1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/uio.h> 19 20 #define DEBUG 0 21 22 #include <linux/sched.h> 23 #include <linux/fs.h> 24 #include <linux/file.h> 25 #include <linux/mm.h> 26 #include <linux/mman.h> 27 #include <linux/mmu_context.h> 28 #include <linux/slab.h> 29 #include <linux/timer.h> 30 #include <linux/aio.h> 31 #include <linux/highmem.h> 32 #include <linux/workqueue.h> 33 #include <linux/security.h> 34 #include <linux/eventfd.h> 35 36 #include <asm/kmap_types.h> 37 #include <asm/uaccess.h> 38 39 #if DEBUG > 1 40 #define dprintk printk 41 #else 42 #define dprintk(x...) do { ; } while (0) 43 #endif 44 45 /*------ sysctl variables----*/ 46 static DEFINE_SPINLOCK(aio_nr_lock); 47 unsigned long aio_nr; /* current system wide number of aio requests */ 48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 49 /*----end sysctl variables---*/ 50 51 static struct kmem_cache *kiocb_cachep; 52 static struct kmem_cache *kioctx_cachep; 53 54 static struct workqueue_struct *aio_wq; 55 56 /* Used for rare fput completion. */ 57 static void aio_fput_routine(struct work_struct *); 58 static DECLARE_WORK(fput_work, aio_fput_routine); 59 60 static DEFINE_SPINLOCK(fput_lock); 61 static LIST_HEAD(fput_head); 62 63 static void aio_kick_handler(struct work_struct *); 64 static void aio_queue_work(struct kioctx *); 65 66 /* aio_setup 67 * Creates the slab caches used by the aio routines, panic on 68 * failure as this is done early during the boot sequence. 69 */ 70 static int __init aio_setup(void) 71 { 72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 74 75 aio_wq = create_workqueue("aio"); 76 77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 78 79 return 0; 80 } 81 82 static void aio_free_ring(struct kioctx *ctx) 83 { 84 struct aio_ring_info *info = &ctx->ring_info; 85 long i; 86 87 for (i=0; i<info->nr_pages; i++) 88 put_page(info->ring_pages[i]); 89 90 if (info->mmap_size) { 91 down_write(&ctx->mm->mmap_sem); 92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 93 up_write(&ctx->mm->mmap_sem); 94 } 95 96 if (info->ring_pages && info->ring_pages != info->internal_pages) 97 kfree(info->ring_pages); 98 info->ring_pages = NULL; 99 info->nr = 0; 100 } 101 102 static int aio_setup_ring(struct kioctx *ctx) 103 { 104 struct aio_ring *ring; 105 struct aio_ring_info *info = &ctx->ring_info; 106 unsigned nr_events = ctx->max_reqs; 107 unsigned long size; 108 int nr_pages; 109 110 /* Compensate for the ring buffer's head/tail overlap entry */ 111 nr_events += 2; /* 1 is required, 2 for good luck */ 112 113 size = sizeof(struct aio_ring); 114 size += sizeof(struct io_event) * nr_events; 115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 116 117 if (nr_pages < 0) 118 return -EINVAL; 119 120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 121 122 info->nr = 0; 123 info->ring_pages = info->internal_pages; 124 if (nr_pages > AIO_RING_PAGES) { 125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 126 if (!info->ring_pages) 127 return -ENOMEM; 128 } 129 130 info->mmap_size = nr_pages * PAGE_SIZE; 131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 132 down_write(&ctx->mm->mmap_sem); 133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 135 0); 136 if (IS_ERR((void *)info->mmap_base)) { 137 up_write(&ctx->mm->mmap_sem); 138 info->mmap_size = 0; 139 aio_free_ring(ctx); 140 return -EAGAIN; 141 } 142 143 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 144 info->nr_pages = get_user_pages(current, ctx->mm, 145 info->mmap_base, nr_pages, 146 1, 0, info->ring_pages, NULL); 147 up_write(&ctx->mm->mmap_sem); 148 149 if (unlikely(info->nr_pages != nr_pages)) { 150 aio_free_ring(ctx); 151 return -EAGAIN; 152 } 153 154 ctx->user_id = info->mmap_base; 155 156 info->nr = nr_events; /* trusted copy */ 157 158 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 159 ring->nr = nr_events; /* user copy */ 160 ring->id = ctx->user_id; 161 ring->head = ring->tail = 0; 162 ring->magic = AIO_RING_MAGIC; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 165 ring->header_length = sizeof(struct aio_ring); 166 kunmap_atomic(ring, KM_USER0); 167 168 return 0; 169 } 170 171 172 /* aio_ring_event: returns a pointer to the event at the given index from 173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 174 */ 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 178 179 #define aio_ring_event(info, nr, km) ({ \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 181 struct io_event *__event; \ 182 __event = kmap_atomic( \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \ 185 __event; \ 186 }) 187 188 #define put_aio_ring_event(event, km) do { \ 189 struct io_event *__event = (event); \ 190 (void)__event; \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 192 } while(0) 193 194 static void ctx_rcu_free(struct rcu_head *head) 195 { 196 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 197 unsigned nr_events = ctx->max_reqs; 198 199 kmem_cache_free(kioctx_cachep, ctx); 200 201 if (nr_events) { 202 spin_lock(&aio_nr_lock); 203 BUG_ON(aio_nr - nr_events > aio_nr); 204 aio_nr -= nr_events; 205 spin_unlock(&aio_nr_lock); 206 } 207 } 208 209 /* __put_ioctx 210 * Called when the last user of an aio context has gone away, 211 * and the struct needs to be freed. 212 */ 213 static void __put_ioctx(struct kioctx *ctx) 214 { 215 BUG_ON(ctx->reqs_active); 216 217 cancel_delayed_work(&ctx->wq); 218 cancel_work_sync(&ctx->wq.work); 219 aio_free_ring(ctx); 220 mmdrop(ctx->mm); 221 ctx->mm = NULL; 222 pr_debug("__put_ioctx: freeing %p\n", ctx); 223 call_rcu(&ctx->rcu_head, ctx_rcu_free); 224 } 225 226 #define get_ioctx(kioctx) do { \ 227 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 228 atomic_inc(&(kioctx)->users); \ 229 } while (0) 230 #define put_ioctx(kioctx) do { \ 231 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 232 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ 233 __put_ioctx(kioctx); \ 234 } while (0) 235 236 /* ioctx_alloc 237 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 238 */ 239 static struct kioctx *ioctx_alloc(unsigned nr_events) 240 { 241 struct mm_struct *mm; 242 struct kioctx *ctx; 243 int did_sync = 0; 244 245 /* Prevent overflows */ 246 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 247 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 248 pr_debug("ENOMEM: nr_events too high\n"); 249 return ERR_PTR(-EINVAL); 250 } 251 252 if ((unsigned long)nr_events > aio_max_nr) 253 return ERR_PTR(-EAGAIN); 254 255 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 256 if (!ctx) 257 return ERR_PTR(-ENOMEM); 258 259 ctx->max_reqs = nr_events; 260 mm = ctx->mm = current->mm; 261 atomic_inc(&mm->mm_count); 262 263 atomic_set(&ctx->users, 1); 264 spin_lock_init(&ctx->ctx_lock); 265 spin_lock_init(&ctx->ring_info.ring_lock); 266 init_waitqueue_head(&ctx->wait); 267 268 INIT_LIST_HEAD(&ctx->active_reqs); 269 INIT_LIST_HEAD(&ctx->run_list); 270 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 271 272 if (aio_setup_ring(ctx) < 0) 273 goto out_freectx; 274 275 /* limit the number of system wide aios */ 276 do { 277 spin_lock_bh(&aio_nr_lock); 278 if (aio_nr + nr_events > aio_max_nr || 279 aio_nr + nr_events < aio_nr) 280 ctx->max_reqs = 0; 281 else 282 aio_nr += ctx->max_reqs; 283 spin_unlock_bh(&aio_nr_lock); 284 if (ctx->max_reqs || did_sync) 285 break; 286 287 /* wait for rcu callbacks to have completed before giving up */ 288 synchronize_rcu(); 289 did_sync = 1; 290 ctx->max_reqs = nr_events; 291 } while (1); 292 293 if (ctx->max_reqs == 0) 294 goto out_cleanup; 295 296 /* now link into global list. */ 297 spin_lock(&mm->ioctx_lock); 298 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 299 spin_unlock(&mm->ioctx_lock); 300 301 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 302 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 303 return ctx; 304 305 out_cleanup: 306 __put_ioctx(ctx); 307 return ERR_PTR(-EAGAIN); 308 309 out_freectx: 310 mmdrop(mm); 311 kmem_cache_free(kioctx_cachep, ctx); 312 ctx = ERR_PTR(-ENOMEM); 313 314 dprintk("aio: error allocating ioctx %p\n", ctx); 315 return ctx; 316 } 317 318 /* aio_cancel_all 319 * Cancels all outstanding aio requests on an aio context. Used 320 * when the processes owning a context have all exited to encourage 321 * the rapid destruction of the kioctx. 322 */ 323 static void aio_cancel_all(struct kioctx *ctx) 324 { 325 int (*cancel)(struct kiocb *, struct io_event *); 326 struct io_event res; 327 spin_lock_irq(&ctx->ctx_lock); 328 ctx->dead = 1; 329 while (!list_empty(&ctx->active_reqs)) { 330 struct list_head *pos = ctx->active_reqs.next; 331 struct kiocb *iocb = list_kiocb(pos); 332 list_del_init(&iocb->ki_list); 333 cancel = iocb->ki_cancel; 334 kiocbSetCancelled(iocb); 335 if (cancel) { 336 iocb->ki_users++; 337 spin_unlock_irq(&ctx->ctx_lock); 338 cancel(iocb, &res); 339 spin_lock_irq(&ctx->ctx_lock); 340 } 341 } 342 spin_unlock_irq(&ctx->ctx_lock); 343 } 344 345 static void wait_for_all_aios(struct kioctx *ctx) 346 { 347 struct task_struct *tsk = current; 348 DECLARE_WAITQUEUE(wait, tsk); 349 350 spin_lock_irq(&ctx->ctx_lock); 351 if (!ctx->reqs_active) 352 goto out; 353 354 add_wait_queue(&ctx->wait, &wait); 355 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 356 while (ctx->reqs_active) { 357 spin_unlock_irq(&ctx->ctx_lock); 358 io_schedule(); 359 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 360 spin_lock_irq(&ctx->ctx_lock); 361 } 362 __set_task_state(tsk, TASK_RUNNING); 363 remove_wait_queue(&ctx->wait, &wait); 364 365 out: 366 spin_unlock_irq(&ctx->ctx_lock); 367 } 368 369 /* wait_on_sync_kiocb: 370 * Waits on the given sync kiocb to complete. 371 */ 372 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 373 { 374 while (iocb->ki_users) { 375 set_current_state(TASK_UNINTERRUPTIBLE); 376 if (!iocb->ki_users) 377 break; 378 io_schedule(); 379 } 380 __set_current_state(TASK_RUNNING); 381 return iocb->ki_user_data; 382 } 383 384 /* exit_aio: called when the last user of mm goes away. At this point, 385 * there is no way for any new requests to be submited or any of the 386 * io_* syscalls to be called on the context. However, there may be 387 * outstanding requests which hold references to the context; as they 388 * go away, they will call put_ioctx and release any pinned memory 389 * associated with the request (held via struct page * references). 390 */ 391 void exit_aio(struct mm_struct *mm) 392 { 393 struct kioctx *ctx; 394 395 while (!hlist_empty(&mm->ioctx_list)) { 396 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 397 hlist_del_rcu(&ctx->list); 398 399 aio_cancel_all(ctx); 400 401 wait_for_all_aios(ctx); 402 /* 403 * Ensure we don't leave the ctx on the aio_wq 404 */ 405 cancel_work_sync(&ctx->wq.work); 406 407 if (1 != atomic_read(&ctx->users)) 408 printk(KERN_DEBUG 409 "exit_aio:ioctx still alive: %d %d %d\n", 410 atomic_read(&ctx->users), ctx->dead, 411 ctx->reqs_active); 412 put_ioctx(ctx); 413 } 414 } 415 416 /* aio_get_req 417 * Allocate a slot for an aio request. Increments the users count 418 * of the kioctx so that the kioctx stays around until all requests are 419 * complete. Returns NULL if no requests are free. 420 * 421 * Returns with kiocb->users set to 2. The io submit code path holds 422 * an extra reference while submitting the i/o. 423 * This prevents races between the aio code path referencing the 424 * req (after submitting it) and aio_complete() freeing the req. 425 */ 426 static struct kiocb *__aio_get_req(struct kioctx *ctx) 427 { 428 struct kiocb *req = NULL; 429 struct aio_ring *ring; 430 int okay = 0; 431 432 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 433 if (unlikely(!req)) 434 return NULL; 435 436 req->ki_flags = 0; 437 req->ki_users = 2; 438 req->ki_key = 0; 439 req->ki_ctx = ctx; 440 req->ki_cancel = NULL; 441 req->ki_retry = NULL; 442 req->ki_dtor = NULL; 443 req->private = NULL; 444 req->ki_iovec = NULL; 445 INIT_LIST_HEAD(&req->ki_run_list); 446 req->ki_eventfd = NULL; 447 448 /* Check if the completion queue has enough free space to 449 * accept an event from this io. 450 */ 451 spin_lock_irq(&ctx->ctx_lock); 452 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 453 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 454 list_add(&req->ki_list, &ctx->active_reqs); 455 ctx->reqs_active++; 456 okay = 1; 457 } 458 kunmap_atomic(ring, KM_USER0); 459 spin_unlock_irq(&ctx->ctx_lock); 460 461 if (!okay) { 462 kmem_cache_free(kiocb_cachep, req); 463 req = NULL; 464 } 465 466 return req; 467 } 468 469 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 470 { 471 struct kiocb *req; 472 /* Handle a potential starvation case -- should be exceedingly rare as 473 * requests will be stuck on fput_head only if the aio_fput_routine is 474 * delayed and the requests were the last user of the struct file. 475 */ 476 req = __aio_get_req(ctx); 477 if (unlikely(NULL == req)) { 478 aio_fput_routine(NULL); 479 req = __aio_get_req(ctx); 480 } 481 return req; 482 } 483 484 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 485 { 486 assert_spin_locked(&ctx->ctx_lock); 487 488 if (req->ki_eventfd != NULL) 489 eventfd_ctx_put(req->ki_eventfd); 490 if (req->ki_dtor) 491 req->ki_dtor(req); 492 if (req->ki_iovec != &req->ki_inline_vec) 493 kfree(req->ki_iovec); 494 kmem_cache_free(kiocb_cachep, req); 495 ctx->reqs_active--; 496 497 if (unlikely(!ctx->reqs_active && ctx->dead)) 498 wake_up(&ctx->wait); 499 } 500 501 static void aio_fput_routine(struct work_struct *data) 502 { 503 spin_lock_irq(&fput_lock); 504 while (likely(!list_empty(&fput_head))) { 505 struct kiocb *req = list_kiocb(fput_head.next); 506 struct kioctx *ctx = req->ki_ctx; 507 508 list_del(&req->ki_list); 509 spin_unlock_irq(&fput_lock); 510 511 /* Complete the fput(s) */ 512 if (req->ki_filp != NULL) 513 __fput(req->ki_filp); 514 515 /* Link the iocb into the context's free list */ 516 spin_lock_irq(&ctx->ctx_lock); 517 really_put_req(ctx, req); 518 spin_unlock_irq(&ctx->ctx_lock); 519 520 put_ioctx(ctx); 521 spin_lock_irq(&fput_lock); 522 } 523 spin_unlock_irq(&fput_lock); 524 } 525 526 /* __aio_put_req 527 * Returns true if this put was the last user of the request. 528 */ 529 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 530 { 531 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 532 req, atomic_long_read(&req->ki_filp->f_count)); 533 534 assert_spin_locked(&ctx->ctx_lock); 535 536 req->ki_users--; 537 BUG_ON(req->ki_users < 0); 538 if (likely(req->ki_users)) 539 return 0; 540 list_del(&req->ki_list); /* remove from active_reqs */ 541 req->ki_cancel = NULL; 542 req->ki_retry = NULL; 543 544 /* 545 * Try to optimize the aio and eventfd file* puts, by avoiding to 546 * schedule work in case it is not __fput() time. In normal cases, 547 * we would not be holding the last reference to the file*, so 548 * this function will be executed w/out any aio kthread wakeup. 549 */ 550 if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) { 551 get_ioctx(ctx); 552 spin_lock(&fput_lock); 553 list_add(&req->ki_list, &fput_head); 554 spin_unlock(&fput_lock); 555 queue_work(aio_wq, &fput_work); 556 } else { 557 req->ki_filp = NULL; 558 really_put_req(ctx, req); 559 } 560 return 1; 561 } 562 563 /* aio_put_req 564 * Returns true if this put was the last user of the kiocb, 565 * false if the request is still in use. 566 */ 567 int aio_put_req(struct kiocb *req) 568 { 569 struct kioctx *ctx = req->ki_ctx; 570 int ret; 571 spin_lock_irq(&ctx->ctx_lock); 572 ret = __aio_put_req(ctx, req); 573 spin_unlock_irq(&ctx->ctx_lock); 574 return ret; 575 } 576 577 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 578 { 579 struct mm_struct *mm = current->mm; 580 struct kioctx *ctx, *ret = NULL; 581 struct hlist_node *n; 582 583 rcu_read_lock(); 584 585 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 586 if (ctx->user_id == ctx_id && !ctx->dead) { 587 get_ioctx(ctx); 588 ret = ctx; 589 break; 590 } 591 } 592 593 rcu_read_unlock(); 594 return ret; 595 } 596 597 /* 598 * Queue up a kiocb to be retried. Assumes that the kiocb 599 * has already been marked as kicked, and places it on 600 * the retry run list for the corresponding ioctx, if it 601 * isn't already queued. Returns 1 if it actually queued 602 * the kiocb (to tell the caller to activate the work 603 * queue to process it), or 0, if it found that it was 604 * already queued. 605 */ 606 static inline int __queue_kicked_iocb(struct kiocb *iocb) 607 { 608 struct kioctx *ctx = iocb->ki_ctx; 609 610 assert_spin_locked(&ctx->ctx_lock); 611 612 if (list_empty(&iocb->ki_run_list)) { 613 list_add_tail(&iocb->ki_run_list, 614 &ctx->run_list); 615 return 1; 616 } 617 return 0; 618 } 619 620 /* aio_run_iocb 621 * This is the core aio execution routine. It is 622 * invoked both for initial i/o submission and 623 * subsequent retries via the aio_kick_handler. 624 * Expects to be invoked with iocb->ki_ctx->lock 625 * already held. The lock is released and reacquired 626 * as needed during processing. 627 * 628 * Calls the iocb retry method (already setup for the 629 * iocb on initial submission) for operation specific 630 * handling, but takes care of most of common retry 631 * execution details for a given iocb. The retry method 632 * needs to be non-blocking as far as possible, to avoid 633 * holding up other iocbs waiting to be serviced by the 634 * retry kernel thread. 635 * 636 * The trickier parts in this code have to do with 637 * ensuring that only one retry instance is in progress 638 * for a given iocb at any time. Providing that guarantee 639 * simplifies the coding of individual aio operations as 640 * it avoids various potential races. 641 */ 642 static ssize_t aio_run_iocb(struct kiocb *iocb) 643 { 644 struct kioctx *ctx = iocb->ki_ctx; 645 ssize_t (*retry)(struct kiocb *); 646 ssize_t ret; 647 648 if (!(retry = iocb->ki_retry)) { 649 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 650 return 0; 651 } 652 653 /* 654 * We don't want the next retry iteration for this 655 * operation to start until this one has returned and 656 * updated the iocb state. However, wait_queue functions 657 * can trigger a kick_iocb from interrupt context in the 658 * meantime, indicating that data is available for the next 659 * iteration. We want to remember that and enable the 660 * next retry iteration _after_ we are through with 661 * this one. 662 * 663 * So, in order to be able to register a "kick", but 664 * prevent it from being queued now, we clear the kick 665 * flag, but make the kick code *think* that the iocb is 666 * still on the run list until we are actually done. 667 * When we are done with this iteration, we check if 668 * the iocb was kicked in the meantime and if so, queue 669 * it up afresh. 670 */ 671 672 kiocbClearKicked(iocb); 673 674 /* 675 * This is so that aio_complete knows it doesn't need to 676 * pull the iocb off the run list (We can't just call 677 * INIT_LIST_HEAD because we don't want a kick_iocb to 678 * queue this on the run list yet) 679 */ 680 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 681 spin_unlock_irq(&ctx->ctx_lock); 682 683 /* Quit retrying if the i/o has been cancelled */ 684 if (kiocbIsCancelled(iocb)) { 685 ret = -EINTR; 686 aio_complete(iocb, ret, 0); 687 /* must not access the iocb after this */ 688 goto out; 689 } 690 691 /* 692 * Now we are all set to call the retry method in async 693 * context. 694 */ 695 ret = retry(iocb); 696 697 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 698 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 699 aio_complete(iocb, ret, 0); 700 } 701 out: 702 spin_lock_irq(&ctx->ctx_lock); 703 704 if (-EIOCBRETRY == ret) { 705 /* 706 * OK, now that we are done with this iteration 707 * and know that there is more left to go, 708 * this is where we let go so that a subsequent 709 * "kick" can start the next iteration 710 */ 711 712 /* will make __queue_kicked_iocb succeed from here on */ 713 INIT_LIST_HEAD(&iocb->ki_run_list); 714 /* we must queue the next iteration ourselves, if it 715 * has already been kicked */ 716 if (kiocbIsKicked(iocb)) { 717 __queue_kicked_iocb(iocb); 718 719 /* 720 * __queue_kicked_iocb will always return 1 here, because 721 * iocb->ki_run_list is empty at this point so it should 722 * be safe to unconditionally queue the context into the 723 * work queue. 724 */ 725 aio_queue_work(ctx); 726 } 727 } 728 return ret; 729 } 730 731 /* 732 * __aio_run_iocbs: 733 * Process all pending retries queued on the ioctx 734 * run list. 735 * Assumes it is operating within the aio issuer's mm 736 * context. 737 */ 738 static int __aio_run_iocbs(struct kioctx *ctx) 739 { 740 struct kiocb *iocb; 741 struct list_head run_list; 742 743 assert_spin_locked(&ctx->ctx_lock); 744 745 list_replace_init(&ctx->run_list, &run_list); 746 while (!list_empty(&run_list)) { 747 iocb = list_entry(run_list.next, struct kiocb, 748 ki_run_list); 749 list_del(&iocb->ki_run_list); 750 /* 751 * Hold an extra reference while retrying i/o. 752 */ 753 iocb->ki_users++; /* grab extra reference */ 754 aio_run_iocb(iocb); 755 __aio_put_req(ctx, iocb); 756 } 757 if (!list_empty(&ctx->run_list)) 758 return 1; 759 return 0; 760 } 761 762 static void aio_queue_work(struct kioctx * ctx) 763 { 764 unsigned long timeout; 765 /* 766 * if someone is waiting, get the work started right 767 * away, otherwise, use a longer delay 768 */ 769 smp_mb(); 770 if (waitqueue_active(&ctx->wait)) 771 timeout = 1; 772 else 773 timeout = HZ/10; 774 queue_delayed_work(aio_wq, &ctx->wq, timeout); 775 } 776 777 778 /* 779 * aio_run_iocbs: 780 * Process all pending retries queued on the ioctx 781 * run list. 782 * Assumes it is operating within the aio issuer's mm 783 * context. 784 */ 785 static inline void aio_run_iocbs(struct kioctx *ctx) 786 { 787 int requeue; 788 789 spin_lock_irq(&ctx->ctx_lock); 790 791 requeue = __aio_run_iocbs(ctx); 792 spin_unlock_irq(&ctx->ctx_lock); 793 if (requeue) 794 aio_queue_work(ctx); 795 } 796 797 /* 798 * just like aio_run_iocbs, but keeps running them until 799 * the list stays empty 800 */ 801 static inline void aio_run_all_iocbs(struct kioctx *ctx) 802 { 803 spin_lock_irq(&ctx->ctx_lock); 804 while (__aio_run_iocbs(ctx)) 805 ; 806 spin_unlock_irq(&ctx->ctx_lock); 807 } 808 809 /* 810 * aio_kick_handler: 811 * Work queue handler triggered to process pending 812 * retries on an ioctx. Takes on the aio issuer's 813 * mm context before running the iocbs, so that 814 * copy_xxx_user operates on the issuer's address 815 * space. 816 * Run on aiod's context. 817 */ 818 static void aio_kick_handler(struct work_struct *work) 819 { 820 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 821 mm_segment_t oldfs = get_fs(); 822 struct mm_struct *mm; 823 int requeue; 824 825 set_fs(USER_DS); 826 use_mm(ctx->mm); 827 spin_lock_irq(&ctx->ctx_lock); 828 requeue =__aio_run_iocbs(ctx); 829 mm = ctx->mm; 830 spin_unlock_irq(&ctx->ctx_lock); 831 unuse_mm(mm); 832 set_fs(oldfs); 833 /* 834 * we're in a worker thread already, don't use queue_delayed_work, 835 */ 836 if (requeue) 837 queue_delayed_work(aio_wq, &ctx->wq, 0); 838 } 839 840 841 /* 842 * Called by kick_iocb to queue the kiocb for retry 843 * and if required activate the aio work queue to process 844 * it 845 */ 846 static void try_queue_kicked_iocb(struct kiocb *iocb) 847 { 848 struct kioctx *ctx = iocb->ki_ctx; 849 unsigned long flags; 850 int run = 0; 851 852 /* We're supposed to be the only path putting the iocb back on the run 853 * list. If we find that the iocb is *back* on a wait queue already 854 * than retry has happened before we could queue the iocb. This also 855 * means that the retry could have completed and freed our iocb, no 856 * good. */ 857 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 858 859 spin_lock_irqsave(&ctx->ctx_lock, flags); 860 /* set this inside the lock so that we can't race with aio_run_iocb() 861 * testing it and putting the iocb on the run list under the lock */ 862 if (!kiocbTryKick(iocb)) 863 run = __queue_kicked_iocb(iocb); 864 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 865 if (run) 866 aio_queue_work(ctx); 867 } 868 869 /* 870 * kick_iocb: 871 * Called typically from a wait queue callback context 872 * (aio_wake_function) to trigger a retry of the iocb. 873 * The retry is usually executed by aio workqueue 874 * threads (See aio_kick_handler). 875 */ 876 void kick_iocb(struct kiocb *iocb) 877 { 878 /* sync iocbs are easy: they can only ever be executing from a 879 * single context. */ 880 if (is_sync_kiocb(iocb)) { 881 kiocbSetKicked(iocb); 882 wake_up_process(iocb->ki_obj.tsk); 883 return; 884 } 885 886 try_queue_kicked_iocb(iocb); 887 } 888 EXPORT_SYMBOL(kick_iocb); 889 890 /* aio_complete 891 * Called when the io request on the given iocb is complete. 892 * Returns true if this is the last user of the request. The 893 * only other user of the request can be the cancellation code. 894 */ 895 int aio_complete(struct kiocb *iocb, long res, long res2) 896 { 897 struct kioctx *ctx = iocb->ki_ctx; 898 struct aio_ring_info *info; 899 struct aio_ring *ring; 900 struct io_event *event; 901 unsigned long flags; 902 unsigned long tail; 903 int ret; 904 905 /* 906 * Special case handling for sync iocbs: 907 * - events go directly into the iocb for fast handling 908 * - the sync task with the iocb in its stack holds the single iocb 909 * ref, no other paths have a way to get another ref 910 * - the sync task helpfully left a reference to itself in the iocb 911 */ 912 if (is_sync_kiocb(iocb)) { 913 BUG_ON(iocb->ki_users != 1); 914 iocb->ki_user_data = res; 915 iocb->ki_users = 0; 916 wake_up_process(iocb->ki_obj.tsk); 917 return 1; 918 } 919 920 info = &ctx->ring_info; 921 922 /* add a completion event to the ring buffer. 923 * must be done holding ctx->ctx_lock to prevent 924 * other code from messing with the tail 925 * pointer since we might be called from irq 926 * context. 927 */ 928 spin_lock_irqsave(&ctx->ctx_lock, flags); 929 930 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 931 list_del_init(&iocb->ki_run_list); 932 933 /* 934 * cancelled requests don't get events, userland was given one 935 * when the event got cancelled. 936 */ 937 if (kiocbIsCancelled(iocb)) 938 goto put_rq; 939 940 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 941 942 tail = info->tail; 943 event = aio_ring_event(info, tail, KM_IRQ0); 944 if (++tail >= info->nr) 945 tail = 0; 946 947 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 948 event->data = iocb->ki_user_data; 949 event->res = res; 950 event->res2 = res2; 951 952 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 953 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 954 res, res2); 955 956 /* after flagging the request as done, we 957 * must never even look at it again 958 */ 959 smp_wmb(); /* make event visible before updating tail */ 960 961 info->tail = tail; 962 ring->tail = tail; 963 964 put_aio_ring_event(event, KM_IRQ0); 965 kunmap_atomic(ring, KM_IRQ1); 966 967 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 968 969 /* 970 * Check if the user asked us to deliver the result through an 971 * eventfd. The eventfd_signal() function is safe to be called 972 * from IRQ context. 973 */ 974 if (iocb->ki_eventfd != NULL) 975 eventfd_signal(iocb->ki_eventfd, 1); 976 977 put_rq: 978 /* everything turned out well, dispose of the aiocb. */ 979 ret = __aio_put_req(ctx, iocb); 980 981 /* 982 * We have to order our ring_info tail store above and test 983 * of the wait list below outside the wait lock. This is 984 * like in wake_up_bit() where clearing a bit has to be 985 * ordered with the unlocked test. 986 */ 987 smp_mb(); 988 989 if (waitqueue_active(&ctx->wait)) 990 wake_up(&ctx->wait); 991 992 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 993 return ret; 994 } 995 996 /* aio_read_evt 997 * Pull an event off of the ioctx's event ring. Returns the number of 998 * events fetched (0 or 1 ;-) 999 * FIXME: make this use cmpxchg. 1000 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1001 */ 1002 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1003 { 1004 struct aio_ring_info *info = &ioctx->ring_info; 1005 struct aio_ring *ring; 1006 unsigned long head; 1007 int ret = 0; 1008 1009 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1010 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1011 (unsigned long)ring->head, (unsigned long)ring->tail, 1012 (unsigned long)ring->nr); 1013 1014 if (ring->head == ring->tail) 1015 goto out; 1016 1017 spin_lock(&info->ring_lock); 1018 1019 head = ring->head % info->nr; 1020 if (head != ring->tail) { 1021 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1022 *ent = *evp; 1023 head = (head + 1) % info->nr; 1024 smp_mb(); /* finish reading the event before updatng the head */ 1025 ring->head = head; 1026 ret = 1; 1027 put_aio_ring_event(evp, KM_USER1); 1028 } 1029 spin_unlock(&info->ring_lock); 1030 1031 out: 1032 kunmap_atomic(ring, KM_USER0); 1033 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1034 (unsigned long)ring->head, (unsigned long)ring->tail); 1035 return ret; 1036 } 1037 1038 struct aio_timeout { 1039 struct timer_list timer; 1040 int timed_out; 1041 struct task_struct *p; 1042 }; 1043 1044 static void timeout_func(unsigned long data) 1045 { 1046 struct aio_timeout *to = (struct aio_timeout *)data; 1047 1048 to->timed_out = 1; 1049 wake_up_process(to->p); 1050 } 1051 1052 static inline void init_timeout(struct aio_timeout *to) 1053 { 1054 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1055 to->timed_out = 0; 1056 to->p = current; 1057 } 1058 1059 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1060 const struct timespec *ts) 1061 { 1062 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1063 if (time_after(to->timer.expires, jiffies)) 1064 add_timer(&to->timer); 1065 else 1066 to->timed_out = 1; 1067 } 1068 1069 static inline void clear_timeout(struct aio_timeout *to) 1070 { 1071 del_singleshot_timer_sync(&to->timer); 1072 } 1073 1074 static int read_events(struct kioctx *ctx, 1075 long min_nr, long nr, 1076 struct io_event __user *event, 1077 struct timespec __user *timeout) 1078 { 1079 long start_jiffies = jiffies; 1080 struct task_struct *tsk = current; 1081 DECLARE_WAITQUEUE(wait, tsk); 1082 int ret; 1083 int i = 0; 1084 struct io_event ent; 1085 struct aio_timeout to; 1086 int retry = 0; 1087 1088 /* needed to zero any padding within an entry (there shouldn't be 1089 * any, but C is fun! 1090 */ 1091 memset(&ent, 0, sizeof(ent)); 1092 retry: 1093 ret = 0; 1094 while (likely(i < nr)) { 1095 ret = aio_read_evt(ctx, &ent); 1096 if (unlikely(ret <= 0)) 1097 break; 1098 1099 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1100 ent.data, ent.obj, ent.res, ent.res2); 1101 1102 /* Could we split the check in two? */ 1103 ret = -EFAULT; 1104 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1105 dprintk("aio: lost an event due to EFAULT.\n"); 1106 break; 1107 } 1108 ret = 0; 1109 1110 /* Good, event copied to userland, update counts. */ 1111 event ++; 1112 i ++; 1113 } 1114 1115 if (min_nr <= i) 1116 return i; 1117 if (ret) 1118 return ret; 1119 1120 /* End fast path */ 1121 1122 /* racey check, but it gets redone */ 1123 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1124 retry = 1; 1125 aio_run_all_iocbs(ctx); 1126 goto retry; 1127 } 1128 1129 init_timeout(&to); 1130 if (timeout) { 1131 struct timespec ts; 1132 ret = -EFAULT; 1133 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1134 goto out; 1135 1136 set_timeout(start_jiffies, &to, &ts); 1137 } 1138 1139 while (likely(i < nr)) { 1140 add_wait_queue_exclusive(&ctx->wait, &wait); 1141 do { 1142 set_task_state(tsk, TASK_INTERRUPTIBLE); 1143 ret = aio_read_evt(ctx, &ent); 1144 if (ret) 1145 break; 1146 if (min_nr <= i) 1147 break; 1148 if (unlikely(ctx->dead)) { 1149 ret = -EINVAL; 1150 break; 1151 } 1152 if (to.timed_out) /* Only check after read evt */ 1153 break; 1154 /* Try to only show up in io wait if there are ops 1155 * in flight */ 1156 if (ctx->reqs_active) 1157 io_schedule(); 1158 else 1159 schedule(); 1160 if (signal_pending(tsk)) { 1161 ret = -EINTR; 1162 break; 1163 } 1164 /*ret = aio_read_evt(ctx, &ent);*/ 1165 } while (1) ; 1166 1167 set_task_state(tsk, TASK_RUNNING); 1168 remove_wait_queue(&ctx->wait, &wait); 1169 1170 if (unlikely(ret <= 0)) 1171 break; 1172 1173 ret = -EFAULT; 1174 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1175 dprintk("aio: lost an event due to EFAULT.\n"); 1176 break; 1177 } 1178 1179 /* Good, event copied to userland, update counts. */ 1180 event ++; 1181 i ++; 1182 } 1183 1184 if (timeout) 1185 clear_timeout(&to); 1186 out: 1187 destroy_timer_on_stack(&to.timer); 1188 return i ? i : ret; 1189 } 1190 1191 /* Take an ioctx and remove it from the list of ioctx's. Protects 1192 * against races with itself via ->dead. 1193 */ 1194 static void io_destroy(struct kioctx *ioctx) 1195 { 1196 struct mm_struct *mm = current->mm; 1197 int was_dead; 1198 1199 /* delete the entry from the list is someone else hasn't already */ 1200 spin_lock(&mm->ioctx_lock); 1201 was_dead = ioctx->dead; 1202 ioctx->dead = 1; 1203 hlist_del_rcu(&ioctx->list); 1204 spin_unlock(&mm->ioctx_lock); 1205 1206 dprintk("aio_release(%p)\n", ioctx); 1207 if (likely(!was_dead)) 1208 put_ioctx(ioctx); /* twice for the list */ 1209 1210 aio_cancel_all(ioctx); 1211 wait_for_all_aios(ioctx); 1212 1213 /* 1214 * Wake up any waiters. The setting of ctx->dead must be seen 1215 * by other CPUs at this point. Right now, we rely on the 1216 * locking done by the above calls to ensure this consistency. 1217 */ 1218 wake_up(&ioctx->wait); 1219 put_ioctx(ioctx); /* once for the lookup */ 1220 } 1221 1222 /* sys_io_setup: 1223 * Create an aio_context capable of receiving at least nr_events. 1224 * ctxp must not point to an aio_context that already exists, and 1225 * must be initialized to 0 prior to the call. On successful 1226 * creation of the aio_context, *ctxp is filled in with the resulting 1227 * handle. May fail with -EINVAL if *ctxp is not initialized, 1228 * if the specified nr_events exceeds internal limits. May fail 1229 * with -EAGAIN if the specified nr_events exceeds the user's limit 1230 * of available events. May fail with -ENOMEM if insufficient kernel 1231 * resources are available. May fail with -EFAULT if an invalid 1232 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1233 * implemented. 1234 */ 1235 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1236 { 1237 struct kioctx *ioctx = NULL; 1238 unsigned long ctx; 1239 long ret; 1240 1241 ret = get_user(ctx, ctxp); 1242 if (unlikely(ret)) 1243 goto out; 1244 1245 ret = -EINVAL; 1246 if (unlikely(ctx || nr_events == 0)) { 1247 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1248 ctx, nr_events); 1249 goto out; 1250 } 1251 1252 ioctx = ioctx_alloc(nr_events); 1253 ret = PTR_ERR(ioctx); 1254 if (!IS_ERR(ioctx)) { 1255 ret = put_user(ioctx->user_id, ctxp); 1256 if (!ret) 1257 return 0; 1258 1259 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1260 io_destroy(ioctx); 1261 } 1262 1263 out: 1264 return ret; 1265 } 1266 1267 /* sys_io_destroy: 1268 * Destroy the aio_context specified. May cancel any outstanding 1269 * AIOs and block on completion. Will fail with -ENOSYS if not 1270 * implemented. May fail with -EFAULT if the context pointed to 1271 * is invalid. 1272 */ 1273 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1274 { 1275 struct kioctx *ioctx = lookup_ioctx(ctx); 1276 if (likely(NULL != ioctx)) { 1277 io_destroy(ioctx); 1278 return 0; 1279 } 1280 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1281 return -EINVAL; 1282 } 1283 1284 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1285 { 1286 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1287 1288 BUG_ON(ret <= 0); 1289 1290 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1291 ssize_t this = min((ssize_t)iov->iov_len, ret); 1292 iov->iov_base += this; 1293 iov->iov_len -= this; 1294 iocb->ki_left -= this; 1295 ret -= this; 1296 if (iov->iov_len == 0) { 1297 iocb->ki_cur_seg++; 1298 iov++; 1299 } 1300 } 1301 1302 /* the caller should not have done more io than what fit in 1303 * the remaining iovecs */ 1304 BUG_ON(ret > 0 && iocb->ki_left == 0); 1305 } 1306 1307 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1308 { 1309 struct file *file = iocb->ki_filp; 1310 struct address_space *mapping = file->f_mapping; 1311 struct inode *inode = mapping->host; 1312 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1313 unsigned long, loff_t); 1314 ssize_t ret = 0; 1315 unsigned short opcode; 1316 1317 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1318 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1319 rw_op = file->f_op->aio_read; 1320 opcode = IOCB_CMD_PREADV; 1321 } else { 1322 rw_op = file->f_op->aio_write; 1323 opcode = IOCB_CMD_PWRITEV; 1324 } 1325 1326 /* This matches the pread()/pwrite() logic */ 1327 if (iocb->ki_pos < 0) 1328 return -EINVAL; 1329 1330 do { 1331 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1332 iocb->ki_nr_segs - iocb->ki_cur_seg, 1333 iocb->ki_pos); 1334 if (ret > 0) 1335 aio_advance_iovec(iocb, ret); 1336 1337 /* retry all partial writes. retry partial reads as long as its a 1338 * regular file. */ 1339 } while (ret > 0 && iocb->ki_left > 0 && 1340 (opcode == IOCB_CMD_PWRITEV || 1341 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1342 1343 /* This means we must have transferred all that we could */ 1344 /* No need to retry anymore */ 1345 if ((ret == 0) || (iocb->ki_left == 0)) 1346 ret = iocb->ki_nbytes - iocb->ki_left; 1347 1348 /* If we managed to write some out we return that, rather than 1349 * the eventual error. */ 1350 if (opcode == IOCB_CMD_PWRITEV 1351 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1352 && iocb->ki_nbytes - iocb->ki_left) 1353 ret = iocb->ki_nbytes - iocb->ki_left; 1354 1355 return ret; 1356 } 1357 1358 static ssize_t aio_fdsync(struct kiocb *iocb) 1359 { 1360 struct file *file = iocb->ki_filp; 1361 ssize_t ret = -EINVAL; 1362 1363 if (file->f_op->aio_fsync) 1364 ret = file->f_op->aio_fsync(iocb, 1); 1365 return ret; 1366 } 1367 1368 static ssize_t aio_fsync(struct kiocb *iocb) 1369 { 1370 struct file *file = iocb->ki_filp; 1371 ssize_t ret = -EINVAL; 1372 1373 if (file->f_op->aio_fsync) 1374 ret = file->f_op->aio_fsync(iocb, 0); 1375 return ret; 1376 } 1377 1378 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1379 { 1380 ssize_t ret; 1381 1382 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1383 kiocb->ki_nbytes, 1, 1384 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1385 if (ret < 0) 1386 goto out; 1387 1388 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1389 kiocb->ki_cur_seg = 0; 1390 /* ki_nbytes/left now reflect bytes instead of segs */ 1391 kiocb->ki_nbytes = ret; 1392 kiocb->ki_left = ret; 1393 1394 ret = 0; 1395 out: 1396 return ret; 1397 } 1398 1399 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1400 { 1401 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1402 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1403 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1404 kiocb->ki_nr_segs = 1; 1405 kiocb->ki_cur_seg = 0; 1406 return 0; 1407 } 1408 1409 /* 1410 * aio_setup_iocb: 1411 * Performs the initial checks and aio retry method 1412 * setup for the kiocb at the time of io submission. 1413 */ 1414 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1415 { 1416 struct file *file = kiocb->ki_filp; 1417 ssize_t ret = 0; 1418 1419 switch (kiocb->ki_opcode) { 1420 case IOCB_CMD_PREAD: 1421 ret = -EBADF; 1422 if (unlikely(!(file->f_mode & FMODE_READ))) 1423 break; 1424 ret = -EFAULT; 1425 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1426 kiocb->ki_left))) 1427 break; 1428 ret = security_file_permission(file, MAY_READ); 1429 if (unlikely(ret)) 1430 break; 1431 ret = aio_setup_single_vector(kiocb); 1432 if (ret) 1433 break; 1434 ret = -EINVAL; 1435 if (file->f_op->aio_read) 1436 kiocb->ki_retry = aio_rw_vect_retry; 1437 break; 1438 case IOCB_CMD_PWRITE: 1439 ret = -EBADF; 1440 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1441 break; 1442 ret = -EFAULT; 1443 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1444 kiocb->ki_left))) 1445 break; 1446 ret = security_file_permission(file, MAY_WRITE); 1447 if (unlikely(ret)) 1448 break; 1449 ret = aio_setup_single_vector(kiocb); 1450 if (ret) 1451 break; 1452 ret = -EINVAL; 1453 if (file->f_op->aio_write) 1454 kiocb->ki_retry = aio_rw_vect_retry; 1455 break; 1456 case IOCB_CMD_PREADV: 1457 ret = -EBADF; 1458 if (unlikely(!(file->f_mode & FMODE_READ))) 1459 break; 1460 ret = security_file_permission(file, MAY_READ); 1461 if (unlikely(ret)) 1462 break; 1463 ret = aio_setup_vectored_rw(READ, kiocb); 1464 if (ret) 1465 break; 1466 ret = -EINVAL; 1467 if (file->f_op->aio_read) 1468 kiocb->ki_retry = aio_rw_vect_retry; 1469 break; 1470 case IOCB_CMD_PWRITEV: 1471 ret = -EBADF; 1472 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1473 break; 1474 ret = security_file_permission(file, MAY_WRITE); 1475 if (unlikely(ret)) 1476 break; 1477 ret = aio_setup_vectored_rw(WRITE, kiocb); 1478 if (ret) 1479 break; 1480 ret = -EINVAL; 1481 if (file->f_op->aio_write) 1482 kiocb->ki_retry = aio_rw_vect_retry; 1483 break; 1484 case IOCB_CMD_FDSYNC: 1485 ret = -EINVAL; 1486 if (file->f_op->aio_fsync) 1487 kiocb->ki_retry = aio_fdsync; 1488 break; 1489 case IOCB_CMD_FSYNC: 1490 ret = -EINVAL; 1491 if (file->f_op->aio_fsync) 1492 kiocb->ki_retry = aio_fsync; 1493 break; 1494 default: 1495 dprintk("EINVAL: io_submit: no operation provided\n"); 1496 ret = -EINVAL; 1497 } 1498 1499 if (!kiocb->ki_retry) 1500 return ret; 1501 1502 return 0; 1503 } 1504 1505 /* 1506 * aio_wake_function: 1507 * wait queue callback function for aio notification, 1508 * Simply triggers a retry of the operation via kick_iocb. 1509 * 1510 * This callback is specified in the wait queue entry in 1511 * a kiocb. 1512 * 1513 * Note: 1514 * This routine is executed with the wait queue lock held. 1515 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1516 * the ioctx lock inside the wait queue lock. This is safe 1517 * because this callback isn't used for wait queues which 1518 * are nested inside ioctx lock (i.e. ctx->wait) 1519 */ 1520 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1521 int sync, void *key) 1522 { 1523 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1524 1525 list_del_init(&wait->task_list); 1526 kick_iocb(iocb); 1527 return 1; 1528 } 1529 1530 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1531 struct iocb *iocb) 1532 { 1533 struct kiocb *req; 1534 struct file *file; 1535 ssize_t ret; 1536 1537 /* enforce forwards compatibility on users */ 1538 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1539 pr_debug("EINVAL: io_submit: reserve field set\n"); 1540 return -EINVAL; 1541 } 1542 1543 /* prevent overflows */ 1544 if (unlikely( 1545 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1546 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1547 ((ssize_t)iocb->aio_nbytes < 0) 1548 )) { 1549 pr_debug("EINVAL: io_submit: overflow check\n"); 1550 return -EINVAL; 1551 } 1552 1553 file = fget(iocb->aio_fildes); 1554 if (unlikely(!file)) 1555 return -EBADF; 1556 1557 req = aio_get_req(ctx); /* returns with 2 references to req */ 1558 if (unlikely(!req)) { 1559 fput(file); 1560 return -EAGAIN; 1561 } 1562 req->ki_filp = file; 1563 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1564 /* 1565 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1566 * instance of the file* now. The file descriptor must be 1567 * an eventfd() fd, and will be signaled for each completed 1568 * event using the eventfd_signal() function. 1569 */ 1570 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1571 if (IS_ERR(req->ki_eventfd)) { 1572 ret = PTR_ERR(req->ki_eventfd); 1573 req->ki_eventfd = NULL; 1574 goto out_put_req; 1575 } 1576 } 1577 1578 ret = put_user(req->ki_key, &user_iocb->aio_key); 1579 if (unlikely(ret)) { 1580 dprintk("EFAULT: aio_key\n"); 1581 goto out_put_req; 1582 } 1583 1584 req->ki_obj.user = user_iocb; 1585 req->ki_user_data = iocb->aio_data; 1586 req->ki_pos = iocb->aio_offset; 1587 1588 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1589 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1590 req->ki_opcode = iocb->aio_lio_opcode; 1591 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1592 INIT_LIST_HEAD(&req->ki_wait.task_list); 1593 1594 ret = aio_setup_iocb(req); 1595 1596 if (ret) 1597 goto out_put_req; 1598 1599 spin_lock_irq(&ctx->ctx_lock); 1600 aio_run_iocb(req); 1601 if (!list_empty(&ctx->run_list)) { 1602 /* drain the run list */ 1603 while (__aio_run_iocbs(ctx)) 1604 ; 1605 } 1606 spin_unlock_irq(&ctx->ctx_lock); 1607 aio_put_req(req); /* drop extra ref to req */ 1608 return 0; 1609 1610 out_put_req: 1611 aio_put_req(req); /* drop extra ref to req */ 1612 aio_put_req(req); /* drop i/o ref to req */ 1613 return ret; 1614 } 1615 1616 /* sys_io_submit: 1617 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1618 * the number of iocbs queued. May return -EINVAL if the aio_context 1619 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1620 * *iocbpp[0] is not properly initialized, if the operation specified 1621 * is invalid for the file descriptor in the iocb. May fail with 1622 * -EFAULT if any of the data structures point to invalid data. May 1623 * fail with -EBADF if the file descriptor specified in the first 1624 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1625 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1626 * fail with -ENOSYS if not implemented. 1627 */ 1628 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1629 struct iocb __user * __user *, iocbpp) 1630 { 1631 struct kioctx *ctx; 1632 long ret = 0; 1633 int i; 1634 1635 if (unlikely(nr < 0)) 1636 return -EINVAL; 1637 1638 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1639 return -EFAULT; 1640 1641 ctx = lookup_ioctx(ctx_id); 1642 if (unlikely(!ctx)) { 1643 pr_debug("EINVAL: io_submit: invalid context id\n"); 1644 return -EINVAL; 1645 } 1646 1647 /* 1648 * AKPM: should this return a partial result if some of the IOs were 1649 * successfully submitted? 1650 */ 1651 for (i=0; i<nr; i++) { 1652 struct iocb __user *user_iocb; 1653 struct iocb tmp; 1654 1655 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1656 ret = -EFAULT; 1657 break; 1658 } 1659 1660 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1661 ret = -EFAULT; 1662 break; 1663 } 1664 1665 ret = io_submit_one(ctx, user_iocb, &tmp); 1666 if (ret) 1667 break; 1668 } 1669 1670 put_ioctx(ctx); 1671 return i ? i : ret; 1672 } 1673 1674 /* lookup_kiocb 1675 * Finds a given iocb for cancellation. 1676 */ 1677 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1678 u32 key) 1679 { 1680 struct list_head *pos; 1681 1682 assert_spin_locked(&ctx->ctx_lock); 1683 1684 /* TODO: use a hash or array, this sucks. */ 1685 list_for_each(pos, &ctx->active_reqs) { 1686 struct kiocb *kiocb = list_kiocb(pos); 1687 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1688 return kiocb; 1689 } 1690 return NULL; 1691 } 1692 1693 /* sys_io_cancel: 1694 * Attempts to cancel an iocb previously passed to io_submit. If 1695 * the operation is successfully cancelled, the resulting event is 1696 * copied into the memory pointed to by result without being placed 1697 * into the completion queue and 0 is returned. May fail with 1698 * -EFAULT if any of the data structures pointed to are invalid. 1699 * May fail with -EINVAL if aio_context specified by ctx_id is 1700 * invalid. May fail with -EAGAIN if the iocb specified was not 1701 * cancelled. Will fail with -ENOSYS if not implemented. 1702 */ 1703 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1704 struct io_event __user *, result) 1705 { 1706 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1707 struct kioctx *ctx; 1708 struct kiocb *kiocb; 1709 u32 key; 1710 int ret; 1711 1712 ret = get_user(key, &iocb->aio_key); 1713 if (unlikely(ret)) 1714 return -EFAULT; 1715 1716 ctx = lookup_ioctx(ctx_id); 1717 if (unlikely(!ctx)) 1718 return -EINVAL; 1719 1720 spin_lock_irq(&ctx->ctx_lock); 1721 ret = -EAGAIN; 1722 kiocb = lookup_kiocb(ctx, iocb, key); 1723 if (kiocb && kiocb->ki_cancel) { 1724 cancel = kiocb->ki_cancel; 1725 kiocb->ki_users ++; 1726 kiocbSetCancelled(kiocb); 1727 } else 1728 cancel = NULL; 1729 spin_unlock_irq(&ctx->ctx_lock); 1730 1731 if (NULL != cancel) { 1732 struct io_event tmp; 1733 pr_debug("calling cancel\n"); 1734 memset(&tmp, 0, sizeof(tmp)); 1735 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1736 tmp.data = kiocb->ki_user_data; 1737 ret = cancel(kiocb, &tmp); 1738 if (!ret) { 1739 /* Cancellation succeeded -- copy the result 1740 * into the user's buffer. 1741 */ 1742 if (copy_to_user(result, &tmp, sizeof(tmp))) 1743 ret = -EFAULT; 1744 } 1745 } else 1746 ret = -EINVAL; 1747 1748 put_ioctx(ctx); 1749 1750 return ret; 1751 } 1752 1753 /* io_getevents: 1754 * Attempts to read at least min_nr events and up to nr events from 1755 * the completion queue for the aio_context specified by ctx_id. May 1756 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1757 * if nr is out of range, if when is out of range. May fail with 1758 * -EFAULT if any of the memory specified to is invalid. May return 1759 * 0 or < min_nr if no events are available and the timeout specified 1760 * by when has elapsed, where when == NULL specifies an infinite 1761 * timeout. Note that the timeout pointed to by when is relative and 1762 * will be updated if not NULL and the operation blocks. Will fail 1763 * with -ENOSYS if not implemented. 1764 */ 1765 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1766 long, min_nr, 1767 long, nr, 1768 struct io_event __user *, events, 1769 struct timespec __user *, timeout) 1770 { 1771 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1772 long ret = -EINVAL; 1773 1774 if (likely(ioctx)) { 1775 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1776 ret = read_events(ioctx, min_nr, nr, events, timeout); 1777 put_ioctx(ioctx); 1778 } 1779 1780 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1781 return ret; 1782 } 1783 1784 __initcall(aio_setup); 1785 1786 EXPORT_SYMBOL(aio_complete); 1787 EXPORT_SYMBOL(aio_put_req); 1788 EXPORT_SYMBOL(wait_on_sync_kiocb); 1789