentry *aio_mount(struct file_system_type *fs_type, 193 int flags, const char *dev_name, void *data) 194 { 195 static const struct dentry_operations ops = { 196 .d_dname = simple_dname, 197 }; 198 return mount_pseudo(fs_type, "aio:", NULL, &ops, 0xa10a10a1); 199 } 200 201 /* aio_setup 202 * Creates the slab caches used by the aio routines, panic on 203 * failure as this is done early during the boot sequence. 204 */ 205 static int __init aio_setup(void) 206 { 207 static struct file_system_type aio_fs = { 208 .name = "aio", 209 .mount = aio_mount, 210 .kill_sb = kill_anon_super, 211 }; 212 aio_mnt = kern_mount(&aio_fs); 213 if (IS_ERR(aio_mnt)) 214 panic("Failed to create aio fs mount."); 215 216 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 217 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 218 219 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 220 221 return 0; 222 } 223 __initcall(aio_setup); 224 225 static void put_aio_ring_file(struct kioctx *ctx) 226 { 227 struct file *aio_ring_file = ctx->aio_ring_file; 228 if (aio_ring_file) { 229 truncate_setsize(aio_ring_file->f_inode, 0); 230 231 /* Prevent further access to the kioctx from migratepages */ 232 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 233 aio_ring_file->f_inode->i_mapping->private_data = NULL; 234 ctx->aio_ring_file = NULL; 235 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 236 237 fput(aio_ring_file); 238 } 239 } 240 241 static void aio_free_ring(struct kioctx *ctx) 242 { 243 int i; 244 245 for (i = 0; i < ctx->nr_pages; i++) { 246 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 247 page_count(ctx->ring_pages[i])); 248 put_page(ctx->ring_pages[i]); 249 } 250 251 put_aio_ring_file(ctx); 252 253 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) 254 kfree(ctx->ring_pages); 255 } 256 257 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 258 { 259 vma->vm_ops = &generic_file_vm_ops; 260 return 0; 261 } 262 263 static const struct file_operations aio_ring_fops = { 264 .mmap = aio_ring_mmap, 265 }; 266 267 static int aio_set_page_dirty(struct page *page) 268 { 269 return 0; 270 } 271 272 #if IS_ENABLED(CONFIG_MIGRATION) 273 static int aio_migratepage(struct address_space *mapping, struct page *new, 274 struct page *old, enum migrate_mode mode) 275 { 276 struct kioctx *ctx; 277 unsigned long flags; 278 int rc; 279 280 /* Writeback must be complete */ 281 BUG_ON(PageWriteback(old)); 282 put_page(old); 283 284 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode); 285 if (rc != MIGRATEPAGE_SUCCESS) { 286 get_page(old); 287 return rc; 288 } 289 290 get_page(new); 291 292 /* We can potentially race against kioctx teardown here. Use the 293 * address_space's private data lock to protect the mapping's 294 * private_data. 295 */ 296 spin_lock(&mapping->private_lock); 297 ctx = mapping->private_data; 298 if (ctx) { 299 pgoff_t idx; 300 spin_lock_irqsave(&ctx->completion_lock, flags); 301 migrate_page_copy(new, old); 302 idx = old->index; 303 if (idx < (pgoff_t)ctx->nr_pages) 304 ctx->ring_pages[idx] = new; 305 spin_unlock_irqrestore(&ctx->completion_lock, flags); 306 } else 307 rc = -EBUSY; 308 spin_unlock(&mapping->private_lock); 309 310 return rc; 311 } 312 #endif 313 314 static const struct address_space_operations aio_ctx_aops = { 315 .set_page_dirty = aio_set_page_dirty, 316 #if IS_ENABLED(CONFIG_MIGRATION) 317 .migratepage = aio_migratepage, 318 #endif 319 }; 320 321 static int aio_setup_ring(struct kioctx *ctx) 322 { 323 struct aio_ring *ring; 324 unsigned nr_events = ctx->max_reqs; 325 struct mm_struct *mm = current->mm; 326 unsigned long size, populate; 327 int nr_pages; 328 int i; 329 struct file *file; 330 331 /* Compensate for the ring buffer's head/tail overlap entry */ 332 nr_events += 2; /* 1 is required, 2 for good luck */ 333 334 size = sizeof(struct aio_ring); 335 size += sizeof(struct io_event) * nr_events; 336 337 nr_pages = PFN_UP(size); 338 if (nr_pages < 0) 339 return -EINVAL; 340 341 file = aio_private_file(ctx, nr_pages); 342 if (IS_ERR(file)) { 343 ctx->aio_ring_file = NULL; 344 return -EAGAIN; 345 } 346 347 for (i = 0; i < nr_pages; i++) { 348 struct page *page; 349 page = find_or_create_page(file->f_inode->i_mapping, 350 i, GFP_HIGHUSER | __GFP_ZERO); 351 if (!page) 352 break; 353 pr_debug("pid(%d) page[%d]->count=%d\n", 354 current->pid, i, page_count(page)); 355 SetPageUptodate(page); 356 SetPageDirty(page); 357 unlock_page(page); 358 } 359 ctx->aio_ring_file = file; 360 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 361 / sizeof(struct io_event); 362 363 ctx->ring_pages = ctx->internal_pages; 364 if (nr_pages > AIO_RING_PAGES) { 365 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 366 GFP_KERNEL); 367 if (!ctx->ring_pages) 368 return -ENOMEM; 369 } 370 371 ctx->mmap_size = nr_pages * PAGE_SIZE; 372 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 373 374 down_write(&mm->mmap_sem); 375 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 376 PROT_READ | PROT_WRITE, 377 MAP_SHARED | MAP_POPULATE, 0, &populate); 378 if (IS_ERR((void *)ctx->mmap_base)) { 379 up_write(&mm->mmap_sem); 380 ctx->mmap_size = 0; 381 aio_free_ring(ctx); 382 return -EAGAIN; 383 } 384 385 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 386 387 /* We must do this while still holding mmap_sem for write, as we 388 * need to be protected against userspace attempting to mremap() 389 * or munmap() the ring buffer. 390 */ 391 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 392 1, 0, ctx->ring_pages, NULL); 393 394 /* Dropping the reference here is safe as the page cache will hold 395 * onto the pages for us. It is also required so that page migration 396 * can unmap the pages and get the right reference count. 397 */ 398 for (i = 0; i < ctx->nr_pages; i++) 399 put_page(ctx->ring_pages[i]); 400 401 up_write(&mm->mmap_sem); 402 403 if (unlikely(ctx->nr_pages != nr_pages)) { 404 aio_free_ring(ctx); 405 return -EAGAIN; 406 } 407 408 ctx->user_id = ctx->mmap_base; 409 ctx->nr_events = nr_events; /* trusted copy */ 410 411 ring = kmap_atomic(ctx->ring_pages[0]); 412 ring->nr = nr_events; /* user copy */ 413 ring->id = ~0U; 414 ring->head = ring->tail = 0; 415 ring->magic = AIO_RING_MAGIC; 416 ring->compat_features = AIO_RING_COMPAT_FEATURES; 417 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 418 ring->header_length = sizeof(struct aio_ring); 419 kunmap_atomic(ring); 420 flush_dcache_page(ctx->ring_pages[0]); 421 422 return 0; 423 } 424 425 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 426 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 427 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 428 429 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 430 { 431 struct kioctx *ctx = req->ki_ctx; 432 unsigned long flags; 433 434 spin_lock_irqsave(&ctx->ctx_lock, flags); 435 436 if (!req->ki_list.next) 437 list_add(&req->ki_list, &ctx->active_reqs); 438 439 req->ki_cancel = cancel; 440 441 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 442 } 443 EXPORT_SYMBOL(kiocb_set_cancel_fn); 444 445 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) 446 { 447 kiocb_cancel_fn *old, *cancel; 448 449 /* 450 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 451 * actually has a cancel function, hence the cmpxchg() 452 */ 453 454 cancel = ACCESS_ONCE(kiocb->ki_cancel); 455 do { 456 if (!cancel || cancel == KIOCB_CANCELLED) 457 return -EINVAL; 458 459 old = cancel; 460 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 461 } while (cancel != old); 462 463 return cancel(kiocb); 464 } 465 466 static void free_ioctx_rcu(struct rcu_head *head) 467 { 468 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 469 470 free_percpu(ctx->cpu); 471 kmem_cache_free(kioctx_cachep, ctx); 472 } 473 474 /* 475 * When this function runs, the kioctx has been removed from the "hash table" 476 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 477 * now it's safe to cancel any that need to be. 478 */ 479 static void free_ioctx(struct work_struct *work) 480 { 481 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 482 struct aio_ring *ring; 483 struct kiocb *req; 484 unsigned cpu, avail; 485 DEFINE_WAIT(wait); 486 487 spin_lock_irq(&ctx->ctx_lock); 488 489 while (!list_empty(&ctx->active_reqs)) { 490 req = list_first_entry(&ctx->active_reqs, 491 struct kiocb, ki_list); 492 493 list_del_init(&req->ki_list); 494 kiocb_cancel(ctx, req); 495 } 496 497 spin_unlock_irq(&ctx->ctx_lock); 498 499 for_each_possible_cpu(cpu) { 500 struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu); 501 502 atomic_add(kcpu->reqs_available, &ctx->reqs_available); 503 kcpu->reqs_available = 0; 504 } 505 506 while (1) { 507 prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE); 508 509 ring = kmap_atomic(ctx->ring_pages[0]); 510 avail = (ring->head <= ring->tail) 511 ? ring->tail - ring->head 512 : ctx->nr_events - ring->head + ring->tail; 513 514 atomic_add(avail, &ctx->reqs_available); 515 ring->head = ring->tail; 516 kunmap_atomic(ring); 517 518 if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1) 519 break; 520 521 schedule(); 522 } 523 finish_wait(&ctx->wait, &wait); 524 525 WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1); 526 527 aio_free_ring(ctx); 528 529 pr_debug("freeing %p\n", ctx); 530 531 /* 532 * Here the call_rcu() is between the wait_event() for reqs_active to 533 * hit 0, and freeing the ioctx. 534 * 535 * aio_complete() decrements reqs_active, but it has to touch the ioctx 536 * after to issue a wakeup so we use rcu. 537 */ 538 call_rcu(&ctx->rcu_head, free_ioctx_rcu); 539 } 540 541 static void free_ioctx_ref(struct percpu_ref *ref) 542 { 543 struct kioctx *ctx = container_of(ref, struct kioctx, users); 544 545 INIT_WORK(&ctx->free_work, free_ioctx); 546 schedule_work(&ctx->free_work); 547 } 548 549 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 550 { 551 unsigned i, new_nr; 552 struct kioctx_table *table, *old; 553 struct aio_ring *ring; 554 555 spin_lock(&mm->ioctx_lock); 556 rcu_read_lock(); 557 table = rcu_dereference(mm->ioctx_table); 558 559 while (1) { 560 if (table) 561 for (i = 0; i < table->nr; i++) 562 if (!table->table[i]) { 563 ctx->id = i; 564 table->table[i] = ctx; 565 rcu_read_unlock(); 566 spin_unlock(&mm->ioctx_lock); 567 568 ring = kmap_atomic(ctx->ring_pages[0]); 569 ring->id = ctx->id; 570 kunmap_atomic(ring); 571 return 0; 572 } 573 574 new_nr = (table ? table->nr : 1) * 4; 575 576 rcu_read_unlock(); 577 spin_unlock(&mm->ioctx_lock); 578 579 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 580 new_nr, GFP_KERNEL); 581 if (!table) 582 return -ENOMEM; 583 584 table->nr = new_nr; 585 586 spin_lock(&mm->ioctx_lock); 587 rcu_read_lock(); 588 old = rcu_dereference(mm->ioctx_table); 589 590 if (!old) { 591 rcu_assign_pointer(mm->ioctx_table, table); 592 } else if (table->nr > old->nr) { 593 memcpy(table->table, old->table, 594 old->nr * sizeof(struct kioctx *)); 595 596 rcu_assign_pointer(mm->ioctx_table, table); 597 kfree_rcu(old, rcu); 598 } else { 599 kfree(table); 600 table = old; 601 } 602 } 603 } 604 605 /* ioctx_alloc 606 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 607 */ 608 static struct kioctx *ioctx_alloc(unsigned nr_events) 609 { 610 struct mm_struct *mm = current->mm; 611 struct kioctx *ctx; 612 int err = -ENOMEM; 613 614 /* 615 * We keep track of the number of available ringbuffer slots, to prevent 616 * overflow (reqs_available), and we also use percpu counters for this. 617 * 618 * So since up to half the slots might be on other cpu's percpu counters 619 * and unavailable, double nr_events so userspace sees what they 620 * expected: additionally, we move req_batch slots to/from percpu 621 * counters at a time, so make sure that isn't 0: 622 */ 623 nr_events = max(nr_events, num_possible_cpus() * 4); 624 nr_events *= 2; 625 626 /* Prevent overflows */ 627 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 628 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 629 pr_debug("ENOMEM: nr_events too high\n"); 630 return ERR_PTR(-EINVAL); 631 } 632 633 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 634 return ERR_PTR(-EAGAIN); 635 636 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 637 if (!ctx) 638 return ERR_PTR(-ENOMEM); 639 640 ctx->max_reqs = nr_events; 641 642 if (percpu_ref_init(&ctx->users, free_ioctx_ref)) 643 goto out_freectx; 644 645 spin_lock_init(&ctx->ctx_lock); 646 spin_lock_init(&ctx->completion_lock); 647 mutex_init(&ctx->ring_lock); 648 init_waitqueue_head(&ctx->wait); 649 650 INIT_LIST_HEAD(&ctx->active_reqs); 651 652 ctx->cpu = alloc_percpu(struct kioctx_cpu); 653 if (!ctx->cpu) 654 goto out_freeref; 655 656 if (aio_setup_ring(ctx) < 0) 657 goto out_freepcpu; 658 659 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 660 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 661 if (ctx->req_batch < 1) 662 ctx->req_batch = 1; 663 664 /* limit the number of system wide aios */ 665 spin_lock(&aio_nr_lock); 666 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 667 aio_nr + nr_events < aio_nr) { 668 spin_unlock(&aio_nr_lock); 669 goto out_cleanup; 670 } 671 aio_nr += ctx->max_reqs; 672 spin_unlock(&aio_nr_lock); 673 674 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 675 676 err = ioctx_add_table(ctx, mm); 677 if (err) 678 goto out_cleanup_put; 679 680 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 681 ctx, ctx->user_id, mm, ctx->nr_events); 682 return ctx; 683 684 out_cleanup_put: 685 percpu_ref_put(&ctx->users); 686 out_cleanup: 687 err = -EAGAIN; 688 aio_free_ring(ctx); 689 out_freepcpu: 690 free_percpu(ctx->cpu); 691 out_freeref: 692 free_percpu(ctx->users.pcpu_count); 693 out_freectx: 694 put_aio_ring_file(ctx); 695 kmem_cache_free(kioctx_cachep, ctx); 696 pr_debug("error allocating ioctx %d\n", err); 697 return ERR_PTR(err); 698 } 699 700 /* kill_ioctx 701 * Cancels all outstanding aio requests on an aio context. Used 702 * when the processes owning a context have all exited to encourage 703 * the rapid destruction of the kioctx. 704 */ 705 static void kill_ioctx(struct mm_struct *mm, struct kioctx *ctx) 706 { 707 if (!atomic_xchg(&ctx->dead, 1)) { 708 struct kioctx_table *table; 709 710 spin_lock(&mm->ioctx_lock); 711 rcu_read_lock(); 712 table = rcu_dereference(mm->ioctx_table); 713 714 WARN_ON(ctx != table->table[ctx->id]); 715 table->table[ctx->id] = NULL; 716 rcu_read_unlock(); 717 spin_unlock(&mm->ioctx_lock); 718 719 /* percpu_ref_kill() will do the necessary call_rcu() */ 720 wake_up_all(&ctx->wait); 721 722 /* 723 * It'd be more correct to do this in free_ioctx(), after all 724 * the outstanding kiocbs have finished - but by then io_destroy 725 * has already returned, so io_setup() could potentially return 726 * -EAGAIN with no ioctxs actually in use (as far as userspace 727 * could tell). 728 */ 729 spin_lock(&aio_nr_lock); 730 BUG_ON(aio_nr - ctx->max_reqs > aio_nr); 731 aio_nr -= ctx->max_reqs; 732 spin_unlock(&aio_nr_lock); 733 734 if (ctx->mmap_size) 735 vm_munmap(ctx->mmap_base, ctx->mmap_size); 736 737 percpu_ref_kill(&ctx->users); 738 } 739 } 740 741 /* wait_on_sync_kiocb: 742 * Waits on the given sync kiocb to complete. 743 */ 744 ssize_t wait_on_sync_kiocb(struct kiocb *req) 745 { 746 while (!req->ki_ctx) { 747 set_current_state(TASK_UNINTERRUPTIBLE); 748 if (req->ki_ctx) 749 break; 750 io_schedule(); 751 } 752 __set_current_state(TASK_RUNNING); 753 return req->ki_user_data; 754 } 755 EXPORT_SYMBOL(wait_on_sync_kiocb); 756 757 /* 758 * exit_aio: called when the last user of mm goes away. At this point, there is 759 * no way for any new requests to be submited or any of the io_* syscalls to be 760 * called on the context. 761 * 762 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 763 * them. 764 */ 765 void exit_aio(struct mm_struct *mm) 766 { 767 struct kioctx_table *table; 768 struct kioctx *ctx; 769 unsigned i = 0; 770 771 while (1) { 772 rcu_read_lock(); 773 table = rcu_dereference(mm->ioctx_table); 774 775 do { 776 if (!table || i >= table->nr) { 777 rcu_read_unlock(); 778 rcu_assign_pointer(mm->ioctx_table, NULL); 779 if (table) 780 kfree(table); 781 return; 782 } 783 784 ctx = table->table[i++]; 785 } while (!ctx); 786 787 rcu_read_unlock(); 788 789 /* 790 * We don't need to bother with munmap() here - 791 * exit_mmap(mm) is coming and it'll unmap everything. 792 * Since aio_free_ring() uses non-zero ->mmap_size 793 * as indicator that it needs to unmap the area, 794 * just set it to 0; aio_free_ring() is the only 795 * place that uses ->mmap_size, so it's safe. 796 */ 797 ctx->mmap_size = 0; 798 799 kill_ioctx(mm, ctx); 800 } 801 } 802 803 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 804 { 805 struct kioctx_cpu *kcpu; 806 807 preempt_disable(); 808 kcpu = this_cpu_ptr(ctx->cpu); 809 810 kcpu->reqs_available += nr; 811 while (kcpu->reqs_available >= ctx->req_batch * 2) { 812 kcpu->reqs_available -= ctx->req_batch; 813 atomic_add(ctx->req_batch, &ctx->reqs_available); 814 } 815 816 preempt_enable(); 817 } 818 819 static bool get_reqs_available(struct kioctx *ctx) 820 { 821 struct kioctx_cpu *kcpu; 822 bool ret = false; 823 824 preempt_disable(); 825 kcpu = this_cpu_ptr(ctx->cpu); 826 827 if (!kcpu->reqs_available) { 828 int old, avail = atomic_read(&ctx->reqs_available); 829 830 do { 831 if (avail < ctx->req_batch) 832 goto out; 833 834 old = avail; 835 avail = atomic_cmpxchg(&ctx->reqs_available, 836 avail, avail - ctx->req_batch); 837 } while (avail != old); 838 839 kcpu->reqs_available += ctx->req_batch; 840 } 841 842 ret = true; 843 kcpu->reqs_available--; 844 out: 845 preempt_enable(); 846 return ret; 847 } 848 849 /* aio_get_req 850 * Allocate a slot for an aio request. 851 * Returns NULL if no requests are free. 852 */ 853 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 854 { 855 struct kiocb *req; 856 857 if (!get_reqs_available(ctx)) 858 return NULL; 859 860 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 861 if (unlikely(!req)) 862 goto out_put; 863 864 req->ki_ctx = ctx; 865 return req; 866 out_put: 867 put_reqs_available(ctx, 1); 868 return NULL; 869 } 870 871 static void kiocb_free(struct kiocb *req) 872 { 873 if (req->ki_filp) 874 fput(req->ki_filp); 875 if (req->ki_eventfd != NULL) 876 eventfd_ctx_put(req->ki_eventfd); 877 kmem_cache_free(kiocb_cachep, req); 878 } 879 880 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 881 { 882 struct aio_ring __user *ring = (void __user *)ctx_id; 883 struct mm_struct *mm = current->mm; 884 struct kioctx *ctx, *ret = NULL; 885 struct kioctx_table *table; 886 unsigned id; 887 888 if (get_user(id, &ring->id)) 889 return NULL; 890 891 rcu_read_lock(); 892 table = rcu_dereference(mm->ioctx_table); 893 894 if (!table || id >= table->nr) 895 goto out; 896 897 ctx = table->table[id]; 898 if (ctx && ctx->user_id == ctx_id) { 899 percpu_ref_get(&ctx->users); 900 ret = ctx; 901 } 902 out: 903 rcu_read_unlock(); 904 return ret; 905 } 906 907 /* aio_complete 908 * Called when the io request on the given iocb is complete. 909 */ 910 void aio_complete(struct kiocb *iocb, long res, long res2) 911 { 912 struct kioctx *ctx = iocb->ki_ctx; 913 struct aio_ring *ring; 914 struct io_event *ev_page, *event; 915 unsigned long flags; 916 unsigned tail, pos; 917 918 /* 919 * Special case handling for sync iocbs: 920 * - events go directly into the iocb for fast handling 921 * - the sync task with the iocb in its stack holds the single iocb 922 * ref, no other paths have a way to get another ref 923 * - the sync task helpfully left a reference to itself in the iocb 924 */ 925 if (is_sync_kiocb(iocb)) { 926 iocb->ki_user_data = res; 927 smp_wmb(); 928 iocb->ki_ctx = ERR_PTR(-EXDEV); 929 wake_up_process(iocb->ki_obj.tsk); 930 return; 931 } 932 933 /* 934 * Take rcu_read_lock() in case the kioctx is being destroyed, as we 935 * need to issue a wakeup after incrementing reqs_available. 936 */ 937 rcu_read_lock(); 938 939 if (iocb->ki_list.next) { 940 unsigned long flags; 941 942 spin_lock_irqsave(&ctx->ctx_lock, flags); 943 list_del(&iocb->ki_list); 944 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 945 } 946 947 /* 948 * Add a completion event to the ring buffer. Must be done holding 949 * ctx->completion_lock to prevent other code from messing with the tail 950 * pointer since we might be called from irq context. 951 */ 952 spin_lock_irqsave(&ctx->completion_lock, flags); 953 954 tail = ctx->tail; 955 pos = tail + AIO_EVENTS_OFFSET; 956 957 if (++tail >= ctx->nr_events) 958 tail = 0; 959 960 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 961 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 962 963 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 964 event->data = iocb->ki_user_data; 965 event->res = res; 966 event->res2 = res2; 967 968 kunmap_atomic(ev_page); 969 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 970 971 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 972 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 973 res, res2); 974 975 /* after flagging the request as done, we 976 * must never even look at it again 977 */ 978 smp_wmb(); /* make event visible before updating tail */ 979 980 ctx->tail = tail; 981 982 ring = kmap_atomic(ctx->ring_pages[0]); 983 ring->tail = tail; 984 kunmap_atomic(ring); 985 flush_dcache_page(ctx->ring_pages[0]); 986 987 spin_unlock_irqrestore(&ctx->completion_lock, flags); 988 989 pr_debug("added to ring %p at [%u]\n", iocb, tail); 990 991 /* 992 * Check if the user asked us to deliver the result through an 993 * eventfd. The eventfd_signal() function is safe to be called 994 * from IRQ context. 995 */ 996 if (iocb->ki_eventfd != NULL) 997 eventfd_signal(iocb->ki_eventfd, 1); 998 999 /* everything turned out well, dispose of the aiocb. */ 1000 kiocb_free(iocb); 1001 1002 /* 1003 * We have to order our ring_info tail store above and test 1004 * of the wait list below outside the wait lock. This is 1005 * like in wake_up_bit() where clearing a bit has to be 1006 * ordered with the unlocked test. 1007 */ 1008 smp_mb(); 1009 1010 if (waitqueue_active(&ctx->wait)) 1011 wake_up(&ctx->wait); 1012 1013 rcu_read_unlock(); 1014 } 1015 EXPORT_SYMBOL(aio_complete); 1016 1017 /* aio_read_events 1018 * Pull an event off of the ioctx's event ring. Returns the number of 1019 * events fetched 1020 */ 1021 static long aio_read_events_ring(struct kioctx *ctx, 1022 struct io_event __user *event, long nr) 1023 { 1024 struct aio_ring *ring; 1025 unsigned head, tail, pos; 1026 long ret = 0; 1027 int copy_ret; 1028 1029 mutex_lock(&ctx->ring_lock); 1030 1031 ring = kmap_atomic(ctx->ring_pages[0]); 1032 head = ring->head; 1033 tail = ring->tail; 1034 kunmap_atomic(ring); 1035 1036 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1037 1038 if (head == tail) 1039 goto out; 1040 1041 while (ret < nr) { 1042 long avail; 1043 struct io_event *ev; 1044 struct page *page; 1045 1046 avail = (head <= tail ? tail : ctx->nr_events) - head; 1047 if (head == tail) 1048 break; 1049 1050 avail = min(avail, nr - ret); 1051 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1052 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1053 1054 pos = head + AIO_EVENTS_OFFSET; 1055 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1056 pos %= AIO_EVENTS_PER_PAGE; 1057 1058 ev = kmap(page); 1059 copy_ret = copy_to_user(event + ret, ev + pos, 1060 sizeof(*ev) * avail); 1061 kunmap(page); 1062 1063 if (unlikely(copy_ret)) { 1064 ret = -EFAULT; 1065 goto out; 1066 } 1067 1068 ret += avail; 1069 head += avail; 1070 head %= ctx->nr_events; 1071 } 1072 1073 ring = kmap_atomic(ctx->ring_pages[0]); 1074 ring->head = head; 1075 kunmap_atomic(ring); 1076 flush_dcache_page(ctx->ring_pages[0]); 1077 1078 pr_debug("%li h%u t%u\n", ret, head, tail); 1079 1080 put_reqs_available(ctx, ret); 1081 out: 1082 mutex_unlock(&ctx->ring_lock); 1083 1084 return ret; 1085 } 1086 1087 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1088 struct io_event __user *event, long *i) 1089 { 1090 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1091 1092 if (ret > 0) 1093 *i += ret; 1094 1095 if (unlikely(atomic_read(&ctx->dead))) 1096 ret = -EINVAL; 1097 1098 if (!*i) 1099 *i = ret; 1100 1101 return ret < 0 || *i >= min_nr; 1102 } 1103 1104 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1105 struct io_event __user *event, 1106 struct timespec __user *timeout) 1107 { 1108 ktime_t until = { .tv64 = KTIME_MAX }; 1109 long ret = 0; 1110 1111 if (timeout) { 1112 struct timespec ts; 1113 1114 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1115 return -EFAULT; 1116 1117 until = timespec_to_ktime(ts); 1118 } 1119 1120 /* 1121 * Note that aio_read_events() is being called as the conditional - i.e. 1122 * we're calling it after prepare_to_wait() has set task state to 1123 * TASK_INTERRUPTIBLE. 1124 * 1125 * But aio_read_events() can block, and if it blocks it's going to flip 1126 * the task state back to TASK_RUNNING. 1127 * 1128 * This should be ok, provided it doesn't flip the state back to 1129 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1130 * will only happen if the mutex_lock() call blocks, and we then find 1131 * the ringbuffer empty. So in practice we should be ok, but it's 1132 * something to be aware of when touching this code. 1133 */ 1134 wait_event_interruptible_hrtimeout(ctx->wait, 1135 aio_read_events(ctx, min_nr, nr, event, &ret), until); 1136 1137 if (!ret && signal_pending(current)) 1138 ret = -EINTR; 1139 1140 return ret; 1141 } 1142 1143 /* sys_io_setup: 1144 * Create an aio_context capable of receiving at least nr_events. 1145 * ctxp must not point to an aio_context that already exists, and 1146 * must be initialized to 0 prior to the call. On successful 1147 * creation of the aio_context, *ctxp is filled in with the resulting 1148 * handle. May fail with -EINVAL if *ctxp is not initialized, 1149 * if the specified nr_events exceeds internal limits. May fail 1150 * with -EAGAIN if the specified nr_events exceeds the user's limit 1151 * of available events. May fail with -ENOMEM if insufficient kernel 1152 * resources are available. May fail with -EFAULT if an invalid 1153 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1154 * implemented. 1155 */ 1156 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1157 { 1158 struct kioctx *ioctx = NULL; 1159 unsigned long ctx; 1160 long ret; 1161 1162 ret = get_user(ctx, ctxp); 1163 if (unlikely(ret)) 1164 goto out; 1165 1166 ret = -EINVAL; 1167 if (unlikely(ctx || nr_events == 0)) { 1168 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1169 ctx, nr_events); 1170 goto out; 1171 } 1172 1173 ioctx = ioctx_alloc(nr_events); 1174 ret = PTR_ERR(ioctx); 1175 if (!IS_ERR(ioctx)) { 1176 ret = put_user(ioctx->user_id, ctxp); 1177 if (ret) 1178 kill_ioctx(current->mm, ioctx); 1179 percpu_ref_put(&ioctx->users); 1180 } 1181 1182 out: 1183 return ret; 1184 } 1185 1186 /* sys_io_destroy: 1187 * Destroy the aio_context specified. May cancel any outstanding 1188 * AIOs and block on completion. Will fail with -ENOSYS if not 1189 * implemented. May fail with -EINVAL if the context pointed to 1190 * is invalid. 1191 */ 1192 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1193 { 1194 struct kioctx *ioctx = lookup_ioctx(ctx); 1195 if (likely(NULL != ioctx)) { 1196 kill_ioctx(current->mm, ioctx); 1197 percpu_ref_put(&ioctx->users); 1198 return 0; 1199 } 1200 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1201 return -EINVAL; 1202 } 1203 1204 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1205 unsigned long, loff_t); 1206 1207 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1208 int rw, char __user *buf, 1209 unsigned long *nr_segs, 1210 struct iovec **iovec, 1211 bool compat) 1212 { 1213 ssize_t ret; 1214 1215 *nr_segs = kiocb->ki_nbytes; 1216 1217 #ifdef CONFIG_COMPAT 1218 if (compat) 1219 ret = compat_rw_copy_check_uvector(rw, 1220 (struct compat_iovec __user *)buf, 1221 *nr_segs, 1, *iovec, iovec); 1222 else 1223 #endif 1224 ret = rw_copy_check_uvector(rw, 1225 (struct iovec __user *)buf, 1226 *nr_segs, 1, *iovec, iovec); 1227 if (ret < 0) 1228 return ret; 1229 1230 /* ki_nbytes now reflect bytes instead of segs */ 1231 kiocb->ki_nbytes = ret; 1232 return 0; 1233 } 1234 1235 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1236 int rw, char __user *buf, 1237 unsigned long *nr_segs, 1238 struct iovec *iovec) 1239 { 1240 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1241 return -EFAULT; 1242 1243 iovec->iov_base = buf; 1244 iovec->iov_len = kiocb->ki_nbytes; 1245 *nr_segs = 1; 1246 return 0; 1247 } 1248 1249 /* 1250 * aio_setup_iocb: 1251 * Performs the initial checks and aio retry method 1252 * setup for the kiocb at the time of io submission. 1253 */ 1254 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1255 char __user *buf, bool compat) 1256 { 1257 struct file *file = req->ki_filp; 1258 ssize_t ret; 1259 unsigned long nr_segs; 1260 int rw; 1261 fmode_t mode; 1262 aio_rw_op *rw_op; 1263 struct iovec inline_vec, *iovec = &inline_vec; 1264 1265 switch (opcode) { 1266 case IOCB_CMD_PREAD: 1267 case IOCB_CMD_PREADV: 1268 mode = FMODE_READ; 1269 rw = READ; 1270 rw_op = file->f_op->aio_read; 1271 goto rw_common; 1272 1273 case IOCB_CMD_PWRITE: 1274 case IOCB_CMD_PWRITEV: 1275 mode = FMODE_WRITE; 1276 rw = WRITE; 1277 rw_op = file->f_op->aio_write; 1278 goto rw_common; 1279 rw_common: 1280 if (unlikely(!(file->f_mode & mode))) 1281 return -EBADF; 1282 1283 if (!rw_op) 1284 return -EINVAL; 1285 1286 ret = (opcode == IOCB_CMD_PREADV || 1287 opcode == IOCB_CMD_PWRITEV) 1288 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1289 &iovec, compat) 1290 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1291 iovec); 1292 if (ret) 1293 return ret; 1294 1295 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1296 if (ret < 0) { 1297 if (iovec != &inline_vec) 1298 kfree(iovec); 1299 return ret; 1300 } 1301 1302 req->ki_nbytes = ret; 1303 1304 /* XXX: move/kill - rw_verify_area()? */ 1305 /* This matches the pread()/pwrite() logic */ 1306 if (req->ki_pos < 0) { 1307 ret = -EINVAL; 1308 break; 1309 } 1310 1311 if (rw == WRITE) 1312 file_start_write(file); 1313 1314 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1315 1316 if (rw == WRITE) 1317 file_end_write(file); 1318 break; 1319 1320 case IOCB_CMD_FDSYNC: 1321 if (!file->f_op->aio_fsync) 1322 return -EINVAL; 1323 1324 ret = file->f_op->aio_fsync(req, 1); 1325 break; 1326 1327 case IOCB_CMD_FSYNC: 1328 if (!file->f_op->aio_fsync) 1329 return -EINVAL; 1330 1331 ret = file->f_op->aio_fsync(req, 0); 1332 break; 1333 1334 default: 1335 pr_debug("EINVAL: no operation provided\n"); 1336 return -EINVAL; 1337 } 1338 1339 if (iovec != &inline_vec) 1340 kfree(iovec); 1341 1342 if (ret != -EIOCBQUEUED) { 1343 /* 1344 * There's no easy way to restart the syscall since other AIO's 1345 * may be already running. Just fail this IO with EINTR. 1346 */ 1347 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1348 ret == -ERESTARTNOHAND || 1349 ret == -ERESTART_RESTARTBLOCK)) 1350 ret = -EINTR; 1351 aio_complete(req, ret, 0); 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1358 struct iocb *iocb, bool compat) 1359 { 1360 struct kiocb *req; 1361 ssize_t ret; 1362 1363 /* enforce forwards compatibility on users */ 1364 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1365 pr_debug("EINVAL: reserve field set\n"); 1366 return -EINVAL; 1367 } 1368 1369 /* prevent overflows */ 1370 if (unlikely( 1371 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1372 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1373 ((ssize_t)iocb->aio_nbytes < 0) 1374 )) { 1375 pr_debug("EINVAL: io_submit: overflow check\n"); 1376 return -EINVAL; 1377 } 1378 1379 req = aio_get_req(ctx); 1380 if (unlikely(!req)) 1381 return -EAGAIN; 1382 1383 req->ki_filp = fget(iocb->aio_fildes); 1384 if (unlikely(!req->ki_filp)) { 1385 ret = -EBADF; 1386 goto out_put_req; 1387 } 1388 1389 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1390 /* 1391 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1392 * instance of the file* now. The file descriptor must be 1393 * an eventfd() fd, and will be signaled for each completed 1394 * event using the eventfd_signal() function. 1395 */ 1396 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1397 if (IS_ERR(req->ki_eventfd)) { 1398 ret = PTR_ERR(req->ki_eventfd); 1399 req->ki_eventfd = NULL; 1400 goto out_put_req; 1401 } 1402 } 1403 1404 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1405 if (unlikely(ret)) { 1406 pr_debug("EFAULT: aio_key\n"); 1407 goto out_put_req; 1408 } 1409 1410 req->ki_obj.user = user_iocb; 1411 req->ki_user_data = iocb->aio_data; 1412 req->ki_pos = iocb->aio_offset; 1413 req->ki_nbytes = iocb->aio_nbytes; 1414 1415 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1416 (char __user *)(unsigned long)iocb->aio_buf, 1417 compat); 1418 if (ret) 1419 goto out_put_req; 1420 1421 return 0; 1422 out_put_req: 1423 put_reqs_available(ctx, 1); 1424 kiocb_free(req); 1425 return ret; 1426 } 1427 1428 long do_io_submit(aio_context_t ctx_id, long nr, 1429 struct iocb __user *__user *iocbpp, bool compat) 1430 { 1431 struct kioctx *ctx; 1432 long ret = 0; 1433 int i = 0; 1434 struct blk_plug plug; 1435 1436 if (unlikely(nr < 0)) 1437 return -EINVAL; 1438 1439 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1440 nr = LONG_MAX/sizeof(*iocbpp); 1441 1442 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1443 return -EFAULT; 1444 1445 ctx = lookup_ioctx(ctx_id); 1446 if (unlikely(!ctx)) { 1447 pr_debug("EINVAL: invalid context id\n"); 1448 return -EINVAL; 1449 } 1450 1451 blk_start_plug(&plug); 1452 1453 /* 1454 * AKPM: should this return a partial result if some of the IOs were 1455 * successfully submitted? 1456 */ 1457 for (i=0; i<nr; i++) { 1458 struct iocb __user *user_iocb; 1459 struct iocb tmp; 1460 1461 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1462 ret = -EFAULT; 1463 break; 1464 } 1465 1466 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1467 ret = -EFAULT; 1468 break; 1469 } 1470 1471 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1472 if (ret) 1473 break; 1474 } 1475 blk_finish_plug(&plug); 1476 1477 percpu_ref_put(&ctx->users); 1478 return i ? i : ret; 1479 } 1480 1481 /* sys_io_submit: 1482 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1483 * the number of iocbs queued. May return -EINVAL if the aio_context 1484 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1485 * *iocbpp[0] is not properly initialized, if the operation specified 1486 * is invalid for the file descriptor in the iocb. May fail with 1487 * -EFAULT if any of the data structures point to invalid data. May 1488 * fail with -EBADF if the file descriptor specified in the first 1489 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1490 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1491 * fail with -ENOSYS if not implemented. 1492 */ 1493 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1494 struct iocb __user * __user *, iocbpp) 1495 { 1496 return do_io_submit(ctx_id, nr, iocbpp, 0); 1497 } 1498 1499 /* lookup_kiocb 1500 * Finds a given iocb for cancellation. 1501 */ 1502 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1503 u32 key) 1504 { 1505 struct list_head *pos; 1506 1507 assert_spin_locked(&ctx->ctx_lock); 1508 1509 if (key != KIOCB_KEY) 1510 return NULL; 1511 1512 /* TODO: use a hash or array, this sucks. */ 1513 list_for_each(pos, &ctx->active_reqs) { 1514 struct kiocb *kiocb = list_kiocb(pos); 1515 if (kiocb->ki_obj.user == iocb) 1516 return kiocb; 1517 } 1518 return NULL; 1519 } 1520 1521 /* sys_io_cancel: 1522 * Attempts to cancel an iocb previously passed to io_submit. If 1523 * the operation is successfully cancelled, the resulting event is 1524 * copied into the memory pointed to by result without being placed 1525 * into the completion queue and 0 is returned. May fail with 1526 * -EFAULT if any of the data structures pointed to are invalid. 1527 * May fail with -EINVAL if aio_context specified by ctx_id is 1528 * invalid. May fail with -EAGAIN if the iocb specified was not 1529 * cancelled. Will fail with -ENOSYS if not implemented. 1530 */ 1531 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1532 struct io_event __user *, result) 1533 { 1534 struct kioctx *ctx; 1535 struct kiocb *kiocb; 1536 u32 key; 1537 int ret; 1538 1539 ret = get_user(key, &iocb->aio_key); 1540 if (unlikely(ret)) 1541 return -EFAULT; 1542 1543 ctx = lookup_ioctx(ctx_id); 1544 if (unlikely(!ctx)) 1545 return -EINVAL; 1546 1547 spin_lock_irq(&ctx->ctx_lock); 1548 1549 kiocb = lookup_kiocb(ctx, iocb, key); 1550 if (kiocb) 1551 ret = kiocb_cancel(ctx, kiocb); 1552 else 1553 ret = -EINVAL; 1554 1555 spin_unlock_irq(&ctx->ctx_lock); 1556 1557 if (!ret) { 1558 /* 1559 * The result argument is no longer used - the io_event is 1560 * always delivered via the ring buffer. -EINPROGRESS indicates 1561 * cancellation is progress: 1562 */ 1563 ret = -EINPROGRESS; 1564 } 1565 1566 percpu_ref_put(&ctx->users); 1567 1568 return ret; 1569 } 1570 1571 /* io_getevents: 1572 * Attempts to read at least min_nr events and up to nr events from 1573 * the completion queue for the aio_context specified by ctx_id. If 1574 * it succeeds, the number of read events is returned. May fail with 1575 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1576 * out of range, if timeout is out of range. May fail with -EFAULT 1577 * if any of the memory specified is invalid. May return 0 or 1578 * < min_nr if the timeout specified by timeout has elapsed 1579 * before sufficient events are available, where timeout == NULL 1580 * specifies an infinite timeout. Note that the timeout pointed to by 1581 * timeout is relative. Will fail with -ENOSYS if not implemented. 1582 */ 1583 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1584 long, min_nr, 1585 long, nr, 1586 struct io_event __user *, events, 1587 struct timespec __user *, timeout) 1588 { 1589 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1590 long ret = -EINVAL; 1591 1592 if (likely(ioctx)) { 1593 if (likely(min_nr <= nr && min_nr >= 0)) 1594 ret = read_events(ioctx, min_nr, nr, events, timeout); 1595 percpu_ref_put(&ioctx->users); 1596 } 1597 return ret; 1598 } 1599