1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/migrate.h> 40 #include <linux/ramfs.h> 41 #include <linux/percpu-refcount.h> 42 #include <linux/mount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; /* Written to by userland or under ring_lock 56 * mutex by aio_read_events_ring(). */ 57 unsigned tail; 58 59 unsigned magic; 60 unsigned compat_features; 61 unsigned incompat_features; 62 unsigned header_length; /* size of aio_ring */ 63 64 65 struct io_event io_events[0]; 66 }; /* 128 bytes + ring size */ 67 68 #define AIO_RING_PAGES 8 69 70 struct kioctx_table { 71 struct rcu_head rcu; 72 unsigned nr; 73 struct kioctx *table[]; 74 }; 75 76 struct kioctx_cpu { 77 unsigned reqs_available; 78 }; 79 80 struct ctx_rq_wait { 81 struct completion comp; 82 atomic_t count; 83 }; 84 85 struct kioctx { 86 struct percpu_ref users; 87 atomic_t dead; 88 89 struct percpu_ref reqs; 90 91 unsigned long user_id; 92 93 struct __percpu kioctx_cpu *cpu; 94 95 /* 96 * For percpu reqs_available, number of slots we move to/from global 97 * counter at a time: 98 */ 99 unsigned req_batch; 100 /* 101 * This is what userspace passed to io_setup(), it's not used for 102 * anything but counting against the global max_reqs quota. 103 * 104 * The real limit is nr_events - 1, which will be larger (see 105 * aio_setup_ring()) 106 */ 107 unsigned max_reqs; 108 109 /* Size of ringbuffer, in units of struct io_event */ 110 unsigned nr_events; 111 112 unsigned long mmap_base; 113 unsigned long mmap_size; 114 115 struct page **ring_pages; 116 long nr_pages; 117 118 struct work_struct free_work; 119 120 /* 121 * signals when all in-flight requests are done 122 */ 123 struct ctx_rq_wait *rq_wait; 124 125 struct { 126 /* 127 * This counts the number of available slots in the ringbuffer, 128 * so we avoid overflowing it: it's decremented (if positive) 129 * when allocating a kiocb and incremented when the resulting 130 * io_event is pulled off the ringbuffer. 131 * 132 * We batch accesses to it with a percpu version. 133 */ 134 atomic_t reqs_available; 135 } ____cacheline_aligned_in_smp; 136 137 struct { 138 spinlock_t ctx_lock; 139 struct list_head active_reqs; /* used for cancellation */ 140 } ____cacheline_aligned_in_smp; 141 142 struct { 143 struct mutex ring_lock; 144 wait_queue_head_t wait; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 unsigned tail; 149 unsigned completed_events; 150 spinlock_t completion_lock; 151 } ____cacheline_aligned_in_smp; 152 153 struct page *internal_pages[AIO_RING_PAGES]; 154 struct file *aio_ring_file; 155 156 unsigned id; 157 }; 158 159 /* 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either 161 * cancelled or completed (this makes a certain amount of sense because 162 * successful cancellation - io_cancel() - does deliver the completion to 163 * userspace). 164 * 165 * And since most things don't implement kiocb cancellation and we'd really like 166 * kiocb completion to be lockless when possible, we use ki_cancel to 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel(). 169 */ 170 #define KIOCB_CANCELLED ((void *) (~0ULL)) 171 172 struct aio_kiocb { 173 struct kiocb common; 174 175 struct kioctx *ki_ctx; 176 kiocb_cancel_fn *ki_cancel; 177 178 struct iocb __user *ki_user_iocb; /* user's aiocb */ 179 __u64 ki_user_data; /* user's data for completion */ 180 181 struct list_head ki_list; /* the aio core uses this 182 * for cancellation */ 183 184 /* 185 * If the aio_resfd field of the userspace iocb is not zero, 186 * this is the underlying eventfd context to deliver events to. 187 */ 188 struct eventfd_ctx *ki_eventfd; 189 }; 190 191 /*------ sysctl variables----*/ 192 static DEFINE_SPINLOCK(aio_nr_lock); 193 unsigned long aio_nr; /* current system wide number of aio requests */ 194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 195 /*----end sysctl variables---*/ 196 197 static struct kmem_cache *kiocb_cachep; 198 static struct kmem_cache *kioctx_cachep; 199 200 static struct vfsmount *aio_mnt; 201 202 static const struct file_operations aio_ring_fops; 203 static const struct address_space_operations aio_ctx_aops; 204 205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 206 { 207 struct qstr this = QSTR_INIT("[aio]", 5); 208 struct file *file; 209 struct path path; 210 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 211 if (IS_ERR(inode)) 212 return ERR_CAST(inode); 213 214 inode->i_mapping->a_ops = &aio_ctx_aops; 215 inode->i_mapping->private_data = ctx; 216 inode->i_size = PAGE_SIZE * nr_pages; 217 218 path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this); 219 if (!path.dentry) { 220 iput(inode); 221 return ERR_PTR(-ENOMEM); 222 } 223 path.mnt = mntget(aio_mnt); 224 225 d_instantiate(path.dentry, inode); 226 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops); 227 if (IS_ERR(file)) { 228 path_put(&path); 229 return file; 230 } 231 232 file->f_flags = O_RDWR; 233 return file; 234 } 235 236 static struct dentry *aio_mount(struct file_system_type *fs_type, 237 int flags, const char *dev_name, void *data) 238 { 239 static const struct dentry_operations ops = { 240 .d_dname = simple_dname, 241 }; 242 return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC); 243 } 244 245 /* aio_setup 246 * Creates the slab caches used by the aio routines, panic on 247 * failure as this is done early during the boot sequence. 248 */ 249 static int __init aio_setup(void) 250 { 251 static struct file_system_type aio_fs = { 252 .name = "aio", 253 .mount = aio_mount, 254 .kill_sb = kill_anon_super, 255 }; 256 aio_mnt = kern_mount(&aio_fs); 257 if (IS_ERR(aio_mnt)) 258 panic("Failed to create aio fs mount."); 259 260 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 261 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 262 263 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 264 265 return 0; 266 } 267 __initcall(aio_setup); 268 269 static void put_aio_ring_file(struct kioctx *ctx) 270 { 271 struct file *aio_ring_file = ctx->aio_ring_file; 272 if (aio_ring_file) { 273 truncate_setsize(aio_ring_file->f_inode, 0); 274 275 /* Prevent further access to the kioctx from migratepages */ 276 spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock); 277 aio_ring_file->f_inode->i_mapping->private_data = NULL; 278 ctx->aio_ring_file = NULL; 279 spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock); 280 281 fput(aio_ring_file); 282 } 283 } 284 285 static void aio_free_ring(struct kioctx *ctx) 286 { 287 int i; 288 289 /* Disconnect the kiotx from the ring file. This prevents future 290 * accesses to the kioctx from page migration. 291 */ 292 put_aio_ring_file(ctx); 293 294 for (i = 0; i < ctx->nr_pages; i++) { 295 struct page *page; 296 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 297 page_count(ctx->ring_pages[i])); 298 page = ctx->ring_pages[i]; 299 if (!page) 300 continue; 301 ctx->ring_pages[i] = NULL; 302 put_page(page); 303 } 304 305 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 306 kfree(ctx->ring_pages); 307 ctx->ring_pages = NULL; 308 } 309 } 310 311 static int aio_ring_mremap(struct vm_area_struct *vma) 312 { 313 struct file *file = vma->vm_file; 314 struct mm_struct *mm = vma->vm_mm; 315 struct kioctx_table *table; 316 int i, res = -EINVAL; 317 318 spin_lock(&mm->ioctx_lock); 319 rcu_read_lock(); 320 table = rcu_dereference(mm->ioctx_table); 321 for (i = 0; i < table->nr; i++) { 322 struct kioctx *ctx; 323 324 ctx = table->table[i]; 325 if (ctx && ctx->aio_ring_file == file) { 326 if (!atomic_read(&ctx->dead)) { 327 ctx->user_id = ctx->mmap_base = vma->vm_start; 328 res = 0; 329 } 330 break; 331 } 332 } 333 334 rcu_read_unlock(); 335 spin_unlock(&mm->ioctx_lock); 336 return res; 337 } 338 339 static const struct vm_operations_struct aio_ring_vm_ops = { 340 .mremap = aio_ring_mremap, 341 #if IS_ENABLED(CONFIG_MMU) 342 .fault = filemap_fault, 343 .map_pages = filemap_map_pages, 344 .page_mkwrite = filemap_page_mkwrite, 345 #endif 346 }; 347 348 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 349 { 350 vma->vm_flags |= VM_DONTEXPAND; 351 vma->vm_ops = &aio_ring_vm_ops; 352 return 0; 353 } 354 355 static const struct file_operations aio_ring_fops = { 356 .mmap = aio_ring_mmap, 357 }; 358 359 #if IS_ENABLED(CONFIG_MIGRATION) 360 static int aio_migratepage(struct address_space *mapping, struct page *new, 361 struct page *old, enum migrate_mode mode) 362 { 363 struct kioctx *ctx; 364 unsigned long flags; 365 pgoff_t idx; 366 int rc; 367 368 rc = 0; 369 370 /* mapping->private_lock here protects against the kioctx teardown. */ 371 spin_lock(&mapping->private_lock); 372 ctx = mapping->private_data; 373 if (!ctx) { 374 rc = -EINVAL; 375 goto out; 376 } 377 378 /* The ring_lock mutex. The prevents aio_read_events() from writing 379 * to the ring's head, and prevents page migration from mucking in 380 * a partially initialized kiotx. 381 */ 382 if (!mutex_trylock(&ctx->ring_lock)) { 383 rc = -EAGAIN; 384 goto out; 385 } 386 387 idx = old->index; 388 if (idx < (pgoff_t)ctx->nr_pages) { 389 /* Make sure the old page hasn't already been changed */ 390 if (ctx->ring_pages[idx] != old) 391 rc = -EAGAIN; 392 } else 393 rc = -EINVAL; 394 395 if (rc != 0) 396 goto out_unlock; 397 398 /* Writeback must be complete */ 399 BUG_ON(PageWriteback(old)); 400 get_page(new); 401 402 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1); 403 if (rc != MIGRATEPAGE_SUCCESS) { 404 put_page(new); 405 goto out_unlock; 406 } 407 408 /* Take completion_lock to prevent other writes to the ring buffer 409 * while the old page is copied to the new. This prevents new 410 * events from being lost. 411 */ 412 spin_lock_irqsave(&ctx->completion_lock, flags); 413 migrate_page_copy(new, old); 414 BUG_ON(ctx->ring_pages[idx] != old); 415 ctx->ring_pages[idx] = new; 416 spin_unlock_irqrestore(&ctx->completion_lock, flags); 417 418 /* The old page is no longer accessible. */ 419 put_page(old); 420 421 out_unlock: 422 mutex_unlock(&ctx->ring_lock); 423 out: 424 spin_unlock(&mapping->private_lock); 425 return rc; 426 } 427 #endif 428 429 static const struct address_space_operations aio_ctx_aops = { 430 .set_page_dirty = __set_page_dirty_no_writeback, 431 #if IS_ENABLED(CONFIG_MIGRATION) 432 .migratepage = aio_migratepage, 433 #endif 434 }; 435 436 static int aio_setup_ring(struct kioctx *ctx) 437 { 438 struct aio_ring *ring; 439 unsigned nr_events = ctx->max_reqs; 440 struct mm_struct *mm = current->mm; 441 unsigned long size, unused; 442 int nr_pages; 443 int i; 444 struct file *file; 445 446 /* Compensate for the ring buffer's head/tail overlap entry */ 447 nr_events += 2; /* 1 is required, 2 for good luck */ 448 449 size = sizeof(struct aio_ring); 450 size += sizeof(struct io_event) * nr_events; 451 452 nr_pages = PFN_UP(size); 453 if (nr_pages < 0) 454 return -EINVAL; 455 456 file = aio_private_file(ctx, nr_pages); 457 if (IS_ERR(file)) { 458 ctx->aio_ring_file = NULL; 459 return -ENOMEM; 460 } 461 462 ctx->aio_ring_file = file; 463 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 464 / sizeof(struct io_event); 465 466 ctx->ring_pages = ctx->internal_pages; 467 if (nr_pages > AIO_RING_PAGES) { 468 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 469 GFP_KERNEL); 470 if (!ctx->ring_pages) { 471 put_aio_ring_file(ctx); 472 return -ENOMEM; 473 } 474 } 475 476 for (i = 0; i < nr_pages; i++) { 477 struct page *page; 478 page = find_or_create_page(file->f_inode->i_mapping, 479 i, GFP_HIGHUSER | __GFP_ZERO); 480 if (!page) 481 break; 482 pr_debug("pid(%d) page[%d]->count=%d\n", 483 current->pid, i, page_count(page)); 484 SetPageUptodate(page); 485 unlock_page(page); 486 487 ctx->ring_pages[i] = page; 488 } 489 ctx->nr_pages = i; 490 491 if (unlikely(i != nr_pages)) { 492 aio_free_ring(ctx); 493 return -ENOMEM; 494 } 495 496 ctx->mmap_size = nr_pages * PAGE_SIZE; 497 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 498 499 if (down_write_killable(&mm->mmap_sem)) { 500 ctx->mmap_size = 0; 501 aio_free_ring(ctx); 502 return -EINTR; 503 } 504 505 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 506 PROT_READ | PROT_WRITE, 507 MAP_SHARED, 0, &unused); 508 up_write(&mm->mmap_sem); 509 if (IS_ERR((void *)ctx->mmap_base)) { 510 ctx->mmap_size = 0; 511 aio_free_ring(ctx); 512 return -ENOMEM; 513 } 514 515 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 516 517 ctx->user_id = ctx->mmap_base; 518 ctx->nr_events = nr_events; /* trusted copy */ 519 520 ring = kmap_atomic(ctx->ring_pages[0]); 521 ring->nr = nr_events; /* user copy */ 522 ring->id = ~0U; 523 ring->head = ring->tail = 0; 524 ring->magic = AIO_RING_MAGIC; 525 ring->compat_features = AIO_RING_COMPAT_FEATURES; 526 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 527 ring->header_length = sizeof(struct aio_ring); 528 kunmap_atomic(ring); 529 flush_dcache_page(ctx->ring_pages[0]); 530 531 return 0; 532 } 533 534 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 535 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 536 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 537 538 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 539 { 540 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common); 541 struct kioctx *ctx = req->ki_ctx; 542 unsigned long flags; 543 544 spin_lock_irqsave(&ctx->ctx_lock, flags); 545 546 if (!req->ki_list.next) 547 list_add(&req->ki_list, &ctx->active_reqs); 548 549 req->ki_cancel = cancel; 550 551 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 552 } 553 EXPORT_SYMBOL(kiocb_set_cancel_fn); 554 555 static int kiocb_cancel(struct aio_kiocb *kiocb) 556 { 557 kiocb_cancel_fn *old, *cancel; 558 559 /* 560 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 561 * actually has a cancel function, hence the cmpxchg() 562 */ 563 564 cancel = ACCESS_ONCE(kiocb->ki_cancel); 565 do { 566 if (!cancel || cancel == KIOCB_CANCELLED) 567 return -EINVAL; 568 569 old = cancel; 570 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 571 } while (cancel != old); 572 573 return cancel(&kiocb->common); 574 } 575 576 static void free_ioctx(struct work_struct *work) 577 { 578 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 579 580 pr_debug("freeing %p\n", ctx); 581 582 aio_free_ring(ctx); 583 free_percpu(ctx->cpu); 584 percpu_ref_exit(&ctx->reqs); 585 percpu_ref_exit(&ctx->users); 586 kmem_cache_free(kioctx_cachep, ctx); 587 } 588 589 static void free_ioctx_reqs(struct percpu_ref *ref) 590 { 591 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 592 593 /* At this point we know that there are no any in-flight requests */ 594 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 595 complete(&ctx->rq_wait->comp); 596 597 INIT_WORK(&ctx->free_work, free_ioctx); 598 schedule_work(&ctx->free_work); 599 } 600 601 /* 602 * When this function runs, the kioctx has been removed from the "hash table" 603 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 604 * now it's safe to cancel any that need to be. 605 */ 606 static void free_ioctx_users(struct percpu_ref *ref) 607 { 608 struct kioctx *ctx = container_of(ref, struct kioctx, users); 609 struct aio_kiocb *req; 610 611 spin_lock_irq(&ctx->ctx_lock); 612 613 while (!list_empty(&ctx->active_reqs)) { 614 req = list_first_entry(&ctx->active_reqs, 615 struct aio_kiocb, ki_list); 616 617 list_del_init(&req->ki_list); 618 kiocb_cancel(req); 619 } 620 621 spin_unlock_irq(&ctx->ctx_lock); 622 623 percpu_ref_kill(&ctx->reqs); 624 percpu_ref_put(&ctx->reqs); 625 } 626 627 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 628 { 629 unsigned i, new_nr; 630 struct kioctx_table *table, *old; 631 struct aio_ring *ring; 632 633 spin_lock(&mm->ioctx_lock); 634 table = rcu_dereference_raw(mm->ioctx_table); 635 636 while (1) { 637 if (table) 638 for (i = 0; i < table->nr; i++) 639 if (!table->table[i]) { 640 ctx->id = i; 641 table->table[i] = ctx; 642 spin_unlock(&mm->ioctx_lock); 643 644 /* While kioctx setup is in progress, 645 * we are protected from page migration 646 * changes ring_pages by ->ring_lock. 647 */ 648 ring = kmap_atomic(ctx->ring_pages[0]); 649 ring->id = ctx->id; 650 kunmap_atomic(ring); 651 return 0; 652 } 653 654 new_nr = (table ? table->nr : 1) * 4; 655 spin_unlock(&mm->ioctx_lock); 656 657 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 658 new_nr, GFP_KERNEL); 659 if (!table) 660 return -ENOMEM; 661 662 table->nr = new_nr; 663 664 spin_lock(&mm->ioctx_lock); 665 old = rcu_dereference_raw(mm->ioctx_table); 666 667 if (!old) { 668 rcu_assign_pointer(mm->ioctx_table, table); 669 } else if (table->nr > old->nr) { 670 memcpy(table->table, old->table, 671 old->nr * sizeof(struct kioctx *)); 672 673 rcu_assign_pointer(mm->ioctx_table, table); 674 kfree_rcu(old, rcu); 675 } else { 676 kfree(table); 677 table = old; 678 } 679 } 680 } 681 682 static void aio_nr_sub(unsigned nr) 683 { 684 spin_lock(&aio_nr_lock); 685 if (WARN_ON(aio_nr - nr > aio_nr)) 686 aio_nr = 0; 687 else 688 aio_nr -= nr; 689 spin_unlock(&aio_nr_lock); 690 } 691 692 /* ioctx_alloc 693 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 694 */ 695 static struct kioctx *ioctx_alloc(unsigned nr_events) 696 { 697 struct mm_struct *mm = current->mm; 698 struct kioctx *ctx; 699 int err = -ENOMEM; 700 701 /* 702 * We keep track of the number of available ringbuffer slots, to prevent 703 * overflow (reqs_available), and we also use percpu counters for this. 704 * 705 * So since up to half the slots might be on other cpu's percpu counters 706 * and unavailable, double nr_events so userspace sees what they 707 * expected: additionally, we move req_batch slots to/from percpu 708 * counters at a time, so make sure that isn't 0: 709 */ 710 nr_events = max(nr_events, num_possible_cpus() * 4); 711 nr_events *= 2; 712 713 /* Prevent overflows */ 714 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 715 pr_debug("ENOMEM: nr_events too high\n"); 716 return ERR_PTR(-EINVAL); 717 } 718 719 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 720 return ERR_PTR(-EAGAIN); 721 722 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 723 if (!ctx) 724 return ERR_PTR(-ENOMEM); 725 726 ctx->max_reqs = nr_events; 727 728 spin_lock_init(&ctx->ctx_lock); 729 spin_lock_init(&ctx->completion_lock); 730 mutex_init(&ctx->ring_lock); 731 /* Protect against page migration throughout kiotx setup by keeping 732 * the ring_lock mutex held until setup is complete. */ 733 mutex_lock(&ctx->ring_lock); 734 init_waitqueue_head(&ctx->wait); 735 736 INIT_LIST_HEAD(&ctx->active_reqs); 737 738 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 739 goto err; 740 741 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 742 goto err; 743 744 ctx->cpu = alloc_percpu(struct kioctx_cpu); 745 if (!ctx->cpu) 746 goto err; 747 748 err = aio_setup_ring(ctx); 749 if (err < 0) 750 goto err; 751 752 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 753 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 754 if (ctx->req_batch < 1) 755 ctx->req_batch = 1; 756 757 /* limit the number of system wide aios */ 758 spin_lock(&aio_nr_lock); 759 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 760 aio_nr + nr_events < aio_nr) { 761 spin_unlock(&aio_nr_lock); 762 err = -EAGAIN; 763 goto err_ctx; 764 } 765 aio_nr += ctx->max_reqs; 766 spin_unlock(&aio_nr_lock); 767 768 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 769 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 770 771 err = ioctx_add_table(ctx, mm); 772 if (err) 773 goto err_cleanup; 774 775 /* Release the ring_lock mutex now that all setup is complete. */ 776 mutex_unlock(&ctx->ring_lock); 777 778 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 779 ctx, ctx->user_id, mm, ctx->nr_events); 780 return ctx; 781 782 err_cleanup: 783 aio_nr_sub(ctx->max_reqs); 784 err_ctx: 785 atomic_set(&ctx->dead, 1); 786 if (ctx->mmap_size) 787 vm_munmap(ctx->mmap_base, ctx->mmap_size); 788 aio_free_ring(ctx); 789 err: 790 mutex_unlock(&ctx->ring_lock); 791 free_percpu(ctx->cpu); 792 percpu_ref_exit(&ctx->reqs); 793 percpu_ref_exit(&ctx->users); 794 kmem_cache_free(kioctx_cachep, ctx); 795 pr_debug("error allocating ioctx %d\n", err); 796 return ERR_PTR(err); 797 } 798 799 /* kill_ioctx 800 * Cancels all outstanding aio requests on an aio context. Used 801 * when the processes owning a context have all exited to encourage 802 * the rapid destruction of the kioctx. 803 */ 804 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 805 struct ctx_rq_wait *wait) 806 { 807 struct kioctx_table *table; 808 809 spin_lock(&mm->ioctx_lock); 810 if (atomic_xchg(&ctx->dead, 1)) { 811 spin_unlock(&mm->ioctx_lock); 812 return -EINVAL; 813 } 814 815 table = rcu_dereference_raw(mm->ioctx_table); 816 WARN_ON(ctx != table->table[ctx->id]); 817 table->table[ctx->id] = NULL; 818 spin_unlock(&mm->ioctx_lock); 819 820 /* percpu_ref_kill() will do the necessary call_rcu() */ 821 wake_up_all(&ctx->wait); 822 823 /* 824 * It'd be more correct to do this in free_ioctx(), after all 825 * the outstanding kiocbs have finished - but by then io_destroy 826 * has already returned, so io_setup() could potentially return 827 * -EAGAIN with no ioctxs actually in use (as far as userspace 828 * could tell). 829 */ 830 aio_nr_sub(ctx->max_reqs); 831 832 if (ctx->mmap_size) 833 vm_munmap(ctx->mmap_base, ctx->mmap_size); 834 835 ctx->rq_wait = wait; 836 percpu_ref_kill(&ctx->users); 837 return 0; 838 } 839 840 /* 841 * exit_aio: called when the last user of mm goes away. At this point, there is 842 * no way for any new requests to be submited or any of the io_* syscalls to be 843 * called on the context. 844 * 845 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 846 * them. 847 */ 848 void exit_aio(struct mm_struct *mm) 849 { 850 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 851 struct ctx_rq_wait wait; 852 int i, skipped; 853 854 if (!table) 855 return; 856 857 atomic_set(&wait.count, table->nr); 858 init_completion(&wait.comp); 859 860 skipped = 0; 861 for (i = 0; i < table->nr; ++i) { 862 struct kioctx *ctx = table->table[i]; 863 864 if (!ctx) { 865 skipped++; 866 continue; 867 } 868 869 /* 870 * We don't need to bother with munmap() here - exit_mmap(mm) 871 * is coming and it'll unmap everything. And we simply can't, 872 * this is not necessarily our ->mm. 873 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 874 * that it needs to unmap the area, just set it to 0. 875 */ 876 ctx->mmap_size = 0; 877 kill_ioctx(mm, ctx, &wait); 878 } 879 880 if (!atomic_sub_and_test(skipped, &wait.count)) { 881 /* Wait until all IO for the context are done. */ 882 wait_for_completion(&wait.comp); 883 } 884 885 RCU_INIT_POINTER(mm->ioctx_table, NULL); 886 kfree(table); 887 } 888 889 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 890 { 891 struct kioctx_cpu *kcpu; 892 unsigned long flags; 893 894 local_irq_save(flags); 895 kcpu = this_cpu_ptr(ctx->cpu); 896 kcpu->reqs_available += nr; 897 898 while (kcpu->reqs_available >= ctx->req_batch * 2) { 899 kcpu->reqs_available -= ctx->req_batch; 900 atomic_add(ctx->req_batch, &ctx->reqs_available); 901 } 902 903 local_irq_restore(flags); 904 } 905 906 static bool get_reqs_available(struct kioctx *ctx) 907 { 908 struct kioctx_cpu *kcpu; 909 bool ret = false; 910 unsigned long flags; 911 912 local_irq_save(flags); 913 kcpu = this_cpu_ptr(ctx->cpu); 914 if (!kcpu->reqs_available) { 915 int old, avail = atomic_read(&ctx->reqs_available); 916 917 do { 918 if (avail < ctx->req_batch) 919 goto out; 920 921 old = avail; 922 avail = atomic_cmpxchg(&ctx->reqs_available, 923 avail, avail - ctx->req_batch); 924 } while (avail != old); 925 926 kcpu->reqs_available += ctx->req_batch; 927 } 928 929 ret = true; 930 kcpu->reqs_available--; 931 out: 932 local_irq_restore(flags); 933 return ret; 934 } 935 936 /* refill_reqs_available 937 * Updates the reqs_available reference counts used for tracking the 938 * number of free slots in the completion ring. This can be called 939 * from aio_complete() (to optimistically update reqs_available) or 940 * from aio_get_req() (the we're out of events case). It must be 941 * called holding ctx->completion_lock. 942 */ 943 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 944 unsigned tail) 945 { 946 unsigned events_in_ring, completed; 947 948 /* Clamp head since userland can write to it. */ 949 head %= ctx->nr_events; 950 if (head <= tail) 951 events_in_ring = tail - head; 952 else 953 events_in_ring = ctx->nr_events - (head - tail); 954 955 completed = ctx->completed_events; 956 if (events_in_ring < completed) 957 completed -= events_in_ring; 958 else 959 completed = 0; 960 961 if (!completed) 962 return; 963 964 ctx->completed_events -= completed; 965 put_reqs_available(ctx, completed); 966 } 967 968 /* user_refill_reqs_available 969 * Called to refill reqs_available when aio_get_req() encounters an 970 * out of space in the completion ring. 971 */ 972 static void user_refill_reqs_available(struct kioctx *ctx) 973 { 974 spin_lock_irq(&ctx->completion_lock); 975 if (ctx->completed_events) { 976 struct aio_ring *ring; 977 unsigned head; 978 979 /* Access of ring->head may race with aio_read_events_ring() 980 * here, but that's okay since whether we read the old version 981 * or the new version, and either will be valid. The important 982 * part is that head cannot pass tail since we prevent 983 * aio_complete() from updating tail by holding 984 * ctx->completion_lock. Even if head is invalid, the check 985 * against ctx->completed_events below will make sure we do the 986 * safe/right thing. 987 */ 988 ring = kmap_atomic(ctx->ring_pages[0]); 989 head = ring->head; 990 kunmap_atomic(ring); 991 992 refill_reqs_available(ctx, head, ctx->tail); 993 } 994 995 spin_unlock_irq(&ctx->completion_lock); 996 } 997 998 /* aio_get_req 999 * Allocate a slot for an aio request. 1000 * Returns NULL if no requests are free. 1001 */ 1002 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1003 { 1004 struct aio_kiocb *req; 1005 1006 if (!get_reqs_available(ctx)) { 1007 user_refill_reqs_available(ctx); 1008 if (!get_reqs_available(ctx)) 1009 return NULL; 1010 } 1011 1012 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 1013 if (unlikely(!req)) 1014 goto out_put; 1015 1016 percpu_ref_get(&ctx->reqs); 1017 1018 req->ki_ctx = ctx; 1019 return req; 1020 out_put: 1021 put_reqs_available(ctx, 1); 1022 return NULL; 1023 } 1024 1025 static void kiocb_free(struct aio_kiocb *req) 1026 { 1027 if (req->common.ki_filp) 1028 fput(req->common.ki_filp); 1029 if (req->ki_eventfd != NULL) 1030 eventfd_ctx_put(req->ki_eventfd); 1031 kmem_cache_free(kiocb_cachep, req); 1032 } 1033 1034 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1035 { 1036 struct aio_ring __user *ring = (void __user *)ctx_id; 1037 struct mm_struct *mm = current->mm; 1038 struct kioctx *ctx, *ret = NULL; 1039 struct kioctx_table *table; 1040 unsigned id; 1041 1042 if (get_user(id, &ring->id)) 1043 return NULL; 1044 1045 rcu_read_lock(); 1046 table = rcu_dereference(mm->ioctx_table); 1047 1048 if (!table || id >= table->nr) 1049 goto out; 1050 1051 ctx = table->table[id]; 1052 if (ctx && ctx->user_id == ctx_id) { 1053 percpu_ref_get(&ctx->users); 1054 ret = ctx; 1055 } 1056 out: 1057 rcu_read_unlock(); 1058 return ret; 1059 } 1060 1061 /* aio_complete 1062 * Called when the io request on the given iocb is complete. 1063 */ 1064 static void aio_complete(struct kiocb *kiocb, long res, long res2) 1065 { 1066 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common); 1067 struct kioctx *ctx = iocb->ki_ctx; 1068 struct aio_ring *ring; 1069 struct io_event *ev_page, *event; 1070 unsigned tail, pos, head; 1071 unsigned long flags; 1072 1073 /* 1074 * Special case handling for sync iocbs: 1075 * - events go directly into the iocb for fast handling 1076 * - the sync task with the iocb in its stack holds the single iocb 1077 * ref, no other paths have a way to get another ref 1078 * - the sync task helpfully left a reference to itself in the iocb 1079 */ 1080 BUG_ON(is_sync_kiocb(kiocb)); 1081 1082 if (iocb->ki_list.next) { 1083 unsigned long flags; 1084 1085 spin_lock_irqsave(&ctx->ctx_lock, flags); 1086 list_del(&iocb->ki_list); 1087 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1088 } 1089 1090 /* 1091 * Add a completion event to the ring buffer. Must be done holding 1092 * ctx->completion_lock to prevent other code from messing with the tail 1093 * pointer since we might be called from irq context. 1094 */ 1095 spin_lock_irqsave(&ctx->completion_lock, flags); 1096 1097 tail = ctx->tail; 1098 pos = tail + AIO_EVENTS_OFFSET; 1099 1100 if (++tail >= ctx->nr_events) 1101 tail = 0; 1102 1103 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1104 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1105 1106 event->obj = (u64)(unsigned long)iocb->ki_user_iocb; 1107 event->data = iocb->ki_user_data; 1108 event->res = res; 1109 event->res2 = res2; 1110 1111 kunmap_atomic(ev_page); 1112 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1113 1114 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 1115 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data, 1116 res, res2); 1117 1118 /* after flagging the request as done, we 1119 * must never even look at it again 1120 */ 1121 smp_wmb(); /* make event visible before updating tail */ 1122 1123 ctx->tail = tail; 1124 1125 ring = kmap_atomic(ctx->ring_pages[0]); 1126 head = ring->head; 1127 ring->tail = tail; 1128 kunmap_atomic(ring); 1129 flush_dcache_page(ctx->ring_pages[0]); 1130 1131 ctx->completed_events++; 1132 if (ctx->completed_events > 1) 1133 refill_reqs_available(ctx, head, tail); 1134 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1135 1136 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1137 1138 /* 1139 * Check if the user asked us to deliver the result through an 1140 * eventfd. The eventfd_signal() function is safe to be called 1141 * from IRQ context. 1142 */ 1143 if (iocb->ki_eventfd != NULL) 1144 eventfd_signal(iocb->ki_eventfd, 1); 1145 1146 /* everything turned out well, dispose of the aiocb. */ 1147 kiocb_free(iocb); 1148 1149 /* 1150 * We have to order our ring_info tail store above and test 1151 * of the wait list below outside the wait lock. This is 1152 * like in wake_up_bit() where clearing a bit has to be 1153 * ordered with the unlocked test. 1154 */ 1155 smp_mb(); 1156 1157 if (waitqueue_active(&ctx->wait)) 1158 wake_up(&ctx->wait); 1159 1160 percpu_ref_put(&ctx->reqs); 1161 } 1162 1163 /* aio_read_events_ring 1164 * Pull an event off of the ioctx's event ring. Returns the number of 1165 * events fetched 1166 */ 1167 static long aio_read_events_ring(struct kioctx *ctx, 1168 struct io_event __user *event, long nr) 1169 { 1170 struct aio_ring *ring; 1171 unsigned head, tail, pos; 1172 long ret = 0; 1173 int copy_ret; 1174 1175 /* 1176 * The mutex can block and wake us up and that will cause 1177 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1178 * and repeat. This should be rare enough that it doesn't cause 1179 * peformance issues. See the comment in read_events() for more detail. 1180 */ 1181 sched_annotate_sleep(); 1182 mutex_lock(&ctx->ring_lock); 1183 1184 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1185 ring = kmap_atomic(ctx->ring_pages[0]); 1186 head = ring->head; 1187 tail = ring->tail; 1188 kunmap_atomic(ring); 1189 1190 /* 1191 * Ensure that once we've read the current tail pointer, that 1192 * we also see the events that were stored up to the tail. 1193 */ 1194 smp_rmb(); 1195 1196 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1197 1198 if (head == tail) 1199 goto out; 1200 1201 head %= ctx->nr_events; 1202 tail %= ctx->nr_events; 1203 1204 while (ret < nr) { 1205 long avail; 1206 struct io_event *ev; 1207 struct page *page; 1208 1209 avail = (head <= tail ? tail : ctx->nr_events) - head; 1210 if (head == tail) 1211 break; 1212 1213 avail = min(avail, nr - ret); 1214 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 1215 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 1216 1217 pos = head + AIO_EVENTS_OFFSET; 1218 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1219 pos %= AIO_EVENTS_PER_PAGE; 1220 1221 ev = kmap(page); 1222 copy_ret = copy_to_user(event + ret, ev + pos, 1223 sizeof(*ev) * avail); 1224 kunmap(page); 1225 1226 if (unlikely(copy_ret)) { 1227 ret = -EFAULT; 1228 goto out; 1229 } 1230 1231 ret += avail; 1232 head += avail; 1233 head %= ctx->nr_events; 1234 } 1235 1236 ring = kmap_atomic(ctx->ring_pages[0]); 1237 ring->head = head; 1238 kunmap_atomic(ring); 1239 flush_dcache_page(ctx->ring_pages[0]); 1240 1241 pr_debug("%li h%u t%u\n", ret, head, tail); 1242 out: 1243 mutex_unlock(&ctx->ring_lock); 1244 1245 return ret; 1246 } 1247 1248 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1249 struct io_event __user *event, long *i) 1250 { 1251 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1252 1253 if (ret > 0) 1254 *i += ret; 1255 1256 if (unlikely(atomic_read(&ctx->dead))) 1257 ret = -EINVAL; 1258 1259 if (!*i) 1260 *i = ret; 1261 1262 return ret < 0 || *i >= min_nr; 1263 } 1264 1265 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1266 struct io_event __user *event, 1267 struct timespec __user *timeout) 1268 { 1269 ktime_t until = { .tv64 = KTIME_MAX }; 1270 long ret = 0; 1271 1272 if (timeout) { 1273 struct timespec ts; 1274 1275 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1276 return -EFAULT; 1277 1278 until = timespec_to_ktime(ts); 1279 } 1280 1281 /* 1282 * Note that aio_read_events() is being called as the conditional - i.e. 1283 * we're calling it after prepare_to_wait() has set task state to 1284 * TASK_INTERRUPTIBLE. 1285 * 1286 * But aio_read_events() can block, and if it blocks it's going to flip 1287 * the task state back to TASK_RUNNING. 1288 * 1289 * This should be ok, provided it doesn't flip the state back to 1290 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1291 * will only happen if the mutex_lock() call blocks, and we then find 1292 * the ringbuffer empty. So in practice we should be ok, but it's 1293 * something to be aware of when touching this code. 1294 */ 1295 if (until.tv64 == 0) 1296 aio_read_events(ctx, min_nr, nr, event, &ret); 1297 else 1298 wait_event_interruptible_hrtimeout(ctx->wait, 1299 aio_read_events(ctx, min_nr, nr, event, &ret), 1300 until); 1301 1302 if (!ret && signal_pending(current)) 1303 ret = -EINTR; 1304 1305 return ret; 1306 } 1307 1308 /* sys_io_setup: 1309 * Create an aio_context capable of receiving at least nr_events. 1310 * ctxp must not point to an aio_context that already exists, and 1311 * must be initialized to 0 prior to the call. On successful 1312 * creation of the aio_context, *ctxp is filled in with the resulting 1313 * handle. May fail with -EINVAL if *ctxp is not initialized, 1314 * if the specified nr_events exceeds internal limits. May fail 1315 * with -EAGAIN if the specified nr_events exceeds the user's limit 1316 * of available events. May fail with -ENOMEM if insufficient kernel 1317 * resources are available. May fail with -EFAULT if an invalid 1318 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1319 * implemented. 1320 */ 1321 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1322 { 1323 struct kioctx *ioctx = NULL; 1324 unsigned long ctx; 1325 long ret; 1326 1327 ret = get_user(ctx, ctxp); 1328 if (unlikely(ret)) 1329 goto out; 1330 1331 ret = -EINVAL; 1332 if (unlikely(ctx || nr_events == 0)) { 1333 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1334 ctx, nr_events); 1335 goto out; 1336 } 1337 1338 ioctx = ioctx_alloc(nr_events); 1339 ret = PTR_ERR(ioctx); 1340 if (!IS_ERR(ioctx)) { 1341 ret = put_user(ioctx->user_id, ctxp); 1342 if (ret) 1343 kill_ioctx(current->mm, ioctx, NULL); 1344 percpu_ref_put(&ioctx->users); 1345 } 1346 1347 out: 1348 return ret; 1349 } 1350 1351 /* sys_io_destroy: 1352 * Destroy the aio_context specified. May cancel any outstanding 1353 * AIOs and block on completion. Will fail with -ENOSYS if not 1354 * implemented. May fail with -EINVAL if the context pointed to 1355 * is invalid. 1356 */ 1357 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1358 { 1359 struct kioctx *ioctx = lookup_ioctx(ctx); 1360 if (likely(NULL != ioctx)) { 1361 struct ctx_rq_wait wait; 1362 int ret; 1363 1364 init_completion(&wait.comp); 1365 atomic_set(&wait.count, 1); 1366 1367 /* Pass requests_done to kill_ioctx() where it can be set 1368 * in a thread-safe way. If we try to set it here then we have 1369 * a race condition if two io_destroy() called simultaneously. 1370 */ 1371 ret = kill_ioctx(current->mm, ioctx, &wait); 1372 percpu_ref_put(&ioctx->users); 1373 1374 /* Wait until all IO for the context are done. Otherwise kernel 1375 * keep using user-space buffers even if user thinks the context 1376 * is destroyed. 1377 */ 1378 if (!ret) 1379 wait_for_completion(&wait.comp); 1380 1381 return ret; 1382 } 1383 pr_debug("EINVAL: invalid context id\n"); 1384 return -EINVAL; 1385 } 1386 1387 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *); 1388 1389 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len, 1390 struct iovec **iovec, 1391 bool compat, 1392 struct iov_iter *iter) 1393 { 1394 #ifdef CONFIG_COMPAT 1395 if (compat) 1396 return compat_import_iovec(rw, 1397 (struct compat_iovec __user *)buf, 1398 len, UIO_FASTIOV, iovec, iter); 1399 #endif 1400 return import_iovec(rw, (struct iovec __user *)buf, 1401 len, UIO_FASTIOV, iovec, iter); 1402 } 1403 1404 /* 1405 * aio_run_iocb: 1406 * Performs the initial checks and io submission. 1407 */ 1408 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1409 char __user *buf, size_t len, bool compat) 1410 { 1411 struct file *file = req->ki_filp; 1412 ssize_t ret; 1413 int rw; 1414 fmode_t mode; 1415 rw_iter_op *iter_op; 1416 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1417 struct iov_iter iter; 1418 1419 switch (opcode) { 1420 case IOCB_CMD_PREAD: 1421 case IOCB_CMD_PREADV: 1422 mode = FMODE_READ; 1423 rw = READ; 1424 iter_op = file->f_op->read_iter; 1425 goto rw_common; 1426 1427 case IOCB_CMD_PWRITE: 1428 case IOCB_CMD_PWRITEV: 1429 mode = FMODE_WRITE; 1430 rw = WRITE; 1431 iter_op = file->f_op->write_iter; 1432 goto rw_common; 1433 rw_common: 1434 if (unlikely(!(file->f_mode & mode))) 1435 return -EBADF; 1436 1437 if (!iter_op) 1438 return -EINVAL; 1439 1440 if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV) 1441 ret = aio_setup_vectored_rw(rw, buf, len, 1442 &iovec, compat, &iter); 1443 else { 1444 ret = import_single_range(rw, buf, len, iovec, &iter); 1445 iovec = NULL; 1446 } 1447 if (!ret) 1448 ret = rw_verify_area(rw, file, &req->ki_pos, 1449 iov_iter_count(&iter)); 1450 if (ret < 0) { 1451 kfree(iovec); 1452 return ret; 1453 } 1454 1455 if (rw == WRITE) 1456 file_start_write(file); 1457 1458 ret = iter_op(req, &iter); 1459 1460 if (rw == WRITE) 1461 file_end_write(file); 1462 kfree(iovec); 1463 break; 1464 1465 case IOCB_CMD_FDSYNC: 1466 if (!file->f_op->aio_fsync) 1467 return -EINVAL; 1468 1469 ret = file->f_op->aio_fsync(req, 1); 1470 break; 1471 1472 case IOCB_CMD_FSYNC: 1473 if (!file->f_op->aio_fsync) 1474 return -EINVAL; 1475 1476 ret = file->f_op->aio_fsync(req, 0); 1477 break; 1478 1479 default: 1480 pr_debug("EINVAL: no operation provided\n"); 1481 return -EINVAL; 1482 } 1483 1484 if (ret != -EIOCBQUEUED) { 1485 /* 1486 * There's no easy way to restart the syscall since other AIO's 1487 * may be already running. Just fail this IO with EINTR. 1488 */ 1489 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1490 ret == -ERESTARTNOHAND || 1491 ret == -ERESTART_RESTARTBLOCK)) 1492 ret = -EINTR; 1493 aio_complete(req, ret, 0); 1494 } 1495 1496 return 0; 1497 } 1498 1499 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1500 struct iocb *iocb, bool compat) 1501 { 1502 struct aio_kiocb *req; 1503 ssize_t ret; 1504 1505 /* enforce forwards compatibility on users */ 1506 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1507 pr_debug("EINVAL: reserve field set\n"); 1508 return -EINVAL; 1509 } 1510 1511 /* prevent overflows */ 1512 if (unlikely( 1513 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1514 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1515 ((ssize_t)iocb->aio_nbytes < 0) 1516 )) { 1517 pr_debug("EINVAL: overflow check\n"); 1518 return -EINVAL; 1519 } 1520 1521 req = aio_get_req(ctx); 1522 if (unlikely(!req)) 1523 return -EAGAIN; 1524 1525 req->common.ki_filp = fget(iocb->aio_fildes); 1526 if (unlikely(!req->common.ki_filp)) { 1527 ret = -EBADF; 1528 goto out_put_req; 1529 } 1530 req->common.ki_pos = iocb->aio_offset; 1531 req->common.ki_complete = aio_complete; 1532 req->common.ki_flags = iocb_flags(req->common.ki_filp); 1533 1534 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1535 /* 1536 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1537 * instance of the file* now. The file descriptor must be 1538 * an eventfd() fd, and will be signaled for each completed 1539 * event using the eventfd_signal() function. 1540 */ 1541 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1542 if (IS_ERR(req->ki_eventfd)) { 1543 ret = PTR_ERR(req->ki_eventfd); 1544 req->ki_eventfd = NULL; 1545 goto out_put_req; 1546 } 1547 1548 req->common.ki_flags |= IOCB_EVENTFD; 1549 } 1550 1551 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1552 if (unlikely(ret)) { 1553 pr_debug("EFAULT: aio_key\n"); 1554 goto out_put_req; 1555 } 1556 1557 req->ki_user_iocb = user_iocb; 1558 req->ki_user_data = iocb->aio_data; 1559 1560 ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode, 1561 (char __user *)(unsigned long)iocb->aio_buf, 1562 iocb->aio_nbytes, 1563 compat); 1564 if (ret) 1565 goto out_put_req; 1566 1567 return 0; 1568 out_put_req: 1569 put_reqs_available(ctx, 1); 1570 percpu_ref_put(&ctx->reqs); 1571 kiocb_free(req); 1572 return ret; 1573 } 1574 1575 long do_io_submit(aio_context_t ctx_id, long nr, 1576 struct iocb __user *__user *iocbpp, bool compat) 1577 { 1578 struct kioctx *ctx; 1579 long ret = 0; 1580 int i = 0; 1581 struct blk_plug plug; 1582 1583 if (unlikely(nr < 0)) 1584 return -EINVAL; 1585 1586 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1587 nr = LONG_MAX/sizeof(*iocbpp); 1588 1589 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1590 return -EFAULT; 1591 1592 ctx = lookup_ioctx(ctx_id); 1593 if (unlikely(!ctx)) { 1594 pr_debug("EINVAL: invalid context id\n"); 1595 return -EINVAL; 1596 } 1597 1598 blk_start_plug(&plug); 1599 1600 /* 1601 * AKPM: should this return a partial result if some of the IOs were 1602 * successfully submitted? 1603 */ 1604 for (i=0; i<nr; i++) { 1605 struct iocb __user *user_iocb; 1606 struct iocb tmp; 1607 1608 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1609 ret = -EFAULT; 1610 break; 1611 } 1612 1613 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1614 ret = -EFAULT; 1615 break; 1616 } 1617 1618 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1619 if (ret) 1620 break; 1621 } 1622 blk_finish_plug(&plug); 1623 1624 percpu_ref_put(&ctx->users); 1625 return i ? i : ret; 1626 } 1627 1628 /* sys_io_submit: 1629 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1630 * the number of iocbs queued. May return -EINVAL if the aio_context 1631 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1632 * *iocbpp[0] is not properly initialized, if the operation specified 1633 * is invalid for the file descriptor in the iocb. May fail with 1634 * -EFAULT if any of the data structures point to invalid data. May 1635 * fail with -EBADF if the file descriptor specified in the first 1636 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1637 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1638 * fail with -ENOSYS if not implemented. 1639 */ 1640 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1641 struct iocb __user * __user *, iocbpp) 1642 { 1643 return do_io_submit(ctx_id, nr, iocbpp, 0); 1644 } 1645 1646 /* lookup_kiocb 1647 * Finds a given iocb for cancellation. 1648 */ 1649 static struct aio_kiocb * 1650 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) 1651 { 1652 struct aio_kiocb *kiocb; 1653 1654 assert_spin_locked(&ctx->ctx_lock); 1655 1656 if (key != KIOCB_KEY) 1657 return NULL; 1658 1659 /* TODO: use a hash or array, this sucks. */ 1660 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 1661 if (kiocb->ki_user_iocb == iocb) 1662 return kiocb; 1663 } 1664 return NULL; 1665 } 1666 1667 /* sys_io_cancel: 1668 * Attempts to cancel an iocb previously passed to io_submit. If 1669 * the operation is successfully cancelled, the resulting event is 1670 * copied into the memory pointed to by result without being placed 1671 * into the completion queue and 0 is returned. May fail with 1672 * -EFAULT if any of the data structures pointed to are invalid. 1673 * May fail with -EINVAL if aio_context specified by ctx_id is 1674 * invalid. May fail with -EAGAIN if the iocb specified was not 1675 * cancelled. Will fail with -ENOSYS if not implemented. 1676 */ 1677 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1678 struct io_event __user *, result) 1679 { 1680 struct kioctx *ctx; 1681 struct aio_kiocb *kiocb; 1682 u32 key; 1683 int ret; 1684 1685 ret = get_user(key, &iocb->aio_key); 1686 if (unlikely(ret)) 1687 return -EFAULT; 1688 1689 ctx = lookup_ioctx(ctx_id); 1690 if (unlikely(!ctx)) 1691 return -EINVAL; 1692 1693 spin_lock_irq(&ctx->ctx_lock); 1694 1695 kiocb = lookup_kiocb(ctx, iocb, key); 1696 if (kiocb) 1697 ret = kiocb_cancel(kiocb); 1698 else 1699 ret = -EINVAL; 1700 1701 spin_unlock_irq(&ctx->ctx_lock); 1702 1703 if (!ret) { 1704 /* 1705 * The result argument is no longer used - the io_event is 1706 * always delivered via the ring buffer. -EINPROGRESS indicates 1707 * cancellation is progress: 1708 */ 1709 ret = -EINPROGRESS; 1710 } 1711 1712 percpu_ref_put(&ctx->users); 1713 1714 return ret; 1715 } 1716 1717 /* io_getevents: 1718 * Attempts to read at least min_nr events and up to nr events from 1719 * the completion queue for the aio_context specified by ctx_id. If 1720 * it succeeds, the number of read events is returned. May fail with 1721 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1722 * out of range, if timeout is out of range. May fail with -EFAULT 1723 * if any of the memory specified is invalid. May return 0 or 1724 * < min_nr if the timeout specified by timeout has elapsed 1725 * before sufficient events are available, where timeout == NULL 1726 * specifies an infinite timeout. Note that the timeout pointed to by 1727 * timeout is relative. Will fail with -ENOSYS if not implemented. 1728 */ 1729 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1730 long, min_nr, 1731 long, nr, 1732 struct io_event __user *, events, 1733 struct timespec __user *, timeout) 1734 { 1735 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1736 long ret = -EINVAL; 1737 1738 if (likely(ioctx)) { 1739 if (likely(min_nr <= nr && min_nr >= 0)) 1740 ret = read_events(ioctx, min_nr, nr, events, timeout); 1741 percpu_ref_put(&ioctx->users); 1742 } 1743 return ret; 1744 } 1745