xref: /linux/fs/aio.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/mmu_context.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/aio.h>
31 #include <linux/highmem.h>
32 #include <linux/workqueue.h>
33 #include <linux/security.h>
34 #include <linux/eventfd.h>
35 
36 #include <asm/kmap_types.h>
37 #include <asm/uaccess.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 static void ctx_rcu_free(struct rcu_head *head)
195 {
196 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
197 	unsigned nr_events = ctx->max_reqs;
198 
199 	kmem_cache_free(kioctx_cachep, ctx);
200 
201 	if (nr_events) {
202 		spin_lock(&aio_nr_lock);
203 		BUG_ON(aio_nr - nr_events > aio_nr);
204 		aio_nr -= nr_events;
205 		spin_unlock(&aio_nr_lock);
206 	}
207 }
208 
209 /* __put_ioctx
210  *	Called when the last user of an aio context has gone away,
211  *	and the struct needs to be freed.
212  */
213 static void __put_ioctx(struct kioctx *ctx)
214 {
215 	BUG_ON(ctx->reqs_active);
216 
217 	cancel_delayed_work(&ctx->wq);
218 	cancel_work_sync(&ctx->wq.work);
219 	aio_free_ring(ctx);
220 	mmdrop(ctx->mm);
221 	ctx->mm = NULL;
222 	pr_debug("__put_ioctx: freeing %p\n", ctx);
223 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
224 }
225 
226 #define get_ioctx(kioctx) do {						\
227 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
228 	atomic_inc(&(kioctx)->users);					\
229 } while (0)
230 #define put_ioctx(kioctx) do {						\
231 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
232 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
233 		__put_ioctx(kioctx);					\
234 } while (0)
235 
236 /* ioctx_alloc
237  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
238  */
239 static struct kioctx *ioctx_alloc(unsigned nr_events)
240 {
241 	struct mm_struct *mm;
242 	struct kioctx *ctx;
243 	int did_sync = 0;
244 
245 	/* Prevent overflows */
246 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
247 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
248 		pr_debug("ENOMEM: nr_events too high\n");
249 		return ERR_PTR(-EINVAL);
250 	}
251 
252 	if ((unsigned long)nr_events > aio_max_nr)
253 		return ERR_PTR(-EAGAIN);
254 
255 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
256 	if (!ctx)
257 		return ERR_PTR(-ENOMEM);
258 
259 	ctx->max_reqs = nr_events;
260 	mm = ctx->mm = current->mm;
261 	atomic_inc(&mm->mm_count);
262 
263 	atomic_set(&ctx->users, 1);
264 	spin_lock_init(&ctx->ctx_lock);
265 	spin_lock_init(&ctx->ring_info.ring_lock);
266 	init_waitqueue_head(&ctx->wait);
267 
268 	INIT_LIST_HEAD(&ctx->active_reqs);
269 	INIT_LIST_HEAD(&ctx->run_list);
270 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
271 
272 	if (aio_setup_ring(ctx) < 0)
273 		goto out_freectx;
274 
275 	/* limit the number of system wide aios */
276 	do {
277 		spin_lock_bh(&aio_nr_lock);
278 		if (aio_nr + nr_events > aio_max_nr ||
279 		    aio_nr + nr_events < aio_nr)
280 			ctx->max_reqs = 0;
281 		else
282 			aio_nr += ctx->max_reqs;
283 		spin_unlock_bh(&aio_nr_lock);
284 		if (ctx->max_reqs || did_sync)
285 			break;
286 
287 		/* wait for rcu callbacks to have completed before giving up */
288 		synchronize_rcu();
289 		did_sync = 1;
290 		ctx->max_reqs = nr_events;
291 	} while (1);
292 
293 	if (ctx->max_reqs == 0)
294 		goto out_cleanup;
295 
296 	/* now link into global list. */
297 	spin_lock(&mm->ioctx_lock);
298 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
299 	spin_unlock(&mm->ioctx_lock);
300 
301 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
303 	return ctx;
304 
305 out_cleanup:
306 	__put_ioctx(ctx);
307 	return ERR_PTR(-EAGAIN);
308 
309 out_freectx:
310 	mmdrop(mm);
311 	kmem_cache_free(kioctx_cachep, ctx);
312 	ctx = ERR_PTR(-ENOMEM);
313 
314 	dprintk("aio: error allocating ioctx %p\n", ctx);
315 	return ctx;
316 }
317 
318 /* aio_cancel_all
319  *	Cancels all outstanding aio requests on an aio context.  Used
320  *	when the processes owning a context have all exited to encourage
321  *	the rapid destruction of the kioctx.
322  */
323 static void aio_cancel_all(struct kioctx *ctx)
324 {
325 	int (*cancel)(struct kiocb *, struct io_event *);
326 	struct io_event res;
327 	spin_lock_irq(&ctx->ctx_lock);
328 	ctx->dead = 1;
329 	while (!list_empty(&ctx->active_reqs)) {
330 		struct list_head *pos = ctx->active_reqs.next;
331 		struct kiocb *iocb = list_kiocb(pos);
332 		list_del_init(&iocb->ki_list);
333 		cancel = iocb->ki_cancel;
334 		kiocbSetCancelled(iocb);
335 		if (cancel) {
336 			iocb->ki_users++;
337 			spin_unlock_irq(&ctx->ctx_lock);
338 			cancel(iocb, &res);
339 			spin_lock_irq(&ctx->ctx_lock);
340 		}
341 	}
342 	spin_unlock_irq(&ctx->ctx_lock);
343 }
344 
345 static void wait_for_all_aios(struct kioctx *ctx)
346 {
347 	struct task_struct *tsk = current;
348 	DECLARE_WAITQUEUE(wait, tsk);
349 
350 	spin_lock_irq(&ctx->ctx_lock);
351 	if (!ctx->reqs_active)
352 		goto out;
353 
354 	add_wait_queue(&ctx->wait, &wait);
355 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
356 	while (ctx->reqs_active) {
357 		spin_unlock_irq(&ctx->ctx_lock);
358 		io_schedule();
359 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
360 		spin_lock_irq(&ctx->ctx_lock);
361 	}
362 	__set_task_state(tsk, TASK_RUNNING);
363 	remove_wait_queue(&ctx->wait, &wait);
364 
365 out:
366 	spin_unlock_irq(&ctx->ctx_lock);
367 }
368 
369 /* wait_on_sync_kiocb:
370  *	Waits on the given sync kiocb to complete.
371  */
372 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
373 {
374 	while (iocb->ki_users) {
375 		set_current_state(TASK_UNINTERRUPTIBLE);
376 		if (!iocb->ki_users)
377 			break;
378 		io_schedule();
379 	}
380 	__set_current_state(TASK_RUNNING);
381 	return iocb->ki_user_data;
382 }
383 
384 /* exit_aio: called when the last user of mm goes away.  At this point,
385  * there is no way for any new requests to be submited or any of the
386  * io_* syscalls to be called on the context.  However, there may be
387  * outstanding requests which hold references to the context; as they
388  * go away, they will call put_ioctx and release any pinned memory
389  * associated with the request (held via struct page * references).
390  */
391 void exit_aio(struct mm_struct *mm)
392 {
393 	struct kioctx *ctx;
394 
395 	while (!hlist_empty(&mm->ioctx_list)) {
396 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
397 		hlist_del_rcu(&ctx->list);
398 
399 		aio_cancel_all(ctx);
400 
401 		wait_for_all_aios(ctx);
402 		/*
403 		 * Ensure we don't leave the ctx on the aio_wq
404 		 */
405 		cancel_work_sync(&ctx->wq.work);
406 
407 		if (1 != atomic_read(&ctx->users))
408 			printk(KERN_DEBUG
409 				"exit_aio:ioctx still alive: %d %d %d\n",
410 				atomic_read(&ctx->users), ctx->dead,
411 				ctx->reqs_active);
412 		put_ioctx(ctx);
413 	}
414 }
415 
416 /* aio_get_req
417  *	Allocate a slot for an aio request.  Increments the users count
418  * of the kioctx so that the kioctx stays around until all requests are
419  * complete.  Returns NULL if no requests are free.
420  *
421  * Returns with kiocb->users set to 2.  The io submit code path holds
422  * an extra reference while submitting the i/o.
423  * This prevents races between the aio code path referencing the
424  * req (after submitting it) and aio_complete() freeing the req.
425  */
426 static struct kiocb *__aio_get_req(struct kioctx *ctx)
427 {
428 	struct kiocb *req = NULL;
429 	struct aio_ring *ring;
430 	int okay = 0;
431 
432 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
433 	if (unlikely(!req))
434 		return NULL;
435 
436 	req->ki_flags = 0;
437 	req->ki_users = 2;
438 	req->ki_key = 0;
439 	req->ki_ctx = ctx;
440 	req->ki_cancel = NULL;
441 	req->ki_retry = NULL;
442 	req->ki_dtor = NULL;
443 	req->private = NULL;
444 	req->ki_iovec = NULL;
445 	INIT_LIST_HEAD(&req->ki_run_list);
446 	req->ki_eventfd = NULL;
447 
448 	/* Check if the completion queue has enough free space to
449 	 * accept an event from this io.
450 	 */
451 	spin_lock_irq(&ctx->ctx_lock);
452 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
453 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
454 		list_add(&req->ki_list, &ctx->active_reqs);
455 		ctx->reqs_active++;
456 		okay = 1;
457 	}
458 	kunmap_atomic(ring, KM_USER0);
459 	spin_unlock_irq(&ctx->ctx_lock);
460 
461 	if (!okay) {
462 		kmem_cache_free(kiocb_cachep, req);
463 		req = NULL;
464 	}
465 
466 	return req;
467 }
468 
469 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
470 {
471 	struct kiocb *req;
472 	/* Handle a potential starvation case -- should be exceedingly rare as
473 	 * requests will be stuck on fput_head only if the aio_fput_routine is
474 	 * delayed and the requests were the last user of the struct file.
475 	 */
476 	req = __aio_get_req(ctx);
477 	if (unlikely(NULL == req)) {
478 		aio_fput_routine(NULL);
479 		req = __aio_get_req(ctx);
480 	}
481 	return req;
482 }
483 
484 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
485 {
486 	assert_spin_locked(&ctx->ctx_lock);
487 
488 	if (req->ki_eventfd != NULL)
489 		eventfd_ctx_put(req->ki_eventfd);
490 	if (req->ki_dtor)
491 		req->ki_dtor(req);
492 	if (req->ki_iovec != &req->ki_inline_vec)
493 		kfree(req->ki_iovec);
494 	kmem_cache_free(kiocb_cachep, req);
495 	ctx->reqs_active--;
496 
497 	if (unlikely(!ctx->reqs_active && ctx->dead))
498 		wake_up(&ctx->wait);
499 }
500 
501 static void aio_fput_routine(struct work_struct *data)
502 {
503 	spin_lock_irq(&fput_lock);
504 	while (likely(!list_empty(&fput_head))) {
505 		struct kiocb *req = list_kiocb(fput_head.next);
506 		struct kioctx *ctx = req->ki_ctx;
507 
508 		list_del(&req->ki_list);
509 		spin_unlock_irq(&fput_lock);
510 
511 		/* Complete the fput(s) */
512 		if (req->ki_filp != NULL)
513 			__fput(req->ki_filp);
514 
515 		/* Link the iocb into the context's free list */
516 		spin_lock_irq(&ctx->ctx_lock);
517 		really_put_req(ctx, req);
518 		spin_unlock_irq(&ctx->ctx_lock);
519 
520 		put_ioctx(ctx);
521 		spin_lock_irq(&fput_lock);
522 	}
523 	spin_unlock_irq(&fput_lock);
524 }
525 
526 /* __aio_put_req
527  *	Returns true if this put was the last user of the request.
528  */
529 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
530 {
531 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
532 		req, atomic_long_read(&req->ki_filp->f_count));
533 
534 	assert_spin_locked(&ctx->ctx_lock);
535 
536 	req->ki_users--;
537 	BUG_ON(req->ki_users < 0);
538 	if (likely(req->ki_users))
539 		return 0;
540 	list_del(&req->ki_list);		/* remove from active_reqs */
541 	req->ki_cancel = NULL;
542 	req->ki_retry = NULL;
543 
544 	/*
545 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
546 	 * schedule work in case it is not __fput() time. In normal cases,
547 	 * we would not be holding the last reference to the file*, so
548 	 * this function will be executed w/out any aio kthread wakeup.
549 	 */
550 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
551 		get_ioctx(ctx);
552 		spin_lock(&fput_lock);
553 		list_add(&req->ki_list, &fput_head);
554 		spin_unlock(&fput_lock);
555 		queue_work(aio_wq, &fput_work);
556 	} else {
557 		req->ki_filp = NULL;
558 		really_put_req(ctx, req);
559 	}
560 	return 1;
561 }
562 
563 /* aio_put_req
564  *	Returns true if this put was the last user of the kiocb,
565  *	false if the request is still in use.
566  */
567 int aio_put_req(struct kiocb *req)
568 {
569 	struct kioctx *ctx = req->ki_ctx;
570 	int ret;
571 	spin_lock_irq(&ctx->ctx_lock);
572 	ret = __aio_put_req(ctx, req);
573 	spin_unlock_irq(&ctx->ctx_lock);
574 	return ret;
575 }
576 
577 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
578 {
579 	struct mm_struct *mm = current->mm;
580 	struct kioctx *ctx, *ret = NULL;
581 	struct hlist_node *n;
582 
583 	rcu_read_lock();
584 
585 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
586 		if (ctx->user_id == ctx_id && !ctx->dead) {
587 			get_ioctx(ctx);
588 			ret = ctx;
589 			break;
590 		}
591 	}
592 
593 	rcu_read_unlock();
594 	return ret;
595 }
596 
597 /*
598  * Queue up a kiocb to be retried. Assumes that the kiocb
599  * has already been marked as kicked, and places it on
600  * the retry run list for the corresponding ioctx, if it
601  * isn't already queued. Returns 1 if it actually queued
602  * the kiocb (to tell the caller to activate the work
603  * queue to process it), or 0, if it found that it was
604  * already queued.
605  */
606 static inline int __queue_kicked_iocb(struct kiocb *iocb)
607 {
608 	struct kioctx *ctx = iocb->ki_ctx;
609 
610 	assert_spin_locked(&ctx->ctx_lock);
611 
612 	if (list_empty(&iocb->ki_run_list)) {
613 		list_add_tail(&iocb->ki_run_list,
614 			&ctx->run_list);
615 		return 1;
616 	}
617 	return 0;
618 }
619 
620 /* aio_run_iocb
621  *	This is the core aio execution routine. It is
622  *	invoked both for initial i/o submission and
623  *	subsequent retries via the aio_kick_handler.
624  *	Expects to be invoked with iocb->ki_ctx->lock
625  *	already held. The lock is released and reacquired
626  *	as needed during processing.
627  *
628  * Calls the iocb retry method (already setup for the
629  * iocb on initial submission) for operation specific
630  * handling, but takes care of most of common retry
631  * execution details for a given iocb. The retry method
632  * needs to be non-blocking as far as possible, to avoid
633  * holding up other iocbs waiting to be serviced by the
634  * retry kernel thread.
635  *
636  * The trickier parts in this code have to do with
637  * ensuring that only one retry instance is in progress
638  * for a given iocb at any time. Providing that guarantee
639  * simplifies the coding of individual aio operations as
640  * it avoids various potential races.
641  */
642 static ssize_t aio_run_iocb(struct kiocb *iocb)
643 {
644 	struct kioctx	*ctx = iocb->ki_ctx;
645 	ssize_t (*retry)(struct kiocb *);
646 	ssize_t ret;
647 
648 	if (!(retry = iocb->ki_retry)) {
649 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
650 		return 0;
651 	}
652 
653 	/*
654 	 * We don't want the next retry iteration for this
655 	 * operation to start until this one has returned and
656 	 * updated the iocb state. However, wait_queue functions
657 	 * can trigger a kick_iocb from interrupt context in the
658 	 * meantime, indicating that data is available for the next
659 	 * iteration. We want to remember that and enable the
660 	 * next retry iteration _after_ we are through with
661 	 * this one.
662 	 *
663 	 * So, in order to be able to register a "kick", but
664 	 * prevent it from being queued now, we clear the kick
665 	 * flag, but make the kick code *think* that the iocb is
666 	 * still on the run list until we are actually done.
667 	 * When we are done with this iteration, we check if
668 	 * the iocb was kicked in the meantime and if so, queue
669 	 * it up afresh.
670 	 */
671 
672 	kiocbClearKicked(iocb);
673 
674 	/*
675 	 * This is so that aio_complete knows it doesn't need to
676 	 * pull the iocb off the run list (We can't just call
677 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
678 	 * queue this on the run list yet)
679 	 */
680 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
681 	spin_unlock_irq(&ctx->ctx_lock);
682 
683 	/* Quit retrying if the i/o has been cancelled */
684 	if (kiocbIsCancelled(iocb)) {
685 		ret = -EINTR;
686 		aio_complete(iocb, ret, 0);
687 		/* must not access the iocb after this */
688 		goto out;
689 	}
690 
691 	/*
692 	 * Now we are all set to call the retry method in async
693 	 * context.
694 	 */
695 	ret = retry(iocb);
696 
697 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
698 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
699 		aio_complete(iocb, ret, 0);
700 	}
701 out:
702 	spin_lock_irq(&ctx->ctx_lock);
703 
704 	if (-EIOCBRETRY == ret) {
705 		/*
706 		 * OK, now that we are done with this iteration
707 		 * and know that there is more left to go,
708 		 * this is where we let go so that a subsequent
709 		 * "kick" can start the next iteration
710 		 */
711 
712 		/* will make __queue_kicked_iocb succeed from here on */
713 		INIT_LIST_HEAD(&iocb->ki_run_list);
714 		/* we must queue the next iteration ourselves, if it
715 		 * has already been kicked */
716 		if (kiocbIsKicked(iocb)) {
717 			__queue_kicked_iocb(iocb);
718 
719 			/*
720 			 * __queue_kicked_iocb will always return 1 here, because
721 			 * iocb->ki_run_list is empty at this point so it should
722 			 * be safe to unconditionally queue the context into the
723 			 * work queue.
724 			 */
725 			aio_queue_work(ctx);
726 		}
727 	}
728 	return ret;
729 }
730 
731 /*
732  * __aio_run_iocbs:
733  * 	Process all pending retries queued on the ioctx
734  * 	run list.
735  * Assumes it is operating within the aio issuer's mm
736  * context.
737  */
738 static int __aio_run_iocbs(struct kioctx *ctx)
739 {
740 	struct kiocb *iocb;
741 	struct list_head run_list;
742 
743 	assert_spin_locked(&ctx->ctx_lock);
744 
745 	list_replace_init(&ctx->run_list, &run_list);
746 	while (!list_empty(&run_list)) {
747 		iocb = list_entry(run_list.next, struct kiocb,
748 			ki_run_list);
749 		list_del(&iocb->ki_run_list);
750 		/*
751 		 * Hold an extra reference while retrying i/o.
752 		 */
753 		iocb->ki_users++;       /* grab extra reference */
754 		aio_run_iocb(iocb);
755 		__aio_put_req(ctx, iocb);
756  	}
757 	if (!list_empty(&ctx->run_list))
758 		return 1;
759 	return 0;
760 }
761 
762 static void aio_queue_work(struct kioctx * ctx)
763 {
764 	unsigned long timeout;
765 	/*
766 	 * if someone is waiting, get the work started right
767 	 * away, otherwise, use a longer delay
768 	 */
769 	smp_mb();
770 	if (waitqueue_active(&ctx->wait))
771 		timeout = 1;
772 	else
773 		timeout = HZ/10;
774 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
775 }
776 
777 
778 /*
779  * aio_run_iocbs:
780  * 	Process all pending retries queued on the ioctx
781  * 	run list.
782  * Assumes it is operating within the aio issuer's mm
783  * context.
784  */
785 static inline void aio_run_iocbs(struct kioctx *ctx)
786 {
787 	int requeue;
788 
789 	spin_lock_irq(&ctx->ctx_lock);
790 
791 	requeue = __aio_run_iocbs(ctx);
792 	spin_unlock_irq(&ctx->ctx_lock);
793 	if (requeue)
794 		aio_queue_work(ctx);
795 }
796 
797 /*
798  * just like aio_run_iocbs, but keeps running them until
799  * the list stays empty
800  */
801 static inline void aio_run_all_iocbs(struct kioctx *ctx)
802 {
803 	spin_lock_irq(&ctx->ctx_lock);
804 	while (__aio_run_iocbs(ctx))
805 		;
806 	spin_unlock_irq(&ctx->ctx_lock);
807 }
808 
809 /*
810  * aio_kick_handler:
811  * 	Work queue handler triggered to process pending
812  * 	retries on an ioctx. Takes on the aio issuer's
813  *	mm context before running the iocbs, so that
814  *	copy_xxx_user operates on the issuer's address
815  *      space.
816  * Run on aiod's context.
817  */
818 static void aio_kick_handler(struct work_struct *work)
819 {
820 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
821 	mm_segment_t oldfs = get_fs();
822 	struct mm_struct *mm;
823 	int requeue;
824 
825 	set_fs(USER_DS);
826 	use_mm(ctx->mm);
827 	spin_lock_irq(&ctx->ctx_lock);
828 	requeue =__aio_run_iocbs(ctx);
829 	mm = ctx->mm;
830 	spin_unlock_irq(&ctx->ctx_lock);
831  	unuse_mm(mm);
832 	set_fs(oldfs);
833 	/*
834 	 * we're in a worker thread already, don't use queue_delayed_work,
835 	 */
836 	if (requeue)
837 		queue_delayed_work(aio_wq, &ctx->wq, 0);
838 }
839 
840 
841 /*
842  * Called by kick_iocb to queue the kiocb for retry
843  * and if required activate the aio work queue to process
844  * it
845  */
846 static void try_queue_kicked_iocb(struct kiocb *iocb)
847 {
848  	struct kioctx	*ctx = iocb->ki_ctx;
849 	unsigned long flags;
850 	int run = 0;
851 
852 	/* We're supposed to be the only path putting the iocb back on the run
853 	 * list.  If we find that the iocb is *back* on a wait queue already
854 	 * than retry has happened before we could queue the iocb.  This also
855 	 * means that the retry could have completed and freed our iocb, no
856 	 * good. */
857 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
858 
859 	spin_lock_irqsave(&ctx->ctx_lock, flags);
860 	/* set this inside the lock so that we can't race with aio_run_iocb()
861 	 * testing it and putting the iocb on the run list under the lock */
862 	if (!kiocbTryKick(iocb))
863 		run = __queue_kicked_iocb(iocb);
864 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
865 	if (run)
866 		aio_queue_work(ctx);
867 }
868 
869 /*
870  * kick_iocb:
871  *      Called typically from a wait queue callback context
872  *      (aio_wake_function) to trigger a retry of the iocb.
873  *      The retry is usually executed by aio workqueue
874  *      threads (See aio_kick_handler).
875  */
876 void kick_iocb(struct kiocb *iocb)
877 {
878 	/* sync iocbs are easy: they can only ever be executing from a
879 	 * single context. */
880 	if (is_sync_kiocb(iocb)) {
881 		kiocbSetKicked(iocb);
882 	        wake_up_process(iocb->ki_obj.tsk);
883 		return;
884 	}
885 
886 	try_queue_kicked_iocb(iocb);
887 }
888 EXPORT_SYMBOL(kick_iocb);
889 
890 /* aio_complete
891  *	Called when the io request on the given iocb is complete.
892  *	Returns true if this is the last user of the request.  The
893  *	only other user of the request can be the cancellation code.
894  */
895 int aio_complete(struct kiocb *iocb, long res, long res2)
896 {
897 	struct kioctx	*ctx = iocb->ki_ctx;
898 	struct aio_ring_info	*info;
899 	struct aio_ring	*ring;
900 	struct io_event	*event;
901 	unsigned long	flags;
902 	unsigned long	tail;
903 	int		ret;
904 
905 	/*
906 	 * Special case handling for sync iocbs:
907 	 *  - events go directly into the iocb for fast handling
908 	 *  - the sync task with the iocb in its stack holds the single iocb
909 	 *    ref, no other paths have a way to get another ref
910 	 *  - the sync task helpfully left a reference to itself in the iocb
911 	 */
912 	if (is_sync_kiocb(iocb)) {
913 		BUG_ON(iocb->ki_users != 1);
914 		iocb->ki_user_data = res;
915 		iocb->ki_users = 0;
916 		wake_up_process(iocb->ki_obj.tsk);
917 		return 1;
918 	}
919 
920 	info = &ctx->ring_info;
921 
922 	/* add a completion event to the ring buffer.
923 	 * must be done holding ctx->ctx_lock to prevent
924 	 * other code from messing with the tail
925 	 * pointer since we might be called from irq
926 	 * context.
927 	 */
928 	spin_lock_irqsave(&ctx->ctx_lock, flags);
929 
930 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
931 		list_del_init(&iocb->ki_run_list);
932 
933 	/*
934 	 * cancelled requests don't get events, userland was given one
935 	 * when the event got cancelled.
936 	 */
937 	if (kiocbIsCancelled(iocb))
938 		goto put_rq;
939 
940 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
941 
942 	tail = info->tail;
943 	event = aio_ring_event(info, tail, KM_IRQ0);
944 	if (++tail >= info->nr)
945 		tail = 0;
946 
947 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
948 	event->data = iocb->ki_user_data;
949 	event->res = res;
950 	event->res2 = res2;
951 
952 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
953 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
954 		res, res2);
955 
956 	/* after flagging the request as done, we
957 	 * must never even look at it again
958 	 */
959 	smp_wmb();	/* make event visible before updating tail */
960 
961 	info->tail = tail;
962 	ring->tail = tail;
963 
964 	put_aio_ring_event(event, KM_IRQ0);
965 	kunmap_atomic(ring, KM_IRQ1);
966 
967 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
968 
969 	/*
970 	 * Check if the user asked us to deliver the result through an
971 	 * eventfd. The eventfd_signal() function is safe to be called
972 	 * from IRQ context.
973 	 */
974 	if (iocb->ki_eventfd != NULL)
975 		eventfd_signal(iocb->ki_eventfd, 1);
976 
977 put_rq:
978 	/* everything turned out well, dispose of the aiocb. */
979 	ret = __aio_put_req(ctx, iocb);
980 
981 	/*
982 	 * We have to order our ring_info tail store above and test
983 	 * of the wait list below outside the wait lock.  This is
984 	 * like in wake_up_bit() where clearing a bit has to be
985 	 * ordered with the unlocked test.
986 	 */
987 	smp_mb();
988 
989 	if (waitqueue_active(&ctx->wait))
990 		wake_up(&ctx->wait);
991 
992 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
993 	return ret;
994 }
995 
996 /* aio_read_evt
997  *	Pull an event off of the ioctx's event ring.  Returns the number of
998  *	events fetched (0 or 1 ;-)
999  *	FIXME: make this use cmpxchg.
1000  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1001  */
1002 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1003 {
1004 	struct aio_ring_info *info = &ioctx->ring_info;
1005 	struct aio_ring *ring;
1006 	unsigned long head;
1007 	int ret = 0;
1008 
1009 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1010 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1011 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1012 		 (unsigned long)ring->nr);
1013 
1014 	if (ring->head == ring->tail)
1015 		goto out;
1016 
1017 	spin_lock(&info->ring_lock);
1018 
1019 	head = ring->head % info->nr;
1020 	if (head != ring->tail) {
1021 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1022 		*ent = *evp;
1023 		head = (head + 1) % info->nr;
1024 		smp_mb(); /* finish reading the event before updatng the head */
1025 		ring->head = head;
1026 		ret = 1;
1027 		put_aio_ring_event(evp, KM_USER1);
1028 	}
1029 	spin_unlock(&info->ring_lock);
1030 
1031 out:
1032 	kunmap_atomic(ring, KM_USER0);
1033 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1034 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1035 	return ret;
1036 }
1037 
1038 struct aio_timeout {
1039 	struct timer_list	timer;
1040 	int			timed_out;
1041 	struct task_struct	*p;
1042 };
1043 
1044 static void timeout_func(unsigned long data)
1045 {
1046 	struct aio_timeout *to = (struct aio_timeout *)data;
1047 
1048 	to->timed_out = 1;
1049 	wake_up_process(to->p);
1050 }
1051 
1052 static inline void init_timeout(struct aio_timeout *to)
1053 {
1054 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1055 	to->timed_out = 0;
1056 	to->p = current;
1057 }
1058 
1059 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1060 			       const struct timespec *ts)
1061 {
1062 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1063 	if (time_after(to->timer.expires, jiffies))
1064 		add_timer(&to->timer);
1065 	else
1066 		to->timed_out = 1;
1067 }
1068 
1069 static inline void clear_timeout(struct aio_timeout *to)
1070 {
1071 	del_singleshot_timer_sync(&to->timer);
1072 }
1073 
1074 static int read_events(struct kioctx *ctx,
1075 			long min_nr, long nr,
1076 			struct io_event __user *event,
1077 			struct timespec __user *timeout)
1078 {
1079 	long			start_jiffies = jiffies;
1080 	struct task_struct	*tsk = current;
1081 	DECLARE_WAITQUEUE(wait, tsk);
1082 	int			ret;
1083 	int			i = 0;
1084 	struct io_event		ent;
1085 	struct aio_timeout	to;
1086 	int			retry = 0;
1087 
1088 	/* needed to zero any padding within an entry (there shouldn't be
1089 	 * any, but C is fun!
1090 	 */
1091 	memset(&ent, 0, sizeof(ent));
1092 retry:
1093 	ret = 0;
1094 	while (likely(i < nr)) {
1095 		ret = aio_read_evt(ctx, &ent);
1096 		if (unlikely(ret <= 0))
1097 			break;
1098 
1099 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1100 			ent.data, ent.obj, ent.res, ent.res2);
1101 
1102 		/* Could we split the check in two? */
1103 		ret = -EFAULT;
1104 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1105 			dprintk("aio: lost an event due to EFAULT.\n");
1106 			break;
1107 		}
1108 		ret = 0;
1109 
1110 		/* Good, event copied to userland, update counts. */
1111 		event ++;
1112 		i ++;
1113 	}
1114 
1115 	if (min_nr <= i)
1116 		return i;
1117 	if (ret)
1118 		return ret;
1119 
1120 	/* End fast path */
1121 
1122 	/* racey check, but it gets redone */
1123 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1124 		retry = 1;
1125 		aio_run_all_iocbs(ctx);
1126 		goto retry;
1127 	}
1128 
1129 	init_timeout(&to);
1130 	if (timeout) {
1131 		struct timespec	ts;
1132 		ret = -EFAULT;
1133 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1134 			goto out;
1135 
1136 		set_timeout(start_jiffies, &to, &ts);
1137 	}
1138 
1139 	while (likely(i < nr)) {
1140 		add_wait_queue_exclusive(&ctx->wait, &wait);
1141 		do {
1142 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1143 			ret = aio_read_evt(ctx, &ent);
1144 			if (ret)
1145 				break;
1146 			if (min_nr <= i)
1147 				break;
1148 			if (unlikely(ctx->dead)) {
1149 				ret = -EINVAL;
1150 				break;
1151 			}
1152 			if (to.timed_out)	/* Only check after read evt */
1153 				break;
1154 			/* Try to only show up in io wait if there are ops
1155 			 *  in flight */
1156 			if (ctx->reqs_active)
1157 				io_schedule();
1158 			else
1159 				schedule();
1160 			if (signal_pending(tsk)) {
1161 				ret = -EINTR;
1162 				break;
1163 			}
1164 			/*ret = aio_read_evt(ctx, &ent);*/
1165 		} while (1) ;
1166 
1167 		set_task_state(tsk, TASK_RUNNING);
1168 		remove_wait_queue(&ctx->wait, &wait);
1169 
1170 		if (unlikely(ret <= 0))
1171 			break;
1172 
1173 		ret = -EFAULT;
1174 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1175 			dprintk("aio: lost an event due to EFAULT.\n");
1176 			break;
1177 		}
1178 
1179 		/* Good, event copied to userland, update counts. */
1180 		event ++;
1181 		i ++;
1182 	}
1183 
1184 	if (timeout)
1185 		clear_timeout(&to);
1186 out:
1187 	destroy_timer_on_stack(&to.timer);
1188 	return i ? i : ret;
1189 }
1190 
1191 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1192  * against races with itself via ->dead.
1193  */
1194 static void io_destroy(struct kioctx *ioctx)
1195 {
1196 	struct mm_struct *mm = current->mm;
1197 	int was_dead;
1198 
1199 	/* delete the entry from the list is someone else hasn't already */
1200 	spin_lock(&mm->ioctx_lock);
1201 	was_dead = ioctx->dead;
1202 	ioctx->dead = 1;
1203 	hlist_del_rcu(&ioctx->list);
1204 	spin_unlock(&mm->ioctx_lock);
1205 
1206 	dprintk("aio_release(%p)\n", ioctx);
1207 	if (likely(!was_dead))
1208 		put_ioctx(ioctx);	/* twice for the list */
1209 
1210 	aio_cancel_all(ioctx);
1211 	wait_for_all_aios(ioctx);
1212 
1213 	/*
1214 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1215 	 * by other CPUs at this point.  Right now, we rely on the
1216 	 * locking done by the above calls to ensure this consistency.
1217 	 */
1218 	wake_up(&ioctx->wait);
1219 	put_ioctx(ioctx);	/* once for the lookup */
1220 }
1221 
1222 /* sys_io_setup:
1223  *	Create an aio_context capable of receiving at least nr_events.
1224  *	ctxp must not point to an aio_context that already exists, and
1225  *	must be initialized to 0 prior to the call.  On successful
1226  *	creation of the aio_context, *ctxp is filled in with the resulting
1227  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1228  *	if the specified nr_events exceeds internal limits.  May fail
1229  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1230  *	of available events.  May fail with -ENOMEM if insufficient kernel
1231  *	resources are available.  May fail with -EFAULT if an invalid
1232  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1233  *	implemented.
1234  */
1235 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1236 {
1237 	struct kioctx *ioctx = NULL;
1238 	unsigned long ctx;
1239 	long ret;
1240 
1241 	ret = get_user(ctx, ctxp);
1242 	if (unlikely(ret))
1243 		goto out;
1244 
1245 	ret = -EINVAL;
1246 	if (unlikely(ctx || nr_events == 0)) {
1247 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1248 		         ctx, nr_events);
1249 		goto out;
1250 	}
1251 
1252 	ioctx = ioctx_alloc(nr_events);
1253 	ret = PTR_ERR(ioctx);
1254 	if (!IS_ERR(ioctx)) {
1255 		ret = put_user(ioctx->user_id, ctxp);
1256 		if (!ret)
1257 			return 0;
1258 
1259 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1260 		io_destroy(ioctx);
1261 	}
1262 
1263 out:
1264 	return ret;
1265 }
1266 
1267 /* sys_io_destroy:
1268  *	Destroy the aio_context specified.  May cancel any outstanding
1269  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1270  *	implemented.  May fail with -EFAULT if the context pointed to
1271  *	is invalid.
1272  */
1273 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1274 {
1275 	struct kioctx *ioctx = lookup_ioctx(ctx);
1276 	if (likely(NULL != ioctx)) {
1277 		io_destroy(ioctx);
1278 		return 0;
1279 	}
1280 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1281 	return -EINVAL;
1282 }
1283 
1284 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1285 {
1286 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1287 
1288 	BUG_ON(ret <= 0);
1289 
1290 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1291 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1292 		iov->iov_base += this;
1293 		iov->iov_len -= this;
1294 		iocb->ki_left -= this;
1295 		ret -= this;
1296 		if (iov->iov_len == 0) {
1297 			iocb->ki_cur_seg++;
1298 			iov++;
1299 		}
1300 	}
1301 
1302 	/* the caller should not have done more io than what fit in
1303 	 * the remaining iovecs */
1304 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1305 }
1306 
1307 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1308 {
1309 	struct file *file = iocb->ki_filp;
1310 	struct address_space *mapping = file->f_mapping;
1311 	struct inode *inode = mapping->host;
1312 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1313 			 unsigned long, loff_t);
1314 	ssize_t ret = 0;
1315 	unsigned short opcode;
1316 
1317 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1318 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1319 		rw_op = file->f_op->aio_read;
1320 		opcode = IOCB_CMD_PREADV;
1321 	} else {
1322 		rw_op = file->f_op->aio_write;
1323 		opcode = IOCB_CMD_PWRITEV;
1324 	}
1325 
1326 	/* This matches the pread()/pwrite() logic */
1327 	if (iocb->ki_pos < 0)
1328 		return -EINVAL;
1329 
1330 	do {
1331 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1332 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1333 			    iocb->ki_pos);
1334 		if (ret > 0)
1335 			aio_advance_iovec(iocb, ret);
1336 
1337 	/* retry all partial writes.  retry partial reads as long as its a
1338 	 * regular file. */
1339 	} while (ret > 0 && iocb->ki_left > 0 &&
1340 		 (opcode == IOCB_CMD_PWRITEV ||
1341 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1342 
1343 	/* This means we must have transferred all that we could */
1344 	/* No need to retry anymore */
1345 	if ((ret == 0) || (iocb->ki_left == 0))
1346 		ret = iocb->ki_nbytes - iocb->ki_left;
1347 
1348 	/* If we managed to write some out we return that, rather than
1349 	 * the eventual error. */
1350 	if (opcode == IOCB_CMD_PWRITEV
1351 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1352 	    && iocb->ki_nbytes - iocb->ki_left)
1353 		ret = iocb->ki_nbytes - iocb->ki_left;
1354 
1355 	return ret;
1356 }
1357 
1358 static ssize_t aio_fdsync(struct kiocb *iocb)
1359 {
1360 	struct file *file = iocb->ki_filp;
1361 	ssize_t ret = -EINVAL;
1362 
1363 	if (file->f_op->aio_fsync)
1364 		ret = file->f_op->aio_fsync(iocb, 1);
1365 	return ret;
1366 }
1367 
1368 static ssize_t aio_fsync(struct kiocb *iocb)
1369 {
1370 	struct file *file = iocb->ki_filp;
1371 	ssize_t ret = -EINVAL;
1372 
1373 	if (file->f_op->aio_fsync)
1374 		ret = file->f_op->aio_fsync(iocb, 0);
1375 	return ret;
1376 }
1377 
1378 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1379 {
1380 	ssize_t ret;
1381 
1382 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1383 				    kiocb->ki_nbytes, 1,
1384 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1385 	if (ret < 0)
1386 		goto out;
1387 
1388 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1389 	kiocb->ki_cur_seg = 0;
1390 	/* ki_nbytes/left now reflect bytes instead of segs */
1391 	kiocb->ki_nbytes = ret;
1392 	kiocb->ki_left = ret;
1393 
1394 	ret = 0;
1395 out:
1396 	return ret;
1397 }
1398 
1399 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1400 {
1401 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1402 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1403 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1404 	kiocb->ki_nr_segs = 1;
1405 	kiocb->ki_cur_seg = 0;
1406 	return 0;
1407 }
1408 
1409 /*
1410  * aio_setup_iocb:
1411  *	Performs the initial checks and aio retry method
1412  *	setup for the kiocb at the time of io submission.
1413  */
1414 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1415 {
1416 	struct file *file = kiocb->ki_filp;
1417 	ssize_t ret = 0;
1418 
1419 	switch (kiocb->ki_opcode) {
1420 	case IOCB_CMD_PREAD:
1421 		ret = -EBADF;
1422 		if (unlikely(!(file->f_mode & FMODE_READ)))
1423 			break;
1424 		ret = -EFAULT;
1425 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1426 			kiocb->ki_left)))
1427 			break;
1428 		ret = security_file_permission(file, MAY_READ);
1429 		if (unlikely(ret))
1430 			break;
1431 		ret = aio_setup_single_vector(kiocb);
1432 		if (ret)
1433 			break;
1434 		ret = -EINVAL;
1435 		if (file->f_op->aio_read)
1436 			kiocb->ki_retry = aio_rw_vect_retry;
1437 		break;
1438 	case IOCB_CMD_PWRITE:
1439 		ret = -EBADF;
1440 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1441 			break;
1442 		ret = -EFAULT;
1443 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1444 			kiocb->ki_left)))
1445 			break;
1446 		ret = security_file_permission(file, MAY_WRITE);
1447 		if (unlikely(ret))
1448 			break;
1449 		ret = aio_setup_single_vector(kiocb);
1450 		if (ret)
1451 			break;
1452 		ret = -EINVAL;
1453 		if (file->f_op->aio_write)
1454 			kiocb->ki_retry = aio_rw_vect_retry;
1455 		break;
1456 	case IOCB_CMD_PREADV:
1457 		ret = -EBADF;
1458 		if (unlikely(!(file->f_mode & FMODE_READ)))
1459 			break;
1460 		ret = security_file_permission(file, MAY_READ);
1461 		if (unlikely(ret))
1462 			break;
1463 		ret = aio_setup_vectored_rw(READ, kiocb);
1464 		if (ret)
1465 			break;
1466 		ret = -EINVAL;
1467 		if (file->f_op->aio_read)
1468 			kiocb->ki_retry = aio_rw_vect_retry;
1469 		break;
1470 	case IOCB_CMD_PWRITEV:
1471 		ret = -EBADF;
1472 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1473 			break;
1474 		ret = security_file_permission(file, MAY_WRITE);
1475 		if (unlikely(ret))
1476 			break;
1477 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1478 		if (ret)
1479 			break;
1480 		ret = -EINVAL;
1481 		if (file->f_op->aio_write)
1482 			kiocb->ki_retry = aio_rw_vect_retry;
1483 		break;
1484 	case IOCB_CMD_FDSYNC:
1485 		ret = -EINVAL;
1486 		if (file->f_op->aio_fsync)
1487 			kiocb->ki_retry = aio_fdsync;
1488 		break;
1489 	case IOCB_CMD_FSYNC:
1490 		ret = -EINVAL;
1491 		if (file->f_op->aio_fsync)
1492 			kiocb->ki_retry = aio_fsync;
1493 		break;
1494 	default:
1495 		dprintk("EINVAL: io_submit: no operation provided\n");
1496 		ret = -EINVAL;
1497 	}
1498 
1499 	if (!kiocb->ki_retry)
1500 		return ret;
1501 
1502 	return 0;
1503 }
1504 
1505 /*
1506  * aio_wake_function:
1507  * 	wait queue callback function for aio notification,
1508  * 	Simply triggers a retry of the operation via kick_iocb.
1509  *
1510  * 	This callback is specified in the wait queue entry in
1511  *	a kiocb.
1512  *
1513  * Note:
1514  * This routine is executed with the wait queue lock held.
1515  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1516  * the ioctx lock inside the wait queue lock. This is safe
1517  * because this callback isn't used for wait queues which
1518  * are nested inside ioctx lock (i.e. ctx->wait)
1519  */
1520 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1521 			     int sync, void *key)
1522 {
1523 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1524 
1525 	list_del_init(&wait->task_list);
1526 	kick_iocb(iocb);
1527 	return 1;
1528 }
1529 
1530 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1531 			 struct iocb *iocb)
1532 {
1533 	struct kiocb *req;
1534 	struct file *file;
1535 	ssize_t ret;
1536 
1537 	/* enforce forwards compatibility on users */
1538 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1539 		pr_debug("EINVAL: io_submit: reserve field set\n");
1540 		return -EINVAL;
1541 	}
1542 
1543 	/* prevent overflows */
1544 	if (unlikely(
1545 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1546 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1547 	    ((ssize_t)iocb->aio_nbytes < 0)
1548 	   )) {
1549 		pr_debug("EINVAL: io_submit: overflow check\n");
1550 		return -EINVAL;
1551 	}
1552 
1553 	file = fget(iocb->aio_fildes);
1554 	if (unlikely(!file))
1555 		return -EBADF;
1556 
1557 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1558 	if (unlikely(!req)) {
1559 		fput(file);
1560 		return -EAGAIN;
1561 	}
1562 	req->ki_filp = file;
1563 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1564 		/*
1565 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1566 		 * instance of the file* now. The file descriptor must be
1567 		 * an eventfd() fd, and will be signaled for each completed
1568 		 * event using the eventfd_signal() function.
1569 		 */
1570 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1571 		if (IS_ERR(req->ki_eventfd)) {
1572 			ret = PTR_ERR(req->ki_eventfd);
1573 			req->ki_eventfd = NULL;
1574 			goto out_put_req;
1575 		}
1576 	}
1577 
1578 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1579 	if (unlikely(ret)) {
1580 		dprintk("EFAULT: aio_key\n");
1581 		goto out_put_req;
1582 	}
1583 
1584 	req->ki_obj.user = user_iocb;
1585 	req->ki_user_data = iocb->aio_data;
1586 	req->ki_pos = iocb->aio_offset;
1587 
1588 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1589 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1590 	req->ki_opcode = iocb->aio_lio_opcode;
1591 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1592 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1593 
1594 	ret = aio_setup_iocb(req);
1595 
1596 	if (ret)
1597 		goto out_put_req;
1598 
1599 	spin_lock_irq(&ctx->ctx_lock);
1600 	aio_run_iocb(req);
1601 	if (!list_empty(&ctx->run_list)) {
1602 		/* drain the run list */
1603 		while (__aio_run_iocbs(ctx))
1604 			;
1605 	}
1606 	spin_unlock_irq(&ctx->ctx_lock);
1607 	aio_put_req(req);	/* drop extra ref to req */
1608 	return 0;
1609 
1610 out_put_req:
1611 	aio_put_req(req);	/* drop extra ref to req */
1612 	aio_put_req(req);	/* drop i/o ref to req */
1613 	return ret;
1614 }
1615 
1616 /* sys_io_submit:
1617  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1618  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1619  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1620  *	*iocbpp[0] is not properly initialized, if the operation specified
1621  *	is invalid for the file descriptor in the iocb.  May fail with
1622  *	-EFAULT if any of the data structures point to invalid data.  May
1623  *	fail with -EBADF if the file descriptor specified in the first
1624  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1625  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1626  *	fail with -ENOSYS if not implemented.
1627  */
1628 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1629 		struct iocb __user * __user *, iocbpp)
1630 {
1631 	struct kioctx *ctx;
1632 	long ret = 0;
1633 	int i;
1634 
1635 	if (unlikely(nr < 0))
1636 		return -EINVAL;
1637 
1638 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1639 		return -EFAULT;
1640 
1641 	ctx = lookup_ioctx(ctx_id);
1642 	if (unlikely(!ctx)) {
1643 		pr_debug("EINVAL: io_submit: invalid context id\n");
1644 		return -EINVAL;
1645 	}
1646 
1647 	/*
1648 	 * AKPM: should this return a partial result if some of the IOs were
1649 	 * successfully submitted?
1650 	 */
1651 	for (i=0; i<nr; i++) {
1652 		struct iocb __user *user_iocb;
1653 		struct iocb tmp;
1654 
1655 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1656 			ret = -EFAULT;
1657 			break;
1658 		}
1659 
1660 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1661 			ret = -EFAULT;
1662 			break;
1663 		}
1664 
1665 		ret = io_submit_one(ctx, user_iocb, &tmp);
1666 		if (ret)
1667 			break;
1668 	}
1669 
1670 	put_ioctx(ctx);
1671 	return i ? i : ret;
1672 }
1673 
1674 /* lookup_kiocb
1675  *	Finds a given iocb for cancellation.
1676  */
1677 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1678 				  u32 key)
1679 {
1680 	struct list_head *pos;
1681 
1682 	assert_spin_locked(&ctx->ctx_lock);
1683 
1684 	/* TODO: use a hash or array, this sucks. */
1685 	list_for_each(pos, &ctx->active_reqs) {
1686 		struct kiocb *kiocb = list_kiocb(pos);
1687 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1688 			return kiocb;
1689 	}
1690 	return NULL;
1691 }
1692 
1693 /* sys_io_cancel:
1694  *	Attempts to cancel an iocb previously passed to io_submit.  If
1695  *	the operation is successfully cancelled, the resulting event is
1696  *	copied into the memory pointed to by result without being placed
1697  *	into the completion queue and 0 is returned.  May fail with
1698  *	-EFAULT if any of the data structures pointed to are invalid.
1699  *	May fail with -EINVAL if aio_context specified by ctx_id is
1700  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1701  *	cancelled.  Will fail with -ENOSYS if not implemented.
1702  */
1703 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1704 		struct io_event __user *, result)
1705 {
1706 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1707 	struct kioctx *ctx;
1708 	struct kiocb *kiocb;
1709 	u32 key;
1710 	int ret;
1711 
1712 	ret = get_user(key, &iocb->aio_key);
1713 	if (unlikely(ret))
1714 		return -EFAULT;
1715 
1716 	ctx = lookup_ioctx(ctx_id);
1717 	if (unlikely(!ctx))
1718 		return -EINVAL;
1719 
1720 	spin_lock_irq(&ctx->ctx_lock);
1721 	ret = -EAGAIN;
1722 	kiocb = lookup_kiocb(ctx, iocb, key);
1723 	if (kiocb && kiocb->ki_cancel) {
1724 		cancel = kiocb->ki_cancel;
1725 		kiocb->ki_users ++;
1726 		kiocbSetCancelled(kiocb);
1727 	} else
1728 		cancel = NULL;
1729 	spin_unlock_irq(&ctx->ctx_lock);
1730 
1731 	if (NULL != cancel) {
1732 		struct io_event tmp;
1733 		pr_debug("calling cancel\n");
1734 		memset(&tmp, 0, sizeof(tmp));
1735 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1736 		tmp.data = kiocb->ki_user_data;
1737 		ret = cancel(kiocb, &tmp);
1738 		if (!ret) {
1739 			/* Cancellation succeeded -- copy the result
1740 			 * into the user's buffer.
1741 			 */
1742 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1743 				ret = -EFAULT;
1744 		}
1745 	} else
1746 		ret = -EINVAL;
1747 
1748 	put_ioctx(ctx);
1749 
1750 	return ret;
1751 }
1752 
1753 /* io_getevents:
1754  *	Attempts to read at least min_nr events and up to nr events from
1755  *	the completion queue for the aio_context specified by ctx_id.  May
1756  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1757  *	if nr is out of range, if when is out of range.  May fail with
1758  *	-EFAULT if any of the memory specified to is invalid.  May return
1759  *	0 or < min_nr if no events are available and the timeout specified
1760  *	by when	has elapsed, where when == NULL specifies an infinite
1761  *	timeout.  Note that the timeout pointed to by when is relative and
1762  *	will be updated if not NULL and the operation blocks.  Will fail
1763  *	with -ENOSYS if not implemented.
1764  */
1765 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1766 		long, min_nr,
1767 		long, nr,
1768 		struct io_event __user *, events,
1769 		struct timespec __user *, timeout)
1770 {
1771 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1772 	long ret = -EINVAL;
1773 
1774 	if (likely(ioctx)) {
1775 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1776 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1777 		put_ioctx(ioctx);
1778 	}
1779 
1780 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1781 	return ret;
1782 }
1783 
1784 __initcall(aio_setup);
1785 
1786 EXPORT_SYMBOL(aio_complete);
1787 EXPORT_SYMBOL(aio_put_req);
1788 EXPORT_SYMBOL(wait_on_sync_kiocb);
1789