xref: /linux/fs/aio.c (revision 348df8035301dd212e3cc2860efe4c86cb0d3303)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			done;
185 	bool			cancelled;
186 	struct wait_queue_entry	wait;
187 	struct work_struct	work;
188 };
189 
190 /*
191  * NOTE! Each of the iocb union members has the file pointer
192  * as the first entry in their struct definition. So you can
193  * access the file pointer through any of the sub-structs,
194  * or directly as just 'ki_filp' in this struct.
195  */
196 struct aio_kiocb {
197 	union {
198 		struct file		*ki_filp;
199 		struct kiocb		rw;
200 		struct fsync_iocb	fsync;
201 		struct poll_iocb	poll;
202 	};
203 
204 	struct kioctx		*ki_ctx;
205 	kiocb_cancel_fn		*ki_cancel;
206 
207 	struct io_event		ki_res;
208 
209 	struct list_head	ki_list;	/* the aio core uses this
210 						 * for cancellation */
211 	refcount_t		ki_refcnt;
212 
213 	/*
214 	 * If the aio_resfd field of the userspace iocb is not zero,
215 	 * this is the underlying eventfd context to deliver events to.
216 	 */
217 	struct eventfd_ctx	*ki_eventfd;
218 };
219 
220 /*------ sysctl variables----*/
221 static DEFINE_SPINLOCK(aio_nr_lock);
222 unsigned long aio_nr;		/* current system wide number of aio requests */
223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
224 /*----end sysctl variables---*/
225 
226 static struct kmem_cache	*kiocb_cachep;
227 static struct kmem_cache	*kioctx_cachep;
228 
229 static struct vfsmount *aio_mnt;
230 
231 static const struct file_operations aio_ring_fops;
232 static const struct address_space_operations aio_ctx_aops;
233 
234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
235 {
236 	struct file *file;
237 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
238 	if (IS_ERR(inode))
239 		return ERR_CAST(inode);
240 
241 	inode->i_mapping->a_ops = &aio_ctx_aops;
242 	inode->i_mapping->private_data = ctx;
243 	inode->i_size = PAGE_SIZE * nr_pages;
244 
245 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
246 				O_RDWR, &aio_ring_fops);
247 	if (IS_ERR(file))
248 		iput(inode);
249 	return file;
250 }
251 
252 static int aio_init_fs_context(struct fs_context *fc)
253 {
254 	if (!init_pseudo(fc, AIO_RING_MAGIC))
255 		return -ENOMEM;
256 	fc->s_iflags |= SB_I_NOEXEC;
257 	return 0;
258 }
259 
260 /* aio_setup
261  *	Creates the slab caches used by the aio routines, panic on
262  *	failure as this is done early during the boot sequence.
263  */
264 static int __init aio_setup(void)
265 {
266 	static struct file_system_type aio_fs = {
267 		.name		= "aio",
268 		.init_fs_context = aio_init_fs_context,
269 		.kill_sb	= kill_anon_super,
270 	};
271 	aio_mnt = kern_mount(&aio_fs);
272 	if (IS_ERR(aio_mnt))
273 		panic("Failed to create aio fs mount.");
274 
275 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
276 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 	return 0;
278 }
279 __initcall(aio_setup);
280 
281 static void put_aio_ring_file(struct kioctx *ctx)
282 {
283 	struct file *aio_ring_file = ctx->aio_ring_file;
284 	struct address_space *i_mapping;
285 
286 	if (aio_ring_file) {
287 		truncate_setsize(file_inode(aio_ring_file), 0);
288 
289 		/* Prevent further access to the kioctx from migratepages */
290 		i_mapping = aio_ring_file->f_mapping;
291 		spin_lock(&i_mapping->private_lock);
292 		i_mapping->private_data = NULL;
293 		ctx->aio_ring_file = NULL;
294 		spin_unlock(&i_mapping->private_lock);
295 
296 		fput(aio_ring_file);
297 	}
298 }
299 
300 static void aio_free_ring(struct kioctx *ctx)
301 {
302 	int i;
303 
304 	/* Disconnect the kiotx from the ring file.  This prevents future
305 	 * accesses to the kioctx from page migration.
306 	 */
307 	put_aio_ring_file(ctx);
308 
309 	for (i = 0; i < ctx->nr_pages; i++) {
310 		struct page *page;
311 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
312 				page_count(ctx->ring_pages[i]));
313 		page = ctx->ring_pages[i];
314 		if (!page)
315 			continue;
316 		ctx->ring_pages[i] = NULL;
317 		put_page(page);
318 	}
319 
320 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
321 		kfree(ctx->ring_pages);
322 		ctx->ring_pages = NULL;
323 	}
324 }
325 
326 static int aio_ring_mremap(struct vm_area_struct *vma)
327 {
328 	struct file *file = vma->vm_file;
329 	struct mm_struct *mm = vma->vm_mm;
330 	struct kioctx_table *table;
331 	int i, res = -EINVAL;
332 
333 	spin_lock(&mm->ioctx_lock);
334 	rcu_read_lock();
335 	table = rcu_dereference(mm->ioctx_table);
336 	for (i = 0; i < table->nr; i++) {
337 		struct kioctx *ctx;
338 
339 		ctx = rcu_dereference(table->table[i]);
340 		if (ctx && ctx->aio_ring_file == file) {
341 			if (!atomic_read(&ctx->dead)) {
342 				ctx->user_id = ctx->mmap_base = vma->vm_start;
343 				res = 0;
344 			}
345 			break;
346 		}
347 	}
348 
349 	rcu_read_unlock();
350 	spin_unlock(&mm->ioctx_lock);
351 	return res;
352 }
353 
354 static const struct vm_operations_struct aio_ring_vm_ops = {
355 	.mremap		= aio_ring_mremap,
356 #if IS_ENABLED(CONFIG_MMU)
357 	.fault		= filemap_fault,
358 	.map_pages	= filemap_map_pages,
359 	.page_mkwrite	= filemap_page_mkwrite,
360 #endif
361 };
362 
363 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
364 {
365 	vma->vm_flags |= VM_DONTEXPAND;
366 	vma->vm_ops = &aio_ring_vm_ops;
367 	return 0;
368 }
369 
370 static const struct file_operations aio_ring_fops = {
371 	.mmap = aio_ring_mmap,
372 };
373 
374 #if IS_ENABLED(CONFIG_MIGRATION)
375 static int aio_migratepage(struct address_space *mapping, struct page *new,
376 			struct page *old, enum migrate_mode mode)
377 {
378 	struct kioctx *ctx;
379 	unsigned long flags;
380 	pgoff_t idx;
381 	int rc;
382 
383 	/*
384 	 * We cannot support the _NO_COPY case here, because copy needs to
385 	 * happen under the ctx->completion_lock. That does not work with the
386 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
387 	 */
388 	if (mode == MIGRATE_SYNC_NO_COPY)
389 		return -EINVAL;
390 
391 	rc = 0;
392 
393 	/* mapping->private_lock here protects against the kioctx teardown.  */
394 	spin_lock(&mapping->private_lock);
395 	ctx = mapping->private_data;
396 	if (!ctx) {
397 		rc = -EINVAL;
398 		goto out;
399 	}
400 
401 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
402 	 * to the ring's head, and prevents page migration from mucking in
403 	 * a partially initialized kiotx.
404 	 */
405 	if (!mutex_trylock(&ctx->ring_lock)) {
406 		rc = -EAGAIN;
407 		goto out;
408 	}
409 
410 	idx = old->index;
411 	if (idx < (pgoff_t)ctx->nr_pages) {
412 		/* Make sure the old page hasn't already been changed */
413 		if (ctx->ring_pages[idx] != old)
414 			rc = -EAGAIN;
415 	} else
416 		rc = -EINVAL;
417 
418 	if (rc != 0)
419 		goto out_unlock;
420 
421 	/* Writeback must be complete */
422 	BUG_ON(PageWriteback(old));
423 	get_page(new);
424 
425 	rc = migrate_page_move_mapping(mapping, new, old, 1);
426 	if (rc != MIGRATEPAGE_SUCCESS) {
427 		put_page(new);
428 		goto out_unlock;
429 	}
430 
431 	/* Take completion_lock to prevent other writes to the ring buffer
432 	 * while the old page is copied to the new.  This prevents new
433 	 * events from being lost.
434 	 */
435 	spin_lock_irqsave(&ctx->completion_lock, flags);
436 	migrate_page_copy(new, old);
437 	BUG_ON(ctx->ring_pages[idx] != old);
438 	ctx->ring_pages[idx] = new;
439 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
440 
441 	/* The old page is no longer accessible. */
442 	put_page(old);
443 
444 out_unlock:
445 	mutex_unlock(&ctx->ring_lock);
446 out:
447 	spin_unlock(&mapping->private_lock);
448 	return rc;
449 }
450 #endif
451 
452 static const struct address_space_operations aio_ctx_aops = {
453 	.set_page_dirty = __set_page_dirty_no_writeback,
454 #if IS_ENABLED(CONFIG_MIGRATION)
455 	.migratepage	= aio_migratepage,
456 #endif
457 };
458 
459 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
460 {
461 	struct aio_ring *ring;
462 	struct mm_struct *mm = current->mm;
463 	unsigned long size, unused;
464 	int nr_pages;
465 	int i;
466 	struct file *file;
467 
468 	/* Compensate for the ring buffer's head/tail overlap entry */
469 	nr_events += 2;	/* 1 is required, 2 for good luck */
470 
471 	size = sizeof(struct aio_ring);
472 	size += sizeof(struct io_event) * nr_events;
473 
474 	nr_pages = PFN_UP(size);
475 	if (nr_pages < 0)
476 		return -EINVAL;
477 
478 	file = aio_private_file(ctx, nr_pages);
479 	if (IS_ERR(file)) {
480 		ctx->aio_ring_file = NULL;
481 		return -ENOMEM;
482 	}
483 
484 	ctx->aio_ring_file = file;
485 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
486 			/ sizeof(struct io_event);
487 
488 	ctx->ring_pages = ctx->internal_pages;
489 	if (nr_pages > AIO_RING_PAGES) {
490 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
491 					  GFP_KERNEL);
492 		if (!ctx->ring_pages) {
493 			put_aio_ring_file(ctx);
494 			return -ENOMEM;
495 		}
496 	}
497 
498 	for (i = 0; i < nr_pages; i++) {
499 		struct page *page;
500 		page = find_or_create_page(file->f_mapping,
501 					   i, GFP_HIGHUSER | __GFP_ZERO);
502 		if (!page)
503 			break;
504 		pr_debug("pid(%d) page[%d]->count=%d\n",
505 			 current->pid, i, page_count(page));
506 		SetPageUptodate(page);
507 		unlock_page(page);
508 
509 		ctx->ring_pages[i] = page;
510 	}
511 	ctx->nr_pages = i;
512 
513 	if (unlikely(i != nr_pages)) {
514 		aio_free_ring(ctx);
515 		return -ENOMEM;
516 	}
517 
518 	ctx->mmap_size = nr_pages * PAGE_SIZE;
519 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
520 
521 	if (mmap_write_lock_killable(mm)) {
522 		ctx->mmap_size = 0;
523 		aio_free_ring(ctx);
524 		return -EINTR;
525 	}
526 
527 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
528 				 PROT_READ | PROT_WRITE,
529 				 MAP_SHARED, 0, &unused, NULL);
530 	mmap_write_unlock(mm);
531 	if (IS_ERR((void *)ctx->mmap_base)) {
532 		ctx->mmap_size = 0;
533 		aio_free_ring(ctx);
534 		return -ENOMEM;
535 	}
536 
537 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
538 
539 	ctx->user_id = ctx->mmap_base;
540 	ctx->nr_events = nr_events; /* trusted copy */
541 
542 	ring = kmap_atomic(ctx->ring_pages[0]);
543 	ring->nr = nr_events;	/* user copy */
544 	ring->id = ~0U;
545 	ring->head = ring->tail = 0;
546 	ring->magic = AIO_RING_MAGIC;
547 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
548 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
549 	ring->header_length = sizeof(struct aio_ring);
550 	kunmap_atomic(ring);
551 	flush_dcache_page(ctx->ring_pages[0]);
552 
553 	return 0;
554 }
555 
556 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
557 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
558 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
559 
560 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
561 {
562 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
563 	struct kioctx *ctx = req->ki_ctx;
564 	unsigned long flags;
565 
566 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
567 		return;
568 
569 	spin_lock_irqsave(&ctx->ctx_lock, flags);
570 	list_add_tail(&req->ki_list, &ctx->active_reqs);
571 	req->ki_cancel = cancel;
572 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
573 }
574 EXPORT_SYMBOL(kiocb_set_cancel_fn);
575 
576 /*
577  * free_ioctx() should be RCU delayed to synchronize against the RCU
578  * protected lookup_ioctx() and also needs process context to call
579  * aio_free_ring().  Use rcu_work.
580  */
581 static void free_ioctx(struct work_struct *work)
582 {
583 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
584 					  free_rwork);
585 	pr_debug("freeing %p\n", ctx);
586 
587 	aio_free_ring(ctx);
588 	free_percpu(ctx->cpu);
589 	percpu_ref_exit(&ctx->reqs);
590 	percpu_ref_exit(&ctx->users);
591 	kmem_cache_free(kioctx_cachep, ctx);
592 }
593 
594 static void free_ioctx_reqs(struct percpu_ref *ref)
595 {
596 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
597 
598 	/* At this point we know that there are no any in-flight requests */
599 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
600 		complete(&ctx->rq_wait->comp);
601 
602 	/* Synchronize against RCU protected table->table[] dereferences */
603 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
604 	queue_rcu_work(system_wq, &ctx->free_rwork);
605 }
606 
607 /*
608  * When this function runs, the kioctx has been removed from the "hash table"
609  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
610  * now it's safe to cancel any that need to be.
611  */
612 static void free_ioctx_users(struct percpu_ref *ref)
613 {
614 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
615 	struct aio_kiocb *req;
616 
617 	spin_lock_irq(&ctx->ctx_lock);
618 
619 	while (!list_empty(&ctx->active_reqs)) {
620 		req = list_first_entry(&ctx->active_reqs,
621 				       struct aio_kiocb, ki_list);
622 		req->ki_cancel(&req->rw);
623 		list_del_init(&req->ki_list);
624 	}
625 
626 	spin_unlock_irq(&ctx->ctx_lock);
627 
628 	percpu_ref_kill(&ctx->reqs);
629 	percpu_ref_put(&ctx->reqs);
630 }
631 
632 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
633 {
634 	unsigned i, new_nr;
635 	struct kioctx_table *table, *old;
636 	struct aio_ring *ring;
637 
638 	spin_lock(&mm->ioctx_lock);
639 	table = rcu_dereference_raw(mm->ioctx_table);
640 
641 	while (1) {
642 		if (table)
643 			for (i = 0; i < table->nr; i++)
644 				if (!rcu_access_pointer(table->table[i])) {
645 					ctx->id = i;
646 					rcu_assign_pointer(table->table[i], ctx);
647 					spin_unlock(&mm->ioctx_lock);
648 
649 					/* While kioctx setup is in progress,
650 					 * we are protected from page migration
651 					 * changes ring_pages by ->ring_lock.
652 					 */
653 					ring = kmap_atomic(ctx->ring_pages[0]);
654 					ring->id = ctx->id;
655 					kunmap_atomic(ring);
656 					return 0;
657 				}
658 
659 		new_nr = (table ? table->nr : 1) * 4;
660 		spin_unlock(&mm->ioctx_lock);
661 
662 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
663 		if (!table)
664 			return -ENOMEM;
665 
666 		table->nr = new_nr;
667 
668 		spin_lock(&mm->ioctx_lock);
669 		old = rcu_dereference_raw(mm->ioctx_table);
670 
671 		if (!old) {
672 			rcu_assign_pointer(mm->ioctx_table, table);
673 		} else if (table->nr > old->nr) {
674 			memcpy(table->table, old->table,
675 			       old->nr * sizeof(struct kioctx *));
676 
677 			rcu_assign_pointer(mm->ioctx_table, table);
678 			kfree_rcu(old, rcu);
679 		} else {
680 			kfree(table);
681 			table = old;
682 		}
683 	}
684 }
685 
686 static void aio_nr_sub(unsigned nr)
687 {
688 	spin_lock(&aio_nr_lock);
689 	if (WARN_ON(aio_nr - nr > aio_nr))
690 		aio_nr = 0;
691 	else
692 		aio_nr -= nr;
693 	spin_unlock(&aio_nr_lock);
694 }
695 
696 /* ioctx_alloc
697  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
698  */
699 static struct kioctx *ioctx_alloc(unsigned nr_events)
700 {
701 	struct mm_struct *mm = current->mm;
702 	struct kioctx *ctx;
703 	int err = -ENOMEM;
704 
705 	/*
706 	 * Store the original nr_events -- what userspace passed to io_setup(),
707 	 * for counting against the global limit -- before it changes.
708 	 */
709 	unsigned int max_reqs = nr_events;
710 
711 	/*
712 	 * We keep track of the number of available ringbuffer slots, to prevent
713 	 * overflow (reqs_available), and we also use percpu counters for this.
714 	 *
715 	 * So since up to half the slots might be on other cpu's percpu counters
716 	 * and unavailable, double nr_events so userspace sees what they
717 	 * expected: additionally, we move req_batch slots to/from percpu
718 	 * counters at a time, so make sure that isn't 0:
719 	 */
720 	nr_events = max(nr_events, num_possible_cpus() * 4);
721 	nr_events *= 2;
722 
723 	/* Prevent overflows */
724 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
725 		pr_debug("ENOMEM: nr_events too high\n");
726 		return ERR_PTR(-EINVAL);
727 	}
728 
729 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
730 		return ERR_PTR(-EAGAIN);
731 
732 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
733 	if (!ctx)
734 		return ERR_PTR(-ENOMEM);
735 
736 	ctx->max_reqs = max_reqs;
737 
738 	spin_lock_init(&ctx->ctx_lock);
739 	spin_lock_init(&ctx->completion_lock);
740 	mutex_init(&ctx->ring_lock);
741 	/* Protect against page migration throughout kiotx setup by keeping
742 	 * the ring_lock mutex held until setup is complete. */
743 	mutex_lock(&ctx->ring_lock);
744 	init_waitqueue_head(&ctx->wait);
745 
746 	INIT_LIST_HEAD(&ctx->active_reqs);
747 
748 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
749 		goto err;
750 
751 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
752 		goto err;
753 
754 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
755 	if (!ctx->cpu)
756 		goto err;
757 
758 	err = aio_setup_ring(ctx, nr_events);
759 	if (err < 0)
760 		goto err;
761 
762 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
763 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
764 	if (ctx->req_batch < 1)
765 		ctx->req_batch = 1;
766 
767 	/* limit the number of system wide aios */
768 	spin_lock(&aio_nr_lock);
769 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
770 	    aio_nr + ctx->max_reqs < aio_nr) {
771 		spin_unlock(&aio_nr_lock);
772 		err = -EAGAIN;
773 		goto err_ctx;
774 	}
775 	aio_nr += ctx->max_reqs;
776 	spin_unlock(&aio_nr_lock);
777 
778 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
779 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
780 
781 	err = ioctx_add_table(ctx, mm);
782 	if (err)
783 		goto err_cleanup;
784 
785 	/* Release the ring_lock mutex now that all setup is complete. */
786 	mutex_unlock(&ctx->ring_lock);
787 
788 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
789 		 ctx, ctx->user_id, mm, ctx->nr_events);
790 	return ctx;
791 
792 err_cleanup:
793 	aio_nr_sub(ctx->max_reqs);
794 err_ctx:
795 	atomic_set(&ctx->dead, 1);
796 	if (ctx->mmap_size)
797 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
798 	aio_free_ring(ctx);
799 err:
800 	mutex_unlock(&ctx->ring_lock);
801 	free_percpu(ctx->cpu);
802 	percpu_ref_exit(&ctx->reqs);
803 	percpu_ref_exit(&ctx->users);
804 	kmem_cache_free(kioctx_cachep, ctx);
805 	pr_debug("error allocating ioctx %d\n", err);
806 	return ERR_PTR(err);
807 }
808 
809 /* kill_ioctx
810  *	Cancels all outstanding aio requests on an aio context.  Used
811  *	when the processes owning a context have all exited to encourage
812  *	the rapid destruction of the kioctx.
813  */
814 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
815 		      struct ctx_rq_wait *wait)
816 {
817 	struct kioctx_table *table;
818 
819 	spin_lock(&mm->ioctx_lock);
820 	if (atomic_xchg(&ctx->dead, 1)) {
821 		spin_unlock(&mm->ioctx_lock);
822 		return -EINVAL;
823 	}
824 
825 	table = rcu_dereference_raw(mm->ioctx_table);
826 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
827 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
828 	spin_unlock(&mm->ioctx_lock);
829 
830 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
831 	wake_up_all(&ctx->wait);
832 
833 	/*
834 	 * It'd be more correct to do this in free_ioctx(), after all
835 	 * the outstanding kiocbs have finished - but by then io_destroy
836 	 * has already returned, so io_setup() could potentially return
837 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
838 	 *  could tell).
839 	 */
840 	aio_nr_sub(ctx->max_reqs);
841 
842 	if (ctx->mmap_size)
843 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
844 
845 	ctx->rq_wait = wait;
846 	percpu_ref_kill(&ctx->users);
847 	return 0;
848 }
849 
850 /*
851  * exit_aio: called when the last user of mm goes away.  At this point, there is
852  * no way for any new requests to be submited or any of the io_* syscalls to be
853  * called on the context.
854  *
855  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
856  * them.
857  */
858 void exit_aio(struct mm_struct *mm)
859 {
860 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
861 	struct ctx_rq_wait wait;
862 	int i, skipped;
863 
864 	if (!table)
865 		return;
866 
867 	atomic_set(&wait.count, table->nr);
868 	init_completion(&wait.comp);
869 
870 	skipped = 0;
871 	for (i = 0; i < table->nr; ++i) {
872 		struct kioctx *ctx =
873 			rcu_dereference_protected(table->table[i], true);
874 
875 		if (!ctx) {
876 			skipped++;
877 			continue;
878 		}
879 
880 		/*
881 		 * We don't need to bother with munmap() here - exit_mmap(mm)
882 		 * is coming and it'll unmap everything. And we simply can't,
883 		 * this is not necessarily our ->mm.
884 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
885 		 * that it needs to unmap the area, just set it to 0.
886 		 */
887 		ctx->mmap_size = 0;
888 		kill_ioctx(mm, ctx, &wait);
889 	}
890 
891 	if (!atomic_sub_and_test(skipped, &wait.count)) {
892 		/* Wait until all IO for the context are done. */
893 		wait_for_completion(&wait.comp);
894 	}
895 
896 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
897 	kfree(table);
898 }
899 
900 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
901 {
902 	struct kioctx_cpu *kcpu;
903 	unsigned long flags;
904 
905 	local_irq_save(flags);
906 	kcpu = this_cpu_ptr(ctx->cpu);
907 	kcpu->reqs_available += nr;
908 
909 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
910 		kcpu->reqs_available -= ctx->req_batch;
911 		atomic_add(ctx->req_batch, &ctx->reqs_available);
912 	}
913 
914 	local_irq_restore(flags);
915 }
916 
917 static bool __get_reqs_available(struct kioctx *ctx)
918 {
919 	struct kioctx_cpu *kcpu;
920 	bool ret = false;
921 	unsigned long flags;
922 
923 	local_irq_save(flags);
924 	kcpu = this_cpu_ptr(ctx->cpu);
925 	if (!kcpu->reqs_available) {
926 		int old, avail = atomic_read(&ctx->reqs_available);
927 
928 		do {
929 			if (avail < ctx->req_batch)
930 				goto out;
931 
932 			old = avail;
933 			avail = atomic_cmpxchg(&ctx->reqs_available,
934 					       avail, avail - ctx->req_batch);
935 		} while (avail != old);
936 
937 		kcpu->reqs_available += ctx->req_batch;
938 	}
939 
940 	ret = true;
941 	kcpu->reqs_available--;
942 out:
943 	local_irq_restore(flags);
944 	return ret;
945 }
946 
947 /* refill_reqs_available
948  *	Updates the reqs_available reference counts used for tracking the
949  *	number of free slots in the completion ring.  This can be called
950  *	from aio_complete() (to optimistically update reqs_available) or
951  *	from aio_get_req() (the we're out of events case).  It must be
952  *	called holding ctx->completion_lock.
953  */
954 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
955                                   unsigned tail)
956 {
957 	unsigned events_in_ring, completed;
958 
959 	/* Clamp head since userland can write to it. */
960 	head %= ctx->nr_events;
961 	if (head <= tail)
962 		events_in_ring = tail - head;
963 	else
964 		events_in_ring = ctx->nr_events - (head - tail);
965 
966 	completed = ctx->completed_events;
967 	if (events_in_ring < completed)
968 		completed -= events_in_ring;
969 	else
970 		completed = 0;
971 
972 	if (!completed)
973 		return;
974 
975 	ctx->completed_events -= completed;
976 	put_reqs_available(ctx, completed);
977 }
978 
979 /* user_refill_reqs_available
980  *	Called to refill reqs_available when aio_get_req() encounters an
981  *	out of space in the completion ring.
982  */
983 static void user_refill_reqs_available(struct kioctx *ctx)
984 {
985 	spin_lock_irq(&ctx->completion_lock);
986 	if (ctx->completed_events) {
987 		struct aio_ring *ring;
988 		unsigned head;
989 
990 		/* Access of ring->head may race with aio_read_events_ring()
991 		 * here, but that's okay since whether we read the old version
992 		 * or the new version, and either will be valid.  The important
993 		 * part is that head cannot pass tail since we prevent
994 		 * aio_complete() from updating tail by holding
995 		 * ctx->completion_lock.  Even if head is invalid, the check
996 		 * against ctx->completed_events below will make sure we do the
997 		 * safe/right thing.
998 		 */
999 		ring = kmap_atomic(ctx->ring_pages[0]);
1000 		head = ring->head;
1001 		kunmap_atomic(ring);
1002 
1003 		refill_reqs_available(ctx, head, ctx->tail);
1004 	}
1005 
1006 	spin_unlock_irq(&ctx->completion_lock);
1007 }
1008 
1009 static bool get_reqs_available(struct kioctx *ctx)
1010 {
1011 	if (__get_reqs_available(ctx))
1012 		return true;
1013 	user_refill_reqs_available(ctx);
1014 	return __get_reqs_available(ctx);
1015 }
1016 
1017 /* aio_get_req
1018  *	Allocate a slot for an aio request.
1019  * Returns NULL if no requests are free.
1020  *
1021  * The refcount is initialized to 2 - one for the async op completion,
1022  * one for the synchronous code that does this.
1023  */
1024 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1025 {
1026 	struct aio_kiocb *req;
1027 
1028 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1029 	if (unlikely(!req))
1030 		return NULL;
1031 
1032 	if (unlikely(!get_reqs_available(ctx))) {
1033 		kmem_cache_free(kiocb_cachep, req);
1034 		return NULL;
1035 	}
1036 
1037 	percpu_ref_get(&ctx->reqs);
1038 	req->ki_ctx = ctx;
1039 	INIT_LIST_HEAD(&req->ki_list);
1040 	refcount_set(&req->ki_refcnt, 2);
1041 	req->ki_eventfd = NULL;
1042 	return req;
1043 }
1044 
1045 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1046 {
1047 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1048 	struct mm_struct *mm = current->mm;
1049 	struct kioctx *ctx, *ret = NULL;
1050 	struct kioctx_table *table;
1051 	unsigned id;
1052 
1053 	if (get_user(id, &ring->id))
1054 		return NULL;
1055 
1056 	rcu_read_lock();
1057 	table = rcu_dereference(mm->ioctx_table);
1058 
1059 	if (!table || id >= table->nr)
1060 		goto out;
1061 
1062 	id = array_index_nospec(id, table->nr);
1063 	ctx = rcu_dereference(table->table[id]);
1064 	if (ctx && ctx->user_id == ctx_id) {
1065 		if (percpu_ref_tryget_live(&ctx->users))
1066 			ret = ctx;
1067 	}
1068 out:
1069 	rcu_read_unlock();
1070 	return ret;
1071 }
1072 
1073 static inline void iocb_destroy(struct aio_kiocb *iocb)
1074 {
1075 	if (iocb->ki_eventfd)
1076 		eventfd_ctx_put(iocb->ki_eventfd);
1077 	if (iocb->ki_filp)
1078 		fput(iocb->ki_filp);
1079 	percpu_ref_put(&iocb->ki_ctx->reqs);
1080 	kmem_cache_free(kiocb_cachep, iocb);
1081 }
1082 
1083 /* aio_complete
1084  *	Called when the io request on the given iocb is complete.
1085  */
1086 static void aio_complete(struct aio_kiocb *iocb)
1087 {
1088 	struct kioctx	*ctx = iocb->ki_ctx;
1089 	struct aio_ring	*ring;
1090 	struct io_event	*ev_page, *event;
1091 	unsigned tail, pos, head;
1092 	unsigned long	flags;
1093 
1094 	/*
1095 	 * Add a completion event to the ring buffer. Must be done holding
1096 	 * ctx->completion_lock to prevent other code from messing with the tail
1097 	 * pointer since we might be called from irq context.
1098 	 */
1099 	spin_lock_irqsave(&ctx->completion_lock, flags);
1100 
1101 	tail = ctx->tail;
1102 	pos = tail + AIO_EVENTS_OFFSET;
1103 
1104 	if (++tail >= ctx->nr_events)
1105 		tail = 0;
1106 
1107 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1108 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1109 
1110 	*event = iocb->ki_res;
1111 
1112 	kunmap_atomic(ev_page);
1113 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1114 
1115 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1116 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1117 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1118 
1119 	/* after flagging the request as done, we
1120 	 * must never even look at it again
1121 	 */
1122 	smp_wmb();	/* make event visible before updating tail */
1123 
1124 	ctx->tail = tail;
1125 
1126 	ring = kmap_atomic(ctx->ring_pages[0]);
1127 	head = ring->head;
1128 	ring->tail = tail;
1129 	kunmap_atomic(ring);
1130 	flush_dcache_page(ctx->ring_pages[0]);
1131 
1132 	ctx->completed_events++;
1133 	if (ctx->completed_events > 1)
1134 		refill_reqs_available(ctx, head, tail);
1135 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1136 
1137 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1138 
1139 	/*
1140 	 * Check if the user asked us to deliver the result through an
1141 	 * eventfd. The eventfd_signal() function is safe to be called
1142 	 * from IRQ context.
1143 	 */
1144 	if (iocb->ki_eventfd)
1145 		eventfd_signal(iocb->ki_eventfd, 1);
1146 
1147 	/*
1148 	 * We have to order our ring_info tail store above and test
1149 	 * of the wait list below outside the wait lock.  This is
1150 	 * like in wake_up_bit() where clearing a bit has to be
1151 	 * ordered with the unlocked test.
1152 	 */
1153 	smp_mb();
1154 
1155 	if (waitqueue_active(&ctx->wait))
1156 		wake_up(&ctx->wait);
1157 }
1158 
1159 static inline void iocb_put(struct aio_kiocb *iocb)
1160 {
1161 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1162 		aio_complete(iocb);
1163 		iocb_destroy(iocb);
1164 	}
1165 }
1166 
1167 /* aio_read_events_ring
1168  *	Pull an event off of the ioctx's event ring.  Returns the number of
1169  *	events fetched
1170  */
1171 static long aio_read_events_ring(struct kioctx *ctx,
1172 				 struct io_event __user *event, long nr)
1173 {
1174 	struct aio_ring *ring;
1175 	unsigned head, tail, pos;
1176 	long ret = 0;
1177 	int copy_ret;
1178 
1179 	/*
1180 	 * The mutex can block and wake us up and that will cause
1181 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1182 	 * and repeat. This should be rare enough that it doesn't cause
1183 	 * peformance issues. See the comment in read_events() for more detail.
1184 	 */
1185 	sched_annotate_sleep();
1186 	mutex_lock(&ctx->ring_lock);
1187 
1188 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1189 	ring = kmap_atomic(ctx->ring_pages[0]);
1190 	head = ring->head;
1191 	tail = ring->tail;
1192 	kunmap_atomic(ring);
1193 
1194 	/*
1195 	 * Ensure that once we've read the current tail pointer, that
1196 	 * we also see the events that were stored up to the tail.
1197 	 */
1198 	smp_rmb();
1199 
1200 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1201 
1202 	if (head == tail)
1203 		goto out;
1204 
1205 	head %= ctx->nr_events;
1206 	tail %= ctx->nr_events;
1207 
1208 	while (ret < nr) {
1209 		long avail;
1210 		struct io_event *ev;
1211 		struct page *page;
1212 
1213 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1214 		if (head == tail)
1215 			break;
1216 
1217 		pos = head + AIO_EVENTS_OFFSET;
1218 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1219 		pos %= AIO_EVENTS_PER_PAGE;
1220 
1221 		avail = min(avail, nr - ret);
1222 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1223 
1224 		ev = kmap(page);
1225 		copy_ret = copy_to_user(event + ret, ev + pos,
1226 					sizeof(*ev) * avail);
1227 		kunmap(page);
1228 
1229 		if (unlikely(copy_ret)) {
1230 			ret = -EFAULT;
1231 			goto out;
1232 		}
1233 
1234 		ret += avail;
1235 		head += avail;
1236 		head %= ctx->nr_events;
1237 	}
1238 
1239 	ring = kmap_atomic(ctx->ring_pages[0]);
1240 	ring->head = head;
1241 	kunmap_atomic(ring);
1242 	flush_dcache_page(ctx->ring_pages[0]);
1243 
1244 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1245 out:
1246 	mutex_unlock(&ctx->ring_lock);
1247 
1248 	return ret;
1249 }
1250 
1251 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1252 			    struct io_event __user *event, long *i)
1253 {
1254 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1255 
1256 	if (ret > 0)
1257 		*i += ret;
1258 
1259 	if (unlikely(atomic_read(&ctx->dead)))
1260 		ret = -EINVAL;
1261 
1262 	if (!*i)
1263 		*i = ret;
1264 
1265 	return ret < 0 || *i >= min_nr;
1266 }
1267 
1268 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1269 			struct io_event __user *event,
1270 			ktime_t until)
1271 {
1272 	long ret = 0;
1273 
1274 	/*
1275 	 * Note that aio_read_events() is being called as the conditional - i.e.
1276 	 * we're calling it after prepare_to_wait() has set task state to
1277 	 * TASK_INTERRUPTIBLE.
1278 	 *
1279 	 * But aio_read_events() can block, and if it blocks it's going to flip
1280 	 * the task state back to TASK_RUNNING.
1281 	 *
1282 	 * This should be ok, provided it doesn't flip the state back to
1283 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1284 	 * will only happen if the mutex_lock() call blocks, and we then find
1285 	 * the ringbuffer empty. So in practice we should be ok, but it's
1286 	 * something to be aware of when touching this code.
1287 	 */
1288 	if (until == 0)
1289 		aio_read_events(ctx, min_nr, nr, event, &ret);
1290 	else
1291 		wait_event_interruptible_hrtimeout(ctx->wait,
1292 				aio_read_events(ctx, min_nr, nr, event, &ret),
1293 				until);
1294 	return ret;
1295 }
1296 
1297 /* sys_io_setup:
1298  *	Create an aio_context capable of receiving at least nr_events.
1299  *	ctxp must not point to an aio_context that already exists, and
1300  *	must be initialized to 0 prior to the call.  On successful
1301  *	creation of the aio_context, *ctxp is filled in with the resulting
1302  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1303  *	if the specified nr_events exceeds internal limits.  May fail
1304  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1305  *	of available events.  May fail with -ENOMEM if insufficient kernel
1306  *	resources are available.  May fail with -EFAULT if an invalid
1307  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1308  *	implemented.
1309  */
1310 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1311 {
1312 	struct kioctx *ioctx = NULL;
1313 	unsigned long ctx;
1314 	long ret;
1315 
1316 	ret = get_user(ctx, ctxp);
1317 	if (unlikely(ret))
1318 		goto out;
1319 
1320 	ret = -EINVAL;
1321 	if (unlikely(ctx || nr_events == 0)) {
1322 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1323 		         ctx, nr_events);
1324 		goto out;
1325 	}
1326 
1327 	ioctx = ioctx_alloc(nr_events);
1328 	ret = PTR_ERR(ioctx);
1329 	if (!IS_ERR(ioctx)) {
1330 		ret = put_user(ioctx->user_id, ctxp);
1331 		if (ret)
1332 			kill_ioctx(current->mm, ioctx, NULL);
1333 		percpu_ref_put(&ioctx->users);
1334 	}
1335 
1336 out:
1337 	return ret;
1338 }
1339 
1340 #ifdef CONFIG_COMPAT
1341 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1342 {
1343 	struct kioctx *ioctx = NULL;
1344 	unsigned long ctx;
1345 	long ret;
1346 
1347 	ret = get_user(ctx, ctx32p);
1348 	if (unlikely(ret))
1349 		goto out;
1350 
1351 	ret = -EINVAL;
1352 	if (unlikely(ctx || nr_events == 0)) {
1353 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1354 		         ctx, nr_events);
1355 		goto out;
1356 	}
1357 
1358 	ioctx = ioctx_alloc(nr_events);
1359 	ret = PTR_ERR(ioctx);
1360 	if (!IS_ERR(ioctx)) {
1361 		/* truncating is ok because it's a user address */
1362 		ret = put_user((u32)ioctx->user_id, ctx32p);
1363 		if (ret)
1364 			kill_ioctx(current->mm, ioctx, NULL);
1365 		percpu_ref_put(&ioctx->users);
1366 	}
1367 
1368 out:
1369 	return ret;
1370 }
1371 #endif
1372 
1373 /* sys_io_destroy:
1374  *	Destroy the aio_context specified.  May cancel any outstanding
1375  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1376  *	implemented.  May fail with -EINVAL if the context pointed to
1377  *	is invalid.
1378  */
1379 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1380 {
1381 	struct kioctx *ioctx = lookup_ioctx(ctx);
1382 	if (likely(NULL != ioctx)) {
1383 		struct ctx_rq_wait wait;
1384 		int ret;
1385 
1386 		init_completion(&wait.comp);
1387 		atomic_set(&wait.count, 1);
1388 
1389 		/* Pass requests_done to kill_ioctx() where it can be set
1390 		 * in a thread-safe way. If we try to set it here then we have
1391 		 * a race condition if two io_destroy() called simultaneously.
1392 		 */
1393 		ret = kill_ioctx(current->mm, ioctx, &wait);
1394 		percpu_ref_put(&ioctx->users);
1395 
1396 		/* Wait until all IO for the context are done. Otherwise kernel
1397 		 * keep using user-space buffers even if user thinks the context
1398 		 * is destroyed.
1399 		 */
1400 		if (!ret)
1401 			wait_for_completion(&wait.comp);
1402 
1403 		return ret;
1404 	}
1405 	pr_debug("EINVAL: invalid context id\n");
1406 	return -EINVAL;
1407 }
1408 
1409 static void aio_remove_iocb(struct aio_kiocb *iocb)
1410 {
1411 	struct kioctx *ctx = iocb->ki_ctx;
1412 	unsigned long flags;
1413 
1414 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1415 	list_del(&iocb->ki_list);
1416 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1417 }
1418 
1419 static void aio_complete_rw(struct kiocb *kiocb, long res)
1420 {
1421 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1422 
1423 	if (!list_empty_careful(&iocb->ki_list))
1424 		aio_remove_iocb(iocb);
1425 
1426 	if (kiocb->ki_flags & IOCB_WRITE) {
1427 		struct inode *inode = file_inode(kiocb->ki_filp);
1428 
1429 		/*
1430 		 * Tell lockdep we inherited freeze protection from submission
1431 		 * thread.
1432 		 */
1433 		if (S_ISREG(inode->i_mode))
1434 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1435 		file_end_write(kiocb->ki_filp);
1436 	}
1437 
1438 	iocb->ki_res.res = res;
1439 	iocb->ki_res.res2 = 0;
1440 	iocb_put(iocb);
1441 }
1442 
1443 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1444 {
1445 	int ret;
1446 
1447 	req->ki_complete = aio_complete_rw;
1448 	req->private = NULL;
1449 	req->ki_pos = iocb->aio_offset;
1450 	req->ki_flags = iocb_flags(req->ki_filp);
1451 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1452 		req->ki_flags |= IOCB_EVENTFD;
1453 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1454 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1455 		/*
1456 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1457 		 * aio_reqprio is interpreted as an I/O scheduling
1458 		 * class and priority.
1459 		 */
1460 		ret = ioprio_check_cap(iocb->aio_reqprio);
1461 		if (ret) {
1462 			pr_debug("aio ioprio check cap error: %d\n", ret);
1463 			return ret;
1464 		}
1465 
1466 		req->ki_ioprio = iocb->aio_reqprio;
1467 	} else
1468 		req->ki_ioprio = get_current_ioprio();
1469 
1470 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1471 	if (unlikely(ret))
1472 		return ret;
1473 
1474 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1475 	return 0;
1476 }
1477 
1478 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1479 		struct iovec **iovec, bool vectored, bool compat,
1480 		struct iov_iter *iter)
1481 {
1482 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1483 	size_t len = iocb->aio_nbytes;
1484 
1485 	if (!vectored) {
1486 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1487 		*iovec = NULL;
1488 		return ret;
1489 	}
1490 
1491 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1492 }
1493 
1494 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1495 {
1496 	switch (ret) {
1497 	case -EIOCBQUEUED:
1498 		break;
1499 	case -ERESTARTSYS:
1500 	case -ERESTARTNOINTR:
1501 	case -ERESTARTNOHAND:
1502 	case -ERESTART_RESTARTBLOCK:
1503 		/*
1504 		 * There's no easy way to restart the syscall since other AIO's
1505 		 * may be already running. Just fail this IO with EINTR.
1506 		 */
1507 		ret = -EINTR;
1508 		fallthrough;
1509 	default:
1510 		req->ki_complete(req, ret);
1511 	}
1512 }
1513 
1514 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1515 			bool vectored, bool compat)
1516 {
1517 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1518 	struct iov_iter iter;
1519 	struct file *file;
1520 	int ret;
1521 
1522 	ret = aio_prep_rw(req, iocb);
1523 	if (ret)
1524 		return ret;
1525 	file = req->ki_filp;
1526 	if (unlikely(!(file->f_mode & FMODE_READ)))
1527 		return -EBADF;
1528 	ret = -EINVAL;
1529 	if (unlikely(!file->f_op->read_iter))
1530 		return -EINVAL;
1531 
1532 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1533 	if (ret < 0)
1534 		return ret;
1535 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1536 	if (!ret)
1537 		aio_rw_done(req, call_read_iter(file, req, &iter));
1538 	kfree(iovec);
1539 	return ret;
1540 }
1541 
1542 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1543 			 bool vectored, bool compat)
1544 {
1545 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1546 	struct iov_iter iter;
1547 	struct file *file;
1548 	int ret;
1549 
1550 	ret = aio_prep_rw(req, iocb);
1551 	if (ret)
1552 		return ret;
1553 	file = req->ki_filp;
1554 
1555 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1556 		return -EBADF;
1557 	if (unlikely(!file->f_op->write_iter))
1558 		return -EINVAL;
1559 
1560 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1561 	if (ret < 0)
1562 		return ret;
1563 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1564 	if (!ret) {
1565 		/*
1566 		 * Open-code file_start_write here to grab freeze protection,
1567 		 * which will be released by another thread in
1568 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1569 		 * released so that it doesn't complain about the held lock when
1570 		 * we return to userspace.
1571 		 */
1572 		if (S_ISREG(file_inode(file)->i_mode)) {
1573 			sb_start_write(file_inode(file)->i_sb);
1574 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1575 		}
1576 		req->ki_flags |= IOCB_WRITE;
1577 		aio_rw_done(req, call_write_iter(file, req, &iter));
1578 	}
1579 	kfree(iovec);
1580 	return ret;
1581 }
1582 
1583 static void aio_fsync_work(struct work_struct *work)
1584 {
1585 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1586 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1587 
1588 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1589 	revert_creds(old_cred);
1590 	put_cred(iocb->fsync.creds);
1591 	iocb_put(iocb);
1592 }
1593 
1594 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1595 		     bool datasync)
1596 {
1597 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1598 			iocb->aio_rw_flags))
1599 		return -EINVAL;
1600 
1601 	if (unlikely(!req->file->f_op->fsync))
1602 		return -EINVAL;
1603 
1604 	req->creds = prepare_creds();
1605 	if (!req->creds)
1606 		return -ENOMEM;
1607 
1608 	req->datasync = datasync;
1609 	INIT_WORK(&req->work, aio_fsync_work);
1610 	schedule_work(&req->work);
1611 	return 0;
1612 }
1613 
1614 static void aio_poll_put_work(struct work_struct *work)
1615 {
1616 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1617 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1618 
1619 	iocb_put(iocb);
1620 }
1621 
1622 static void aio_poll_complete_work(struct work_struct *work)
1623 {
1624 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1625 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1626 	struct poll_table_struct pt = { ._key = req->events };
1627 	struct kioctx *ctx = iocb->ki_ctx;
1628 	__poll_t mask = 0;
1629 
1630 	if (!READ_ONCE(req->cancelled))
1631 		mask = vfs_poll(req->file, &pt) & req->events;
1632 
1633 	/*
1634 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1635 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1636 	 * synchronize with them.  In the cancellation case the list_del_init
1637 	 * itself is not actually needed, but harmless so we keep it in to
1638 	 * avoid further branches in the fast path.
1639 	 */
1640 	spin_lock_irq(&ctx->ctx_lock);
1641 	if (!mask && !READ_ONCE(req->cancelled)) {
1642 		add_wait_queue(req->head, &req->wait);
1643 		spin_unlock_irq(&ctx->ctx_lock);
1644 		return;
1645 	}
1646 	list_del_init(&iocb->ki_list);
1647 	iocb->ki_res.res = mangle_poll(mask);
1648 	req->done = true;
1649 	spin_unlock_irq(&ctx->ctx_lock);
1650 
1651 	iocb_put(iocb);
1652 }
1653 
1654 /* assumes we are called with irqs disabled */
1655 static int aio_poll_cancel(struct kiocb *iocb)
1656 {
1657 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1658 	struct poll_iocb *req = &aiocb->poll;
1659 
1660 	spin_lock(&req->head->lock);
1661 	WRITE_ONCE(req->cancelled, true);
1662 	if (!list_empty(&req->wait.entry)) {
1663 		list_del_init(&req->wait.entry);
1664 		schedule_work(&aiocb->poll.work);
1665 	}
1666 	spin_unlock(&req->head->lock);
1667 
1668 	return 0;
1669 }
1670 
1671 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1672 		void *key)
1673 {
1674 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1675 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1676 	__poll_t mask = key_to_poll(key);
1677 	unsigned long flags;
1678 
1679 	/* for instances that support it check for an event match first: */
1680 	if (mask && !(mask & req->events))
1681 		return 0;
1682 
1683 	list_del_init(&req->wait.entry);
1684 
1685 	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1686 		struct kioctx *ctx = iocb->ki_ctx;
1687 
1688 		/*
1689 		 * Try to complete the iocb inline if we can. Use
1690 		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1691 		 * call this function with IRQs disabled and because IRQs
1692 		 * have to be disabled before ctx_lock is obtained.
1693 		 */
1694 		list_del(&iocb->ki_list);
1695 		iocb->ki_res.res = mangle_poll(mask);
1696 		req->done = true;
1697 		if (iocb->ki_eventfd && eventfd_signal_allowed()) {
1698 			iocb = NULL;
1699 			INIT_WORK(&req->work, aio_poll_put_work);
1700 			schedule_work(&req->work);
1701 		}
1702 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1703 		if (iocb)
1704 			iocb_put(iocb);
1705 	} else {
1706 		schedule_work(&req->work);
1707 	}
1708 	return 1;
1709 }
1710 
1711 struct aio_poll_table {
1712 	struct poll_table_struct	pt;
1713 	struct aio_kiocb		*iocb;
1714 	int				error;
1715 };
1716 
1717 static void
1718 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1719 		struct poll_table_struct *p)
1720 {
1721 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1722 
1723 	/* multiple wait queues per file are not supported */
1724 	if (unlikely(pt->iocb->poll.head)) {
1725 		pt->error = -EINVAL;
1726 		return;
1727 	}
1728 
1729 	pt->error = 0;
1730 	pt->iocb->poll.head = head;
1731 	add_wait_queue(head, &pt->iocb->poll.wait);
1732 }
1733 
1734 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1735 {
1736 	struct kioctx *ctx = aiocb->ki_ctx;
1737 	struct poll_iocb *req = &aiocb->poll;
1738 	struct aio_poll_table apt;
1739 	bool cancel = false;
1740 	__poll_t mask;
1741 
1742 	/* reject any unknown events outside the normal event mask. */
1743 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1744 		return -EINVAL;
1745 	/* reject fields that are not defined for poll */
1746 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1747 		return -EINVAL;
1748 
1749 	INIT_WORK(&req->work, aio_poll_complete_work);
1750 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1751 
1752 	req->head = NULL;
1753 	req->done = false;
1754 	req->cancelled = false;
1755 
1756 	apt.pt._qproc = aio_poll_queue_proc;
1757 	apt.pt._key = req->events;
1758 	apt.iocb = aiocb;
1759 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1760 
1761 	/* initialized the list so that we can do list_empty checks */
1762 	INIT_LIST_HEAD(&req->wait.entry);
1763 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1764 
1765 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1766 	spin_lock_irq(&ctx->ctx_lock);
1767 	if (likely(req->head)) {
1768 		spin_lock(&req->head->lock);
1769 		if (unlikely(list_empty(&req->wait.entry))) {
1770 			if (apt.error)
1771 				cancel = true;
1772 			apt.error = 0;
1773 			mask = 0;
1774 		}
1775 		if (mask || apt.error) {
1776 			list_del_init(&req->wait.entry);
1777 		} else if (cancel) {
1778 			WRITE_ONCE(req->cancelled, true);
1779 		} else if (!req->done) { /* actually waiting for an event */
1780 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1781 			aiocb->ki_cancel = aio_poll_cancel;
1782 		}
1783 		spin_unlock(&req->head->lock);
1784 	}
1785 	if (mask) { /* no async, we'd stolen it */
1786 		aiocb->ki_res.res = mangle_poll(mask);
1787 		apt.error = 0;
1788 	}
1789 	spin_unlock_irq(&ctx->ctx_lock);
1790 	if (mask)
1791 		iocb_put(aiocb);
1792 	return apt.error;
1793 }
1794 
1795 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1796 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1797 			   bool compat)
1798 {
1799 	req->ki_filp = fget(iocb->aio_fildes);
1800 	if (unlikely(!req->ki_filp))
1801 		return -EBADF;
1802 
1803 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1804 		struct eventfd_ctx *eventfd;
1805 		/*
1806 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1807 		 * instance of the file* now. The file descriptor must be
1808 		 * an eventfd() fd, and will be signaled for each completed
1809 		 * event using the eventfd_signal() function.
1810 		 */
1811 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1812 		if (IS_ERR(eventfd))
1813 			return PTR_ERR(eventfd);
1814 
1815 		req->ki_eventfd = eventfd;
1816 	}
1817 
1818 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1819 		pr_debug("EFAULT: aio_key\n");
1820 		return -EFAULT;
1821 	}
1822 
1823 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1824 	req->ki_res.data = iocb->aio_data;
1825 	req->ki_res.res = 0;
1826 	req->ki_res.res2 = 0;
1827 
1828 	switch (iocb->aio_lio_opcode) {
1829 	case IOCB_CMD_PREAD:
1830 		return aio_read(&req->rw, iocb, false, compat);
1831 	case IOCB_CMD_PWRITE:
1832 		return aio_write(&req->rw, iocb, false, compat);
1833 	case IOCB_CMD_PREADV:
1834 		return aio_read(&req->rw, iocb, true, compat);
1835 	case IOCB_CMD_PWRITEV:
1836 		return aio_write(&req->rw, iocb, true, compat);
1837 	case IOCB_CMD_FSYNC:
1838 		return aio_fsync(&req->fsync, iocb, false);
1839 	case IOCB_CMD_FDSYNC:
1840 		return aio_fsync(&req->fsync, iocb, true);
1841 	case IOCB_CMD_POLL:
1842 		return aio_poll(req, iocb);
1843 	default:
1844 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1845 		return -EINVAL;
1846 	}
1847 }
1848 
1849 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1850 			 bool compat)
1851 {
1852 	struct aio_kiocb *req;
1853 	struct iocb iocb;
1854 	int err;
1855 
1856 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1857 		return -EFAULT;
1858 
1859 	/* enforce forwards compatibility on users */
1860 	if (unlikely(iocb.aio_reserved2)) {
1861 		pr_debug("EINVAL: reserve field set\n");
1862 		return -EINVAL;
1863 	}
1864 
1865 	/* prevent overflows */
1866 	if (unlikely(
1867 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1868 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1869 	    ((ssize_t)iocb.aio_nbytes < 0)
1870 	   )) {
1871 		pr_debug("EINVAL: overflow check\n");
1872 		return -EINVAL;
1873 	}
1874 
1875 	req = aio_get_req(ctx);
1876 	if (unlikely(!req))
1877 		return -EAGAIN;
1878 
1879 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1880 
1881 	/* Done with the synchronous reference */
1882 	iocb_put(req);
1883 
1884 	/*
1885 	 * If err is 0, we'd either done aio_complete() ourselves or have
1886 	 * arranged for that to be done asynchronously.  Anything non-zero
1887 	 * means that we need to destroy req ourselves.
1888 	 */
1889 	if (unlikely(err)) {
1890 		iocb_destroy(req);
1891 		put_reqs_available(ctx, 1);
1892 	}
1893 	return err;
1894 }
1895 
1896 /* sys_io_submit:
1897  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1898  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1899  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1900  *	*iocbpp[0] is not properly initialized, if the operation specified
1901  *	is invalid for the file descriptor in the iocb.  May fail with
1902  *	-EFAULT if any of the data structures point to invalid data.  May
1903  *	fail with -EBADF if the file descriptor specified in the first
1904  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1905  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1906  *	fail with -ENOSYS if not implemented.
1907  */
1908 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1909 		struct iocb __user * __user *, iocbpp)
1910 {
1911 	struct kioctx *ctx;
1912 	long ret = 0;
1913 	int i = 0;
1914 	struct blk_plug plug;
1915 
1916 	if (unlikely(nr < 0))
1917 		return -EINVAL;
1918 
1919 	ctx = lookup_ioctx(ctx_id);
1920 	if (unlikely(!ctx)) {
1921 		pr_debug("EINVAL: invalid context id\n");
1922 		return -EINVAL;
1923 	}
1924 
1925 	if (nr > ctx->nr_events)
1926 		nr = ctx->nr_events;
1927 
1928 	if (nr > AIO_PLUG_THRESHOLD)
1929 		blk_start_plug(&plug);
1930 	for (i = 0; i < nr; i++) {
1931 		struct iocb __user *user_iocb;
1932 
1933 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1934 			ret = -EFAULT;
1935 			break;
1936 		}
1937 
1938 		ret = io_submit_one(ctx, user_iocb, false);
1939 		if (ret)
1940 			break;
1941 	}
1942 	if (nr > AIO_PLUG_THRESHOLD)
1943 		blk_finish_plug(&plug);
1944 
1945 	percpu_ref_put(&ctx->users);
1946 	return i ? i : ret;
1947 }
1948 
1949 #ifdef CONFIG_COMPAT
1950 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1951 		       int, nr, compat_uptr_t __user *, iocbpp)
1952 {
1953 	struct kioctx *ctx;
1954 	long ret = 0;
1955 	int i = 0;
1956 	struct blk_plug plug;
1957 
1958 	if (unlikely(nr < 0))
1959 		return -EINVAL;
1960 
1961 	ctx = lookup_ioctx(ctx_id);
1962 	if (unlikely(!ctx)) {
1963 		pr_debug("EINVAL: invalid context id\n");
1964 		return -EINVAL;
1965 	}
1966 
1967 	if (nr > ctx->nr_events)
1968 		nr = ctx->nr_events;
1969 
1970 	if (nr > AIO_PLUG_THRESHOLD)
1971 		blk_start_plug(&plug);
1972 	for (i = 0; i < nr; i++) {
1973 		compat_uptr_t user_iocb;
1974 
1975 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1976 			ret = -EFAULT;
1977 			break;
1978 		}
1979 
1980 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1981 		if (ret)
1982 			break;
1983 	}
1984 	if (nr > AIO_PLUG_THRESHOLD)
1985 		blk_finish_plug(&plug);
1986 
1987 	percpu_ref_put(&ctx->users);
1988 	return i ? i : ret;
1989 }
1990 #endif
1991 
1992 /* sys_io_cancel:
1993  *	Attempts to cancel an iocb previously passed to io_submit.  If
1994  *	the operation is successfully cancelled, the resulting event is
1995  *	copied into the memory pointed to by result without being placed
1996  *	into the completion queue and 0 is returned.  May fail with
1997  *	-EFAULT if any of the data structures pointed to are invalid.
1998  *	May fail with -EINVAL if aio_context specified by ctx_id is
1999  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2000  *	cancelled.  Will fail with -ENOSYS if not implemented.
2001  */
2002 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2003 		struct io_event __user *, result)
2004 {
2005 	struct kioctx *ctx;
2006 	struct aio_kiocb *kiocb;
2007 	int ret = -EINVAL;
2008 	u32 key;
2009 	u64 obj = (u64)(unsigned long)iocb;
2010 
2011 	if (unlikely(get_user(key, &iocb->aio_key)))
2012 		return -EFAULT;
2013 	if (unlikely(key != KIOCB_KEY))
2014 		return -EINVAL;
2015 
2016 	ctx = lookup_ioctx(ctx_id);
2017 	if (unlikely(!ctx))
2018 		return -EINVAL;
2019 
2020 	spin_lock_irq(&ctx->ctx_lock);
2021 	/* TODO: use a hash or array, this sucks. */
2022 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2023 		if (kiocb->ki_res.obj == obj) {
2024 			ret = kiocb->ki_cancel(&kiocb->rw);
2025 			list_del_init(&kiocb->ki_list);
2026 			break;
2027 		}
2028 	}
2029 	spin_unlock_irq(&ctx->ctx_lock);
2030 
2031 	if (!ret) {
2032 		/*
2033 		 * The result argument is no longer used - the io_event is
2034 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2035 		 * cancellation is progress:
2036 		 */
2037 		ret = -EINPROGRESS;
2038 	}
2039 
2040 	percpu_ref_put(&ctx->users);
2041 
2042 	return ret;
2043 }
2044 
2045 static long do_io_getevents(aio_context_t ctx_id,
2046 		long min_nr,
2047 		long nr,
2048 		struct io_event __user *events,
2049 		struct timespec64 *ts)
2050 {
2051 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2052 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2053 	long ret = -EINVAL;
2054 
2055 	if (likely(ioctx)) {
2056 		if (likely(min_nr <= nr && min_nr >= 0))
2057 			ret = read_events(ioctx, min_nr, nr, events, until);
2058 		percpu_ref_put(&ioctx->users);
2059 	}
2060 
2061 	return ret;
2062 }
2063 
2064 /* io_getevents:
2065  *	Attempts to read at least min_nr events and up to nr events from
2066  *	the completion queue for the aio_context specified by ctx_id. If
2067  *	it succeeds, the number of read events is returned. May fail with
2068  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2069  *	out of range, if timeout is out of range.  May fail with -EFAULT
2070  *	if any of the memory specified is invalid.  May return 0 or
2071  *	< min_nr if the timeout specified by timeout has elapsed
2072  *	before sufficient events are available, where timeout == NULL
2073  *	specifies an infinite timeout. Note that the timeout pointed to by
2074  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2075  */
2076 #ifdef CONFIG_64BIT
2077 
2078 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2079 		long, min_nr,
2080 		long, nr,
2081 		struct io_event __user *, events,
2082 		struct __kernel_timespec __user *, timeout)
2083 {
2084 	struct timespec64	ts;
2085 	int			ret;
2086 
2087 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2088 		return -EFAULT;
2089 
2090 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2091 	if (!ret && signal_pending(current))
2092 		ret = -EINTR;
2093 	return ret;
2094 }
2095 
2096 #endif
2097 
2098 struct __aio_sigset {
2099 	const sigset_t __user	*sigmask;
2100 	size_t		sigsetsize;
2101 };
2102 
2103 SYSCALL_DEFINE6(io_pgetevents,
2104 		aio_context_t, ctx_id,
2105 		long, min_nr,
2106 		long, nr,
2107 		struct io_event __user *, events,
2108 		struct __kernel_timespec __user *, timeout,
2109 		const struct __aio_sigset __user *, usig)
2110 {
2111 	struct __aio_sigset	ksig = { NULL, };
2112 	struct timespec64	ts;
2113 	bool interrupted;
2114 	int ret;
2115 
2116 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2117 		return -EFAULT;
2118 
2119 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2120 		return -EFAULT;
2121 
2122 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2123 	if (ret)
2124 		return ret;
2125 
2126 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2127 
2128 	interrupted = signal_pending(current);
2129 	restore_saved_sigmask_unless(interrupted);
2130 	if (interrupted && !ret)
2131 		ret = -ERESTARTNOHAND;
2132 
2133 	return ret;
2134 }
2135 
2136 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2137 
2138 SYSCALL_DEFINE6(io_pgetevents_time32,
2139 		aio_context_t, ctx_id,
2140 		long, min_nr,
2141 		long, nr,
2142 		struct io_event __user *, events,
2143 		struct old_timespec32 __user *, timeout,
2144 		const struct __aio_sigset __user *, usig)
2145 {
2146 	struct __aio_sigset	ksig = { NULL, };
2147 	struct timespec64	ts;
2148 	bool interrupted;
2149 	int ret;
2150 
2151 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2152 		return -EFAULT;
2153 
2154 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2155 		return -EFAULT;
2156 
2157 
2158 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2159 	if (ret)
2160 		return ret;
2161 
2162 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2163 
2164 	interrupted = signal_pending(current);
2165 	restore_saved_sigmask_unless(interrupted);
2166 	if (interrupted && !ret)
2167 		ret = -ERESTARTNOHAND;
2168 
2169 	return ret;
2170 }
2171 
2172 #endif
2173 
2174 #if defined(CONFIG_COMPAT_32BIT_TIME)
2175 
2176 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2177 		__s32, min_nr,
2178 		__s32, nr,
2179 		struct io_event __user *, events,
2180 		struct old_timespec32 __user *, timeout)
2181 {
2182 	struct timespec64 t;
2183 	int ret;
2184 
2185 	if (timeout && get_old_timespec32(&t, timeout))
2186 		return -EFAULT;
2187 
2188 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2189 	if (!ret && signal_pending(current))
2190 		ret = -EINTR;
2191 	return ret;
2192 }
2193 
2194 #endif
2195 
2196 #ifdef CONFIG_COMPAT
2197 
2198 struct __compat_aio_sigset {
2199 	compat_uptr_t		sigmask;
2200 	compat_size_t		sigsetsize;
2201 };
2202 
2203 #if defined(CONFIG_COMPAT_32BIT_TIME)
2204 
2205 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2206 		compat_aio_context_t, ctx_id,
2207 		compat_long_t, min_nr,
2208 		compat_long_t, nr,
2209 		struct io_event __user *, events,
2210 		struct old_timespec32 __user *, timeout,
2211 		const struct __compat_aio_sigset __user *, usig)
2212 {
2213 	struct __compat_aio_sigset ksig = { 0, };
2214 	struct timespec64 t;
2215 	bool interrupted;
2216 	int ret;
2217 
2218 	if (timeout && get_old_timespec32(&t, timeout))
2219 		return -EFAULT;
2220 
2221 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2222 		return -EFAULT;
2223 
2224 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2225 	if (ret)
2226 		return ret;
2227 
2228 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2229 
2230 	interrupted = signal_pending(current);
2231 	restore_saved_sigmask_unless(interrupted);
2232 	if (interrupted && !ret)
2233 		ret = -ERESTARTNOHAND;
2234 
2235 	return ret;
2236 }
2237 
2238 #endif
2239 
2240 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2241 		compat_aio_context_t, ctx_id,
2242 		compat_long_t, min_nr,
2243 		compat_long_t, nr,
2244 		struct io_event __user *, events,
2245 		struct __kernel_timespec __user *, timeout,
2246 		const struct __compat_aio_sigset __user *, usig)
2247 {
2248 	struct __compat_aio_sigset ksig = { 0, };
2249 	struct timespec64 t;
2250 	bool interrupted;
2251 	int ret;
2252 
2253 	if (timeout && get_timespec64(&t, timeout))
2254 		return -EFAULT;
2255 
2256 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2257 		return -EFAULT;
2258 
2259 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2260 	if (ret)
2261 		return ret;
2262 
2263 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2264 
2265 	interrupted = signal_pending(current);
2266 	restore_saved_sigmask_unless(interrupted);
2267 	if (interrupted && !ret)
2268 		ret = -ERESTARTNOHAND;
2269 
2270 	return ret;
2271 }
2272 #endif
2273