xref: /linux/fs/aio.c (revision 2a6b6c9a226279b4f6668450ddb21ae655558087)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct folio		**ring_folios;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct folio		*internal_folios[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 };
243 
244 static void __init aio_sysctl_init(void)
245 {
246 	register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251 
252 static struct kmem_cache	*kiocb_cachep;
253 static struct kmem_cache	*kioctx_cachep;
254 
255 static struct vfsmount *aio_mnt;
256 
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259 
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 	struct file *file;
263 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 	if (IS_ERR(inode))
265 		return ERR_CAST(inode);
266 
267 	inode->i_mapping->a_ops = &aio_ctx_aops;
268 	inode->i_mapping->i_private_data = ctx;
269 	inode->i_size = PAGE_SIZE * nr_pages;
270 
271 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 				O_RDWR, &aio_ring_fops);
273 	if (IS_ERR(file))
274 		iput(inode);
275 	return file;
276 }
277 
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 	if (!init_pseudo(fc, AIO_RING_MAGIC))
281 		return -ENOMEM;
282 	fc->s_iflags |= SB_I_NOEXEC;
283 	return 0;
284 }
285 
286 /* aio_setup
287  *	Creates the slab caches used by the aio routines, panic on
288  *	failure as this is done early during the boot sequence.
289  */
290 static int __init aio_setup(void)
291 {
292 	static struct file_system_type aio_fs = {
293 		.name		= "aio",
294 		.init_fs_context = aio_init_fs_context,
295 		.kill_sb	= kill_anon_super,
296 	};
297 	aio_mnt = kern_mount(&aio_fs);
298 	if (IS_ERR(aio_mnt))
299 		panic("Failed to create aio fs mount.");
300 
301 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	aio_sysctl_init();
304 	return 0;
305 }
306 __initcall(aio_setup);
307 
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 	struct file *aio_ring_file = ctx->aio_ring_file;
311 	struct address_space *i_mapping;
312 
313 	if (aio_ring_file) {
314 		truncate_setsize(file_inode(aio_ring_file), 0);
315 
316 		/* Prevent further access to the kioctx from migratepages */
317 		i_mapping = aio_ring_file->f_mapping;
318 		spin_lock(&i_mapping->i_private_lock);
319 		i_mapping->i_private_data = NULL;
320 		ctx->aio_ring_file = NULL;
321 		spin_unlock(&i_mapping->i_private_lock);
322 
323 		fput(aio_ring_file);
324 	}
325 }
326 
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 	int i;
330 
331 	/* Disconnect the kiotx from the ring file.  This prevents future
332 	 * accesses to the kioctx from page migration.
333 	 */
334 	put_aio_ring_file(ctx);
335 
336 	for (i = 0; i < ctx->nr_pages; i++) {
337 		struct folio *folio = ctx->ring_folios[i];
338 
339 		if (!folio)
340 			continue;
341 
342 		pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
343 			 folio_ref_count(folio));
344 		ctx->ring_folios[i] = NULL;
345 		folio_put(folio);
346 	}
347 
348 	if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) {
349 		kfree(ctx->ring_folios);
350 		ctx->ring_folios = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc = 0;
414 
415 	/* mapping->i_private_lock here protects against the kioctx teardown.  */
416 	spin_lock(&mapping->i_private_lock);
417 	ctx = mapping->i_private_data;
418 	if (!ctx) {
419 		rc = -EINVAL;
420 		goto out;
421 	}
422 
423 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
424 	 * to the ring's head, and prevents page migration from mucking in
425 	 * a partially initialized kiotx.
426 	 */
427 	if (!mutex_trylock(&ctx->ring_lock)) {
428 		rc = -EAGAIN;
429 		goto out;
430 	}
431 
432 	idx = src->index;
433 	if (idx < (pgoff_t)ctx->nr_pages) {
434 		/* Make sure the old folio hasn't already been changed */
435 		if (ctx->ring_folios[idx] != src)
436 			rc = -EAGAIN;
437 	} else
438 		rc = -EINVAL;
439 
440 	if (rc != 0)
441 		goto out_unlock;
442 
443 	/* Writeback must be complete */
444 	BUG_ON(folio_test_writeback(src));
445 	folio_get(dst);
446 
447 	rc = folio_migrate_mapping(mapping, dst, src, 1);
448 	if (rc != MIGRATEPAGE_SUCCESS) {
449 		folio_put(dst);
450 		goto out_unlock;
451 	}
452 
453 	/* Take completion_lock to prevent other writes to the ring buffer
454 	 * while the old folio is copied to the new.  This prevents new
455 	 * events from being lost.
456 	 */
457 	spin_lock_irqsave(&ctx->completion_lock, flags);
458 	folio_copy(dst, src);
459 	folio_migrate_flags(dst, src);
460 	BUG_ON(ctx->ring_folios[idx] != src);
461 	ctx->ring_folios[idx] = dst;
462 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
463 
464 	/* The old folio is no longer accessible. */
465 	folio_put(src);
466 
467 out_unlock:
468 	mutex_unlock(&ctx->ring_lock);
469 out:
470 	spin_unlock(&mapping->i_private_lock);
471 	return rc;
472 }
473 #else
474 #define aio_migrate_folio NULL
475 #endif
476 
477 static const struct address_space_operations aio_ctx_aops = {
478 	.dirty_folio	= noop_dirty_folio,
479 	.migrate_folio	= aio_migrate_folio,
480 };
481 
482 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
483 {
484 	struct aio_ring *ring;
485 	struct mm_struct *mm = current->mm;
486 	unsigned long size, unused;
487 	int nr_pages;
488 	int i;
489 	struct file *file;
490 
491 	/* Compensate for the ring buffer's head/tail overlap entry */
492 	nr_events += 2;	/* 1 is required, 2 for good luck */
493 
494 	size = sizeof(struct aio_ring);
495 	size += sizeof(struct io_event) * nr_events;
496 
497 	nr_pages = PFN_UP(size);
498 	if (nr_pages < 0)
499 		return -EINVAL;
500 
501 	file = aio_private_file(ctx, nr_pages);
502 	if (IS_ERR(file)) {
503 		ctx->aio_ring_file = NULL;
504 		return -ENOMEM;
505 	}
506 
507 	ctx->aio_ring_file = file;
508 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
509 			/ sizeof(struct io_event);
510 
511 	ctx->ring_folios = ctx->internal_folios;
512 	if (nr_pages > AIO_RING_PAGES) {
513 		ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *),
514 					   GFP_KERNEL);
515 		if (!ctx->ring_folios) {
516 			put_aio_ring_file(ctx);
517 			return -ENOMEM;
518 		}
519 	}
520 
521 	for (i = 0; i < nr_pages; i++) {
522 		struct folio *folio;
523 
524 		folio = __filemap_get_folio(file->f_mapping, i,
525 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
526 					    GFP_USER | __GFP_ZERO);
527 		if (IS_ERR(folio))
528 			break;
529 
530 		pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
531 			 folio_ref_count(folio));
532 		folio_end_read(folio, true);
533 
534 		ctx->ring_folios[i] = folio;
535 	}
536 	ctx->nr_pages = i;
537 
538 	if (unlikely(i != nr_pages)) {
539 		aio_free_ring(ctx);
540 		return -ENOMEM;
541 	}
542 
543 	ctx->mmap_size = nr_pages * PAGE_SIZE;
544 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
545 
546 	if (mmap_write_lock_killable(mm)) {
547 		ctx->mmap_size = 0;
548 		aio_free_ring(ctx);
549 		return -EINTR;
550 	}
551 
552 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
553 				 PROT_READ | PROT_WRITE,
554 				 MAP_SHARED, 0, 0, &unused, NULL);
555 	mmap_write_unlock(mm);
556 	if (IS_ERR((void *)ctx->mmap_base)) {
557 		ctx->mmap_size = 0;
558 		aio_free_ring(ctx);
559 		return -ENOMEM;
560 	}
561 
562 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
563 
564 	ctx->user_id = ctx->mmap_base;
565 	ctx->nr_events = nr_events; /* trusted copy */
566 
567 	ring = folio_address(ctx->ring_folios[0]);
568 	ring->nr = nr_events;	/* user copy */
569 	ring->id = ~0U;
570 	ring->head = ring->tail = 0;
571 	ring->magic = AIO_RING_MAGIC;
572 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
573 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
574 	ring->header_length = sizeof(struct aio_ring);
575 	flush_dcache_folio(ctx->ring_folios[0]);
576 
577 	return 0;
578 }
579 
580 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
581 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
582 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
583 
584 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
585 {
586 	struct aio_kiocb *req;
587 	struct kioctx *ctx;
588 	unsigned long flags;
589 
590 	/*
591 	 * kiocb didn't come from aio or is neither a read nor a write, hence
592 	 * ignore it.
593 	 */
594 	if (!(iocb->ki_flags & IOCB_AIO_RW))
595 		return;
596 
597 	req = container_of(iocb, struct aio_kiocb, rw);
598 
599 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
600 		return;
601 
602 	ctx = req->ki_ctx;
603 
604 	spin_lock_irqsave(&ctx->ctx_lock, flags);
605 	list_add_tail(&req->ki_list, &ctx->active_reqs);
606 	req->ki_cancel = cancel;
607 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
608 }
609 EXPORT_SYMBOL(kiocb_set_cancel_fn);
610 
611 /*
612  * free_ioctx() should be RCU delayed to synchronize against the RCU
613  * protected lookup_ioctx() and also needs process context to call
614  * aio_free_ring().  Use rcu_work.
615  */
616 static void free_ioctx(struct work_struct *work)
617 {
618 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
619 					  free_rwork);
620 	pr_debug("freeing %p\n", ctx);
621 
622 	aio_free_ring(ctx);
623 	free_percpu(ctx->cpu);
624 	percpu_ref_exit(&ctx->reqs);
625 	percpu_ref_exit(&ctx->users);
626 	kmem_cache_free(kioctx_cachep, ctx);
627 }
628 
629 static void free_ioctx_reqs(struct percpu_ref *ref)
630 {
631 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
632 
633 	/* At this point we know that there are no any in-flight requests */
634 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
635 		complete(&ctx->rq_wait->comp);
636 
637 	/* Synchronize against RCU protected table->table[] dereferences */
638 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
639 	queue_rcu_work(system_wq, &ctx->free_rwork);
640 }
641 
642 /*
643  * When this function runs, the kioctx has been removed from the "hash table"
644  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
645  * now it's safe to cancel any that need to be.
646  */
647 static void free_ioctx_users(struct percpu_ref *ref)
648 {
649 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
650 	struct aio_kiocb *req;
651 
652 	spin_lock_irq(&ctx->ctx_lock);
653 
654 	while (!list_empty(&ctx->active_reqs)) {
655 		req = list_first_entry(&ctx->active_reqs,
656 				       struct aio_kiocb, ki_list);
657 		req->ki_cancel(&req->rw);
658 		list_del_init(&req->ki_list);
659 	}
660 
661 	spin_unlock_irq(&ctx->ctx_lock);
662 
663 	percpu_ref_kill(&ctx->reqs);
664 	percpu_ref_put(&ctx->reqs);
665 }
666 
667 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
668 {
669 	unsigned i, new_nr;
670 	struct kioctx_table *table, *old;
671 	struct aio_ring *ring;
672 
673 	spin_lock(&mm->ioctx_lock);
674 	table = rcu_dereference_raw(mm->ioctx_table);
675 
676 	while (1) {
677 		if (table)
678 			for (i = 0; i < table->nr; i++)
679 				if (!rcu_access_pointer(table->table[i])) {
680 					ctx->id = i;
681 					rcu_assign_pointer(table->table[i], ctx);
682 					spin_unlock(&mm->ioctx_lock);
683 
684 					/* While kioctx setup is in progress,
685 					 * we are protected from page migration
686 					 * changes ring_folios by ->ring_lock.
687 					 */
688 					ring = folio_address(ctx->ring_folios[0]);
689 					ring->id = ctx->id;
690 					return 0;
691 				}
692 
693 		new_nr = (table ? table->nr : 1) * 4;
694 		spin_unlock(&mm->ioctx_lock);
695 
696 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
697 		if (!table)
698 			return -ENOMEM;
699 
700 		table->nr = new_nr;
701 
702 		spin_lock(&mm->ioctx_lock);
703 		old = rcu_dereference_raw(mm->ioctx_table);
704 
705 		if (!old) {
706 			rcu_assign_pointer(mm->ioctx_table, table);
707 		} else if (table->nr > old->nr) {
708 			memcpy(table->table, old->table,
709 			       old->nr * sizeof(struct kioctx *));
710 
711 			rcu_assign_pointer(mm->ioctx_table, table);
712 			kfree_rcu(old, rcu);
713 		} else {
714 			kfree(table);
715 			table = old;
716 		}
717 	}
718 }
719 
720 static void aio_nr_sub(unsigned nr)
721 {
722 	spin_lock(&aio_nr_lock);
723 	if (WARN_ON(aio_nr - nr > aio_nr))
724 		aio_nr = 0;
725 	else
726 		aio_nr -= nr;
727 	spin_unlock(&aio_nr_lock);
728 }
729 
730 /* ioctx_alloc
731  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
732  */
733 static struct kioctx *ioctx_alloc(unsigned nr_events)
734 {
735 	struct mm_struct *mm = current->mm;
736 	struct kioctx *ctx;
737 	int err = -ENOMEM;
738 
739 	/*
740 	 * Store the original nr_events -- what userspace passed to io_setup(),
741 	 * for counting against the global limit -- before it changes.
742 	 */
743 	unsigned int max_reqs = nr_events;
744 
745 	/*
746 	 * We keep track of the number of available ringbuffer slots, to prevent
747 	 * overflow (reqs_available), and we also use percpu counters for this.
748 	 *
749 	 * So since up to half the slots might be on other cpu's percpu counters
750 	 * and unavailable, double nr_events so userspace sees what they
751 	 * expected: additionally, we move req_batch slots to/from percpu
752 	 * counters at a time, so make sure that isn't 0:
753 	 */
754 	nr_events = max(nr_events, num_possible_cpus() * 4);
755 	nr_events *= 2;
756 
757 	/* Prevent overflows */
758 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
759 		pr_debug("ENOMEM: nr_events too high\n");
760 		return ERR_PTR(-EINVAL);
761 	}
762 
763 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
764 		return ERR_PTR(-EAGAIN);
765 
766 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
767 	if (!ctx)
768 		return ERR_PTR(-ENOMEM);
769 
770 	ctx->max_reqs = max_reqs;
771 
772 	spin_lock_init(&ctx->ctx_lock);
773 	spin_lock_init(&ctx->completion_lock);
774 	mutex_init(&ctx->ring_lock);
775 	/* Protect against page migration throughout kiotx setup by keeping
776 	 * the ring_lock mutex held until setup is complete. */
777 	mutex_lock(&ctx->ring_lock);
778 	init_waitqueue_head(&ctx->wait);
779 
780 	INIT_LIST_HEAD(&ctx->active_reqs);
781 
782 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
783 		goto err;
784 
785 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
786 		goto err;
787 
788 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
789 	if (!ctx->cpu)
790 		goto err;
791 
792 	err = aio_setup_ring(ctx, nr_events);
793 	if (err < 0)
794 		goto err;
795 
796 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
797 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
798 	if (ctx->req_batch < 1)
799 		ctx->req_batch = 1;
800 
801 	/* limit the number of system wide aios */
802 	spin_lock(&aio_nr_lock);
803 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
804 	    aio_nr + ctx->max_reqs < aio_nr) {
805 		spin_unlock(&aio_nr_lock);
806 		err = -EAGAIN;
807 		goto err_ctx;
808 	}
809 	aio_nr += ctx->max_reqs;
810 	spin_unlock(&aio_nr_lock);
811 
812 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
813 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
814 
815 	err = ioctx_add_table(ctx, mm);
816 	if (err)
817 		goto err_cleanup;
818 
819 	/* Release the ring_lock mutex now that all setup is complete. */
820 	mutex_unlock(&ctx->ring_lock);
821 
822 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
823 		 ctx, ctx->user_id, mm, ctx->nr_events);
824 	return ctx;
825 
826 err_cleanup:
827 	aio_nr_sub(ctx->max_reqs);
828 err_ctx:
829 	atomic_set(&ctx->dead, 1);
830 	if (ctx->mmap_size)
831 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
832 	aio_free_ring(ctx);
833 err:
834 	mutex_unlock(&ctx->ring_lock);
835 	free_percpu(ctx->cpu);
836 	percpu_ref_exit(&ctx->reqs);
837 	percpu_ref_exit(&ctx->users);
838 	kmem_cache_free(kioctx_cachep, ctx);
839 	pr_debug("error allocating ioctx %d\n", err);
840 	return ERR_PTR(err);
841 }
842 
843 /* kill_ioctx
844  *	Cancels all outstanding aio requests on an aio context.  Used
845  *	when the processes owning a context have all exited to encourage
846  *	the rapid destruction of the kioctx.
847  */
848 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
849 		      struct ctx_rq_wait *wait)
850 {
851 	struct kioctx_table *table;
852 
853 	spin_lock(&mm->ioctx_lock);
854 	if (atomic_xchg(&ctx->dead, 1)) {
855 		spin_unlock(&mm->ioctx_lock);
856 		return -EINVAL;
857 	}
858 
859 	table = rcu_dereference_raw(mm->ioctx_table);
860 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
861 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
862 	spin_unlock(&mm->ioctx_lock);
863 
864 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
865 	wake_up_all(&ctx->wait);
866 
867 	/*
868 	 * It'd be more correct to do this in free_ioctx(), after all
869 	 * the outstanding kiocbs have finished - but by then io_destroy
870 	 * has already returned, so io_setup() could potentially return
871 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
872 	 *  could tell).
873 	 */
874 	aio_nr_sub(ctx->max_reqs);
875 
876 	if (ctx->mmap_size)
877 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
878 
879 	ctx->rq_wait = wait;
880 	percpu_ref_kill(&ctx->users);
881 	return 0;
882 }
883 
884 /*
885  * exit_aio: called when the last user of mm goes away.  At this point, there is
886  * no way for any new requests to be submited or any of the io_* syscalls to be
887  * called on the context.
888  *
889  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
890  * them.
891  */
892 void exit_aio(struct mm_struct *mm)
893 {
894 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
895 	struct ctx_rq_wait wait;
896 	int i, skipped;
897 
898 	if (!table)
899 		return;
900 
901 	atomic_set(&wait.count, table->nr);
902 	init_completion(&wait.comp);
903 
904 	skipped = 0;
905 	for (i = 0; i < table->nr; ++i) {
906 		struct kioctx *ctx =
907 			rcu_dereference_protected(table->table[i], true);
908 
909 		if (!ctx) {
910 			skipped++;
911 			continue;
912 		}
913 
914 		/*
915 		 * We don't need to bother with munmap() here - exit_mmap(mm)
916 		 * is coming and it'll unmap everything. And we simply can't,
917 		 * this is not necessarily our ->mm.
918 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
919 		 * that it needs to unmap the area, just set it to 0.
920 		 */
921 		ctx->mmap_size = 0;
922 		kill_ioctx(mm, ctx, &wait);
923 	}
924 
925 	if (!atomic_sub_and_test(skipped, &wait.count)) {
926 		/* Wait until all IO for the context are done. */
927 		wait_for_completion(&wait.comp);
928 	}
929 
930 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
931 	kfree(table);
932 }
933 
934 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
935 {
936 	struct kioctx_cpu *kcpu;
937 	unsigned long flags;
938 
939 	local_irq_save(flags);
940 	kcpu = this_cpu_ptr(ctx->cpu);
941 	kcpu->reqs_available += nr;
942 
943 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
944 		kcpu->reqs_available -= ctx->req_batch;
945 		atomic_add(ctx->req_batch, &ctx->reqs_available);
946 	}
947 
948 	local_irq_restore(flags);
949 }
950 
951 static bool __get_reqs_available(struct kioctx *ctx)
952 {
953 	struct kioctx_cpu *kcpu;
954 	bool ret = false;
955 	unsigned long flags;
956 
957 	local_irq_save(flags);
958 	kcpu = this_cpu_ptr(ctx->cpu);
959 	if (!kcpu->reqs_available) {
960 		int avail = atomic_read(&ctx->reqs_available);
961 
962 		do {
963 			if (avail < ctx->req_batch)
964 				goto out;
965 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
966 					     &avail, avail - ctx->req_batch));
967 
968 		kcpu->reqs_available += ctx->req_batch;
969 	}
970 
971 	ret = true;
972 	kcpu->reqs_available--;
973 out:
974 	local_irq_restore(flags);
975 	return ret;
976 }
977 
978 /* refill_reqs_available
979  *	Updates the reqs_available reference counts used for tracking the
980  *	number of free slots in the completion ring.  This can be called
981  *	from aio_complete() (to optimistically update reqs_available) or
982  *	from aio_get_req() (the we're out of events case).  It must be
983  *	called holding ctx->completion_lock.
984  */
985 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
986                                   unsigned tail)
987 {
988 	unsigned events_in_ring, completed;
989 
990 	/* Clamp head since userland can write to it. */
991 	head %= ctx->nr_events;
992 	if (head <= tail)
993 		events_in_ring = tail - head;
994 	else
995 		events_in_ring = ctx->nr_events - (head - tail);
996 
997 	completed = ctx->completed_events;
998 	if (events_in_ring < completed)
999 		completed -= events_in_ring;
1000 	else
1001 		completed = 0;
1002 
1003 	if (!completed)
1004 		return;
1005 
1006 	ctx->completed_events -= completed;
1007 	put_reqs_available(ctx, completed);
1008 }
1009 
1010 /* user_refill_reqs_available
1011  *	Called to refill reqs_available when aio_get_req() encounters an
1012  *	out of space in the completion ring.
1013  */
1014 static void user_refill_reqs_available(struct kioctx *ctx)
1015 {
1016 	spin_lock_irq(&ctx->completion_lock);
1017 	if (ctx->completed_events) {
1018 		struct aio_ring *ring;
1019 		unsigned head;
1020 
1021 		/* Access of ring->head may race with aio_read_events_ring()
1022 		 * here, but that's okay since whether we read the old version
1023 		 * or the new version, and either will be valid.  The important
1024 		 * part is that head cannot pass tail since we prevent
1025 		 * aio_complete() from updating tail by holding
1026 		 * ctx->completion_lock.  Even if head is invalid, the check
1027 		 * against ctx->completed_events below will make sure we do the
1028 		 * safe/right thing.
1029 		 */
1030 		ring = folio_address(ctx->ring_folios[0]);
1031 		head = ring->head;
1032 
1033 		refill_reqs_available(ctx, head, ctx->tail);
1034 	}
1035 
1036 	spin_unlock_irq(&ctx->completion_lock);
1037 }
1038 
1039 static bool get_reqs_available(struct kioctx *ctx)
1040 {
1041 	if (__get_reqs_available(ctx))
1042 		return true;
1043 	user_refill_reqs_available(ctx);
1044 	return __get_reqs_available(ctx);
1045 }
1046 
1047 /* aio_get_req
1048  *	Allocate a slot for an aio request.
1049  * Returns NULL if no requests are free.
1050  *
1051  * The refcount is initialized to 2 - one for the async op completion,
1052  * one for the synchronous code that does this.
1053  */
1054 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1055 {
1056 	struct aio_kiocb *req;
1057 
1058 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1059 	if (unlikely(!req))
1060 		return NULL;
1061 
1062 	if (unlikely(!get_reqs_available(ctx))) {
1063 		kmem_cache_free(kiocb_cachep, req);
1064 		return NULL;
1065 	}
1066 
1067 	percpu_ref_get(&ctx->reqs);
1068 	req->ki_ctx = ctx;
1069 	INIT_LIST_HEAD(&req->ki_list);
1070 	refcount_set(&req->ki_refcnt, 2);
1071 	req->ki_eventfd = NULL;
1072 	return req;
1073 }
1074 
1075 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1076 {
1077 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1078 	struct mm_struct *mm = current->mm;
1079 	struct kioctx *ctx, *ret = NULL;
1080 	struct kioctx_table *table;
1081 	unsigned id;
1082 
1083 	if (get_user(id, &ring->id))
1084 		return NULL;
1085 
1086 	rcu_read_lock();
1087 	table = rcu_dereference(mm->ioctx_table);
1088 
1089 	if (!table || id >= table->nr)
1090 		goto out;
1091 
1092 	id = array_index_nospec(id, table->nr);
1093 	ctx = rcu_dereference(table->table[id]);
1094 	if (ctx && ctx->user_id == ctx_id) {
1095 		if (percpu_ref_tryget_live(&ctx->users))
1096 			ret = ctx;
1097 	}
1098 out:
1099 	rcu_read_unlock();
1100 	return ret;
1101 }
1102 
1103 static inline void iocb_destroy(struct aio_kiocb *iocb)
1104 {
1105 	if (iocb->ki_eventfd)
1106 		eventfd_ctx_put(iocb->ki_eventfd);
1107 	if (iocb->ki_filp)
1108 		fput(iocb->ki_filp);
1109 	percpu_ref_put(&iocb->ki_ctx->reqs);
1110 	kmem_cache_free(kiocb_cachep, iocb);
1111 }
1112 
1113 struct aio_waiter {
1114 	struct wait_queue_entry	w;
1115 	size_t			min_nr;
1116 };
1117 
1118 /* aio_complete
1119  *	Called when the io request on the given iocb is complete.
1120  */
1121 static void aio_complete(struct aio_kiocb *iocb)
1122 {
1123 	struct kioctx	*ctx = iocb->ki_ctx;
1124 	struct aio_ring	*ring;
1125 	struct io_event	*ev_page, *event;
1126 	unsigned tail, pos, head, avail;
1127 	unsigned long	flags;
1128 
1129 	/*
1130 	 * Add a completion event to the ring buffer. Must be done holding
1131 	 * ctx->completion_lock to prevent other code from messing with the tail
1132 	 * pointer since we might be called from irq context.
1133 	 */
1134 	spin_lock_irqsave(&ctx->completion_lock, flags);
1135 
1136 	tail = ctx->tail;
1137 	pos = tail + AIO_EVENTS_OFFSET;
1138 
1139 	if (++tail >= ctx->nr_events)
1140 		tail = 0;
1141 
1142 	ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1143 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1144 
1145 	*event = iocb->ki_res;
1146 
1147 	flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1148 
1149 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1150 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1151 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1152 
1153 	/* after flagging the request as done, we
1154 	 * must never even look at it again
1155 	 */
1156 	smp_wmb();	/* make event visible before updating tail */
1157 
1158 	ctx->tail = tail;
1159 
1160 	ring = folio_address(ctx->ring_folios[0]);
1161 	head = ring->head;
1162 	ring->tail = tail;
1163 	flush_dcache_folio(ctx->ring_folios[0]);
1164 
1165 	ctx->completed_events++;
1166 	if (ctx->completed_events > 1)
1167 		refill_reqs_available(ctx, head, tail);
1168 
1169 	avail = tail > head
1170 		? tail - head
1171 		: tail + ctx->nr_events - head;
1172 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1173 
1174 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1175 
1176 	/*
1177 	 * Check if the user asked us to deliver the result through an
1178 	 * eventfd. The eventfd_signal() function is safe to be called
1179 	 * from IRQ context.
1180 	 */
1181 	if (iocb->ki_eventfd)
1182 		eventfd_signal(iocb->ki_eventfd);
1183 
1184 	/*
1185 	 * We have to order our ring_info tail store above and test
1186 	 * of the wait list below outside the wait lock.  This is
1187 	 * like in wake_up_bit() where clearing a bit has to be
1188 	 * ordered with the unlocked test.
1189 	 */
1190 	smp_mb();
1191 
1192 	if (waitqueue_active(&ctx->wait)) {
1193 		struct aio_waiter *curr, *next;
1194 		unsigned long flags;
1195 
1196 		spin_lock_irqsave(&ctx->wait.lock, flags);
1197 		list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1198 			if (avail >= curr->min_nr) {
1199 				wake_up_process(curr->w.private);
1200 				list_del_init_careful(&curr->w.entry);
1201 			}
1202 		spin_unlock_irqrestore(&ctx->wait.lock, flags);
1203 	}
1204 }
1205 
1206 static inline void iocb_put(struct aio_kiocb *iocb)
1207 {
1208 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1209 		aio_complete(iocb);
1210 		iocb_destroy(iocb);
1211 	}
1212 }
1213 
1214 /* aio_read_events_ring
1215  *	Pull an event off of the ioctx's event ring.  Returns the number of
1216  *	events fetched
1217  */
1218 static long aio_read_events_ring(struct kioctx *ctx,
1219 				 struct io_event __user *event, long nr)
1220 {
1221 	struct aio_ring *ring;
1222 	unsigned head, tail, pos;
1223 	long ret = 0;
1224 	int copy_ret;
1225 
1226 	/*
1227 	 * The mutex can block and wake us up and that will cause
1228 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1229 	 * and repeat. This should be rare enough that it doesn't cause
1230 	 * peformance issues. See the comment in read_events() for more detail.
1231 	 */
1232 	sched_annotate_sleep();
1233 	mutex_lock(&ctx->ring_lock);
1234 
1235 	/* Access to ->ring_folios here is protected by ctx->ring_lock. */
1236 	ring = folio_address(ctx->ring_folios[0]);
1237 	head = ring->head;
1238 	tail = ring->tail;
1239 
1240 	/*
1241 	 * Ensure that once we've read the current tail pointer, that
1242 	 * we also see the events that were stored up to the tail.
1243 	 */
1244 	smp_rmb();
1245 
1246 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1247 
1248 	if (head == tail)
1249 		goto out;
1250 
1251 	head %= ctx->nr_events;
1252 	tail %= ctx->nr_events;
1253 
1254 	while (ret < nr) {
1255 		long avail;
1256 		struct io_event *ev;
1257 		struct folio *folio;
1258 
1259 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1260 		if (head == tail)
1261 			break;
1262 
1263 		pos = head + AIO_EVENTS_OFFSET;
1264 		folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE];
1265 		pos %= AIO_EVENTS_PER_PAGE;
1266 
1267 		avail = min(avail, nr - ret);
1268 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1269 
1270 		ev = folio_address(folio);
1271 		copy_ret = copy_to_user(event + ret, ev + pos,
1272 					sizeof(*ev) * avail);
1273 
1274 		if (unlikely(copy_ret)) {
1275 			ret = -EFAULT;
1276 			goto out;
1277 		}
1278 
1279 		ret += avail;
1280 		head += avail;
1281 		head %= ctx->nr_events;
1282 	}
1283 
1284 	ring = folio_address(ctx->ring_folios[0]);
1285 	ring->head = head;
1286 	flush_dcache_folio(ctx->ring_folios[0]);
1287 
1288 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1289 out:
1290 	mutex_unlock(&ctx->ring_lock);
1291 
1292 	return ret;
1293 }
1294 
1295 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1296 			    struct io_event __user *event, long *i)
1297 {
1298 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1299 
1300 	if (ret > 0)
1301 		*i += ret;
1302 
1303 	if (unlikely(atomic_read(&ctx->dead)))
1304 		ret = -EINVAL;
1305 
1306 	if (!*i)
1307 		*i = ret;
1308 
1309 	return ret < 0 || *i >= min_nr;
1310 }
1311 
1312 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1313 			struct io_event __user *event,
1314 			ktime_t until)
1315 {
1316 	struct hrtimer_sleeper	t;
1317 	struct aio_waiter	w;
1318 	long ret = 0, ret2 = 0;
1319 
1320 	/*
1321 	 * Note that aio_read_events() is being called as the conditional - i.e.
1322 	 * we're calling it after prepare_to_wait() has set task state to
1323 	 * TASK_INTERRUPTIBLE.
1324 	 *
1325 	 * But aio_read_events() can block, and if it blocks it's going to flip
1326 	 * the task state back to TASK_RUNNING.
1327 	 *
1328 	 * This should be ok, provided it doesn't flip the state back to
1329 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1330 	 * will only happen if the mutex_lock() call blocks, and we then find
1331 	 * the ringbuffer empty. So in practice we should be ok, but it's
1332 	 * something to be aware of when touching this code.
1333 	 */
1334 	aio_read_events(ctx, min_nr, nr, event, &ret);
1335 	if (until == 0 || ret < 0 || ret >= min_nr)
1336 		return ret;
1337 
1338 	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1339 	if (until != KTIME_MAX) {
1340 		hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1341 		hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1342 	}
1343 
1344 	init_wait(&w.w);
1345 
1346 	while (1) {
1347 		unsigned long nr_got = ret;
1348 
1349 		w.min_nr = min_nr - ret;
1350 
1351 		ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1352 		if (!ret2 && !t.task)
1353 			ret2 = -ETIME;
1354 
1355 		if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1356 			break;
1357 
1358 		if (nr_got == ret)
1359 			schedule();
1360 	}
1361 
1362 	finish_wait(&ctx->wait, &w.w);
1363 	hrtimer_cancel(&t.timer);
1364 	destroy_hrtimer_on_stack(&t.timer);
1365 
1366 	return ret;
1367 }
1368 
1369 /* sys_io_setup:
1370  *	Create an aio_context capable of receiving at least nr_events.
1371  *	ctxp must not point to an aio_context that already exists, and
1372  *	must be initialized to 0 prior to the call.  On successful
1373  *	creation of the aio_context, *ctxp is filled in with the resulting
1374  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1375  *	if the specified nr_events exceeds internal limits.  May fail
1376  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1377  *	of available events.  May fail with -ENOMEM if insufficient kernel
1378  *	resources are available.  May fail with -EFAULT if an invalid
1379  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1380  *	implemented.
1381  */
1382 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1383 {
1384 	struct kioctx *ioctx = NULL;
1385 	unsigned long ctx;
1386 	long ret;
1387 
1388 	ret = get_user(ctx, ctxp);
1389 	if (unlikely(ret))
1390 		goto out;
1391 
1392 	ret = -EINVAL;
1393 	if (unlikely(ctx || nr_events == 0)) {
1394 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1395 		         ctx, nr_events);
1396 		goto out;
1397 	}
1398 
1399 	ioctx = ioctx_alloc(nr_events);
1400 	ret = PTR_ERR(ioctx);
1401 	if (!IS_ERR(ioctx)) {
1402 		ret = put_user(ioctx->user_id, ctxp);
1403 		if (ret)
1404 			kill_ioctx(current->mm, ioctx, NULL);
1405 		percpu_ref_put(&ioctx->users);
1406 	}
1407 
1408 out:
1409 	return ret;
1410 }
1411 
1412 #ifdef CONFIG_COMPAT
1413 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1414 {
1415 	struct kioctx *ioctx = NULL;
1416 	unsigned long ctx;
1417 	long ret;
1418 
1419 	ret = get_user(ctx, ctx32p);
1420 	if (unlikely(ret))
1421 		goto out;
1422 
1423 	ret = -EINVAL;
1424 	if (unlikely(ctx || nr_events == 0)) {
1425 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1426 		         ctx, nr_events);
1427 		goto out;
1428 	}
1429 
1430 	ioctx = ioctx_alloc(nr_events);
1431 	ret = PTR_ERR(ioctx);
1432 	if (!IS_ERR(ioctx)) {
1433 		/* truncating is ok because it's a user address */
1434 		ret = put_user((u32)ioctx->user_id, ctx32p);
1435 		if (ret)
1436 			kill_ioctx(current->mm, ioctx, NULL);
1437 		percpu_ref_put(&ioctx->users);
1438 	}
1439 
1440 out:
1441 	return ret;
1442 }
1443 #endif
1444 
1445 /* sys_io_destroy:
1446  *	Destroy the aio_context specified.  May cancel any outstanding
1447  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1448  *	implemented.  May fail with -EINVAL if the context pointed to
1449  *	is invalid.
1450  */
1451 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1452 {
1453 	struct kioctx *ioctx = lookup_ioctx(ctx);
1454 	if (likely(NULL != ioctx)) {
1455 		struct ctx_rq_wait wait;
1456 		int ret;
1457 
1458 		init_completion(&wait.comp);
1459 		atomic_set(&wait.count, 1);
1460 
1461 		/* Pass requests_done to kill_ioctx() where it can be set
1462 		 * in a thread-safe way. If we try to set it here then we have
1463 		 * a race condition if two io_destroy() called simultaneously.
1464 		 */
1465 		ret = kill_ioctx(current->mm, ioctx, &wait);
1466 		percpu_ref_put(&ioctx->users);
1467 
1468 		/* Wait until all IO for the context are done. Otherwise kernel
1469 		 * keep using user-space buffers even if user thinks the context
1470 		 * is destroyed.
1471 		 */
1472 		if (!ret)
1473 			wait_for_completion(&wait.comp);
1474 
1475 		return ret;
1476 	}
1477 	pr_debug("EINVAL: invalid context id\n");
1478 	return -EINVAL;
1479 }
1480 
1481 static void aio_remove_iocb(struct aio_kiocb *iocb)
1482 {
1483 	struct kioctx *ctx = iocb->ki_ctx;
1484 	unsigned long flags;
1485 
1486 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1487 	list_del(&iocb->ki_list);
1488 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1489 }
1490 
1491 static void aio_complete_rw(struct kiocb *kiocb, long res)
1492 {
1493 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1494 
1495 	if (!list_empty_careful(&iocb->ki_list))
1496 		aio_remove_iocb(iocb);
1497 
1498 	if (kiocb->ki_flags & IOCB_WRITE) {
1499 		struct inode *inode = file_inode(kiocb->ki_filp);
1500 
1501 		if (S_ISREG(inode->i_mode))
1502 			kiocb_end_write(kiocb);
1503 	}
1504 
1505 	iocb->ki_res.res = res;
1506 	iocb->ki_res.res2 = 0;
1507 	iocb_put(iocb);
1508 }
1509 
1510 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb, int rw_type)
1511 {
1512 	int ret;
1513 
1514 	req->ki_complete = aio_complete_rw;
1515 	req->private = NULL;
1516 	req->ki_pos = iocb->aio_offset;
1517 	req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1518 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1519 		req->ki_flags |= IOCB_EVENTFD;
1520 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1521 		/*
1522 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1523 		 * aio_reqprio is interpreted as an I/O scheduling
1524 		 * class and priority.
1525 		 */
1526 		ret = ioprio_check_cap(iocb->aio_reqprio);
1527 		if (ret) {
1528 			pr_debug("aio ioprio check cap error: %d\n", ret);
1529 			return ret;
1530 		}
1531 
1532 		req->ki_ioprio = iocb->aio_reqprio;
1533 	} else
1534 		req->ki_ioprio = get_current_ioprio();
1535 
1536 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags, rw_type);
1537 	if (unlikely(ret))
1538 		return ret;
1539 
1540 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1541 	return 0;
1542 }
1543 
1544 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1545 		struct iovec **iovec, bool vectored, bool compat,
1546 		struct iov_iter *iter)
1547 {
1548 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1549 	size_t len = iocb->aio_nbytes;
1550 
1551 	if (!vectored) {
1552 		ssize_t ret = import_ubuf(rw, buf, len, iter);
1553 		*iovec = NULL;
1554 		return ret;
1555 	}
1556 
1557 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1558 }
1559 
1560 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1561 {
1562 	switch (ret) {
1563 	case -EIOCBQUEUED:
1564 		break;
1565 	case -ERESTARTSYS:
1566 	case -ERESTARTNOINTR:
1567 	case -ERESTARTNOHAND:
1568 	case -ERESTART_RESTARTBLOCK:
1569 		/*
1570 		 * There's no easy way to restart the syscall since other AIO's
1571 		 * may be already running. Just fail this IO with EINTR.
1572 		 */
1573 		ret = -EINTR;
1574 		fallthrough;
1575 	default:
1576 		req->ki_complete(req, ret);
1577 	}
1578 }
1579 
1580 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1581 			bool vectored, bool compat)
1582 {
1583 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1584 	struct iov_iter iter;
1585 	struct file *file;
1586 	int ret;
1587 
1588 	ret = aio_prep_rw(req, iocb, READ);
1589 	if (ret)
1590 		return ret;
1591 	file = req->ki_filp;
1592 	if (unlikely(!(file->f_mode & FMODE_READ)))
1593 		return -EBADF;
1594 	if (unlikely(!file->f_op->read_iter))
1595 		return -EINVAL;
1596 
1597 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1598 	if (ret < 0)
1599 		return ret;
1600 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1601 	if (!ret)
1602 		aio_rw_done(req, file->f_op->read_iter(req, &iter));
1603 	kfree(iovec);
1604 	return ret;
1605 }
1606 
1607 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1608 			 bool vectored, bool compat)
1609 {
1610 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1611 	struct iov_iter iter;
1612 	struct file *file;
1613 	int ret;
1614 
1615 	ret = aio_prep_rw(req, iocb, WRITE);
1616 	if (ret)
1617 		return ret;
1618 	file = req->ki_filp;
1619 
1620 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1621 		return -EBADF;
1622 	if (unlikely(!file->f_op->write_iter))
1623 		return -EINVAL;
1624 
1625 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1626 	if (ret < 0)
1627 		return ret;
1628 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1629 	if (!ret) {
1630 		if (S_ISREG(file_inode(file)->i_mode))
1631 			kiocb_start_write(req);
1632 		req->ki_flags |= IOCB_WRITE;
1633 		aio_rw_done(req, file->f_op->write_iter(req, &iter));
1634 	}
1635 	kfree(iovec);
1636 	return ret;
1637 }
1638 
1639 static void aio_fsync_work(struct work_struct *work)
1640 {
1641 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1642 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1643 
1644 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1645 	revert_creds(old_cred);
1646 	put_cred(iocb->fsync.creds);
1647 	iocb_put(iocb);
1648 }
1649 
1650 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1651 		     bool datasync)
1652 {
1653 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1654 			iocb->aio_rw_flags))
1655 		return -EINVAL;
1656 
1657 	if (unlikely(!req->file->f_op->fsync))
1658 		return -EINVAL;
1659 
1660 	req->creds = prepare_creds();
1661 	if (!req->creds)
1662 		return -ENOMEM;
1663 
1664 	req->datasync = datasync;
1665 	INIT_WORK(&req->work, aio_fsync_work);
1666 	schedule_work(&req->work);
1667 	return 0;
1668 }
1669 
1670 static void aio_poll_put_work(struct work_struct *work)
1671 {
1672 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1673 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1674 
1675 	iocb_put(iocb);
1676 }
1677 
1678 /*
1679  * Safely lock the waitqueue which the request is on, synchronizing with the
1680  * case where the ->poll() provider decides to free its waitqueue early.
1681  *
1682  * Returns true on success, meaning that req->head->lock was locked, req->wait
1683  * is on req->head, and an RCU read lock was taken.  Returns false if the
1684  * request was already removed from its waitqueue (which might no longer exist).
1685  */
1686 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1687 {
1688 	wait_queue_head_t *head;
1689 
1690 	/*
1691 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1692 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1693 	 * lock in the first place can race with the waitqueue being freed.
1694 	 *
1695 	 * We solve this as eventpoll does: by taking advantage of the fact that
1696 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1697 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1698 	 * non-NULL, we can then lock it without the memory being freed out from
1699 	 * under us, then check whether the request is still on the queue.
1700 	 *
1701 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1702 	 * case the caller deletes the entry from the queue, leaving it empty.
1703 	 * In that case, only RCU prevents the queue memory from being freed.
1704 	 */
1705 	rcu_read_lock();
1706 	head = smp_load_acquire(&req->head);
1707 	if (head) {
1708 		spin_lock(&head->lock);
1709 		if (!list_empty(&req->wait.entry))
1710 			return true;
1711 		spin_unlock(&head->lock);
1712 	}
1713 	rcu_read_unlock();
1714 	return false;
1715 }
1716 
1717 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1718 {
1719 	spin_unlock(&req->head->lock);
1720 	rcu_read_unlock();
1721 }
1722 
1723 static void aio_poll_complete_work(struct work_struct *work)
1724 {
1725 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1726 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1727 	struct poll_table_struct pt = { ._key = req->events };
1728 	struct kioctx *ctx = iocb->ki_ctx;
1729 	__poll_t mask = 0;
1730 
1731 	if (!READ_ONCE(req->cancelled))
1732 		mask = vfs_poll(req->file, &pt) & req->events;
1733 
1734 	/*
1735 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1736 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1737 	 * synchronize with them.  In the cancellation case the list_del_init
1738 	 * itself is not actually needed, but harmless so we keep it in to
1739 	 * avoid further branches in the fast path.
1740 	 */
1741 	spin_lock_irq(&ctx->ctx_lock);
1742 	if (poll_iocb_lock_wq(req)) {
1743 		if (!mask && !READ_ONCE(req->cancelled)) {
1744 			/*
1745 			 * The request isn't actually ready to be completed yet.
1746 			 * Reschedule completion if another wakeup came in.
1747 			 */
1748 			if (req->work_need_resched) {
1749 				schedule_work(&req->work);
1750 				req->work_need_resched = false;
1751 			} else {
1752 				req->work_scheduled = false;
1753 			}
1754 			poll_iocb_unlock_wq(req);
1755 			spin_unlock_irq(&ctx->ctx_lock);
1756 			return;
1757 		}
1758 		list_del_init(&req->wait.entry);
1759 		poll_iocb_unlock_wq(req);
1760 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1761 	list_del_init(&iocb->ki_list);
1762 	iocb->ki_res.res = mangle_poll(mask);
1763 	spin_unlock_irq(&ctx->ctx_lock);
1764 
1765 	iocb_put(iocb);
1766 }
1767 
1768 /* assumes we are called with irqs disabled */
1769 static int aio_poll_cancel(struct kiocb *iocb)
1770 {
1771 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1772 	struct poll_iocb *req = &aiocb->poll;
1773 
1774 	if (poll_iocb_lock_wq(req)) {
1775 		WRITE_ONCE(req->cancelled, true);
1776 		if (!req->work_scheduled) {
1777 			schedule_work(&aiocb->poll.work);
1778 			req->work_scheduled = true;
1779 		}
1780 		poll_iocb_unlock_wq(req);
1781 	} /* else, the request was force-cancelled by POLLFREE already */
1782 
1783 	return 0;
1784 }
1785 
1786 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1787 		void *key)
1788 {
1789 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1790 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1791 	__poll_t mask = key_to_poll(key);
1792 	unsigned long flags;
1793 
1794 	/* for instances that support it check for an event match first: */
1795 	if (mask && !(mask & req->events))
1796 		return 0;
1797 
1798 	/*
1799 	 * Complete the request inline if possible.  This requires that three
1800 	 * conditions be met:
1801 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1802 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1803 	 *	the events, so inline completion isn't possible.
1804 	 *   2. The completion work must not have already been scheduled.
1805 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1806 	 *	already hold the waitqueue lock, so this inverts the normal
1807 	 *	locking order.  Use irqsave/irqrestore because not all
1808 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1809 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1810 	 */
1811 	if (mask && !req->work_scheduled &&
1812 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1813 		struct kioctx *ctx = iocb->ki_ctx;
1814 
1815 		list_del_init(&req->wait.entry);
1816 		list_del(&iocb->ki_list);
1817 		iocb->ki_res.res = mangle_poll(mask);
1818 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1819 			iocb = NULL;
1820 			INIT_WORK(&req->work, aio_poll_put_work);
1821 			schedule_work(&req->work);
1822 		}
1823 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1824 		if (iocb)
1825 			iocb_put(iocb);
1826 	} else {
1827 		/*
1828 		 * Schedule the completion work if needed.  If it was already
1829 		 * scheduled, record that another wakeup came in.
1830 		 *
1831 		 * Don't remove the request from the waitqueue here, as it might
1832 		 * not actually be complete yet (we won't know until vfs_poll()
1833 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1834 		 * exception to this; see below.
1835 		 */
1836 		if (req->work_scheduled) {
1837 			req->work_need_resched = true;
1838 		} else {
1839 			schedule_work(&req->work);
1840 			req->work_scheduled = true;
1841 		}
1842 
1843 		/*
1844 		 * If the waitqueue is being freed early but we can't complete
1845 		 * the request inline, we have to tear down the request as best
1846 		 * we can.  That means immediately removing the request from its
1847 		 * waitqueue and preventing all further accesses to the
1848 		 * waitqueue via the request.  We also need to schedule the
1849 		 * completion work (done above).  Also mark the request as
1850 		 * cancelled, to potentially skip an unneeded call to ->poll().
1851 		 */
1852 		if (mask & POLLFREE) {
1853 			WRITE_ONCE(req->cancelled, true);
1854 			list_del_init(&req->wait.entry);
1855 
1856 			/*
1857 			 * Careful: this *must* be the last step, since as soon
1858 			 * as req->head is NULL'ed out, the request can be
1859 			 * completed and freed, since aio_poll_complete_work()
1860 			 * will no longer need to take the waitqueue lock.
1861 			 */
1862 			smp_store_release(&req->head, NULL);
1863 		}
1864 	}
1865 	return 1;
1866 }
1867 
1868 struct aio_poll_table {
1869 	struct poll_table_struct	pt;
1870 	struct aio_kiocb		*iocb;
1871 	bool				queued;
1872 	int				error;
1873 };
1874 
1875 static void
1876 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1877 		struct poll_table_struct *p)
1878 {
1879 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1880 
1881 	/* multiple wait queues per file are not supported */
1882 	if (unlikely(pt->queued)) {
1883 		pt->error = -EINVAL;
1884 		return;
1885 	}
1886 
1887 	pt->queued = true;
1888 	pt->error = 0;
1889 	pt->iocb->poll.head = head;
1890 	add_wait_queue(head, &pt->iocb->poll.wait);
1891 }
1892 
1893 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1894 {
1895 	struct kioctx *ctx = aiocb->ki_ctx;
1896 	struct poll_iocb *req = &aiocb->poll;
1897 	struct aio_poll_table apt;
1898 	bool cancel = false;
1899 	__poll_t mask;
1900 
1901 	/* reject any unknown events outside the normal event mask. */
1902 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1903 		return -EINVAL;
1904 	/* reject fields that are not defined for poll */
1905 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1906 		return -EINVAL;
1907 
1908 	INIT_WORK(&req->work, aio_poll_complete_work);
1909 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1910 
1911 	req->head = NULL;
1912 	req->cancelled = false;
1913 	req->work_scheduled = false;
1914 	req->work_need_resched = false;
1915 
1916 	apt.pt._qproc = aio_poll_queue_proc;
1917 	apt.pt._key = req->events;
1918 	apt.iocb = aiocb;
1919 	apt.queued = false;
1920 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1921 
1922 	/* initialized the list so that we can do list_empty checks */
1923 	INIT_LIST_HEAD(&req->wait.entry);
1924 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1925 
1926 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1927 	spin_lock_irq(&ctx->ctx_lock);
1928 	if (likely(apt.queued)) {
1929 		bool on_queue = poll_iocb_lock_wq(req);
1930 
1931 		if (!on_queue || req->work_scheduled) {
1932 			/*
1933 			 * aio_poll_wake() already either scheduled the async
1934 			 * completion work, or completed the request inline.
1935 			 */
1936 			if (apt.error) /* unsupported case: multiple queues */
1937 				cancel = true;
1938 			apt.error = 0;
1939 			mask = 0;
1940 		}
1941 		if (mask || apt.error) {
1942 			/* Steal to complete synchronously. */
1943 			list_del_init(&req->wait.entry);
1944 		} else if (cancel) {
1945 			/* Cancel if possible (may be too late though). */
1946 			WRITE_ONCE(req->cancelled, true);
1947 		} else if (on_queue) {
1948 			/*
1949 			 * Actually waiting for an event, so add the request to
1950 			 * active_reqs so that it can be cancelled if needed.
1951 			 */
1952 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1953 			aiocb->ki_cancel = aio_poll_cancel;
1954 		}
1955 		if (on_queue)
1956 			poll_iocb_unlock_wq(req);
1957 	}
1958 	if (mask) { /* no async, we'd stolen it */
1959 		aiocb->ki_res.res = mangle_poll(mask);
1960 		apt.error = 0;
1961 	}
1962 	spin_unlock_irq(&ctx->ctx_lock);
1963 	if (mask)
1964 		iocb_put(aiocb);
1965 	return apt.error;
1966 }
1967 
1968 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1969 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1970 			   bool compat)
1971 {
1972 	req->ki_filp = fget(iocb->aio_fildes);
1973 	if (unlikely(!req->ki_filp))
1974 		return -EBADF;
1975 
1976 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1977 		struct eventfd_ctx *eventfd;
1978 		/*
1979 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1980 		 * instance of the file* now. The file descriptor must be
1981 		 * an eventfd() fd, and will be signaled for each completed
1982 		 * event using the eventfd_signal() function.
1983 		 */
1984 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1985 		if (IS_ERR(eventfd))
1986 			return PTR_ERR(eventfd);
1987 
1988 		req->ki_eventfd = eventfd;
1989 	}
1990 
1991 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1992 		pr_debug("EFAULT: aio_key\n");
1993 		return -EFAULT;
1994 	}
1995 
1996 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1997 	req->ki_res.data = iocb->aio_data;
1998 	req->ki_res.res = 0;
1999 	req->ki_res.res2 = 0;
2000 
2001 	switch (iocb->aio_lio_opcode) {
2002 	case IOCB_CMD_PREAD:
2003 		return aio_read(&req->rw, iocb, false, compat);
2004 	case IOCB_CMD_PWRITE:
2005 		return aio_write(&req->rw, iocb, false, compat);
2006 	case IOCB_CMD_PREADV:
2007 		return aio_read(&req->rw, iocb, true, compat);
2008 	case IOCB_CMD_PWRITEV:
2009 		return aio_write(&req->rw, iocb, true, compat);
2010 	case IOCB_CMD_FSYNC:
2011 		return aio_fsync(&req->fsync, iocb, false);
2012 	case IOCB_CMD_FDSYNC:
2013 		return aio_fsync(&req->fsync, iocb, true);
2014 	case IOCB_CMD_POLL:
2015 		return aio_poll(req, iocb);
2016 	default:
2017 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2018 		return -EINVAL;
2019 	}
2020 }
2021 
2022 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2023 			 bool compat)
2024 {
2025 	struct aio_kiocb *req;
2026 	struct iocb iocb;
2027 	int err;
2028 
2029 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2030 		return -EFAULT;
2031 
2032 	/* enforce forwards compatibility on users */
2033 	if (unlikely(iocb.aio_reserved2)) {
2034 		pr_debug("EINVAL: reserve field set\n");
2035 		return -EINVAL;
2036 	}
2037 
2038 	/* prevent overflows */
2039 	if (unlikely(
2040 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2041 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2042 	    ((ssize_t)iocb.aio_nbytes < 0)
2043 	   )) {
2044 		pr_debug("EINVAL: overflow check\n");
2045 		return -EINVAL;
2046 	}
2047 
2048 	req = aio_get_req(ctx);
2049 	if (unlikely(!req))
2050 		return -EAGAIN;
2051 
2052 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2053 
2054 	/* Done with the synchronous reference */
2055 	iocb_put(req);
2056 
2057 	/*
2058 	 * If err is 0, we'd either done aio_complete() ourselves or have
2059 	 * arranged for that to be done asynchronously.  Anything non-zero
2060 	 * means that we need to destroy req ourselves.
2061 	 */
2062 	if (unlikely(err)) {
2063 		iocb_destroy(req);
2064 		put_reqs_available(ctx, 1);
2065 	}
2066 	return err;
2067 }
2068 
2069 /* sys_io_submit:
2070  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2071  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2072  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2073  *	*iocbpp[0] is not properly initialized, if the operation specified
2074  *	is invalid for the file descriptor in the iocb.  May fail with
2075  *	-EFAULT if any of the data structures point to invalid data.  May
2076  *	fail with -EBADF if the file descriptor specified in the first
2077  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2078  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2079  *	fail with -ENOSYS if not implemented.
2080  */
2081 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2082 		struct iocb __user * __user *, iocbpp)
2083 {
2084 	struct kioctx *ctx;
2085 	long ret = 0;
2086 	int i = 0;
2087 	struct blk_plug plug;
2088 
2089 	if (unlikely(nr < 0))
2090 		return -EINVAL;
2091 
2092 	ctx = lookup_ioctx(ctx_id);
2093 	if (unlikely(!ctx)) {
2094 		pr_debug("EINVAL: invalid context id\n");
2095 		return -EINVAL;
2096 	}
2097 
2098 	if (nr > ctx->nr_events)
2099 		nr = ctx->nr_events;
2100 
2101 	if (nr > AIO_PLUG_THRESHOLD)
2102 		blk_start_plug(&plug);
2103 	for (i = 0; i < nr; i++) {
2104 		struct iocb __user *user_iocb;
2105 
2106 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2107 			ret = -EFAULT;
2108 			break;
2109 		}
2110 
2111 		ret = io_submit_one(ctx, user_iocb, false);
2112 		if (ret)
2113 			break;
2114 	}
2115 	if (nr > AIO_PLUG_THRESHOLD)
2116 		blk_finish_plug(&plug);
2117 
2118 	percpu_ref_put(&ctx->users);
2119 	return i ? i : ret;
2120 }
2121 
2122 #ifdef CONFIG_COMPAT
2123 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2124 		       int, nr, compat_uptr_t __user *, iocbpp)
2125 {
2126 	struct kioctx *ctx;
2127 	long ret = 0;
2128 	int i = 0;
2129 	struct blk_plug plug;
2130 
2131 	if (unlikely(nr < 0))
2132 		return -EINVAL;
2133 
2134 	ctx = lookup_ioctx(ctx_id);
2135 	if (unlikely(!ctx)) {
2136 		pr_debug("EINVAL: invalid context id\n");
2137 		return -EINVAL;
2138 	}
2139 
2140 	if (nr > ctx->nr_events)
2141 		nr = ctx->nr_events;
2142 
2143 	if (nr > AIO_PLUG_THRESHOLD)
2144 		blk_start_plug(&plug);
2145 	for (i = 0; i < nr; i++) {
2146 		compat_uptr_t user_iocb;
2147 
2148 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2149 			ret = -EFAULT;
2150 			break;
2151 		}
2152 
2153 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2154 		if (ret)
2155 			break;
2156 	}
2157 	if (nr > AIO_PLUG_THRESHOLD)
2158 		blk_finish_plug(&plug);
2159 
2160 	percpu_ref_put(&ctx->users);
2161 	return i ? i : ret;
2162 }
2163 #endif
2164 
2165 /* sys_io_cancel:
2166  *	Attempts to cancel an iocb previously passed to io_submit.  If
2167  *	the operation is successfully cancelled, the resulting event is
2168  *	copied into the memory pointed to by result without being placed
2169  *	into the completion queue and 0 is returned.  May fail with
2170  *	-EFAULT if any of the data structures pointed to are invalid.
2171  *	May fail with -EINVAL if aio_context specified by ctx_id is
2172  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2173  *	cancelled.  Will fail with -ENOSYS if not implemented.
2174  */
2175 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2176 		struct io_event __user *, result)
2177 {
2178 	struct kioctx *ctx;
2179 	struct aio_kiocb *kiocb;
2180 	int ret = -EINVAL;
2181 	u32 key;
2182 	u64 obj = (u64)(unsigned long)iocb;
2183 
2184 	if (unlikely(get_user(key, &iocb->aio_key)))
2185 		return -EFAULT;
2186 	if (unlikely(key != KIOCB_KEY))
2187 		return -EINVAL;
2188 
2189 	ctx = lookup_ioctx(ctx_id);
2190 	if (unlikely(!ctx))
2191 		return -EINVAL;
2192 
2193 	spin_lock_irq(&ctx->ctx_lock);
2194 	/* TODO: use a hash or array, this sucks. */
2195 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2196 		if (kiocb->ki_res.obj == obj) {
2197 			ret = kiocb->ki_cancel(&kiocb->rw);
2198 			list_del_init(&kiocb->ki_list);
2199 			break;
2200 		}
2201 	}
2202 	spin_unlock_irq(&ctx->ctx_lock);
2203 
2204 	if (!ret) {
2205 		/*
2206 		 * The result argument is no longer used - the io_event is
2207 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2208 		 * cancellation is progress:
2209 		 */
2210 		ret = -EINPROGRESS;
2211 	}
2212 
2213 	percpu_ref_put(&ctx->users);
2214 
2215 	return ret;
2216 }
2217 
2218 static long do_io_getevents(aio_context_t ctx_id,
2219 		long min_nr,
2220 		long nr,
2221 		struct io_event __user *events,
2222 		struct timespec64 *ts)
2223 {
2224 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2225 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2226 	long ret = -EINVAL;
2227 
2228 	if (likely(ioctx)) {
2229 		if (likely(min_nr <= nr && min_nr >= 0))
2230 			ret = read_events(ioctx, min_nr, nr, events, until);
2231 		percpu_ref_put(&ioctx->users);
2232 	}
2233 
2234 	return ret;
2235 }
2236 
2237 /* io_getevents:
2238  *	Attempts to read at least min_nr events and up to nr events from
2239  *	the completion queue for the aio_context specified by ctx_id. If
2240  *	it succeeds, the number of read events is returned. May fail with
2241  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2242  *	out of range, if timeout is out of range.  May fail with -EFAULT
2243  *	if any of the memory specified is invalid.  May return 0 or
2244  *	< min_nr if the timeout specified by timeout has elapsed
2245  *	before sufficient events are available, where timeout == NULL
2246  *	specifies an infinite timeout. Note that the timeout pointed to by
2247  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2248  */
2249 #ifdef CONFIG_64BIT
2250 
2251 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2252 		long, min_nr,
2253 		long, nr,
2254 		struct io_event __user *, events,
2255 		struct __kernel_timespec __user *, timeout)
2256 {
2257 	struct timespec64	ts;
2258 	int			ret;
2259 
2260 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2261 		return -EFAULT;
2262 
2263 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2264 	if (!ret && signal_pending(current))
2265 		ret = -EINTR;
2266 	return ret;
2267 }
2268 
2269 #endif
2270 
2271 struct __aio_sigset {
2272 	const sigset_t __user	*sigmask;
2273 	size_t		sigsetsize;
2274 };
2275 
2276 SYSCALL_DEFINE6(io_pgetevents,
2277 		aio_context_t, ctx_id,
2278 		long, min_nr,
2279 		long, nr,
2280 		struct io_event __user *, events,
2281 		struct __kernel_timespec __user *, timeout,
2282 		const struct __aio_sigset __user *, usig)
2283 {
2284 	struct __aio_sigset	ksig = { NULL, };
2285 	struct timespec64	ts;
2286 	bool interrupted;
2287 	int ret;
2288 
2289 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2290 		return -EFAULT;
2291 
2292 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2293 		return -EFAULT;
2294 
2295 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2296 	if (ret)
2297 		return ret;
2298 
2299 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2300 
2301 	interrupted = signal_pending(current);
2302 	restore_saved_sigmask_unless(interrupted);
2303 	if (interrupted && !ret)
2304 		ret = -ERESTARTNOHAND;
2305 
2306 	return ret;
2307 }
2308 
2309 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2310 
2311 SYSCALL_DEFINE6(io_pgetevents_time32,
2312 		aio_context_t, ctx_id,
2313 		long, min_nr,
2314 		long, nr,
2315 		struct io_event __user *, events,
2316 		struct old_timespec32 __user *, timeout,
2317 		const struct __aio_sigset __user *, usig)
2318 {
2319 	struct __aio_sigset	ksig = { NULL, };
2320 	struct timespec64	ts;
2321 	bool interrupted;
2322 	int ret;
2323 
2324 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2325 		return -EFAULT;
2326 
2327 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2328 		return -EFAULT;
2329 
2330 
2331 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2332 	if (ret)
2333 		return ret;
2334 
2335 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2336 
2337 	interrupted = signal_pending(current);
2338 	restore_saved_sigmask_unless(interrupted);
2339 	if (interrupted && !ret)
2340 		ret = -ERESTARTNOHAND;
2341 
2342 	return ret;
2343 }
2344 
2345 #endif
2346 
2347 #if defined(CONFIG_COMPAT_32BIT_TIME)
2348 
2349 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2350 		__s32, min_nr,
2351 		__s32, nr,
2352 		struct io_event __user *, events,
2353 		struct old_timespec32 __user *, timeout)
2354 {
2355 	struct timespec64 t;
2356 	int ret;
2357 
2358 	if (timeout && get_old_timespec32(&t, timeout))
2359 		return -EFAULT;
2360 
2361 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2362 	if (!ret && signal_pending(current))
2363 		ret = -EINTR;
2364 	return ret;
2365 }
2366 
2367 #endif
2368 
2369 #ifdef CONFIG_COMPAT
2370 
2371 struct __compat_aio_sigset {
2372 	compat_uptr_t		sigmask;
2373 	compat_size_t		sigsetsize;
2374 };
2375 
2376 #if defined(CONFIG_COMPAT_32BIT_TIME)
2377 
2378 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2379 		compat_aio_context_t, ctx_id,
2380 		compat_long_t, min_nr,
2381 		compat_long_t, nr,
2382 		struct io_event __user *, events,
2383 		struct old_timespec32 __user *, timeout,
2384 		const struct __compat_aio_sigset __user *, usig)
2385 {
2386 	struct __compat_aio_sigset ksig = { 0, };
2387 	struct timespec64 t;
2388 	bool interrupted;
2389 	int ret;
2390 
2391 	if (timeout && get_old_timespec32(&t, timeout))
2392 		return -EFAULT;
2393 
2394 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2395 		return -EFAULT;
2396 
2397 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2398 	if (ret)
2399 		return ret;
2400 
2401 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2402 
2403 	interrupted = signal_pending(current);
2404 	restore_saved_sigmask_unless(interrupted);
2405 	if (interrupted && !ret)
2406 		ret = -ERESTARTNOHAND;
2407 
2408 	return ret;
2409 }
2410 
2411 #endif
2412 
2413 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2414 		compat_aio_context_t, ctx_id,
2415 		compat_long_t, min_nr,
2416 		compat_long_t, nr,
2417 		struct io_event __user *, events,
2418 		struct __kernel_timespec __user *, timeout,
2419 		const struct __compat_aio_sigset __user *, usig)
2420 {
2421 	struct __compat_aio_sigset ksig = { 0, };
2422 	struct timespec64 t;
2423 	bool interrupted;
2424 	int ret;
2425 
2426 	if (timeout && get_timespec64(&t, timeout))
2427 		return -EFAULT;
2428 
2429 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2430 		return -EFAULT;
2431 
2432 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2433 	if (ret)
2434 		return ret;
2435 
2436 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2437 
2438 	interrupted = signal_pending(current);
2439 	restore_saved_sigmask_unless(interrupted);
2440 	if (interrupted && !ret)
2441 		ret = -ERESTARTNOHAND;
2442 
2443 	return ret;
2444 }
2445 #endif
2446