1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/mmu_context.h> 31 #include <linux/percpu.h> 32 #include <linux/slab.h> 33 #include <linux/timer.h> 34 #include <linux/aio.h> 35 #include <linux/highmem.h> 36 #include <linux/workqueue.h> 37 #include <linux/security.h> 38 #include <linux/eventfd.h> 39 #include <linux/blkdev.h> 40 #include <linux/compat.h> 41 #include <linux/migrate.h> 42 #include <linux/ramfs.h> 43 #include <linux/percpu-refcount.h> 44 #include <linux/mount.h> 45 46 #include <asm/kmap_types.h> 47 #include <linux/uaccess.h> 48 #include <linux/nospec.h> 49 50 #include "internal.h" 51 52 #define KIOCB_KEY 0 53 54 #define AIO_RING_MAGIC 0xa10a10a1 55 #define AIO_RING_COMPAT_FEATURES 1 56 #define AIO_RING_INCOMPAT_FEATURES 0 57 struct aio_ring { 58 unsigned id; /* kernel internal index number */ 59 unsigned nr; /* number of io_events */ 60 unsigned head; /* Written to by userland or under ring_lock 61 * mutex by aio_read_events_ring(). */ 62 unsigned tail; 63 64 unsigned magic; 65 unsigned compat_features; 66 unsigned incompat_features; 67 unsigned header_length; /* size of aio_ring */ 68 69 70 struct io_event io_events[0]; 71 }; /* 128 bytes + ring size */ 72 73 /* 74 * Plugging is meant to work with larger batches of IOs. If we don't 75 * have more than the below, then don't bother setting up a plug. 76 */ 77 #define AIO_PLUG_THRESHOLD 2 78 79 #define AIO_RING_PAGES 8 80 81 struct kioctx_table { 82 struct rcu_head rcu; 83 unsigned nr; 84 struct kioctx __rcu *table[]; 85 }; 86 87 struct kioctx_cpu { 88 unsigned reqs_available; 89 }; 90 91 struct ctx_rq_wait { 92 struct completion comp; 93 atomic_t count; 94 }; 95 96 struct kioctx { 97 struct percpu_ref users; 98 atomic_t dead; 99 100 struct percpu_ref reqs; 101 102 unsigned long user_id; 103 104 struct __percpu kioctx_cpu *cpu; 105 106 /* 107 * For percpu reqs_available, number of slots we move to/from global 108 * counter at a time: 109 */ 110 unsigned req_batch; 111 /* 112 * This is what userspace passed to io_setup(), it's not used for 113 * anything but counting against the global max_reqs quota. 114 * 115 * The real limit is nr_events - 1, which will be larger (see 116 * aio_setup_ring()) 117 */ 118 unsigned max_reqs; 119 120 /* Size of ringbuffer, in units of struct io_event */ 121 unsigned nr_events; 122 123 unsigned long mmap_base; 124 unsigned long mmap_size; 125 126 struct page **ring_pages; 127 long nr_pages; 128 129 struct rcu_work free_rwork; /* see free_ioctx() */ 130 131 /* 132 * signals when all in-flight requests are done 133 */ 134 struct ctx_rq_wait *rq_wait; 135 136 struct { 137 /* 138 * This counts the number of available slots in the ringbuffer, 139 * so we avoid overflowing it: it's decremented (if positive) 140 * when allocating a kiocb and incremented when the resulting 141 * io_event is pulled off the ringbuffer. 142 * 143 * We batch accesses to it with a percpu version. 144 */ 145 atomic_t reqs_available; 146 } ____cacheline_aligned_in_smp; 147 148 struct { 149 spinlock_t ctx_lock; 150 struct list_head active_reqs; /* used for cancellation */ 151 } ____cacheline_aligned_in_smp; 152 153 struct { 154 struct mutex ring_lock; 155 wait_queue_head_t wait; 156 } ____cacheline_aligned_in_smp; 157 158 struct { 159 unsigned tail; 160 unsigned completed_events; 161 spinlock_t completion_lock; 162 } ____cacheline_aligned_in_smp; 163 164 struct page *internal_pages[AIO_RING_PAGES]; 165 struct file *aio_ring_file; 166 167 unsigned id; 168 }; 169 170 /* 171 * First field must be the file pointer in all the 172 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 173 */ 174 struct fsync_iocb { 175 struct file *file; 176 struct work_struct work; 177 bool datasync; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool done; 185 bool cancelled; 186 struct wait_queue_entry wait; 187 struct work_struct work; 188 }; 189 190 /* 191 * NOTE! Each of the iocb union members has the file pointer 192 * as the first entry in their struct definition. So you can 193 * access the file pointer through any of the sub-structs, 194 * or directly as just 'ki_filp' in this struct. 195 */ 196 struct aio_kiocb { 197 union { 198 struct file *ki_filp; 199 struct kiocb rw; 200 struct fsync_iocb fsync; 201 struct poll_iocb poll; 202 }; 203 204 struct kioctx *ki_ctx; 205 kiocb_cancel_fn *ki_cancel; 206 207 struct io_event ki_res; 208 209 struct list_head ki_list; /* the aio core uses this 210 * for cancellation */ 211 refcount_t ki_refcnt; 212 213 /* 214 * If the aio_resfd field of the userspace iocb is not zero, 215 * this is the underlying eventfd context to deliver events to. 216 */ 217 struct eventfd_ctx *ki_eventfd; 218 }; 219 220 /*------ sysctl variables----*/ 221 static DEFINE_SPINLOCK(aio_nr_lock); 222 unsigned long aio_nr; /* current system wide number of aio requests */ 223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 224 /*----end sysctl variables---*/ 225 226 static struct kmem_cache *kiocb_cachep; 227 static struct kmem_cache *kioctx_cachep; 228 229 static struct vfsmount *aio_mnt; 230 231 static const struct file_operations aio_ring_fops; 232 static const struct address_space_operations aio_ctx_aops; 233 234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 235 { 236 struct file *file; 237 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 238 if (IS_ERR(inode)) 239 return ERR_CAST(inode); 240 241 inode->i_mapping->a_ops = &aio_ctx_aops; 242 inode->i_mapping->private_data = ctx; 243 inode->i_size = PAGE_SIZE * nr_pages; 244 245 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 246 O_RDWR, &aio_ring_fops); 247 if (IS_ERR(file)) 248 iput(inode); 249 return file; 250 } 251 252 static struct dentry *aio_mount(struct file_system_type *fs_type, 253 int flags, const char *dev_name, void *data) 254 { 255 struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL, 256 AIO_RING_MAGIC); 257 258 if (!IS_ERR(root)) 259 root->d_sb->s_iflags |= SB_I_NOEXEC; 260 return root; 261 } 262 263 /* aio_setup 264 * Creates the slab caches used by the aio routines, panic on 265 * failure as this is done early during the boot sequence. 266 */ 267 static int __init aio_setup(void) 268 { 269 static struct file_system_type aio_fs = { 270 .name = "aio", 271 .mount = aio_mount, 272 .kill_sb = kill_anon_super, 273 }; 274 aio_mnt = kern_mount(&aio_fs); 275 if (IS_ERR(aio_mnt)) 276 panic("Failed to create aio fs mount."); 277 278 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 279 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 280 return 0; 281 } 282 __initcall(aio_setup); 283 284 static void put_aio_ring_file(struct kioctx *ctx) 285 { 286 struct file *aio_ring_file = ctx->aio_ring_file; 287 struct address_space *i_mapping; 288 289 if (aio_ring_file) { 290 truncate_setsize(file_inode(aio_ring_file), 0); 291 292 /* Prevent further access to the kioctx from migratepages */ 293 i_mapping = aio_ring_file->f_mapping; 294 spin_lock(&i_mapping->private_lock); 295 i_mapping->private_data = NULL; 296 ctx->aio_ring_file = NULL; 297 spin_unlock(&i_mapping->private_lock); 298 299 fput(aio_ring_file); 300 } 301 } 302 303 static void aio_free_ring(struct kioctx *ctx) 304 { 305 int i; 306 307 /* Disconnect the kiotx from the ring file. This prevents future 308 * accesses to the kioctx from page migration. 309 */ 310 put_aio_ring_file(ctx); 311 312 for (i = 0; i < ctx->nr_pages; i++) { 313 struct page *page; 314 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 315 page_count(ctx->ring_pages[i])); 316 page = ctx->ring_pages[i]; 317 if (!page) 318 continue; 319 ctx->ring_pages[i] = NULL; 320 put_page(page); 321 } 322 323 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 324 kfree(ctx->ring_pages); 325 ctx->ring_pages = NULL; 326 } 327 } 328 329 static int aio_ring_mremap(struct vm_area_struct *vma) 330 { 331 struct file *file = vma->vm_file; 332 struct mm_struct *mm = vma->vm_mm; 333 struct kioctx_table *table; 334 int i, res = -EINVAL; 335 336 spin_lock(&mm->ioctx_lock); 337 rcu_read_lock(); 338 table = rcu_dereference(mm->ioctx_table); 339 for (i = 0; i < table->nr; i++) { 340 struct kioctx *ctx; 341 342 ctx = rcu_dereference(table->table[i]); 343 if (ctx && ctx->aio_ring_file == file) { 344 if (!atomic_read(&ctx->dead)) { 345 ctx->user_id = ctx->mmap_base = vma->vm_start; 346 res = 0; 347 } 348 break; 349 } 350 } 351 352 rcu_read_unlock(); 353 spin_unlock(&mm->ioctx_lock); 354 return res; 355 } 356 357 static const struct vm_operations_struct aio_ring_vm_ops = { 358 .mremap = aio_ring_mremap, 359 #if IS_ENABLED(CONFIG_MMU) 360 .fault = filemap_fault, 361 .map_pages = filemap_map_pages, 362 .page_mkwrite = filemap_page_mkwrite, 363 #endif 364 }; 365 366 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 367 { 368 vma->vm_flags |= VM_DONTEXPAND; 369 vma->vm_ops = &aio_ring_vm_ops; 370 return 0; 371 } 372 373 static const struct file_operations aio_ring_fops = { 374 .mmap = aio_ring_mmap, 375 }; 376 377 #if IS_ENABLED(CONFIG_MIGRATION) 378 static int aio_migratepage(struct address_space *mapping, struct page *new, 379 struct page *old, enum migrate_mode mode) 380 { 381 struct kioctx *ctx; 382 unsigned long flags; 383 pgoff_t idx; 384 int rc; 385 386 /* 387 * We cannot support the _NO_COPY case here, because copy needs to 388 * happen under the ctx->completion_lock. That does not work with the 389 * migration workflow of MIGRATE_SYNC_NO_COPY. 390 */ 391 if (mode == MIGRATE_SYNC_NO_COPY) 392 return -EINVAL; 393 394 rc = 0; 395 396 /* mapping->private_lock here protects against the kioctx teardown. */ 397 spin_lock(&mapping->private_lock); 398 ctx = mapping->private_data; 399 if (!ctx) { 400 rc = -EINVAL; 401 goto out; 402 } 403 404 /* The ring_lock mutex. The prevents aio_read_events() from writing 405 * to the ring's head, and prevents page migration from mucking in 406 * a partially initialized kiotx. 407 */ 408 if (!mutex_trylock(&ctx->ring_lock)) { 409 rc = -EAGAIN; 410 goto out; 411 } 412 413 idx = old->index; 414 if (idx < (pgoff_t)ctx->nr_pages) { 415 /* Make sure the old page hasn't already been changed */ 416 if (ctx->ring_pages[idx] != old) 417 rc = -EAGAIN; 418 } else 419 rc = -EINVAL; 420 421 if (rc != 0) 422 goto out_unlock; 423 424 /* Writeback must be complete */ 425 BUG_ON(PageWriteback(old)); 426 get_page(new); 427 428 rc = migrate_page_move_mapping(mapping, new, old, mode, 1); 429 if (rc != MIGRATEPAGE_SUCCESS) { 430 put_page(new); 431 goto out_unlock; 432 } 433 434 /* Take completion_lock to prevent other writes to the ring buffer 435 * while the old page is copied to the new. This prevents new 436 * events from being lost. 437 */ 438 spin_lock_irqsave(&ctx->completion_lock, flags); 439 migrate_page_copy(new, old); 440 BUG_ON(ctx->ring_pages[idx] != old); 441 ctx->ring_pages[idx] = new; 442 spin_unlock_irqrestore(&ctx->completion_lock, flags); 443 444 /* The old page is no longer accessible. */ 445 put_page(old); 446 447 out_unlock: 448 mutex_unlock(&ctx->ring_lock); 449 out: 450 spin_unlock(&mapping->private_lock); 451 return rc; 452 } 453 #endif 454 455 static const struct address_space_operations aio_ctx_aops = { 456 .set_page_dirty = __set_page_dirty_no_writeback, 457 #if IS_ENABLED(CONFIG_MIGRATION) 458 .migratepage = aio_migratepage, 459 #endif 460 }; 461 462 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 463 { 464 struct aio_ring *ring; 465 struct mm_struct *mm = current->mm; 466 unsigned long size, unused; 467 int nr_pages; 468 int i; 469 struct file *file; 470 471 /* Compensate for the ring buffer's head/tail overlap entry */ 472 nr_events += 2; /* 1 is required, 2 for good luck */ 473 474 size = sizeof(struct aio_ring); 475 size += sizeof(struct io_event) * nr_events; 476 477 nr_pages = PFN_UP(size); 478 if (nr_pages < 0) 479 return -EINVAL; 480 481 file = aio_private_file(ctx, nr_pages); 482 if (IS_ERR(file)) { 483 ctx->aio_ring_file = NULL; 484 return -ENOMEM; 485 } 486 487 ctx->aio_ring_file = file; 488 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 489 / sizeof(struct io_event); 490 491 ctx->ring_pages = ctx->internal_pages; 492 if (nr_pages > AIO_RING_PAGES) { 493 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 494 GFP_KERNEL); 495 if (!ctx->ring_pages) { 496 put_aio_ring_file(ctx); 497 return -ENOMEM; 498 } 499 } 500 501 for (i = 0; i < nr_pages; i++) { 502 struct page *page; 503 page = find_or_create_page(file->f_mapping, 504 i, GFP_HIGHUSER | __GFP_ZERO); 505 if (!page) 506 break; 507 pr_debug("pid(%d) page[%d]->count=%d\n", 508 current->pid, i, page_count(page)); 509 SetPageUptodate(page); 510 unlock_page(page); 511 512 ctx->ring_pages[i] = page; 513 } 514 ctx->nr_pages = i; 515 516 if (unlikely(i != nr_pages)) { 517 aio_free_ring(ctx); 518 return -ENOMEM; 519 } 520 521 ctx->mmap_size = nr_pages * PAGE_SIZE; 522 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 523 524 if (down_write_killable(&mm->mmap_sem)) { 525 ctx->mmap_size = 0; 526 aio_free_ring(ctx); 527 return -EINTR; 528 } 529 530 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 531 PROT_READ | PROT_WRITE, 532 MAP_SHARED, 0, &unused, NULL); 533 up_write(&mm->mmap_sem); 534 if (IS_ERR((void *)ctx->mmap_base)) { 535 ctx->mmap_size = 0; 536 aio_free_ring(ctx); 537 return -ENOMEM; 538 } 539 540 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 541 542 ctx->user_id = ctx->mmap_base; 543 ctx->nr_events = nr_events; /* trusted copy */ 544 545 ring = kmap_atomic(ctx->ring_pages[0]); 546 ring->nr = nr_events; /* user copy */ 547 ring->id = ~0U; 548 ring->head = ring->tail = 0; 549 ring->magic = AIO_RING_MAGIC; 550 ring->compat_features = AIO_RING_COMPAT_FEATURES; 551 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 552 ring->header_length = sizeof(struct aio_ring); 553 kunmap_atomic(ring); 554 flush_dcache_page(ctx->ring_pages[0]); 555 556 return 0; 557 } 558 559 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 560 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 561 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 562 563 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 564 { 565 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw); 566 struct kioctx *ctx = req->ki_ctx; 567 unsigned long flags; 568 569 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 570 return; 571 572 spin_lock_irqsave(&ctx->ctx_lock, flags); 573 list_add_tail(&req->ki_list, &ctx->active_reqs); 574 req->ki_cancel = cancel; 575 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 576 } 577 EXPORT_SYMBOL(kiocb_set_cancel_fn); 578 579 /* 580 * free_ioctx() should be RCU delayed to synchronize against the RCU 581 * protected lookup_ioctx() and also needs process context to call 582 * aio_free_ring(). Use rcu_work. 583 */ 584 static void free_ioctx(struct work_struct *work) 585 { 586 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 587 free_rwork); 588 pr_debug("freeing %p\n", ctx); 589 590 aio_free_ring(ctx); 591 free_percpu(ctx->cpu); 592 percpu_ref_exit(&ctx->reqs); 593 percpu_ref_exit(&ctx->users); 594 kmem_cache_free(kioctx_cachep, ctx); 595 } 596 597 static void free_ioctx_reqs(struct percpu_ref *ref) 598 { 599 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 600 601 /* At this point we know that there are no any in-flight requests */ 602 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 603 complete(&ctx->rq_wait->comp); 604 605 /* Synchronize against RCU protected table->table[] dereferences */ 606 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 607 queue_rcu_work(system_wq, &ctx->free_rwork); 608 } 609 610 /* 611 * When this function runs, the kioctx has been removed from the "hash table" 612 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 613 * now it's safe to cancel any that need to be. 614 */ 615 static void free_ioctx_users(struct percpu_ref *ref) 616 { 617 struct kioctx *ctx = container_of(ref, struct kioctx, users); 618 struct aio_kiocb *req; 619 620 spin_lock_irq(&ctx->ctx_lock); 621 622 while (!list_empty(&ctx->active_reqs)) { 623 req = list_first_entry(&ctx->active_reqs, 624 struct aio_kiocb, ki_list); 625 req->ki_cancel(&req->rw); 626 list_del_init(&req->ki_list); 627 } 628 629 spin_unlock_irq(&ctx->ctx_lock); 630 631 percpu_ref_kill(&ctx->reqs); 632 percpu_ref_put(&ctx->reqs); 633 } 634 635 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 636 { 637 unsigned i, new_nr; 638 struct kioctx_table *table, *old; 639 struct aio_ring *ring; 640 641 spin_lock(&mm->ioctx_lock); 642 table = rcu_dereference_raw(mm->ioctx_table); 643 644 while (1) { 645 if (table) 646 for (i = 0; i < table->nr; i++) 647 if (!rcu_access_pointer(table->table[i])) { 648 ctx->id = i; 649 rcu_assign_pointer(table->table[i], ctx); 650 spin_unlock(&mm->ioctx_lock); 651 652 /* While kioctx setup is in progress, 653 * we are protected from page migration 654 * changes ring_pages by ->ring_lock. 655 */ 656 ring = kmap_atomic(ctx->ring_pages[0]); 657 ring->id = ctx->id; 658 kunmap_atomic(ring); 659 return 0; 660 } 661 662 new_nr = (table ? table->nr : 1) * 4; 663 spin_unlock(&mm->ioctx_lock); 664 665 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) * 666 new_nr, GFP_KERNEL); 667 if (!table) 668 return -ENOMEM; 669 670 table->nr = new_nr; 671 672 spin_lock(&mm->ioctx_lock); 673 old = rcu_dereference_raw(mm->ioctx_table); 674 675 if (!old) { 676 rcu_assign_pointer(mm->ioctx_table, table); 677 } else if (table->nr > old->nr) { 678 memcpy(table->table, old->table, 679 old->nr * sizeof(struct kioctx *)); 680 681 rcu_assign_pointer(mm->ioctx_table, table); 682 kfree_rcu(old, rcu); 683 } else { 684 kfree(table); 685 table = old; 686 } 687 } 688 } 689 690 static void aio_nr_sub(unsigned nr) 691 { 692 spin_lock(&aio_nr_lock); 693 if (WARN_ON(aio_nr - nr > aio_nr)) 694 aio_nr = 0; 695 else 696 aio_nr -= nr; 697 spin_unlock(&aio_nr_lock); 698 } 699 700 /* ioctx_alloc 701 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 702 */ 703 static struct kioctx *ioctx_alloc(unsigned nr_events) 704 { 705 struct mm_struct *mm = current->mm; 706 struct kioctx *ctx; 707 int err = -ENOMEM; 708 709 /* 710 * Store the original nr_events -- what userspace passed to io_setup(), 711 * for counting against the global limit -- before it changes. 712 */ 713 unsigned int max_reqs = nr_events; 714 715 /* 716 * We keep track of the number of available ringbuffer slots, to prevent 717 * overflow (reqs_available), and we also use percpu counters for this. 718 * 719 * So since up to half the slots might be on other cpu's percpu counters 720 * and unavailable, double nr_events so userspace sees what they 721 * expected: additionally, we move req_batch slots to/from percpu 722 * counters at a time, so make sure that isn't 0: 723 */ 724 nr_events = max(nr_events, num_possible_cpus() * 4); 725 nr_events *= 2; 726 727 /* Prevent overflows */ 728 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 729 pr_debug("ENOMEM: nr_events too high\n"); 730 return ERR_PTR(-EINVAL); 731 } 732 733 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 734 return ERR_PTR(-EAGAIN); 735 736 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 737 if (!ctx) 738 return ERR_PTR(-ENOMEM); 739 740 ctx->max_reqs = max_reqs; 741 742 spin_lock_init(&ctx->ctx_lock); 743 spin_lock_init(&ctx->completion_lock); 744 mutex_init(&ctx->ring_lock); 745 /* Protect against page migration throughout kiotx setup by keeping 746 * the ring_lock mutex held until setup is complete. */ 747 mutex_lock(&ctx->ring_lock); 748 init_waitqueue_head(&ctx->wait); 749 750 INIT_LIST_HEAD(&ctx->active_reqs); 751 752 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 753 goto err; 754 755 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 756 goto err; 757 758 ctx->cpu = alloc_percpu(struct kioctx_cpu); 759 if (!ctx->cpu) 760 goto err; 761 762 err = aio_setup_ring(ctx, nr_events); 763 if (err < 0) 764 goto err; 765 766 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 767 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 768 if (ctx->req_batch < 1) 769 ctx->req_batch = 1; 770 771 /* limit the number of system wide aios */ 772 spin_lock(&aio_nr_lock); 773 if (aio_nr + ctx->max_reqs > aio_max_nr || 774 aio_nr + ctx->max_reqs < aio_nr) { 775 spin_unlock(&aio_nr_lock); 776 err = -EAGAIN; 777 goto err_ctx; 778 } 779 aio_nr += ctx->max_reqs; 780 spin_unlock(&aio_nr_lock); 781 782 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 783 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 784 785 err = ioctx_add_table(ctx, mm); 786 if (err) 787 goto err_cleanup; 788 789 /* Release the ring_lock mutex now that all setup is complete. */ 790 mutex_unlock(&ctx->ring_lock); 791 792 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 793 ctx, ctx->user_id, mm, ctx->nr_events); 794 return ctx; 795 796 err_cleanup: 797 aio_nr_sub(ctx->max_reqs); 798 err_ctx: 799 atomic_set(&ctx->dead, 1); 800 if (ctx->mmap_size) 801 vm_munmap(ctx->mmap_base, ctx->mmap_size); 802 aio_free_ring(ctx); 803 err: 804 mutex_unlock(&ctx->ring_lock); 805 free_percpu(ctx->cpu); 806 percpu_ref_exit(&ctx->reqs); 807 percpu_ref_exit(&ctx->users); 808 kmem_cache_free(kioctx_cachep, ctx); 809 pr_debug("error allocating ioctx %d\n", err); 810 return ERR_PTR(err); 811 } 812 813 /* kill_ioctx 814 * Cancels all outstanding aio requests on an aio context. Used 815 * when the processes owning a context have all exited to encourage 816 * the rapid destruction of the kioctx. 817 */ 818 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 819 struct ctx_rq_wait *wait) 820 { 821 struct kioctx_table *table; 822 823 spin_lock(&mm->ioctx_lock); 824 if (atomic_xchg(&ctx->dead, 1)) { 825 spin_unlock(&mm->ioctx_lock); 826 return -EINVAL; 827 } 828 829 table = rcu_dereference_raw(mm->ioctx_table); 830 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 831 RCU_INIT_POINTER(table->table[ctx->id], NULL); 832 spin_unlock(&mm->ioctx_lock); 833 834 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 835 wake_up_all(&ctx->wait); 836 837 /* 838 * It'd be more correct to do this in free_ioctx(), after all 839 * the outstanding kiocbs have finished - but by then io_destroy 840 * has already returned, so io_setup() could potentially return 841 * -EAGAIN with no ioctxs actually in use (as far as userspace 842 * could tell). 843 */ 844 aio_nr_sub(ctx->max_reqs); 845 846 if (ctx->mmap_size) 847 vm_munmap(ctx->mmap_base, ctx->mmap_size); 848 849 ctx->rq_wait = wait; 850 percpu_ref_kill(&ctx->users); 851 return 0; 852 } 853 854 /* 855 * exit_aio: called when the last user of mm goes away. At this point, there is 856 * no way for any new requests to be submited or any of the io_* syscalls to be 857 * called on the context. 858 * 859 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 860 * them. 861 */ 862 void exit_aio(struct mm_struct *mm) 863 { 864 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 865 struct ctx_rq_wait wait; 866 int i, skipped; 867 868 if (!table) 869 return; 870 871 atomic_set(&wait.count, table->nr); 872 init_completion(&wait.comp); 873 874 skipped = 0; 875 for (i = 0; i < table->nr; ++i) { 876 struct kioctx *ctx = 877 rcu_dereference_protected(table->table[i], true); 878 879 if (!ctx) { 880 skipped++; 881 continue; 882 } 883 884 /* 885 * We don't need to bother with munmap() here - exit_mmap(mm) 886 * is coming and it'll unmap everything. And we simply can't, 887 * this is not necessarily our ->mm. 888 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 889 * that it needs to unmap the area, just set it to 0. 890 */ 891 ctx->mmap_size = 0; 892 kill_ioctx(mm, ctx, &wait); 893 } 894 895 if (!atomic_sub_and_test(skipped, &wait.count)) { 896 /* Wait until all IO for the context are done. */ 897 wait_for_completion(&wait.comp); 898 } 899 900 RCU_INIT_POINTER(mm->ioctx_table, NULL); 901 kfree(table); 902 } 903 904 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 905 { 906 struct kioctx_cpu *kcpu; 907 unsigned long flags; 908 909 local_irq_save(flags); 910 kcpu = this_cpu_ptr(ctx->cpu); 911 kcpu->reqs_available += nr; 912 913 while (kcpu->reqs_available >= ctx->req_batch * 2) { 914 kcpu->reqs_available -= ctx->req_batch; 915 atomic_add(ctx->req_batch, &ctx->reqs_available); 916 } 917 918 local_irq_restore(flags); 919 } 920 921 static bool __get_reqs_available(struct kioctx *ctx) 922 { 923 struct kioctx_cpu *kcpu; 924 bool ret = false; 925 unsigned long flags; 926 927 local_irq_save(flags); 928 kcpu = this_cpu_ptr(ctx->cpu); 929 if (!kcpu->reqs_available) { 930 int old, avail = atomic_read(&ctx->reqs_available); 931 932 do { 933 if (avail < ctx->req_batch) 934 goto out; 935 936 old = avail; 937 avail = atomic_cmpxchg(&ctx->reqs_available, 938 avail, avail - ctx->req_batch); 939 } while (avail != old); 940 941 kcpu->reqs_available += ctx->req_batch; 942 } 943 944 ret = true; 945 kcpu->reqs_available--; 946 out: 947 local_irq_restore(flags); 948 return ret; 949 } 950 951 /* refill_reqs_available 952 * Updates the reqs_available reference counts used for tracking the 953 * number of free slots in the completion ring. This can be called 954 * from aio_complete() (to optimistically update reqs_available) or 955 * from aio_get_req() (the we're out of events case). It must be 956 * called holding ctx->completion_lock. 957 */ 958 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 959 unsigned tail) 960 { 961 unsigned events_in_ring, completed; 962 963 /* Clamp head since userland can write to it. */ 964 head %= ctx->nr_events; 965 if (head <= tail) 966 events_in_ring = tail - head; 967 else 968 events_in_ring = ctx->nr_events - (head - tail); 969 970 completed = ctx->completed_events; 971 if (events_in_ring < completed) 972 completed -= events_in_ring; 973 else 974 completed = 0; 975 976 if (!completed) 977 return; 978 979 ctx->completed_events -= completed; 980 put_reqs_available(ctx, completed); 981 } 982 983 /* user_refill_reqs_available 984 * Called to refill reqs_available when aio_get_req() encounters an 985 * out of space in the completion ring. 986 */ 987 static void user_refill_reqs_available(struct kioctx *ctx) 988 { 989 spin_lock_irq(&ctx->completion_lock); 990 if (ctx->completed_events) { 991 struct aio_ring *ring; 992 unsigned head; 993 994 /* Access of ring->head may race with aio_read_events_ring() 995 * here, but that's okay since whether we read the old version 996 * or the new version, and either will be valid. The important 997 * part is that head cannot pass tail since we prevent 998 * aio_complete() from updating tail by holding 999 * ctx->completion_lock. Even if head is invalid, the check 1000 * against ctx->completed_events below will make sure we do the 1001 * safe/right thing. 1002 */ 1003 ring = kmap_atomic(ctx->ring_pages[0]); 1004 head = ring->head; 1005 kunmap_atomic(ring); 1006 1007 refill_reqs_available(ctx, head, ctx->tail); 1008 } 1009 1010 spin_unlock_irq(&ctx->completion_lock); 1011 } 1012 1013 static bool get_reqs_available(struct kioctx *ctx) 1014 { 1015 if (__get_reqs_available(ctx)) 1016 return true; 1017 user_refill_reqs_available(ctx); 1018 return __get_reqs_available(ctx); 1019 } 1020 1021 /* aio_get_req 1022 * Allocate a slot for an aio request. 1023 * Returns NULL if no requests are free. 1024 * 1025 * The refcount is initialized to 2 - one for the async op completion, 1026 * one for the synchronous code that does this. 1027 */ 1028 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1029 { 1030 struct aio_kiocb *req; 1031 1032 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1033 if (unlikely(!req)) 1034 return NULL; 1035 1036 if (unlikely(!get_reqs_available(ctx))) { 1037 kmem_cache_free(kiocb_cachep, req); 1038 return NULL; 1039 } 1040 1041 percpu_ref_get(&ctx->reqs); 1042 req->ki_ctx = ctx; 1043 INIT_LIST_HEAD(&req->ki_list); 1044 refcount_set(&req->ki_refcnt, 2); 1045 req->ki_eventfd = NULL; 1046 return req; 1047 } 1048 1049 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1050 { 1051 struct aio_ring __user *ring = (void __user *)ctx_id; 1052 struct mm_struct *mm = current->mm; 1053 struct kioctx *ctx, *ret = NULL; 1054 struct kioctx_table *table; 1055 unsigned id; 1056 1057 if (get_user(id, &ring->id)) 1058 return NULL; 1059 1060 rcu_read_lock(); 1061 table = rcu_dereference(mm->ioctx_table); 1062 1063 if (!table || id >= table->nr) 1064 goto out; 1065 1066 id = array_index_nospec(id, table->nr); 1067 ctx = rcu_dereference(table->table[id]); 1068 if (ctx && ctx->user_id == ctx_id) { 1069 if (percpu_ref_tryget_live(&ctx->users)) 1070 ret = ctx; 1071 } 1072 out: 1073 rcu_read_unlock(); 1074 return ret; 1075 } 1076 1077 static inline void iocb_destroy(struct aio_kiocb *iocb) 1078 { 1079 if (iocb->ki_eventfd) 1080 eventfd_ctx_put(iocb->ki_eventfd); 1081 if (iocb->ki_filp) 1082 fput(iocb->ki_filp); 1083 percpu_ref_put(&iocb->ki_ctx->reqs); 1084 kmem_cache_free(kiocb_cachep, iocb); 1085 } 1086 1087 /* aio_complete 1088 * Called when the io request on the given iocb is complete. 1089 */ 1090 static void aio_complete(struct aio_kiocb *iocb) 1091 { 1092 struct kioctx *ctx = iocb->ki_ctx; 1093 struct aio_ring *ring; 1094 struct io_event *ev_page, *event; 1095 unsigned tail, pos, head; 1096 unsigned long flags; 1097 1098 /* 1099 * Add a completion event to the ring buffer. Must be done holding 1100 * ctx->completion_lock to prevent other code from messing with the tail 1101 * pointer since we might be called from irq context. 1102 */ 1103 spin_lock_irqsave(&ctx->completion_lock, flags); 1104 1105 tail = ctx->tail; 1106 pos = tail + AIO_EVENTS_OFFSET; 1107 1108 if (++tail >= ctx->nr_events) 1109 tail = 0; 1110 1111 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1112 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1113 1114 *event = iocb->ki_res; 1115 1116 kunmap_atomic(ev_page); 1117 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1118 1119 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1120 (void __user *)(unsigned long)iocb->ki_res.obj, 1121 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1122 1123 /* after flagging the request as done, we 1124 * must never even look at it again 1125 */ 1126 smp_wmb(); /* make event visible before updating tail */ 1127 1128 ctx->tail = tail; 1129 1130 ring = kmap_atomic(ctx->ring_pages[0]); 1131 head = ring->head; 1132 ring->tail = tail; 1133 kunmap_atomic(ring); 1134 flush_dcache_page(ctx->ring_pages[0]); 1135 1136 ctx->completed_events++; 1137 if (ctx->completed_events > 1) 1138 refill_reqs_available(ctx, head, tail); 1139 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1140 1141 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1142 1143 /* 1144 * Check if the user asked us to deliver the result through an 1145 * eventfd. The eventfd_signal() function is safe to be called 1146 * from IRQ context. 1147 */ 1148 if (iocb->ki_eventfd) 1149 eventfd_signal(iocb->ki_eventfd, 1); 1150 1151 /* 1152 * We have to order our ring_info tail store above and test 1153 * of the wait list below outside the wait lock. This is 1154 * like in wake_up_bit() where clearing a bit has to be 1155 * ordered with the unlocked test. 1156 */ 1157 smp_mb(); 1158 1159 if (waitqueue_active(&ctx->wait)) 1160 wake_up(&ctx->wait); 1161 } 1162 1163 static inline void iocb_put(struct aio_kiocb *iocb) 1164 { 1165 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1166 aio_complete(iocb); 1167 iocb_destroy(iocb); 1168 } 1169 } 1170 1171 /* aio_read_events_ring 1172 * Pull an event off of the ioctx's event ring. Returns the number of 1173 * events fetched 1174 */ 1175 static long aio_read_events_ring(struct kioctx *ctx, 1176 struct io_event __user *event, long nr) 1177 { 1178 struct aio_ring *ring; 1179 unsigned head, tail, pos; 1180 long ret = 0; 1181 int copy_ret; 1182 1183 /* 1184 * The mutex can block and wake us up and that will cause 1185 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1186 * and repeat. This should be rare enough that it doesn't cause 1187 * peformance issues. See the comment in read_events() for more detail. 1188 */ 1189 sched_annotate_sleep(); 1190 mutex_lock(&ctx->ring_lock); 1191 1192 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1193 ring = kmap_atomic(ctx->ring_pages[0]); 1194 head = ring->head; 1195 tail = ring->tail; 1196 kunmap_atomic(ring); 1197 1198 /* 1199 * Ensure that once we've read the current tail pointer, that 1200 * we also see the events that were stored up to the tail. 1201 */ 1202 smp_rmb(); 1203 1204 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1205 1206 if (head == tail) 1207 goto out; 1208 1209 head %= ctx->nr_events; 1210 tail %= ctx->nr_events; 1211 1212 while (ret < nr) { 1213 long avail; 1214 struct io_event *ev; 1215 struct page *page; 1216 1217 avail = (head <= tail ? tail : ctx->nr_events) - head; 1218 if (head == tail) 1219 break; 1220 1221 pos = head + AIO_EVENTS_OFFSET; 1222 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1223 pos %= AIO_EVENTS_PER_PAGE; 1224 1225 avail = min(avail, nr - ret); 1226 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1227 1228 ev = kmap(page); 1229 copy_ret = copy_to_user(event + ret, ev + pos, 1230 sizeof(*ev) * avail); 1231 kunmap(page); 1232 1233 if (unlikely(copy_ret)) { 1234 ret = -EFAULT; 1235 goto out; 1236 } 1237 1238 ret += avail; 1239 head += avail; 1240 head %= ctx->nr_events; 1241 } 1242 1243 ring = kmap_atomic(ctx->ring_pages[0]); 1244 ring->head = head; 1245 kunmap_atomic(ring); 1246 flush_dcache_page(ctx->ring_pages[0]); 1247 1248 pr_debug("%li h%u t%u\n", ret, head, tail); 1249 out: 1250 mutex_unlock(&ctx->ring_lock); 1251 1252 return ret; 1253 } 1254 1255 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1256 struct io_event __user *event, long *i) 1257 { 1258 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1259 1260 if (ret > 0) 1261 *i += ret; 1262 1263 if (unlikely(atomic_read(&ctx->dead))) 1264 ret = -EINVAL; 1265 1266 if (!*i) 1267 *i = ret; 1268 1269 return ret < 0 || *i >= min_nr; 1270 } 1271 1272 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1273 struct io_event __user *event, 1274 ktime_t until) 1275 { 1276 long ret = 0; 1277 1278 /* 1279 * Note that aio_read_events() is being called as the conditional - i.e. 1280 * we're calling it after prepare_to_wait() has set task state to 1281 * TASK_INTERRUPTIBLE. 1282 * 1283 * But aio_read_events() can block, and if it blocks it's going to flip 1284 * the task state back to TASK_RUNNING. 1285 * 1286 * This should be ok, provided it doesn't flip the state back to 1287 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1288 * will only happen if the mutex_lock() call blocks, and we then find 1289 * the ringbuffer empty. So in practice we should be ok, but it's 1290 * something to be aware of when touching this code. 1291 */ 1292 if (until == 0) 1293 aio_read_events(ctx, min_nr, nr, event, &ret); 1294 else 1295 wait_event_interruptible_hrtimeout(ctx->wait, 1296 aio_read_events(ctx, min_nr, nr, event, &ret), 1297 until); 1298 return ret; 1299 } 1300 1301 /* sys_io_setup: 1302 * Create an aio_context capable of receiving at least nr_events. 1303 * ctxp must not point to an aio_context that already exists, and 1304 * must be initialized to 0 prior to the call. On successful 1305 * creation of the aio_context, *ctxp is filled in with the resulting 1306 * handle. May fail with -EINVAL if *ctxp is not initialized, 1307 * if the specified nr_events exceeds internal limits. May fail 1308 * with -EAGAIN if the specified nr_events exceeds the user's limit 1309 * of available events. May fail with -ENOMEM if insufficient kernel 1310 * resources are available. May fail with -EFAULT if an invalid 1311 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1312 * implemented. 1313 */ 1314 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1315 { 1316 struct kioctx *ioctx = NULL; 1317 unsigned long ctx; 1318 long ret; 1319 1320 ret = get_user(ctx, ctxp); 1321 if (unlikely(ret)) 1322 goto out; 1323 1324 ret = -EINVAL; 1325 if (unlikely(ctx || nr_events == 0)) { 1326 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1327 ctx, nr_events); 1328 goto out; 1329 } 1330 1331 ioctx = ioctx_alloc(nr_events); 1332 ret = PTR_ERR(ioctx); 1333 if (!IS_ERR(ioctx)) { 1334 ret = put_user(ioctx->user_id, ctxp); 1335 if (ret) 1336 kill_ioctx(current->mm, ioctx, NULL); 1337 percpu_ref_put(&ioctx->users); 1338 } 1339 1340 out: 1341 return ret; 1342 } 1343 1344 #ifdef CONFIG_COMPAT 1345 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1346 { 1347 struct kioctx *ioctx = NULL; 1348 unsigned long ctx; 1349 long ret; 1350 1351 ret = get_user(ctx, ctx32p); 1352 if (unlikely(ret)) 1353 goto out; 1354 1355 ret = -EINVAL; 1356 if (unlikely(ctx || nr_events == 0)) { 1357 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1358 ctx, nr_events); 1359 goto out; 1360 } 1361 1362 ioctx = ioctx_alloc(nr_events); 1363 ret = PTR_ERR(ioctx); 1364 if (!IS_ERR(ioctx)) { 1365 /* truncating is ok because it's a user address */ 1366 ret = put_user((u32)ioctx->user_id, ctx32p); 1367 if (ret) 1368 kill_ioctx(current->mm, ioctx, NULL); 1369 percpu_ref_put(&ioctx->users); 1370 } 1371 1372 out: 1373 return ret; 1374 } 1375 #endif 1376 1377 /* sys_io_destroy: 1378 * Destroy the aio_context specified. May cancel any outstanding 1379 * AIOs and block on completion. Will fail with -ENOSYS if not 1380 * implemented. May fail with -EINVAL if the context pointed to 1381 * is invalid. 1382 */ 1383 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1384 { 1385 struct kioctx *ioctx = lookup_ioctx(ctx); 1386 if (likely(NULL != ioctx)) { 1387 struct ctx_rq_wait wait; 1388 int ret; 1389 1390 init_completion(&wait.comp); 1391 atomic_set(&wait.count, 1); 1392 1393 /* Pass requests_done to kill_ioctx() where it can be set 1394 * in a thread-safe way. If we try to set it here then we have 1395 * a race condition if two io_destroy() called simultaneously. 1396 */ 1397 ret = kill_ioctx(current->mm, ioctx, &wait); 1398 percpu_ref_put(&ioctx->users); 1399 1400 /* Wait until all IO for the context are done. Otherwise kernel 1401 * keep using user-space buffers even if user thinks the context 1402 * is destroyed. 1403 */ 1404 if (!ret) 1405 wait_for_completion(&wait.comp); 1406 1407 return ret; 1408 } 1409 pr_debug("EINVAL: invalid context id\n"); 1410 return -EINVAL; 1411 } 1412 1413 static void aio_remove_iocb(struct aio_kiocb *iocb) 1414 { 1415 struct kioctx *ctx = iocb->ki_ctx; 1416 unsigned long flags; 1417 1418 spin_lock_irqsave(&ctx->ctx_lock, flags); 1419 list_del(&iocb->ki_list); 1420 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1421 } 1422 1423 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2) 1424 { 1425 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1426 1427 if (!list_empty_careful(&iocb->ki_list)) 1428 aio_remove_iocb(iocb); 1429 1430 if (kiocb->ki_flags & IOCB_WRITE) { 1431 struct inode *inode = file_inode(kiocb->ki_filp); 1432 1433 /* 1434 * Tell lockdep we inherited freeze protection from submission 1435 * thread. 1436 */ 1437 if (S_ISREG(inode->i_mode)) 1438 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE); 1439 file_end_write(kiocb->ki_filp); 1440 } 1441 1442 iocb->ki_res.res = res; 1443 iocb->ki_res.res2 = res2; 1444 iocb_put(iocb); 1445 } 1446 1447 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1448 { 1449 int ret; 1450 1451 req->ki_complete = aio_complete_rw; 1452 req->private = NULL; 1453 req->ki_pos = iocb->aio_offset; 1454 req->ki_flags = iocb_flags(req->ki_filp); 1455 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1456 req->ki_flags |= IOCB_EVENTFD; 1457 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp)); 1458 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1459 /* 1460 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1461 * aio_reqprio is interpreted as an I/O scheduling 1462 * class and priority. 1463 */ 1464 ret = ioprio_check_cap(iocb->aio_reqprio); 1465 if (ret) { 1466 pr_debug("aio ioprio check cap error: %d\n", ret); 1467 return ret; 1468 } 1469 1470 req->ki_ioprio = iocb->aio_reqprio; 1471 } else 1472 req->ki_ioprio = get_current_ioprio(); 1473 1474 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1475 if (unlikely(ret)) 1476 return ret; 1477 1478 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1479 return 0; 1480 } 1481 1482 static int aio_setup_rw(int rw, const struct iocb *iocb, struct iovec **iovec, 1483 bool vectored, bool compat, struct iov_iter *iter) 1484 { 1485 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1486 size_t len = iocb->aio_nbytes; 1487 1488 if (!vectored) { 1489 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter); 1490 *iovec = NULL; 1491 return ret; 1492 } 1493 #ifdef CONFIG_COMPAT 1494 if (compat) 1495 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec, 1496 iter); 1497 #endif 1498 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter); 1499 } 1500 1501 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1502 { 1503 switch (ret) { 1504 case -EIOCBQUEUED: 1505 break; 1506 case -ERESTARTSYS: 1507 case -ERESTARTNOINTR: 1508 case -ERESTARTNOHAND: 1509 case -ERESTART_RESTARTBLOCK: 1510 /* 1511 * There's no easy way to restart the syscall since other AIO's 1512 * may be already running. Just fail this IO with EINTR. 1513 */ 1514 ret = -EINTR; 1515 /*FALLTHRU*/ 1516 default: 1517 req->ki_complete(req, ret, 0); 1518 } 1519 } 1520 1521 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1522 bool vectored, bool compat) 1523 { 1524 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1525 struct iov_iter iter; 1526 struct file *file; 1527 int ret; 1528 1529 ret = aio_prep_rw(req, iocb); 1530 if (ret) 1531 return ret; 1532 file = req->ki_filp; 1533 if (unlikely(!(file->f_mode & FMODE_READ))) 1534 return -EBADF; 1535 ret = -EINVAL; 1536 if (unlikely(!file->f_op->read_iter)) 1537 return -EINVAL; 1538 1539 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter); 1540 if (ret) 1541 return ret; 1542 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1543 if (!ret) 1544 aio_rw_done(req, call_read_iter(file, req, &iter)); 1545 kfree(iovec); 1546 return ret; 1547 } 1548 1549 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1550 bool vectored, bool compat) 1551 { 1552 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1553 struct iov_iter iter; 1554 struct file *file; 1555 int ret; 1556 1557 ret = aio_prep_rw(req, iocb); 1558 if (ret) 1559 return ret; 1560 file = req->ki_filp; 1561 1562 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1563 return -EBADF; 1564 if (unlikely(!file->f_op->write_iter)) 1565 return -EINVAL; 1566 1567 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter); 1568 if (ret) 1569 return ret; 1570 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1571 if (!ret) { 1572 /* 1573 * Open-code file_start_write here to grab freeze protection, 1574 * which will be released by another thread in 1575 * aio_complete_rw(). Fool lockdep by telling it the lock got 1576 * released so that it doesn't complain about the held lock when 1577 * we return to userspace. 1578 */ 1579 if (S_ISREG(file_inode(file)->i_mode)) { 1580 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true); 1581 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE); 1582 } 1583 req->ki_flags |= IOCB_WRITE; 1584 aio_rw_done(req, call_write_iter(file, req, &iter)); 1585 } 1586 kfree(iovec); 1587 return ret; 1588 } 1589 1590 static void aio_fsync_work(struct work_struct *work) 1591 { 1592 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1593 1594 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1595 iocb_put(iocb); 1596 } 1597 1598 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1599 bool datasync) 1600 { 1601 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1602 iocb->aio_rw_flags)) 1603 return -EINVAL; 1604 1605 if (unlikely(!req->file->f_op->fsync)) 1606 return -EINVAL; 1607 1608 req->datasync = datasync; 1609 INIT_WORK(&req->work, aio_fsync_work); 1610 schedule_work(&req->work); 1611 return 0; 1612 } 1613 1614 static void aio_poll_complete_work(struct work_struct *work) 1615 { 1616 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1617 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1618 struct poll_table_struct pt = { ._key = req->events }; 1619 struct kioctx *ctx = iocb->ki_ctx; 1620 __poll_t mask = 0; 1621 1622 if (!READ_ONCE(req->cancelled)) 1623 mask = vfs_poll(req->file, &pt) & req->events; 1624 1625 /* 1626 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1627 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1628 * synchronize with them. In the cancellation case the list_del_init 1629 * itself is not actually needed, but harmless so we keep it in to 1630 * avoid further branches in the fast path. 1631 */ 1632 spin_lock_irq(&ctx->ctx_lock); 1633 if (!mask && !READ_ONCE(req->cancelled)) { 1634 add_wait_queue(req->head, &req->wait); 1635 spin_unlock_irq(&ctx->ctx_lock); 1636 return; 1637 } 1638 list_del_init(&iocb->ki_list); 1639 iocb->ki_res.res = mangle_poll(mask); 1640 req->done = true; 1641 spin_unlock_irq(&ctx->ctx_lock); 1642 1643 iocb_put(iocb); 1644 } 1645 1646 /* assumes we are called with irqs disabled */ 1647 static int aio_poll_cancel(struct kiocb *iocb) 1648 { 1649 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1650 struct poll_iocb *req = &aiocb->poll; 1651 1652 spin_lock(&req->head->lock); 1653 WRITE_ONCE(req->cancelled, true); 1654 if (!list_empty(&req->wait.entry)) { 1655 list_del_init(&req->wait.entry); 1656 schedule_work(&aiocb->poll.work); 1657 } 1658 spin_unlock(&req->head->lock); 1659 1660 return 0; 1661 } 1662 1663 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1664 void *key) 1665 { 1666 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1667 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1668 __poll_t mask = key_to_poll(key); 1669 unsigned long flags; 1670 1671 /* for instances that support it check for an event match first: */ 1672 if (mask && !(mask & req->events)) 1673 return 0; 1674 1675 list_del_init(&req->wait.entry); 1676 1677 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1678 /* 1679 * Try to complete the iocb inline if we can. Use 1680 * irqsave/irqrestore because not all filesystems (e.g. fuse) 1681 * call this function with IRQs disabled and because IRQs 1682 * have to be disabled before ctx_lock is obtained. 1683 */ 1684 list_del(&iocb->ki_list); 1685 iocb->ki_res.res = mangle_poll(mask); 1686 req->done = true; 1687 spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags); 1688 iocb_put(iocb); 1689 } else { 1690 schedule_work(&req->work); 1691 } 1692 return 1; 1693 } 1694 1695 struct aio_poll_table { 1696 struct poll_table_struct pt; 1697 struct aio_kiocb *iocb; 1698 int error; 1699 }; 1700 1701 static void 1702 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1703 struct poll_table_struct *p) 1704 { 1705 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1706 1707 /* multiple wait queues per file are not supported */ 1708 if (unlikely(pt->iocb->poll.head)) { 1709 pt->error = -EINVAL; 1710 return; 1711 } 1712 1713 pt->error = 0; 1714 pt->iocb->poll.head = head; 1715 add_wait_queue(head, &pt->iocb->poll.wait); 1716 } 1717 1718 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1719 { 1720 struct kioctx *ctx = aiocb->ki_ctx; 1721 struct poll_iocb *req = &aiocb->poll; 1722 struct aio_poll_table apt; 1723 bool cancel = false; 1724 __poll_t mask; 1725 1726 /* reject any unknown events outside the normal event mask. */ 1727 if ((u16)iocb->aio_buf != iocb->aio_buf) 1728 return -EINVAL; 1729 /* reject fields that are not defined for poll */ 1730 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1731 return -EINVAL; 1732 1733 INIT_WORK(&req->work, aio_poll_complete_work); 1734 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1735 1736 req->head = NULL; 1737 req->done = false; 1738 req->cancelled = false; 1739 1740 apt.pt._qproc = aio_poll_queue_proc; 1741 apt.pt._key = req->events; 1742 apt.iocb = aiocb; 1743 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1744 1745 /* initialized the list so that we can do list_empty checks */ 1746 INIT_LIST_HEAD(&req->wait.entry); 1747 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1748 1749 mask = vfs_poll(req->file, &apt.pt) & req->events; 1750 spin_lock_irq(&ctx->ctx_lock); 1751 if (likely(req->head)) { 1752 spin_lock(&req->head->lock); 1753 if (unlikely(list_empty(&req->wait.entry))) { 1754 if (apt.error) 1755 cancel = true; 1756 apt.error = 0; 1757 mask = 0; 1758 } 1759 if (mask || apt.error) { 1760 list_del_init(&req->wait.entry); 1761 } else if (cancel) { 1762 WRITE_ONCE(req->cancelled, true); 1763 } else if (!req->done) { /* actually waiting for an event */ 1764 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1765 aiocb->ki_cancel = aio_poll_cancel; 1766 } 1767 spin_unlock(&req->head->lock); 1768 } 1769 if (mask) { /* no async, we'd stolen it */ 1770 aiocb->ki_res.res = mangle_poll(mask); 1771 apt.error = 0; 1772 } 1773 spin_unlock_irq(&ctx->ctx_lock); 1774 if (mask) 1775 iocb_put(aiocb); 1776 return apt.error; 1777 } 1778 1779 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1780 struct iocb __user *user_iocb, struct aio_kiocb *req, 1781 bool compat) 1782 { 1783 req->ki_filp = fget(iocb->aio_fildes); 1784 if (unlikely(!req->ki_filp)) 1785 return -EBADF; 1786 1787 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1788 struct eventfd_ctx *eventfd; 1789 /* 1790 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1791 * instance of the file* now. The file descriptor must be 1792 * an eventfd() fd, and will be signaled for each completed 1793 * event using the eventfd_signal() function. 1794 */ 1795 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1796 if (IS_ERR(eventfd)) 1797 return PTR_ERR(eventfd); 1798 1799 req->ki_eventfd = eventfd; 1800 } 1801 1802 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1803 pr_debug("EFAULT: aio_key\n"); 1804 return -EFAULT; 1805 } 1806 1807 req->ki_res.obj = (u64)(unsigned long)user_iocb; 1808 req->ki_res.data = iocb->aio_data; 1809 req->ki_res.res = 0; 1810 req->ki_res.res2 = 0; 1811 1812 switch (iocb->aio_lio_opcode) { 1813 case IOCB_CMD_PREAD: 1814 return aio_read(&req->rw, iocb, false, compat); 1815 case IOCB_CMD_PWRITE: 1816 return aio_write(&req->rw, iocb, false, compat); 1817 case IOCB_CMD_PREADV: 1818 return aio_read(&req->rw, iocb, true, compat); 1819 case IOCB_CMD_PWRITEV: 1820 return aio_write(&req->rw, iocb, true, compat); 1821 case IOCB_CMD_FSYNC: 1822 return aio_fsync(&req->fsync, iocb, false); 1823 case IOCB_CMD_FDSYNC: 1824 return aio_fsync(&req->fsync, iocb, true); 1825 case IOCB_CMD_POLL: 1826 return aio_poll(req, iocb); 1827 default: 1828 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 1829 return -EINVAL; 1830 } 1831 } 1832 1833 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1834 bool compat) 1835 { 1836 struct aio_kiocb *req; 1837 struct iocb iocb; 1838 int err; 1839 1840 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 1841 return -EFAULT; 1842 1843 /* enforce forwards compatibility on users */ 1844 if (unlikely(iocb.aio_reserved2)) { 1845 pr_debug("EINVAL: reserve field set\n"); 1846 return -EINVAL; 1847 } 1848 1849 /* prevent overflows */ 1850 if (unlikely( 1851 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 1852 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 1853 ((ssize_t)iocb.aio_nbytes < 0) 1854 )) { 1855 pr_debug("EINVAL: overflow check\n"); 1856 return -EINVAL; 1857 } 1858 1859 req = aio_get_req(ctx); 1860 if (unlikely(!req)) 1861 return -EAGAIN; 1862 1863 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 1864 1865 /* Done with the synchronous reference */ 1866 iocb_put(req); 1867 1868 /* 1869 * If err is 0, we'd either done aio_complete() ourselves or have 1870 * arranged for that to be done asynchronously. Anything non-zero 1871 * means that we need to destroy req ourselves. 1872 */ 1873 if (unlikely(err)) { 1874 iocb_destroy(req); 1875 put_reqs_available(ctx, 1); 1876 } 1877 return err; 1878 } 1879 1880 /* sys_io_submit: 1881 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1882 * the number of iocbs queued. May return -EINVAL if the aio_context 1883 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1884 * *iocbpp[0] is not properly initialized, if the operation specified 1885 * is invalid for the file descriptor in the iocb. May fail with 1886 * -EFAULT if any of the data structures point to invalid data. May 1887 * fail with -EBADF if the file descriptor specified in the first 1888 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1889 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1890 * fail with -ENOSYS if not implemented. 1891 */ 1892 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1893 struct iocb __user * __user *, iocbpp) 1894 { 1895 struct kioctx *ctx; 1896 long ret = 0; 1897 int i = 0; 1898 struct blk_plug plug; 1899 1900 if (unlikely(nr < 0)) 1901 return -EINVAL; 1902 1903 ctx = lookup_ioctx(ctx_id); 1904 if (unlikely(!ctx)) { 1905 pr_debug("EINVAL: invalid context id\n"); 1906 return -EINVAL; 1907 } 1908 1909 if (nr > ctx->nr_events) 1910 nr = ctx->nr_events; 1911 1912 if (nr > AIO_PLUG_THRESHOLD) 1913 blk_start_plug(&plug); 1914 for (i = 0; i < nr; i++) { 1915 struct iocb __user *user_iocb; 1916 1917 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1918 ret = -EFAULT; 1919 break; 1920 } 1921 1922 ret = io_submit_one(ctx, user_iocb, false); 1923 if (ret) 1924 break; 1925 } 1926 if (nr > AIO_PLUG_THRESHOLD) 1927 blk_finish_plug(&plug); 1928 1929 percpu_ref_put(&ctx->users); 1930 return i ? i : ret; 1931 } 1932 1933 #ifdef CONFIG_COMPAT 1934 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 1935 int, nr, compat_uptr_t __user *, iocbpp) 1936 { 1937 struct kioctx *ctx; 1938 long ret = 0; 1939 int i = 0; 1940 struct blk_plug plug; 1941 1942 if (unlikely(nr < 0)) 1943 return -EINVAL; 1944 1945 ctx = lookup_ioctx(ctx_id); 1946 if (unlikely(!ctx)) { 1947 pr_debug("EINVAL: invalid context id\n"); 1948 return -EINVAL; 1949 } 1950 1951 if (nr > ctx->nr_events) 1952 nr = ctx->nr_events; 1953 1954 if (nr > AIO_PLUG_THRESHOLD) 1955 blk_start_plug(&plug); 1956 for (i = 0; i < nr; i++) { 1957 compat_uptr_t user_iocb; 1958 1959 if (unlikely(get_user(user_iocb, iocbpp + i))) { 1960 ret = -EFAULT; 1961 break; 1962 } 1963 1964 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 1965 if (ret) 1966 break; 1967 } 1968 if (nr > AIO_PLUG_THRESHOLD) 1969 blk_finish_plug(&plug); 1970 1971 percpu_ref_put(&ctx->users); 1972 return i ? i : ret; 1973 } 1974 #endif 1975 1976 /* sys_io_cancel: 1977 * Attempts to cancel an iocb previously passed to io_submit. If 1978 * the operation is successfully cancelled, the resulting event is 1979 * copied into the memory pointed to by result without being placed 1980 * into the completion queue and 0 is returned. May fail with 1981 * -EFAULT if any of the data structures pointed to are invalid. 1982 * May fail with -EINVAL if aio_context specified by ctx_id is 1983 * invalid. May fail with -EAGAIN if the iocb specified was not 1984 * cancelled. Will fail with -ENOSYS if not implemented. 1985 */ 1986 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1987 struct io_event __user *, result) 1988 { 1989 struct kioctx *ctx; 1990 struct aio_kiocb *kiocb; 1991 int ret = -EINVAL; 1992 u32 key; 1993 u64 obj = (u64)(unsigned long)iocb; 1994 1995 if (unlikely(get_user(key, &iocb->aio_key))) 1996 return -EFAULT; 1997 if (unlikely(key != KIOCB_KEY)) 1998 return -EINVAL; 1999 2000 ctx = lookup_ioctx(ctx_id); 2001 if (unlikely(!ctx)) 2002 return -EINVAL; 2003 2004 spin_lock_irq(&ctx->ctx_lock); 2005 /* TODO: use a hash or array, this sucks. */ 2006 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2007 if (kiocb->ki_res.obj == obj) { 2008 ret = kiocb->ki_cancel(&kiocb->rw); 2009 list_del_init(&kiocb->ki_list); 2010 break; 2011 } 2012 } 2013 spin_unlock_irq(&ctx->ctx_lock); 2014 2015 if (!ret) { 2016 /* 2017 * The result argument is no longer used - the io_event is 2018 * always delivered via the ring buffer. -EINPROGRESS indicates 2019 * cancellation is progress: 2020 */ 2021 ret = -EINPROGRESS; 2022 } 2023 2024 percpu_ref_put(&ctx->users); 2025 2026 return ret; 2027 } 2028 2029 static long do_io_getevents(aio_context_t ctx_id, 2030 long min_nr, 2031 long nr, 2032 struct io_event __user *events, 2033 struct timespec64 *ts) 2034 { 2035 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2036 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2037 long ret = -EINVAL; 2038 2039 if (likely(ioctx)) { 2040 if (likely(min_nr <= nr && min_nr >= 0)) 2041 ret = read_events(ioctx, min_nr, nr, events, until); 2042 percpu_ref_put(&ioctx->users); 2043 } 2044 2045 return ret; 2046 } 2047 2048 /* io_getevents: 2049 * Attempts to read at least min_nr events and up to nr events from 2050 * the completion queue for the aio_context specified by ctx_id. If 2051 * it succeeds, the number of read events is returned. May fail with 2052 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2053 * out of range, if timeout is out of range. May fail with -EFAULT 2054 * if any of the memory specified is invalid. May return 0 or 2055 * < min_nr if the timeout specified by timeout has elapsed 2056 * before sufficient events are available, where timeout == NULL 2057 * specifies an infinite timeout. Note that the timeout pointed to by 2058 * timeout is relative. Will fail with -ENOSYS if not implemented. 2059 */ 2060 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 2061 2062 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2063 long, min_nr, 2064 long, nr, 2065 struct io_event __user *, events, 2066 struct __kernel_timespec __user *, timeout) 2067 { 2068 struct timespec64 ts; 2069 int ret; 2070 2071 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2072 return -EFAULT; 2073 2074 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2075 if (!ret && signal_pending(current)) 2076 ret = -EINTR; 2077 return ret; 2078 } 2079 2080 #endif 2081 2082 struct __aio_sigset { 2083 const sigset_t __user *sigmask; 2084 size_t sigsetsize; 2085 }; 2086 2087 SYSCALL_DEFINE6(io_pgetevents, 2088 aio_context_t, ctx_id, 2089 long, min_nr, 2090 long, nr, 2091 struct io_event __user *, events, 2092 struct __kernel_timespec __user *, timeout, 2093 const struct __aio_sigset __user *, usig) 2094 { 2095 struct __aio_sigset ksig = { NULL, }; 2096 sigset_t ksigmask, sigsaved; 2097 struct timespec64 ts; 2098 bool interrupted; 2099 int ret; 2100 2101 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2102 return -EFAULT; 2103 2104 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2105 return -EFAULT; 2106 2107 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2108 if (ret) 2109 return ret; 2110 2111 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2112 2113 interrupted = signal_pending(current); 2114 restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted); 2115 if (interrupted && !ret) 2116 ret = -ERESTARTNOHAND; 2117 2118 return ret; 2119 } 2120 2121 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2122 2123 SYSCALL_DEFINE6(io_pgetevents_time32, 2124 aio_context_t, ctx_id, 2125 long, min_nr, 2126 long, nr, 2127 struct io_event __user *, events, 2128 struct old_timespec32 __user *, timeout, 2129 const struct __aio_sigset __user *, usig) 2130 { 2131 struct __aio_sigset ksig = { NULL, }; 2132 sigset_t ksigmask, sigsaved; 2133 struct timespec64 ts; 2134 bool interrupted; 2135 int ret; 2136 2137 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2138 return -EFAULT; 2139 2140 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2141 return -EFAULT; 2142 2143 2144 ret = set_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2145 if (ret) 2146 return ret; 2147 2148 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2149 2150 interrupted = signal_pending(current); 2151 restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted); 2152 if (interrupted && !ret) 2153 ret = -ERESTARTNOHAND; 2154 2155 return ret; 2156 } 2157 2158 #endif 2159 2160 #if defined(CONFIG_COMPAT_32BIT_TIME) 2161 2162 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2163 __s32, min_nr, 2164 __s32, nr, 2165 struct io_event __user *, events, 2166 struct old_timespec32 __user *, timeout) 2167 { 2168 struct timespec64 t; 2169 int ret; 2170 2171 if (timeout && get_old_timespec32(&t, timeout)) 2172 return -EFAULT; 2173 2174 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2175 if (!ret && signal_pending(current)) 2176 ret = -EINTR; 2177 return ret; 2178 } 2179 2180 #endif 2181 2182 #ifdef CONFIG_COMPAT 2183 2184 struct __compat_aio_sigset { 2185 compat_sigset_t __user *sigmask; 2186 compat_size_t sigsetsize; 2187 }; 2188 2189 #if defined(CONFIG_COMPAT_32BIT_TIME) 2190 2191 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2192 compat_aio_context_t, ctx_id, 2193 compat_long_t, min_nr, 2194 compat_long_t, nr, 2195 struct io_event __user *, events, 2196 struct old_timespec32 __user *, timeout, 2197 const struct __compat_aio_sigset __user *, usig) 2198 { 2199 struct __compat_aio_sigset ksig = { NULL, }; 2200 sigset_t ksigmask, sigsaved; 2201 struct timespec64 t; 2202 bool interrupted; 2203 int ret; 2204 2205 if (timeout && get_old_timespec32(&t, timeout)) 2206 return -EFAULT; 2207 2208 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2209 return -EFAULT; 2210 2211 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2212 if (ret) 2213 return ret; 2214 2215 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2216 2217 interrupted = signal_pending(current); 2218 restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted); 2219 if (interrupted && !ret) 2220 ret = -ERESTARTNOHAND; 2221 2222 return ret; 2223 } 2224 2225 #endif 2226 2227 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2228 compat_aio_context_t, ctx_id, 2229 compat_long_t, min_nr, 2230 compat_long_t, nr, 2231 struct io_event __user *, events, 2232 struct __kernel_timespec __user *, timeout, 2233 const struct __compat_aio_sigset __user *, usig) 2234 { 2235 struct __compat_aio_sigset ksig = { NULL, }; 2236 sigset_t ksigmask, sigsaved; 2237 struct timespec64 t; 2238 bool interrupted; 2239 int ret; 2240 2241 if (timeout && get_timespec64(&t, timeout)) 2242 return -EFAULT; 2243 2244 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2245 return -EFAULT; 2246 2247 ret = set_compat_user_sigmask(ksig.sigmask, &ksigmask, &sigsaved, ksig.sigsetsize); 2248 if (ret) 2249 return ret; 2250 2251 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2252 2253 interrupted = signal_pending(current); 2254 restore_user_sigmask(ksig.sigmask, &sigsaved, interrupted); 2255 if (interrupted && !ret) 2256 ret = -ERESTARTNOHAND; 2257 2258 return ret; 2259 } 2260 #endif 2261