xref: /linux/fs/aio.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
49 
50 #include "internal.h"
51 
52 #define KIOCB_KEY		0
53 
54 #define AIO_RING_MAGIC			0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES	1
56 #define AIO_RING_INCOMPAT_FEATURES	0
57 struct aio_ring {
58 	unsigned	id;	/* kernel internal index number */
59 	unsigned	nr;	/* number of io_events */
60 	unsigned	head;	/* Written to by userland or under ring_lock
61 				 * mutex by aio_read_events_ring(). */
62 	unsigned	tail;
63 
64 	unsigned	magic;
65 	unsigned	compat_features;
66 	unsigned	incompat_features;
67 	unsigned	header_length;	/* size of aio_ring */
68 
69 
70 	struct io_event		io_events[0];
71 }; /* 128 bytes + ring size */
72 
73 /*
74  * Plugging is meant to work with larger batches of IOs. If we don't
75  * have more than the below, then don't bother setting up a plug.
76  */
77 #define AIO_PLUG_THRESHOLD	2
78 
79 #define AIO_RING_PAGES	8
80 
81 struct kioctx_table {
82 	struct rcu_head		rcu;
83 	unsigned		nr;
84 	struct kioctx __rcu	*table[];
85 };
86 
87 struct kioctx_cpu {
88 	unsigned		reqs_available;
89 };
90 
91 struct ctx_rq_wait {
92 	struct completion comp;
93 	atomic_t count;
94 };
95 
96 struct kioctx {
97 	struct percpu_ref	users;
98 	atomic_t		dead;
99 
100 	struct percpu_ref	reqs;
101 
102 	unsigned long		user_id;
103 
104 	struct __percpu kioctx_cpu *cpu;
105 
106 	/*
107 	 * For percpu reqs_available, number of slots we move to/from global
108 	 * counter at a time:
109 	 */
110 	unsigned		req_batch;
111 	/*
112 	 * This is what userspace passed to io_setup(), it's not used for
113 	 * anything but counting against the global max_reqs quota.
114 	 *
115 	 * The real limit is nr_events - 1, which will be larger (see
116 	 * aio_setup_ring())
117 	 */
118 	unsigned		max_reqs;
119 
120 	/* Size of ringbuffer, in units of struct io_event */
121 	unsigned		nr_events;
122 
123 	unsigned long		mmap_base;
124 	unsigned long		mmap_size;
125 
126 	struct page		**ring_pages;
127 	long			nr_pages;
128 
129 	struct rcu_work		free_rwork;	/* see free_ioctx() */
130 
131 	/*
132 	 * signals when all in-flight requests are done
133 	 */
134 	struct ctx_rq_wait	*rq_wait;
135 
136 	struct {
137 		/*
138 		 * This counts the number of available slots in the ringbuffer,
139 		 * so we avoid overflowing it: it's decremented (if positive)
140 		 * when allocating a kiocb and incremented when the resulting
141 		 * io_event is pulled off the ringbuffer.
142 		 *
143 		 * We batch accesses to it with a percpu version.
144 		 */
145 		atomic_t	reqs_available;
146 	} ____cacheline_aligned_in_smp;
147 
148 	struct {
149 		spinlock_t	ctx_lock;
150 		struct list_head active_reqs;	/* used for cancellation */
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct {
154 		struct mutex	ring_lock;
155 		wait_queue_head_t wait;
156 	} ____cacheline_aligned_in_smp;
157 
158 	struct {
159 		unsigned	tail;
160 		unsigned	completed_events;
161 		spinlock_t	completion_lock;
162 	} ____cacheline_aligned_in_smp;
163 
164 	struct page		*internal_pages[AIO_RING_PAGES];
165 	struct file		*aio_ring_file;
166 
167 	unsigned		id;
168 };
169 
170 /*
171  * First field must be the file pointer in all the
172  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
173  */
174 struct fsync_iocb {
175 	struct file		*file;
176 	struct work_struct	work;
177 	bool			datasync;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			done;
185 	bool			cancelled;
186 	struct wait_queue_entry	wait;
187 	struct work_struct	work;
188 };
189 
190 /*
191  * NOTE! Each of the iocb union members has the file pointer
192  * as the first entry in their struct definition. So you can
193  * access the file pointer through any of the sub-structs,
194  * or directly as just 'ki_filp' in this struct.
195  */
196 struct aio_kiocb {
197 	union {
198 		struct file		*ki_filp;
199 		struct kiocb		rw;
200 		struct fsync_iocb	fsync;
201 		struct poll_iocb	poll;
202 	};
203 
204 	struct kioctx		*ki_ctx;
205 	kiocb_cancel_fn		*ki_cancel;
206 
207 	struct io_event		ki_res;
208 
209 	struct list_head	ki_list;	/* the aio core uses this
210 						 * for cancellation */
211 	refcount_t		ki_refcnt;
212 
213 	/*
214 	 * If the aio_resfd field of the userspace iocb is not zero,
215 	 * this is the underlying eventfd context to deliver events to.
216 	 */
217 	struct eventfd_ctx	*ki_eventfd;
218 };
219 
220 /*------ sysctl variables----*/
221 static DEFINE_SPINLOCK(aio_nr_lock);
222 unsigned long aio_nr;		/* current system wide number of aio requests */
223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
224 /*----end sysctl variables---*/
225 
226 static struct kmem_cache	*kiocb_cachep;
227 static struct kmem_cache	*kioctx_cachep;
228 
229 static struct vfsmount *aio_mnt;
230 
231 static const struct file_operations aio_ring_fops;
232 static const struct address_space_operations aio_ctx_aops;
233 
234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
235 {
236 	struct file *file;
237 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
238 	if (IS_ERR(inode))
239 		return ERR_CAST(inode);
240 
241 	inode->i_mapping->a_ops = &aio_ctx_aops;
242 	inode->i_mapping->private_data = ctx;
243 	inode->i_size = PAGE_SIZE * nr_pages;
244 
245 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
246 				O_RDWR, &aio_ring_fops);
247 	if (IS_ERR(file))
248 		iput(inode);
249 	return file;
250 }
251 
252 static struct dentry *aio_mount(struct file_system_type *fs_type,
253 				int flags, const char *dev_name, void *data)
254 {
255 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
256 					   AIO_RING_MAGIC);
257 
258 	if (!IS_ERR(root))
259 		root->d_sb->s_iflags |= SB_I_NOEXEC;
260 	return root;
261 }
262 
263 /* aio_setup
264  *	Creates the slab caches used by the aio routines, panic on
265  *	failure as this is done early during the boot sequence.
266  */
267 static int __init aio_setup(void)
268 {
269 	static struct file_system_type aio_fs = {
270 		.name		= "aio",
271 		.mount		= aio_mount,
272 		.kill_sb	= kill_anon_super,
273 	};
274 	aio_mnt = kern_mount(&aio_fs);
275 	if (IS_ERR(aio_mnt))
276 		panic("Failed to create aio fs mount.");
277 
278 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
279 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
280 	return 0;
281 }
282 __initcall(aio_setup);
283 
284 static void put_aio_ring_file(struct kioctx *ctx)
285 {
286 	struct file *aio_ring_file = ctx->aio_ring_file;
287 	struct address_space *i_mapping;
288 
289 	if (aio_ring_file) {
290 		truncate_setsize(file_inode(aio_ring_file), 0);
291 
292 		/* Prevent further access to the kioctx from migratepages */
293 		i_mapping = aio_ring_file->f_mapping;
294 		spin_lock(&i_mapping->private_lock);
295 		i_mapping->private_data = NULL;
296 		ctx->aio_ring_file = NULL;
297 		spin_unlock(&i_mapping->private_lock);
298 
299 		fput(aio_ring_file);
300 	}
301 }
302 
303 static void aio_free_ring(struct kioctx *ctx)
304 {
305 	int i;
306 
307 	/* Disconnect the kiotx from the ring file.  This prevents future
308 	 * accesses to the kioctx from page migration.
309 	 */
310 	put_aio_ring_file(ctx);
311 
312 	for (i = 0; i < ctx->nr_pages; i++) {
313 		struct page *page;
314 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
315 				page_count(ctx->ring_pages[i]));
316 		page = ctx->ring_pages[i];
317 		if (!page)
318 			continue;
319 		ctx->ring_pages[i] = NULL;
320 		put_page(page);
321 	}
322 
323 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
324 		kfree(ctx->ring_pages);
325 		ctx->ring_pages = NULL;
326 	}
327 }
328 
329 static int aio_ring_mremap(struct vm_area_struct *vma)
330 {
331 	struct file *file = vma->vm_file;
332 	struct mm_struct *mm = vma->vm_mm;
333 	struct kioctx_table *table;
334 	int i, res = -EINVAL;
335 
336 	spin_lock(&mm->ioctx_lock);
337 	rcu_read_lock();
338 	table = rcu_dereference(mm->ioctx_table);
339 	for (i = 0; i < table->nr; i++) {
340 		struct kioctx *ctx;
341 
342 		ctx = rcu_dereference(table->table[i]);
343 		if (ctx && ctx->aio_ring_file == file) {
344 			if (!atomic_read(&ctx->dead)) {
345 				ctx->user_id = ctx->mmap_base = vma->vm_start;
346 				res = 0;
347 			}
348 			break;
349 		}
350 	}
351 
352 	rcu_read_unlock();
353 	spin_unlock(&mm->ioctx_lock);
354 	return res;
355 }
356 
357 static const struct vm_operations_struct aio_ring_vm_ops = {
358 	.mremap		= aio_ring_mremap,
359 #if IS_ENABLED(CONFIG_MMU)
360 	.fault		= filemap_fault,
361 	.map_pages	= filemap_map_pages,
362 	.page_mkwrite	= filemap_page_mkwrite,
363 #endif
364 };
365 
366 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
367 {
368 	vma->vm_flags |= VM_DONTEXPAND;
369 	vma->vm_ops = &aio_ring_vm_ops;
370 	return 0;
371 }
372 
373 static const struct file_operations aio_ring_fops = {
374 	.mmap = aio_ring_mmap,
375 };
376 
377 #if IS_ENABLED(CONFIG_MIGRATION)
378 static int aio_migratepage(struct address_space *mapping, struct page *new,
379 			struct page *old, enum migrate_mode mode)
380 {
381 	struct kioctx *ctx;
382 	unsigned long flags;
383 	pgoff_t idx;
384 	int rc;
385 
386 	/*
387 	 * We cannot support the _NO_COPY case here, because copy needs to
388 	 * happen under the ctx->completion_lock. That does not work with the
389 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
390 	 */
391 	if (mode == MIGRATE_SYNC_NO_COPY)
392 		return -EINVAL;
393 
394 	rc = 0;
395 
396 	/* mapping->private_lock here protects against the kioctx teardown.  */
397 	spin_lock(&mapping->private_lock);
398 	ctx = mapping->private_data;
399 	if (!ctx) {
400 		rc = -EINVAL;
401 		goto out;
402 	}
403 
404 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
405 	 * to the ring's head, and prevents page migration from mucking in
406 	 * a partially initialized kiotx.
407 	 */
408 	if (!mutex_trylock(&ctx->ring_lock)) {
409 		rc = -EAGAIN;
410 		goto out;
411 	}
412 
413 	idx = old->index;
414 	if (idx < (pgoff_t)ctx->nr_pages) {
415 		/* Make sure the old page hasn't already been changed */
416 		if (ctx->ring_pages[idx] != old)
417 			rc = -EAGAIN;
418 	} else
419 		rc = -EINVAL;
420 
421 	if (rc != 0)
422 		goto out_unlock;
423 
424 	/* Writeback must be complete */
425 	BUG_ON(PageWriteback(old));
426 	get_page(new);
427 
428 	rc = migrate_page_move_mapping(mapping, new, old, mode, 1);
429 	if (rc != MIGRATEPAGE_SUCCESS) {
430 		put_page(new);
431 		goto out_unlock;
432 	}
433 
434 	/* Take completion_lock to prevent other writes to the ring buffer
435 	 * while the old page is copied to the new.  This prevents new
436 	 * events from being lost.
437 	 */
438 	spin_lock_irqsave(&ctx->completion_lock, flags);
439 	migrate_page_copy(new, old);
440 	BUG_ON(ctx->ring_pages[idx] != old);
441 	ctx->ring_pages[idx] = new;
442 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
443 
444 	/* The old page is no longer accessible. */
445 	put_page(old);
446 
447 out_unlock:
448 	mutex_unlock(&ctx->ring_lock);
449 out:
450 	spin_unlock(&mapping->private_lock);
451 	return rc;
452 }
453 #endif
454 
455 static const struct address_space_operations aio_ctx_aops = {
456 	.set_page_dirty = __set_page_dirty_no_writeback,
457 #if IS_ENABLED(CONFIG_MIGRATION)
458 	.migratepage	= aio_migratepage,
459 #endif
460 };
461 
462 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
463 {
464 	struct aio_ring *ring;
465 	struct mm_struct *mm = current->mm;
466 	unsigned long size, unused;
467 	int nr_pages;
468 	int i;
469 	struct file *file;
470 
471 	/* Compensate for the ring buffer's head/tail overlap entry */
472 	nr_events += 2;	/* 1 is required, 2 for good luck */
473 
474 	size = sizeof(struct aio_ring);
475 	size += sizeof(struct io_event) * nr_events;
476 
477 	nr_pages = PFN_UP(size);
478 	if (nr_pages < 0)
479 		return -EINVAL;
480 
481 	file = aio_private_file(ctx, nr_pages);
482 	if (IS_ERR(file)) {
483 		ctx->aio_ring_file = NULL;
484 		return -ENOMEM;
485 	}
486 
487 	ctx->aio_ring_file = file;
488 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
489 			/ sizeof(struct io_event);
490 
491 	ctx->ring_pages = ctx->internal_pages;
492 	if (nr_pages > AIO_RING_PAGES) {
493 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
494 					  GFP_KERNEL);
495 		if (!ctx->ring_pages) {
496 			put_aio_ring_file(ctx);
497 			return -ENOMEM;
498 		}
499 	}
500 
501 	for (i = 0; i < nr_pages; i++) {
502 		struct page *page;
503 		page = find_or_create_page(file->f_mapping,
504 					   i, GFP_HIGHUSER | __GFP_ZERO);
505 		if (!page)
506 			break;
507 		pr_debug("pid(%d) page[%d]->count=%d\n",
508 			 current->pid, i, page_count(page));
509 		SetPageUptodate(page);
510 		unlock_page(page);
511 
512 		ctx->ring_pages[i] = page;
513 	}
514 	ctx->nr_pages = i;
515 
516 	if (unlikely(i != nr_pages)) {
517 		aio_free_ring(ctx);
518 		return -ENOMEM;
519 	}
520 
521 	ctx->mmap_size = nr_pages * PAGE_SIZE;
522 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
523 
524 	if (down_write_killable(&mm->mmap_sem)) {
525 		ctx->mmap_size = 0;
526 		aio_free_ring(ctx);
527 		return -EINTR;
528 	}
529 
530 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
531 				       PROT_READ | PROT_WRITE,
532 				       MAP_SHARED, 0, &unused, NULL);
533 	up_write(&mm->mmap_sem);
534 	if (IS_ERR((void *)ctx->mmap_base)) {
535 		ctx->mmap_size = 0;
536 		aio_free_ring(ctx);
537 		return -ENOMEM;
538 	}
539 
540 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
541 
542 	ctx->user_id = ctx->mmap_base;
543 	ctx->nr_events = nr_events; /* trusted copy */
544 
545 	ring = kmap_atomic(ctx->ring_pages[0]);
546 	ring->nr = nr_events;	/* user copy */
547 	ring->id = ~0U;
548 	ring->head = ring->tail = 0;
549 	ring->magic = AIO_RING_MAGIC;
550 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
551 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
552 	ring->header_length = sizeof(struct aio_ring);
553 	kunmap_atomic(ring);
554 	flush_dcache_page(ctx->ring_pages[0]);
555 
556 	return 0;
557 }
558 
559 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
560 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
561 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
562 
563 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
564 {
565 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
566 	struct kioctx *ctx = req->ki_ctx;
567 	unsigned long flags;
568 
569 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
570 		return;
571 
572 	spin_lock_irqsave(&ctx->ctx_lock, flags);
573 	list_add_tail(&req->ki_list, &ctx->active_reqs);
574 	req->ki_cancel = cancel;
575 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
576 }
577 EXPORT_SYMBOL(kiocb_set_cancel_fn);
578 
579 /*
580  * free_ioctx() should be RCU delayed to synchronize against the RCU
581  * protected lookup_ioctx() and also needs process context to call
582  * aio_free_ring().  Use rcu_work.
583  */
584 static void free_ioctx(struct work_struct *work)
585 {
586 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
587 					  free_rwork);
588 	pr_debug("freeing %p\n", ctx);
589 
590 	aio_free_ring(ctx);
591 	free_percpu(ctx->cpu);
592 	percpu_ref_exit(&ctx->reqs);
593 	percpu_ref_exit(&ctx->users);
594 	kmem_cache_free(kioctx_cachep, ctx);
595 }
596 
597 static void free_ioctx_reqs(struct percpu_ref *ref)
598 {
599 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
600 
601 	/* At this point we know that there are no any in-flight requests */
602 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
603 		complete(&ctx->rq_wait->comp);
604 
605 	/* Synchronize against RCU protected table->table[] dereferences */
606 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
607 	queue_rcu_work(system_wq, &ctx->free_rwork);
608 }
609 
610 /*
611  * When this function runs, the kioctx has been removed from the "hash table"
612  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
613  * now it's safe to cancel any that need to be.
614  */
615 static void free_ioctx_users(struct percpu_ref *ref)
616 {
617 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
618 	struct aio_kiocb *req;
619 
620 	spin_lock_irq(&ctx->ctx_lock);
621 
622 	while (!list_empty(&ctx->active_reqs)) {
623 		req = list_first_entry(&ctx->active_reqs,
624 				       struct aio_kiocb, ki_list);
625 		req->ki_cancel(&req->rw);
626 		list_del_init(&req->ki_list);
627 	}
628 
629 	spin_unlock_irq(&ctx->ctx_lock);
630 
631 	percpu_ref_kill(&ctx->reqs);
632 	percpu_ref_put(&ctx->reqs);
633 }
634 
635 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
636 {
637 	unsigned i, new_nr;
638 	struct kioctx_table *table, *old;
639 	struct aio_ring *ring;
640 
641 	spin_lock(&mm->ioctx_lock);
642 	table = rcu_dereference_raw(mm->ioctx_table);
643 
644 	while (1) {
645 		if (table)
646 			for (i = 0; i < table->nr; i++)
647 				if (!rcu_access_pointer(table->table[i])) {
648 					ctx->id = i;
649 					rcu_assign_pointer(table->table[i], ctx);
650 					spin_unlock(&mm->ioctx_lock);
651 
652 					/* While kioctx setup is in progress,
653 					 * we are protected from page migration
654 					 * changes ring_pages by ->ring_lock.
655 					 */
656 					ring = kmap_atomic(ctx->ring_pages[0]);
657 					ring->id = ctx->id;
658 					kunmap_atomic(ring);
659 					return 0;
660 				}
661 
662 		new_nr = (table ? table->nr : 1) * 4;
663 		spin_unlock(&mm->ioctx_lock);
664 
665 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
666 				new_nr, GFP_KERNEL);
667 		if (!table)
668 			return -ENOMEM;
669 
670 		table->nr = new_nr;
671 
672 		spin_lock(&mm->ioctx_lock);
673 		old = rcu_dereference_raw(mm->ioctx_table);
674 
675 		if (!old) {
676 			rcu_assign_pointer(mm->ioctx_table, table);
677 		} else if (table->nr > old->nr) {
678 			memcpy(table->table, old->table,
679 			       old->nr * sizeof(struct kioctx *));
680 
681 			rcu_assign_pointer(mm->ioctx_table, table);
682 			kfree_rcu(old, rcu);
683 		} else {
684 			kfree(table);
685 			table = old;
686 		}
687 	}
688 }
689 
690 static void aio_nr_sub(unsigned nr)
691 {
692 	spin_lock(&aio_nr_lock);
693 	if (WARN_ON(aio_nr - nr > aio_nr))
694 		aio_nr = 0;
695 	else
696 		aio_nr -= nr;
697 	spin_unlock(&aio_nr_lock);
698 }
699 
700 /* ioctx_alloc
701  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
702  */
703 static struct kioctx *ioctx_alloc(unsigned nr_events)
704 {
705 	struct mm_struct *mm = current->mm;
706 	struct kioctx *ctx;
707 	int err = -ENOMEM;
708 
709 	/*
710 	 * Store the original nr_events -- what userspace passed to io_setup(),
711 	 * for counting against the global limit -- before it changes.
712 	 */
713 	unsigned int max_reqs = nr_events;
714 
715 	/*
716 	 * We keep track of the number of available ringbuffer slots, to prevent
717 	 * overflow (reqs_available), and we also use percpu counters for this.
718 	 *
719 	 * So since up to half the slots might be on other cpu's percpu counters
720 	 * and unavailable, double nr_events so userspace sees what they
721 	 * expected: additionally, we move req_batch slots to/from percpu
722 	 * counters at a time, so make sure that isn't 0:
723 	 */
724 	nr_events = max(nr_events, num_possible_cpus() * 4);
725 	nr_events *= 2;
726 
727 	/* Prevent overflows */
728 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
729 		pr_debug("ENOMEM: nr_events too high\n");
730 		return ERR_PTR(-EINVAL);
731 	}
732 
733 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
734 		return ERR_PTR(-EAGAIN);
735 
736 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
737 	if (!ctx)
738 		return ERR_PTR(-ENOMEM);
739 
740 	ctx->max_reqs = max_reqs;
741 
742 	spin_lock_init(&ctx->ctx_lock);
743 	spin_lock_init(&ctx->completion_lock);
744 	mutex_init(&ctx->ring_lock);
745 	/* Protect against page migration throughout kiotx setup by keeping
746 	 * the ring_lock mutex held until setup is complete. */
747 	mutex_lock(&ctx->ring_lock);
748 	init_waitqueue_head(&ctx->wait);
749 
750 	INIT_LIST_HEAD(&ctx->active_reqs);
751 
752 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
753 		goto err;
754 
755 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
756 		goto err;
757 
758 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
759 	if (!ctx->cpu)
760 		goto err;
761 
762 	err = aio_setup_ring(ctx, nr_events);
763 	if (err < 0)
764 		goto err;
765 
766 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
767 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
768 	if (ctx->req_batch < 1)
769 		ctx->req_batch = 1;
770 
771 	/* limit the number of system wide aios */
772 	spin_lock(&aio_nr_lock);
773 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
774 	    aio_nr + ctx->max_reqs < aio_nr) {
775 		spin_unlock(&aio_nr_lock);
776 		err = -EAGAIN;
777 		goto err_ctx;
778 	}
779 	aio_nr += ctx->max_reqs;
780 	spin_unlock(&aio_nr_lock);
781 
782 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
783 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
784 
785 	err = ioctx_add_table(ctx, mm);
786 	if (err)
787 		goto err_cleanup;
788 
789 	/* Release the ring_lock mutex now that all setup is complete. */
790 	mutex_unlock(&ctx->ring_lock);
791 
792 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
793 		 ctx, ctx->user_id, mm, ctx->nr_events);
794 	return ctx;
795 
796 err_cleanup:
797 	aio_nr_sub(ctx->max_reqs);
798 err_ctx:
799 	atomic_set(&ctx->dead, 1);
800 	if (ctx->mmap_size)
801 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
802 	aio_free_ring(ctx);
803 err:
804 	mutex_unlock(&ctx->ring_lock);
805 	free_percpu(ctx->cpu);
806 	percpu_ref_exit(&ctx->reqs);
807 	percpu_ref_exit(&ctx->users);
808 	kmem_cache_free(kioctx_cachep, ctx);
809 	pr_debug("error allocating ioctx %d\n", err);
810 	return ERR_PTR(err);
811 }
812 
813 /* kill_ioctx
814  *	Cancels all outstanding aio requests on an aio context.  Used
815  *	when the processes owning a context have all exited to encourage
816  *	the rapid destruction of the kioctx.
817  */
818 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
819 		      struct ctx_rq_wait *wait)
820 {
821 	struct kioctx_table *table;
822 
823 	spin_lock(&mm->ioctx_lock);
824 	if (atomic_xchg(&ctx->dead, 1)) {
825 		spin_unlock(&mm->ioctx_lock);
826 		return -EINVAL;
827 	}
828 
829 	table = rcu_dereference_raw(mm->ioctx_table);
830 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
831 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
832 	spin_unlock(&mm->ioctx_lock);
833 
834 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
835 	wake_up_all(&ctx->wait);
836 
837 	/*
838 	 * It'd be more correct to do this in free_ioctx(), after all
839 	 * the outstanding kiocbs have finished - but by then io_destroy
840 	 * has already returned, so io_setup() could potentially return
841 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 	 *  could tell).
843 	 */
844 	aio_nr_sub(ctx->max_reqs);
845 
846 	if (ctx->mmap_size)
847 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
848 
849 	ctx->rq_wait = wait;
850 	percpu_ref_kill(&ctx->users);
851 	return 0;
852 }
853 
854 /*
855  * exit_aio: called when the last user of mm goes away.  At this point, there is
856  * no way for any new requests to be submited or any of the io_* syscalls to be
857  * called on the context.
858  *
859  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860  * them.
861  */
862 void exit_aio(struct mm_struct *mm)
863 {
864 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
865 	struct ctx_rq_wait wait;
866 	int i, skipped;
867 
868 	if (!table)
869 		return;
870 
871 	atomic_set(&wait.count, table->nr);
872 	init_completion(&wait.comp);
873 
874 	skipped = 0;
875 	for (i = 0; i < table->nr; ++i) {
876 		struct kioctx *ctx =
877 			rcu_dereference_protected(table->table[i], true);
878 
879 		if (!ctx) {
880 			skipped++;
881 			continue;
882 		}
883 
884 		/*
885 		 * We don't need to bother with munmap() here - exit_mmap(mm)
886 		 * is coming and it'll unmap everything. And we simply can't,
887 		 * this is not necessarily our ->mm.
888 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
889 		 * that it needs to unmap the area, just set it to 0.
890 		 */
891 		ctx->mmap_size = 0;
892 		kill_ioctx(mm, ctx, &wait);
893 	}
894 
895 	if (!atomic_sub_and_test(skipped, &wait.count)) {
896 		/* Wait until all IO for the context are done. */
897 		wait_for_completion(&wait.comp);
898 	}
899 
900 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
901 	kfree(table);
902 }
903 
904 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
905 {
906 	struct kioctx_cpu *kcpu;
907 	unsigned long flags;
908 
909 	local_irq_save(flags);
910 	kcpu = this_cpu_ptr(ctx->cpu);
911 	kcpu->reqs_available += nr;
912 
913 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
914 		kcpu->reqs_available -= ctx->req_batch;
915 		atomic_add(ctx->req_batch, &ctx->reqs_available);
916 	}
917 
918 	local_irq_restore(flags);
919 }
920 
921 static bool __get_reqs_available(struct kioctx *ctx)
922 {
923 	struct kioctx_cpu *kcpu;
924 	bool ret = false;
925 	unsigned long flags;
926 
927 	local_irq_save(flags);
928 	kcpu = this_cpu_ptr(ctx->cpu);
929 	if (!kcpu->reqs_available) {
930 		int old, avail = atomic_read(&ctx->reqs_available);
931 
932 		do {
933 			if (avail < ctx->req_batch)
934 				goto out;
935 
936 			old = avail;
937 			avail = atomic_cmpxchg(&ctx->reqs_available,
938 					       avail, avail - ctx->req_batch);
939 		} while (avail != old);
940 
941 		kcpu->reqs_available += ctx->req_batch;
942 	}
943 
944 	ret = true;
945 	kcpu->reqs_available--;
946 out:
947 	local_irq_restore(flags);
948 	return ret;
949 }
950 
951 /* refill_reqs_available
952  *	Updates the reqs_available reference counts used for tracking the
953  *	number of free slots in the completion ring.  This can be called
954  *	from aio_complete() (to optimistically update reqs_available) or
955  *	from aio_get_req() (the we're out of events case).  It must be
956  *	called holding ctx->completion_lock.
957  */
958 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
959                                   unsigned tail)
960 {
961 	unsigned events_in_ring, completed;
962 
963 	/* Clamp head since userland can write to it. */
964 	head %= ctx->nr_events;
965 	if (head <= tail)
966 		events_in_ring = tail - head;
967 	else
968 		events_in_ring = ctx->nr_events - (head - tail);
969 
970 	completed = ctx->completed_events;
971 	if (events_in_ring < completed)
972 		completed -= events_in_ring;
973 	else
974 		completed = 0;
975 
976 	if (!completed)
977 		return;
978 
979 	ctx->completed_events -= completed;
980 	put_reqs_available(ctx, completed);
981 }
982 
983 /* user_refill_reqs_available
984  *	Called to refill reqs_available when aio_get_req() encounters an
985  *	out of space in the completion ring.
986  */
987 static void user_refill_reqs_available(struct kioctx *ctx)
988 {
989 	spin_lock_irq(&ctx->completion_lock);
990 	if (ctx->completed_events) {
991 		struct aio_ring *ring;
992 		unsigned head;
993 
994 		/* Access of ring->head may race with aio_read_events_ring()
995 		 * here, but that's okay since whether we read the old version
996 		 * or the new version, and either will be valid.  The important
997 		 * part is that head cannot pass tail since we prevent
998 		 * aio_complete() from updating tail by holding
999 		 * ctx->completion_lock.  Even if head is invalid, the check
1000 		 * against ctx->completed_events below will make sure we do the
1001 		 * safe/right thing.
1002 		 */
1003 		ring = kmap_atomic(ctx->ring_pages[0]);
1004 		head = ring->head;
1005 		kunmap_atomic(ring);
1006 
1007 		refill_reqs_available(ctx, head, ctx->tail);
1008 	}
1009 
1010 	spin_unlock_irq(&ctx->completion_lock);
1011 }
1012 
1013 static bool get_reqs_available(struct kioctx *ctx)
1014 {
1015 	if (__get_reqs_available(ctx))
1016 		return true;
1017 	user_refill_reqs_available(ctx);
1018 	return __get_reqs_available(ctx);
1019 }
1020 
1021 /* aio_get_req
1022  *	Allocate a slot for an aio request.
1023  * Returns NULL if no requests are free.
1024  *
1025  * The refcount is initialized to 2 - one for the async op completion,
1026  * one for the synchronous code that does this.
1027  */
1028 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1029 {
1030 	struct aio_kiocb *req;
1031 
1032 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1033 	if (unlikely(!req))
1034 		return NULL;
1035 
1036 	if (unlikely(!get_reqs_available(ctx))) {
1037 		kmem_cache_free(kiocb_cachep, req);
1038 		return NULL;
1039 	}
1040 
1041 	percpu_ref_get(&ctx->reqs);
1042 	req->ki_ctx = ctx;
1043 	INIT_LIST_HEAD(&req->ki_list);
1044 	refcount_set(&req->ki_refcnt, 2);
1045 	req->ki_eventfd = NULL;
1046 	return req;
1047 }
1048 
1049 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1050 {
1051 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1052 	struct mm_struct *mm = current->mm;
1053 	struct kioctx *ctx, *ret = NULL;
1054 	struct kioctx_table *table;
1055 	unsigned id;
1056 
1057 	if (get_user(id, &ring->id))
1058 		return NULL;
1059 
1060 	rcu_read_lock();
1061 	table = rcu_dereference(mm->ioctx_table);
1062 
1063 	if (!table || id >= table->nr)
1064 		goto out;
1065 
1066 	id = array_index_nospec(id, table->nr);
1067 	ctx = rcu_dereference(table->table[id]);
1068 	if (ctx && ctx->user_id == ctx_id) {
1069 		if (percpu_ref_tryget_live(&ctx->users))
1070 			ret = ctx;
1071 	}
1072 out:
1073 	rcu_read_unlock();
1074 	return ret;
1075 }
1076 
1077 static inline void iocb_destroy(struct aio_kiocb *iocb)
1078 {
1079 	if (iocb->ki_eventfd)
1080 		eventfd_ctx_put(iocb->ki_eventfd);
1081 	if (iocb->ki_filp)
1082 		fput(iocb->ki_filp);
1083 	percpu_ref_put(&iocb->ki_ctx->reqs);
1084 	kmem_cache_free(kiocb_cachep, iocb);
1085 }
1086 
1087 /* aio_complete
1088  *	Called when the io request on the given iocb is complete.
1089  */
1090 static void aio_complete(struct aio_kiocb *iocb)
1091 {
1092 	struct kioctx	*ctx = iocb->ki_ctx;
1093 	struct aio_ring	*ring;
1094 	struct io_event	*ev_page, *event;
1095 	unsigned tail, pos, head;
1096 	unsigned long	flags;
1097 
1098 	/*
1099 	 * Add a completion event to the ring buffer. Must be done holding
1100 	 * ctx->completion_lock to prevent other code from messing with the tail
1101 	 * pointer since we might be called from irq context.
1102 	 */
1103 	spin_lock_irqsave(&ctx->completion_lock, flags);
1104 
1105 	tail = ctx->tail;
1106 	pos = tail + AIO_EVENTS_OFFSET;
1107 
1108 	if (++tail >= ctx->nr_events)
1109 		tail = 0;
1110 
1111 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1112 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1113 
1114 	*event = iocb->ki_res;
1115 
1116 	kunmap_atomic(ev_page);
1117 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1118 
1119 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1120 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1121 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1122 
1123 	/* after flagging the request as done, we
1124 	 * must never even look at it again
1125 	 */
1126 	smp_wmb();	/* make event visible before updating tail */
1127 
1128 	ctx->tail = tail;
1129 
1130 	ring = kmap_atomic(ctx->ring_pages[0]);
1131 	head = ring->head;
1132 	ring->tail = tail;
1133 	kunmap_atomic(ring);
1134 	flush_dcache_page(ctx->ring_pages[0]);
1135 
1136 	ctx->completed_events++;
1137 	if (ctx->completed_events > 1)
1138 		refill_reqs_available(ctx, head, tail);
1139 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1140 
1141 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1142 
1143 	/*
1144 	 * Check if the user asked us to deliver the result through an
1145 	 * eventfd. The eventfd_signal() function is safe to be called
1146 	 * from IRQ context.
1147 	 */
1148 	if (iocb->ki_eventfd)
1149 		eventfd_signal(iocb->ki_eventfd, 1);
1150 
1151 	/*
1152 	 * We have to order our ring_info tail store above and test
1153 	 * of the wait list below outside the wait lock.  This is
1154 	 * like in wake_up_bit() where clearing a bit has to be
1155 	 * ordered with the unlocked test.
1156 	 */
1157 	smp_mb();
1158 
1159 	if (waitqueue_active(&ctx->wait))
1160 		wake_up(&ctx->wait);
1161 }
1162 
1163 static inline void iocb_put(struct aio_kiocb *iocb)
1164 {
1165 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1166 		aio_complete(iocb);
1167 		iocb_destroy(iocb);
1168 	}
1169 }
1170 
1171 /* aio_read_events_ring
1172  *	Pull an event off of the ioctx's event ring.  Returns the number of
1173  *	events fetched
1174  */
1175 static long aio_read_events_ring(struct kioctx *ctx,
1176 				 struct io_event __user *event, long nr)
1177 {
1178 	struct aio_ring *ring;
1179 	unsigned head, tail, pos;
1180 	long ret = 0;
1181 	int copy_ret;
1182 
1183 	/*
1184 	 * The mutex can block and wake us up and that will cause
1185 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1186 	 * and repeat. This should be rare enough that it doesn't cause
1187 	 * peformance issues. See the comment in read_events() for more detail.
1188 	 */
1189 	sched_annotate_sleep();
1190 	mutex_lock(&ctx->ring_lock);
1191 
1192 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1193 	ring = kmap_atomic(ctx->ring_pages[0]);
1194 	head = ring->head;
1195 	tail = ring->tail;
1196 	kunmap_atomic(ring);
1197 
1198 	/*
1199 	 * Ensure that once we've read the current tail pointer, that
1200 	 * we also see the events that were stored up to the tail.
1201 	 */
1202 	smp_rmb();
1203 
1204 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1205 
1206 	if (head == tail)
1207 		goto out;
1208 
1209 	head %= ctx->nr_events;
1210 	tail %= ctx->nr_events;
1211 
1212 	while (ret < nr) {
1213 		long avail;
1214 		struct io_event *ev;
1215 		struct page *page;
1216 
1217 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1218 		if (head == tail)
1219 			break;
1220 
1221 		pos = head + AIO_EVENTS_OFFSET;
1222 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1223 		pos %= AIO_EVENTS_PER_PAGE;
1224 
1225 		avail = min(avail, nr - ret);
1226 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1227 
1228 		ev = kmap(page);
1229 		copy_ret = copy_to_user(event + ret, ev + pos,
1230 					sizeof(*ev) * avail);
1231 		kunmap(page);
1232 
1233 		if (unlikely(copy_ret)) {
1234 			ret = -EFAULT;
1235 			goto out;
1236 		}
1237 
1238 		ret += avail;
1239 		head += avail;
1240 		head %= ctx->nr_events;
1241 	}
1242 
1243 	ring = kmap_atomic(ctx->ring_pages[0]);
1244 	ring->head = head;
1245 	kunmap_atomic(ring);
1246 	flush_dcache_page(ctx->ring_pages[0]);
1247 
1248 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1249 out:
1250 	mutex_unlock(&ctx->ring_lock);
1251 
1252 	return ret;
1253 }
1254 
1255 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1256 			    struct io_event __user *event, long *i)
1257 {
1258 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1259 
1260 	if (ret > 0)
1261 		*i += ret;
1262 
1263 	if (unlikely(atomic_read(&ctx->dead)))
1264 		ret = -EINVAL;
1265 
1266 	if (!*i)
1267 		*i = ret;
1268 
1269 	return ret < 0 || *i >= min_nr;
1270 }
1271 
1272 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1273 			struct io_event __user *event,
1274 			ktime_t until)
1275 {
1276 	long ret = 0;
1277 
1278 	/*
1279 	 * Note that aio_read_events() is being called as the conditional - i.e.
1280 	 * we're calling it after prepare_to_wait() has set task state to
1281 	 * TASK_INTERRUPTIBLE.
1282 	 *
1283 	 * But aio_read_events() can block, and if it blocks it's going to flip
1284 	 * the task state back to TASK_RUNNING.
1285 	 *
1286 	 * This should be ok, provided it doesn't flip the state back to
1287 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1288 	 * will only happen if the mutex_lock() call blocks, and we then find
1289 	 * the ringbuffer empty. So in practice we should be ok, but it's
1290 	 * something to be aware of when touching this code.
1291 	 */
1292 	if (until == 0)
1293 		aio_read_events(ctx, min_nr, nr, event, &ret);
1294 	else
1295 		wait_event_interruptible_hrtimeout(ctx->wait,
1296 				aio_read_events(ctx, min_nr, nr, event, &ret),
1297 				until);
1298 	return ret;
1299 }
1300 
1301 /* sys_io_setup:
1302  *	Create an aio_context capable of receiving at least nr_events.
1303  *	ctxp must not point to an aio_context that already exists, and
1304  *	must be initialized to 0 prior to the call.  On successful
1305  *	creation of the aio_context, *ctxp is filled in with the resulting
1306  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1307  *	if the specified nr_events exceeds internal limits.  May fail
1308  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1309  *	of available events.  May fail with -ENOMEM if insufficient kernel
1310  *	resources are available.  May fail with -EFAULT if an invalid
1311  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1312  *	implemented.
1313  */
1314 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1315 {
1316 	struct kioctx *ioctx = NULL;
1317 	unsigned long ctx;
1318 	long ret;
1319 
1320 	ret = get_user(ctx, ctxp);
1321 	if (unlikely(ret))
1322 		goto out;
1323 
1324 	ret = -EINVAL;
1325 	if (unlikely(ctx || nr_events == 0)) {
1326 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1327 		         ctx, nr_events);
1328 		goto out;
1329 	}
1330 
1331 	ioctx = ioctx_alloc(nr_events);
1332 	ret = PTR_ERR(ioctx);
1333 	if (!IS_ERR(ioctx)) {
1334 		ret = put_user(ioctx->user_id, ctxp);
1335 		if (ret)
1336 			kill_ioctx(current->mm, ioctx, NULL);
1337 		percpu_ref_put(&ioctx->users);
1338 	}
1339 
1340 out:
1341 	return ret;
1342 }
1343 
1344 #ifdef CONFIG_COMPAT
1345 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1346 {
1347 	struct kioctx *ioctx = NULL;
1348 	unsigned long ctx;
1349 	long ret;
1350 
1351 	ret = get_user(ctx, ctx32p);
1352 	if (unlikely(ret))
1353 		goto out;
1354 
1355 	ret = -EINVAL;
1356 	if (unlikely(ctx || nr_events == 0)) {
1357 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1358 		         ctx, nr_events);
1359 		goto out;
1360 	}
1361 
1362 	ioctx = ioctx_alloc(nr_events);
1363 	ret = PTR_ERR(ioctx);
1364 	if (!IS_ERR(ioctx)) {
1365 		/* truncating is ok because it's a user address */
1366 		ret = put_user((u32)ioctx->user_id, ctx32p);
1367 		if (ret)
1368 			kill_ioctx(current->mm, ioctx, NULL);
1369 		percpu_ref_put(&ioctx->users);
1370 	}
1371 
1372 out:
1373 	return ret;
1374 }
1375 #endif
1376 
1377 /* sys_io_destroy:
1378  *	Destroy the aio_context specified.  May cancel any outstanding
1379  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1380  *	implemented.  May fail with -EINVAL if the context pointed to
1381  *	is invalid.
1382  */
1383 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1384 {
1385 	struct kioctx *ioctx = lookup_ioctx(ctx);
1386 	if (likely(NULL != ioctx)) {
1387 		struct ctx_rq_wait wait;
1388 		int ret;
1389 
1390 		init_completion(&wait.comp);
1391 		atomic_set(&wait.count, 1);
1392 
1393 		/* Pass requests_done to kill_ioctx() where it can be set
1394 		 * in a thread-safe way. If we try to set it here then we have
1395 		 * a race condition if two io_destroy() called simultaneously.
1396 		 */
1397 		ret = kill_ioctx(current->mm, ioctx, &wait);
1398 		percpu_ref_put(&ioctx->users);
1399 
1400 		/* Wait until all IO for the context are done. Otherwise kernel
1401 		 * keep using user-space buffers even if user thinks the context
1402 		 * is destroyed.
1403 		 */
1404 		if (!ret)
1405 			wait_for_completion(&wait.comp);
1406 
1407 		return ret;
1408 	}
1409 	pr_debug("EINVAL: invalid context id\n");
1410 	return -EINVAL;
1411 }
1412 
1413 static void aio_remove_iocb(struct aio_kiocb *iocb)
1414 {
1415 	struct kioctx *ctx = iocb->ki_ctx;
1416 	unsigned long flags;
1417 
1418 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1419 	list_del(&iocb->ki_list);
1420 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1421 }
1422 
1423 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1424 {
1425 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1426 
1427 	if (!list_empty_careful(&iocb->ki_list))
1428 		aio_remove_iocb(iocb);
1429 
1430 	if (kiocb->ki_flags & IOCB_WRITE) {
1431 		struct inode *inode = file_inode(kiocb->ki_filp);
1432 
1433 		/*
1434 		 * Tell lockdep we inherited freeze protection from submission
1435 		 * thread.
1436 		 */
1437 		if (S_ISREG(inode->i_mode))
1438 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1439 		file_end_write(kiocb->ki_filp);
1440 	}
1441 
1442 	iocb->ki_res.res = res;
1443 	iocb->ki_res.res2 = res2;
1444 	iocb_put(iocb);
1445 }
1446 
1447 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1448 {
1449 	int ret;
1450 
1451 	req->ki_complete = aio_complete_rw;
1452 	req->private = NULL;
1453 	req->ki_pos = iocb->aio_offset;
1454 	req->ki_flags = iocb_flags(req->ki_filp);
1455 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1456 		req->ki_flags |= IOCB_EVENTFD;
1457 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1458 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1459 		/*
1460 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1461 		 * aio_reqprio is interpreted as an I/O scheduling
1462 		 * class and priority.
1463 		 */
1464 		ret = ioprio_check_cap(iocb->aio_reqprio);
1465 		if (ret) {
1466 			pr_debug("aio ioprio check cap error: %d\n", ret);
1467 			return ret;
1468 		}
1469 
1470 		req->ki_ioprio = iocb->aio_reqprio;
1471 	} else
1472 		req->ki_ioprio = get_current_ioprio();
1473 
1474 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1475 	if (unlikely(ret))
1476 		return ret;
1477 
1478 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1479 	return 0;
1480 }
1481 
1482 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1483 		struct iovec **iovec, bool vectored, bool compat,
1484 		struct iov_iter *iter)
1485 {
1486 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1487 	size_t len = iocb->aio_nbytes;
1488 
1489 	if (!vectored) {
1490 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1491 		*iovec = NULL;
1492 		return ret;
1493 	}
1494 #ifdef CONFIG_COMPAT
1495 	if (compat)
1496 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1497 				iter);
1498 #endif
1499 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1500 }
1501 
1502 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1503 {
1504 	switch (ret) {
1505 	case -EIOCBQUEUED:
1506 		break;
1507 	case -ERESTARTSYS:
1508 	case -ERESTARTNOINTR:
1509 	case -ERESTARTNOHAND:
1510 	case -ERESTART_RESTARTBLOCK:
1511 		/*
1512 		 * There's no easy way to restart the syscall since other AIO's
1513 		 * may be already running. Just fail this IO with EINTR.
1514 		 */
1515 		ret = -EINTR;
1516 		/*FALLTHRU*/
1517 	default:
1518 		req->ki_complete(req, ret, 0);
1519 	}
1520 }
1521 
1522 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1523 			bool vectored, bool compat)
1524 {
1525 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1526 	struct iov_iter iter;
1527 	struct file *file;
1528 	int ret;
1529 
1530 	ret = aio_prep_rw(req, iocb);
1531 	if (ret)
1532 		return ret;
1533 	file = req->ki_filp;
1534 	if (unlikely(!(file->f_mode & FMODE_READ)))
1535 		return -EBADF;
1536 	ret = -EINVAL;
1537 	if (unlikely(!file->f_op->read_iter))
1538 		return -EINVAL;
1539 
1540 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1541 	if (ret < 0)
1542 		return ret;
1543 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1544 	if (!ret)
1545 		aio_rw_done(req, call_read_iter(file, req, &iter));
1546 	kfree(iovec);
1547 	return ret;
1548 }
1549 
1550 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1551 			 bool vectored, bool compat)
1552 {
1553 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1554 	struct iov_iter iter;
1555 	struct file *file;
1556 	int ret;
1557 
1558 	ret = aio_prep_rw(req, iocb);
1559 	if (ret)
1560 		return ret;
1561 	file = req->ki_filp;
1562 
1563 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1564 		return -EBADF;
1565 	if (unlikely(!file->f_op->write_iter))
1566 		return -EINVAL;
1567 
1568 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1569 	if (ret < 0)
1570 		return ret;
1571 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1572 	if (!ret) {
1573 		/*
1574 		 * Open-code file_start_write here to grab freeze protection,
1575 		 * which will be released by another thread in
1576 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1577 		 * released so that it doesn't complain about the held lock when
1578 		 * we return to userspace.
1579 		 */
1580 		if (S_ISREG(file_inode(file)->i_mode)) {
1581 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1582 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1583 		}
1584 		req->ki_flags |= IOCB_WRITE;
1585 		aio_rw_done(req, call_write_iter(file, req, &iter));
1586 	}
1587 	kfree(iovec);
1588 	return ret;
1589 }
1590 
1591 static void aio_fsync_work(struct work_struct *work)
1592 {
1593 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1594 
1595 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1596 	iocb_put(iocb);
1597 }
1598 
1599 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1600 		     bool datasync)
1601 {
1602 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1603 			iocb->aio_rw_flags))
1604 		return -EINVAL;
1605 
1606 	if (unlikely(!req->file->f_op->fsync))
1607 		return -EINVAL;
1608 
1609 	req->datasync = datasync;
1610 	INIT_WORK(&req->work, aio_fsync_work);
1611 	schedule_work(&req->work);
1612 	return 0;
1613 }
1614 
1615 static void aio_poll_complete_work(struct work_struct *work)
1616 {
1617 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1619 	struct poll_table_struct pt = { ._key = req->events };
1620 	struct kioctx *ctx = iocb->ki_ctx;
1621 	__poll_t mask = 0;
1622 
1623 	if (!READ_ONCE(req->cancelled))
1624 		mask = vfs_poll(req->file, &pt) & req->events;
1625 
1626 	/*
1627 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1628 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1629 	 * synchronize with them.  In the cancellation case the list_del_init
1630 	 * itself is not actually needed, but harmless so we keep it in to
1631 	 * avoid further branches in the fast path.
1632 	 */
1633 	spin_lock_irq(&ctx->ctx_lock);
1634 	if (!mask && !READ_ONCE(req->cancelled)) {
1635 		add_wait_queue(req->head, &req->wait);
1636 		spin_unlock_irq(&ctx->ctx_lock);
1637 		return;
1638 	}
1639 	list_del_init(&iocb->ki_list);
1640 	iocb->ki_res.res = mangle_poll(mask);
1641 	req->done = true;
1642 	spin_unlock_irq(&ctx->ctx_lock);
1643 
1644 	iocb_put(iocb);
1645 }
1646 
1647 /* assumes we are called with irqs disabled */
1648 static int aio_poll_cancel(struct kiocb *iocb)
1649 {
1650 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1651 	struct poll_iocb *req = &aiocb->poll;
1652 
1653 	spin_lock(&req->head->lock);
1654 	WRITE_ONCE(req->cancelled, true);
1655 	if (!list_empty(&req->wait.entry)) {
1656 		list_del_init(&req->wait.entry);
1657 		schedule_work(&aiocb->poll.work);
1658 	}
1659 	spin_unlock(&req->head->lock);
1660 
1661 	return 0;
1662 }
1663 
1664 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1665 		void *key)
1666 {
1667 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1668 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1669 	__poll_t mask = key_to_poll(key);
1670 	unsigned long flags;
1671 
1672 	/* for instances that support it check for an event match first: */
1673 	if (mask && !(mask & req->events))
1674 		return 0;
1675 
1676 	list_del_init(&req->wait.entry);
1677 
1678 	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1679 		/*
1680 		 * Try to complete the iocb inline if we can. Use
1681 		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1682 		 * call this function with IRQs disabled and because IRQs
1683 		 * have to be disabled before ctx_lock is obtained.
1684 		 */
1685 		list_del(&iocb->ki_list);
1686 		iocb->ki_res.res = mangle_poll(mask);
1687 		req->done = true;
1688 		spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1689 		iocb_put(iocb);
1690 	} else {
1691 		schedule_work(&req->work);
1692 	}
1693 	return 1;
1694 }
1695 
1696 struct aio_poll_table {
1697 	struct poll_table_struct	pt;
1698 	struct aio_kiocb		*iocb;
1699 	int				error;
1700 };
1701 
1702 static void
1703 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1704 		struct poll_table_struct *p)
1705 {
1706 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1707 
1708 	/* multiple wait queues per file are not supported */
1709 	if (unlikely(pt->iocb->poll.head)) {
1710 		pt->error = -EINVAL;
1711 		return;
1712 	}
1713 
1714 	pt->error = 0;
1715 	pt->iocb->poll.head = head;
1716 	add_wait_queue(head, &pt->iocb->poll.wait);
1717 }
1718 
1719 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1720 {
1721 	struct kioctx *ctx = aiocb->ki_ctx;
1722 	struct poll_iocb *req = &aiocb->poll;
1723 	struct aio_poll_table apt;
1724 	bool cancel = false;
1725 	__poll_t mask;
1726 
1727 	/* reject any unknown events outside the normal event mask. */
1728 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1729 		return -EINVAL;
1730 	/* reject fields that are not defined for poll */
1731 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1732 		return -EINVAL;
1733 
1734 	INIT_WORK(&req->work, aio_poll_complete_work);
1735 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1736 
1737 	req->head = NULL;
1738 	req->done = false;
1739 	req->cancelled = false;
1740 
1741 	apt.pt._qproc = aio_poll_queue_proc;
1742 	apt.pt._key = req->events;
1743 	apt.iocb = aiocb;
1744 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1745 
1746 	/* initialized the list so that we can do list_empty checks */
1747 	INIT_LIST_HEAD(&req->wait.entry);
1748 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1749 
1750 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1751 	spin_lock_irq(&ctx->ctx_lock);
1752 	if (likely(req->head)) {
1753 		spin_lock(&req->head->lock);
1754 		if (unlikely(list_empty(&req->wait.entry))) {
1755 			if (apt.error)
1756 				cancel = true;
1757 			apt.error = 0;
1758 			mask = 0;
1759 		}
1760 		if (mask || apt.error) {
1761 			list_del_init(&req->wait.entry);
1762 		} else if (cancel) {
1763 			WRITE_ONCE(req->cancelled, true);
1764 		} else if (!req->done) { /* actually waiting for an event */
1765 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1766 			aiocb->ki_cancel = aio_poll_cancel;
1767 		}
1768 		spin_unlock(&req->head->lock);
1769 	}
1770 	if (mask) { /* no async, we'd stolen it */
1771 		aiocb->ki_res.res = mangle_poll(mask);
1772 		apt.error = 0;
1773 	}
1774 	spin_unlock_irq(&ctx->ctx_lock);
1775 	if (mask)
1776 		iocb_put(aiocb);
1777 	return apt.error;
1778 }
1779 
1780 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1781 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1782 			   bool compat)
1783 {
1784 	req->ki_filp = fget(iocb->aio_fildes);
1785 	if (unlikely(!req->ki_filp))
1786 		return -EBADF;
1787 
1788 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1789 		struct eventfd_ctx *eventfd;
1790 		/*
1791 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1792 		 * instance of the file* now. The file descriptor must be
1793 		 * an eventfd() fd, and will be signaled for each completed
1794 		 * event using the eventfd_signal() function.
1795 		 */
1796 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1797 		if (IS_ERR(eventfd))
1798 			return PTR_ERR(eventfd);
1799 
1800 		req->ki_eventfd = eventfd;
1801 	}
1802 
1803 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1804 		pr_debug("EFAULT: aio_key\n");
1805 		return -EFAULT;
1806 	}
1807 
1808 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1809 	req->ki_res.data = iocb->aio_data;
1810 	req->ki_res.res = 0;
1811 	req->ki_res.res2 = 0;
1812 
1813 	switch (iocb->aio_lio_opcode) {
1814 	case IOCB_CMD_PREAD:
1815 		return aio_read(&req->rw, iocb, false, compat);
1816 	case IOCB_CMD_PWRITE:
1817 		return aio_write(&req->rw, iocb, false, compat);
1818 	case IOCB_CMD_PREADV:
1819 		return aio_read(&req->rw, iocb, true, compat);
1820 	case IOCB_CMD_PWRITEV:
1821 		return aio_write(&req->rw, iocb, true, compat);
1822 	case IOCB_CMD_FSYNC:
1823 		return aio_fsync(&req->fsync, iocb, false);
1824 	case IOCB_CMD_FDSYNC:
1825 		return aio_fsync(&req->fsync, iocb, true);
1826 	case IOCB_CMD_POLL:
1827 		return aio_poll(req, iocb);
1828 	default:
1829 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1830 		return -EINVAL;
1831 	}
1832 }
1833 
1834 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1835 			 bool compat)
1836 {
1837 	struct aio_kiocb *req;
1838 	struct iocb iocb;
1839 	int err;
1840 
1841 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1842 		return -EFAULT;
1843 
1844 	/* enforce forwards compatibility on users */
1845 	if (unlikely(iocb.aio_reserved2)) {
1846 		pr_debug("EINVAL: reserve field set\n");
1847 		return -EINVAL;
1848 	}
1849 
1850 	/* prevent overflows */
1851 	if (unlikely(
1852 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1853 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1854 	    ((ssize_t)iocb.aio_nbytes < 0)
1855 	   )) {
1856 		pr_debug("EINVAL: overflow check\n");
1857 		return -EINVAL;
1858 	}
1859 
1860 	req = aio_get_req(ctx);
1861 	if (unlikely(!req))
1862 		return -EAGAIN;
1863 
1864 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1865 
1866 	/* Done with the synchronous reference */
1867 	iocb_put(req);
1868 
1869 	/*
1870 	 * If err is 0, we'd either done aio_complete() ourselves or have
1871 	 * arranged for that to be done asynchronously.  Anything non-zero
1872 	 * means that we need to destroy req ourselves.
1873 	 */
1874 	if (unlikely(err)) {
1875 		iocb_destroy(req);
1876 		put_reqs_available(ctx, 1);
1877 	}
1878 	return err;
1879 }
1880 
1881 /* sys_io_submit:
1882  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1883  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1884  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1885  *	*iocbpp[0] is not properly initialized, if the operation specified
1886  *	is invalid for the file descriptor in the iocb.  May fail with
1887  *	-EFAULT if any of the data structures point to invalid data.  May
1888  *	fail with -EBADF if the file descriptor specified in the first
1889  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1890  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1891  *	fail with -ENOSYS if not implemented.
1892  */
1893 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1894 		struct iocb __user * __user *, iocbpp)
1895 {
1896 	struct kioctx *ctx;
1897 	long ret = 0;
1898 	int i = 0;
1899 	struct blk_plug plug;
1900 
1901 	if (unlikely(nr < 0))
1902 		return -EINVAL;
1903 
1904 	ctx = lookup_ioctx(ctx_id);
1905 	if (unlikely(!ctx)) {
1906 		pr_debug("EINVAL: invalid context id\n");
1907 		return -EINVAL;
1908 	}
1909 
1910 	if (nr > ctx->nr_events)
1911 		nr = ctx->nr_events;
1912 
1913 	if (nr > AIO_PLUG_THRESHOLD)
1914 		blk_start_plug(&plug);
1915 	for (i = 0; i < nr; i++) {
1916 		struct iocb __user *user_iocb;
1917 
1918 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1919 			ret = -EFAULT;
1920 			break;
1921 		}
1922 
1923 		ret = io_submit_one(ctx, user_iocb, false);
1924 		if (ret)
1925 			break;
1926 	}
1927 	if (nr > AIO_PLUG_THRESHOLD)
1928 		blk_finish_plug(&plug);
1929 
1930 	percpu_ref_put(&ctx->users);
1931 	return i ? i : ret;
1932 }
1933 
1934 #ifdef CONFIG_COMPAT
1935 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1936 		       int, nr, compat_uptr_t __user *, iocbpp)
1937 {
1938 	struct kioctx *ctx;
1939 	long ret = 0;
1940 	int i = 0;
1941 	struct blk_plug plug;
1942 
1943 	if (unlikely(nr < 0))
1944 		return -EINVAL;
1945 
1946 	ctx = lookup_ioctx(ctx_id);
1947 	if (unlikely(!ctx)) {
1948 		pr_debug("EINVAL: invalid context id\n");
1949 		return -EINVAL;
1950 	}
1951 
1952 	if (nr > ctx->nr_events)
1953 		nr = ctx->nr_events;
1954 
1955 	if (nr > AIO_PLUG_THRESHOLD)
1956 		blk_start_plug(&plug);
1957 	for (i = 0; i < nr; i++) {
1958 		compat_uptr_t user_iocb;
1959 
1960 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1961 			ret = -EFAULT;
1962 			break;
1963 		}
1964 
1965 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1966 		if (ret)
1967 			break;
1968 	}
1969 	if (nr > AIO_PLUG_THRESHOLD)
1970 		blk_finish_plug(&plug);
1971 
1972 	percpu_ref_put(&ctx->users);
1973 	return i ? i : ret;
1974 }
1975 #endif
1976 
1977 /* sys_io_cancel:
1978  *	Attempts to cancel an iocb previously passed to io_submit.  If
1979  *	the operation is successfully cancelled, the resulting event is
1980  *	copied into the memory pointed to by result without being placed
1981  *	into the completion queue and 0 is returned.  May fail with
1982  *	-EFAULT if any of the data structures pointed to are invalid.
1983  *	May fail with -EINVAL if aio_context specified by ctx_id is
1984  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1985  *	cancelled.  Will fail with -ENOSYS if not implemented.
1986  */
1987 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1988 		struct io_event __user *, result)
1989 {
1990 	struct kioctx *ctx;
1991 	struct aio_kiocb *kiocb;
1992 	int ret = -EINVAL;
1993 	u32 key;
1994 	u64 obj = (u64)(unsigned long)iocb;
1995 
1996 	if (unlikely(get_user(key, &iocb->aio_key)))
1997 		return -EFAULT;
1998 	if (unlikely(key != KIOCB_KEY))
1999 		return -EINVAL;
2000 
2001 	ctx = lookup_ioctx(ctx_id);
2002 	if (unlikely(!ctx))
2003 		return -EINVAL;
2004 
2005 	spin_lock_irq(&ctx->ctx_lock);
2006 	/* TODO: use a hash or array, this sucks. */
2007 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2008 		if (kiocb->ki_res.obj == obj) {
2009 			ret = kiocb->ki_cancel(&kiocb->rw);
2010 			list_del_init(&kiocb->ki_list);
2011 			break;
2012 		}
2013 	}
2014 	spin_unlock_irq(&ctx->ctx_lock);
2015 
2016 	if (!ret) {
2017 		/*
2018 		 * The result argument is no longer used - the io_event is
2019 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2020 		 * cancellation is progress:
2021 		 */
2022 		ret = -EINPROGRESS;
2023 	}
2024 
2025 	percpu_ref_put(&ctx->users);
2026 
2027 	return ret;
2028 }
2029 
2030 static long do_io_getevents(aio_context_t ctx_id,
2031 		long min_nr,
2032 		long nr,
2033 		struct io_event __user *events,
2034 		struct timespec64 *ts)
2035 {
2036 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2037 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2038 	long ret = -EINVAL;
2039 
2040 	if (likely(ioctx)) {
2041 		if (likely(min_nr <= nr && min_nr >= 0))
2042 			ret = read_events(ioctx, min_nr, nr, events, until);
2043 		percpu_ref_put(&ioctx->users);
2044 	}
2045 
2046 	return ret;
2047 }
2048 
2049 /* io_getevents:
2050  *	Attempts to read at least min_nr events and up to nr events from
2051  *	the completion queue for the aio_context specified by ctx_id. If
2052  *	it succeeds, the number of read events is returned. May fail with
2053  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2054  *	out of range, if timeout is out of range.  May fail with -EFAULT
2055  *	if any of the memory specified is invalid.  May return 0 or
2056  *	< min_nr if the timeout specified by timeout has elapsed
2057  *	before sufficient events are available, where timeout == NULL
2058  *	specifies an infinite timeout. Note that the timeout pointed to by
2059  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2060  */
2061 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2062 
2063 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2064 		long, min_nr,
2065 		long, nr,
2066 		struct io_event __user *, events,
2067 		struct __kernel_timespec __user *, timeout)
2068 {
2069 	struct timespec64	ts;
2070 	int			ret;
2071 
2072 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2073 		return -EFAULT;
2074 
2075 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2076 	if (!ret && signal_pending(current))
2077 		ret = -EINTR;
2078 	return ret;
2079 }
2080 
2081 #endif
2082 
2083 struct __aio_sigset {
2084 	const sigset_t __user	*sigmask;
2085 	size_t		sigsetsize;
2086 };
2087 
2088 SYSCALL_DEFINE6(io_pgetevents,
2089 		aio_context_t, ctx_id,
2090 		long, min_nr,
2091 		long, nr,
2092 		struct io_event __user *, events,
2093 		struct __kernel_timespec __user *, timeout,
2094 		const struct __aio_sigset __user *, usig)
2095 {
2096 	struct __aio_sigset	ksig = { NULL, };
2097 	sigset_t		ksigmask, sigsaved;
2098 	struct timespec64	ts;
2099 	bool interrupted;
2100 	int ret;
2101 
2102 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2103 		return -EFAULT;
2104 
2105 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2106 		return -EFAULT;
2107 
2108 	ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2109 	if (ret)
2110 		return ret;
2111 
2112 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2113 
2114 	interrupted = signal_pending(current);
2115 	restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2116 	if (interrupted && !ret)
2117 		ret = -ERESTARTNOHAND;
2118 
2119 	return ret;
2120 }
2121 
2122 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2123 
2124 SYSCALL_DEFINE6(io_pgetevents_time32,
2125 		aio_context_t, ctx_id,
2126 		long, min_nr,
2127 		long, nr,
2128 		struct io_event __user *, events,
2129 		struct old_timespec32 __user *, timeout,
2130 		const struct __aio_sigset __user *, usig)
2131 {
2132 	struct __aio_sigset	ksig = { NULL, };
2133 	sigset_t		ksigmask, sigsaved;
2134 	struct timespec64	ts;
2135 	bool interrupted;
2136 	int ret;
2137 
2138 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2139 		return -EFAULT;
2140 
2141 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2142 		return -EFAULT;
2143 
2144 
2145 	ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2146 	if (ret)
2147 		return ret;
2148 
2149 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2150 
2151 	interrupted = signal_pending(current);
2152 	restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2153 	if (interrupted && !ret)
2154 		ret = -ERESTARTNOHAND;
2155 
2156 	return ret;
2157 }
2158 
2159 #endif
2160 
2161 #if defined(CONFIG_COMPAT_32BIT_TIME)
2162 
2163 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2164 		__s32, min_nr,
2165 		__s32, nr,
2166 		struct io_event __user *, events,
2167 		struct old_timespec32 __user *, timeout)
2168 {
2169 	struct timespec64 t;
2170 	int ret;
2171 
2172 	if (timeout && get_old_timespec32(&t, timeout))
2173 		return -EFAULT;
2174 
2175 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2176 	if (!ret && signal_pending(current))
2177 		ret = -EINTR;
2178 	return ret;
2179 }
2180 
2181 #endif
2182 
2183 #ifdef CONFIG_COMPAT
2184 
2185 struct __compat_aio_sigset {
2186 	compat_sigset_t __user	*sigmask;
2187 	compat_size_t		sigsetsize;
2188 };
2189 
2190 #if defined(CONFIG_COMPAT_32BIT_TIME)
2191 
2192 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2193 		compat_aio_context_t, ctx_id,
2194 		compat_long_t, min_nr,
2195 		compat_long_t, nr,
2196 		struct io_event __user *, events,
2197 		struct old_timespec32 __user *, timeout,
2198 		const struct __compat_aio_sigset __user *, usig)
2199 {
2200 	struct __compat_aio_sigset ksig = { NULL, };
2201 	sigset_t ksigmask, sigsaved;
2202 	struct timespec64 t;
2203 	bool interrupted;
2204 	int ret;
2205 
2206 	if (timeout && get_old_timespec32(&t, timeout))
2207 		return -EFAULT;
2208 
2209 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2210 		return -EFAULT;
2211 
2212 	ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2213 	if (ret)
2214 		return ret;
2215 
2216 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2217 
2218 	interrupted = signal_pending(current);
2219 	restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2220 	if (interrupted && !ret)
2221 		ret = -ERESTARTNOHAND;
2222 
2223 	return ret;
2224 }
2225 
2226 #endif
2227 
2228 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2229 		compat_aio_context_t, ctx_id,
2230 		compat_long_t, min_nr,
2231 		compat_long_t, nr,
2232 		struct io_event __user *, events,
2233 		struct __kernel_timespec __user *, timeout,
2234 		const struct __compat_aio_sigset __user *, usig)
2235 {
2236 	struct __compat_aio_sigset ksig = { NULL, };
2237 	sigset_t ksigmask, sigsaved;
2238 	struct timespec64 t;
2239 	bool interrupted;
2240 	int ret;
2241 
2242 	if (timeout && get_timespec64(&t, timeout))
2243 		return -EFAULT;
2244 
2245 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2246 		return -EFAULT;
2247 
2248 	ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize);
2249 	if (ret)
2250 		return ret;
2251 
2252 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2253 
2254 	interrupted = signal_pending(current);
2255 	restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted);
2256 	if (interrupted && !ret)
2257 		ret = -ERESTARTNOHAND;
2258 
2259 	return ret;
2260 }
2261 #endif
2262