xref: /linux/fs/aio.c (revision 2137e1564267001b25143d21bc619189c1f74bc6)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 	{}
243 };
244 
245 static void __init aio_sysctl_init(void)
246 {
247 	register_sysctl_init("fs", aio_sysctls);
248 }
249 #else
250 #define aio_sysctl_init() do { } while (0)
251 #endif
252 
253 static struct kmem_cache	*kiocb_cachep;
254 static struct kmem_cache	*kioctx_cachep;
255 
256 static struct vfsmount *aio_mnt;
257 
258 static const struct file_operations aio_ring_fops;
259 static const struct address_space_operations aio_ctx_aops;
260 
261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262 {
263 	struct file *file;
264 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
265 	if (IS_ERR(inode))
266 		return ERR_CAST(inode);
267 
268 	inode->i_mapping->a_ops = &aio_ctx_aops;
269 	inode->i_mapping->i_private_data = ctx;
270 	inode->i_size = PAGE_SIZE * nr_pages;
271 
272 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 				O_RDWR, &aio_ring_fops);
274 	if (IS_ERR(file))
275 		iput(inode);
276 	return file;
277 }
278 
279 static int aio_init_fs_context(struct fs_context *fc)
280 {
281 	if (!init_pseudo(fc, AIO_RING_MAGIC))
282 		return -ENOMEM;
283 	fc->s_iflags |= SB_I_NOEXEC;
284 	return 0;
285 }
286 
287 /* aio_setup
288  *	Creates the slab caches used by the aio routines, panic on
289  *	failure as this is done early during the boot sequence.
290  */
291 static int __init aio_setup(void)
292 {
293 	static struct file_system_type aio_fs = {
294 		.name		= "aio",
295 		.init_fs_context = aio_init_fs_context,
296 		.kill_sb	= kill_anon_super,
297 	};
298 	aio_mnt = kern_mount(&aio_fs);
299 	if (IS_ERR(aio_mnt))
300 		panic("Failed to create aio fs mount.");
301 
302 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
304 	aio_sysctl_init();
305 	return 0;
306 }
307 __initcall(aio_setup);
308 
309 static void put_aio_ring_file(struct kioctx *ctx)
310 {
311 	struct file *aio_ring_file = ctx->aio_ring_file;
312 	struct address_space *i_mapping;
313 
314 	if (aio_ring_file) {
315 		truncate_setsize(file_inode(aio_ring_file), 0);
316 
317 		/* Prevent further access to the kioctx from migratepages */
318 		i_mapping = aio_ring_file->f_mapping;
319 		spin_lock(&i_mapping->i_private_lock);
320 		i_mapping->i_private_data = NULL;
321 		ctx->aio_ring_file = NULL;
322 		spin_unlock(&i_mapping->i_private_lock);
323 
324 		fput(aio_ring_file);
325 	}
326 }
327 
328 static void aio_free_ring(struct kioctx *ctx)
329 {
330 	int i;
331 
332 	/* Disconnect the kiotx from the ring file.  This prevents future
333 	 * accesses to the kioctx from page migration.
334 	 */
335 	put_aio_ring_file(ctx);
336 
337 	for (i = 0; i < ctx->nr_pages; i++) {
338 		struct page *page;
339 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 				page_count(ctx->ring_pages[i]));
341 		page = ctx->ring_pages[i];
342 		if (!page)
343 			continue;
344 		ctx->ring_pages[i] = NULL;
345 		put_page(page);
346 	}
347 
348 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
349 		kfree(ctx->ring_pages);
350 		ctx->ring_pages = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc;
414 
415 	/*
416 	 * We cannot support the _NO_COPY case here, because copy needs to
417 	 * happen under the ctx->completion_lock. That does not work with the
418 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 	 */
420 	if (mode == MIGRATE_SYNC_NO_COPY)
421 		return -EINVAL;
422 
423 	rc = 0;
424 
425 	/* mapping->i_private_lock here protects against the kioctx teardown.  */
426 	spin_lock(&mapping->i_private_lock);
427 	ctx = mapping->i_private_data;
428 	if (!ctx) {
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 
433 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
434 	 * to the ring's head, and prevents page migration from mucking in
435 	 * a partially initialized kiotx.
436 	 */
437 	if (!mutex_trylock(&ctx->ring_lock)) {
438 		rc = -EAGAIN;
439 		goto out;
440 	}
441 
442 	idx = src->index;
443 	if (idx < (pgoff_t)ctx->nr_pages) {
444 		/* Make sure the old folio hasn't already been changed */
445 		if (ctx->ring_pages[idx] != &src->page)
446 			rc = -EAGAIN;
447 	} else
448 		rc = -EINVAL;
449 
450 	if (rc != 0)
451 		goto out_unlock;
452 
453 	/* Writeback must be complete */
454 	BUG_ON(folio_test_writeback(src));
455 	folio_get(dst);
456 
457 	rc = folio_migrate_mapping(mapping, dst, src, 1);
458 	if (rc != MIGRATEPAGE_SUCCESS) {
459 		folio_put(dst);
460 		goto out_unlock;
461 	}
462 
463 	/* Take completion_lock to prevent other writes to the ring buffer
464 	 * while the old folio is copied to the new.  This prevents new
465 	 * events from being lost.
466 	 */
467 	spin_lock_irqsave(&ctx->completion_lock, flags);
468 	folio_migrate_copy(dst, src);
469 	BUG_ON(ctx->ring_pages[idx] != &src->page);
470 	ctx->ring_pages[idx] = &dst->page;
471 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
472 
473 	/* The old folio is no longer accessible. */
474 	folio_put(src);
475 
476 out_unlock:
477 	mutex_unlock(&ctx->ring_lock);
478 out:
479 	spin_unlock(&mapping->i_private_lock);
480 	return rc;
481 }
482 #else
483 #define aio_migrate_folio NULL
484 #endif
485 
486 static const struct address_space_operations aio_ctx_aops = {
487 	.dirty_folio	= noop_dirty_folio,
488 	.migrate_folio	= aio_migrate_folio,
489 };
490 
491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
492 {
493 	struct aio_ring *ring;
494 	struct mm_struct *mm = current->mm;
495 	unsigned long size, unused;
496 	int nr_pages;
497 	int i;
498 	struct file *file;
499 
500 	/* Compensate for the ring buffer's head/tail overlap entry */
501 	nr_events += 2;	/* 1 is required, 2 for good luck */
502 
503 	size = sizeof(struct aio_ring);
504 	size += sizeof(struct io_event) * nr_events;
505 
506 	nr_pages = PFN_UP(size);
507 	if (nr_pages < 0)
508 		return -EINVAL;
509 
510 	file = aio_private_file(ctx, nr_pages);
511 	if (IS_ERR(file)) {
512 		ctx->aio_ring_file = NULL;
513 		return -ENOMEM;
514 	}
515 
516 	ctx->aio_ring_file = file;
517 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 			/ sizeof(struct io_event);
519 
520 	ctx->ring_pages = ctx->internal_pages;
521 	if (nr_pages > AIO_RING_PAGES) {
522 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
523 					  GFP_KERNEL);
524 		if (!ctx->ring_pages) {
525 			put_aio_ring_file(ctx);
526 			return -ENOMEM;
527 		}
528 	}
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		struct page *page;
532 		page = find_or_create_page(file->f_mapping,
533 					   i, GFP_USER | __GFP_ZERO);
534 		if (!page)
535 			break;
536 		pr_debug("pid(%d) page[%d]->count=%d\n",
537 			 current->pid, i, page_count(page));
538 		SetPageUptodate(page);
539 		unlock_page(page);
540 
541 		ctx->ring_pages[i] = page;
542 	}
543 	ctx->nr_pages = i;
544 
545 	if (unlikely(i != nr_pages)) {
546 		aio_free_ring(ctx);
547 		return -ENOMEM;
548 	}
549 
550 	ctx->mmap_size = nr_pages * PAGE_SIZE;
551 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
552 
553 	if (mmap_write_lock_killable(mm)) {
554 		ctx->mmap_size = 0;
555 		aio_free_ring(ctx);
556 		return -EINTR;
557 	}
558 
559 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
560 				 PROT_READ | PROT_WRITE,
561 				 MAP_SHARED, 0, 0, &unused, NULL);
562 	mmap_write_unlock(mm);
563 	if (IS_ERR((void *)ctx->mmap_base)) {
564 		ctx->mmap_size = 0;
565 		aio_free_ring(ctx);
566 		return -ENOMEM;
567 	}
568 
569 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
570 
571 	ctx->user_id = ctx->mmap_base;
572 	ctx->nr_events = nr_events; /* trusted copy */
573 
574 	ring = page_address(ctx->ring_pages[0]);
575 	ring->nr = nr_events;	/* user copy */
576 	ring->id = ~0U;
577 	ring->head = ring->tail = 0;
578 	ring->magic = AIO_RING_MAGIC;
579 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
580 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
581 	ring->header_length = sizeof(struct aio_ring);
582 	flush_dcache_page(ctx->ring_pages[0]);
583 
584 	return 0;
585 }
586 
587 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
588 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
589 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
590 
591 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
592 {
593 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
594 	struct kioctx *ctx = req->ki_ctx;
595 	unsigned long flags;
596 
597 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
598 		return;
599 
600 	spin_lock_irqsave(&ctx->ctx_lock, flags);
601 	list_add_tail(&req->ki_list, &ctx->active_reqs);
602 	req->ki_cancel = cancel;
603 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
604 }
605 EXPORT_SYMBOL(kiocb_set_cancel_fn);
606 
607 /*
608  * free_ioctx() should be RCU delayed to synchronize against the RCU
609  * protected lookup_ioctx() and also needs process context to call
610  * aio_free_ring().  Use rcu_work.
611  */
612 static void free_ioctx(struct work_struct *work)
613 {
614 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
615 					  free_rwork);
616 	pr_debug("freeing %p\n", ctx);
617 
618 	aio_free_ring(ctx);
619 	free_percpu(ctx->cpu);
620 	percpu_ref_exit(&ctx->reqs);
621 	percpu_ref_exit(&ctx->users);
622 	kmem_cache_free(kioctx_cachep, ctx);
623 }
624 
625 static void free_ioctx_reqs(struct percpu_ref *ref)
626 {
627 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
628 
629 	/* At this point we know that there are no any in-flight requests */
630 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
631 		complete(&ctx->rq_wait->comp);
632 
633 	/* Synchronize against RCU protected table->table[] dereferences */
634 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
635 	queue_rcu_work(system_wq, &ctx->free_rwork);
636 }
637 
638 /*
639  * When this function runs, the kioctx has been removed from the "hash table"
640  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
641  * now it's safe to cancel any that need to be.
642  */
643 static void free_ioctx_users(struct percpu_ref *ref)
644 {
645 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
646 	struct aio_kiocb *req;
647 
648 	spin_lock_irq(&ctx->ctx_lock);
649 
650 	while (!list_empty(&ctx->active_reqs)) {
651 		req = list_first_entry(&ctx->active_reqs,
652 				       struct aio_kiocb, ki_list);
653 		req->ki_cancel(&req->rw);
654 		list_del_init(&req->ki_list);
655 	}
656 
657 	spin_unlock_irq(&ctx->ctx_lock);
658 
659 	percpu_ref_kill(&ctx->reqs);
660 	percpu_ref_put(&ctx->reqs);
661 }
662 
663 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
664 {
665 	unsigned i, new_nr;
666 	struct kioctx_table *table, *old;
667 	struct aio_ring *ring;
668 
669 	spin_lock(&mm->ioctx_lock);
670 	table = rcu_dereference_raw(mm->ioctx_table);
671 
672 	while (1) {
673 		if (table)
674 			for (i = 0; i < table->nr; i++)
675 				if (!rcu_access_pointer(table->table[i])) {
676 					ctx->id = i;
677 					rcu_assign_pointer(table->table[i], ctx);
678 					spin_unlock(&mm->ioctx_lock);
679 
680 					/* While kioctx setup is in progress,
681 					 * we are protected from page migration
682 					 * changes ring_pages by ->ring_lock.
683 					 */
684 					ring = page_address(ctx->ring_pages[0]);
685 					ring->id = ctx->id;
686 					return 0;
687 				}
688 
689 		new_nr = (table ? table->nr : 1) * 4;
690 		spin_unlock(&mm->ioctx_lock);
691 
692 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
693 		if (!table)
694 			return -ENOMEM;
695 
696 		table->nr = new_nr;
697 
698 		spin_lock(&mm->ioctx_lock);
699 		old = rcu_dereference_raw(mm->ioctx_table);
700 
701 		if (!old) {
702 			rcu_assign_pointer(mm->ioctx_table, table);
703 		} else if (table->nr > old->nr) {
704 			memcpy(table->table, old->table,
705 			       old->nr * sizeof(struct kioctx *));
706 
707 			rcu_assign_pointer(mm->ioctx_table, table);
708 			kfree_rcu(old, rcu);
709 		} else {
710 			kfree(table);
711 			table = old;
712 		}
713 	}
714 }
715 
716 static void aio_nr_sub(unsigned nr)
717 {
718 	spin_lock(&aio_nr_lock);
719 	if (WARN_ON(aio_nr - nr > aio_nr))
720 		aio_nr = 0;
721 	else
722 		aio_nr -= nr;
723 	spin_unlock(&aio_nr_lock);
724 }
725 
726 /* ioctx_alloc
727  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
728  */
729 static struct kioctx *ioctx_alloc(unsigned nr_events)
730 {
731 	struct mm_struct *mm = current->mm;
732 	struct kioctx *ctx;
733 	int err = -ENOMEM;
734 
735 	/*
736 	 * Store the original nr_events -- what userspace passed to io_setup(),
737 	 * for counting against the global limit -- before it changes.
738 	 */
739 	unsigned int max_reqs = nr_events;
740 
741 	/*
742 	 * We keep track of the number of available ringbuffer slots, to prevent
743 	 * overflow (reqs_available), and we also use percpu counters for this.
744 	 *
745 	 * So since up to half the slots might be on other cpu's percpu counters
746 	 * and unavailable, double nr_events so userspace sees what they
747 	 * expected: additionally, we move req_batch slots to/from percpu
748 	 * counters at a time, so make sure that isn't 0:
749 	 */
750 	nr_events = max(nr_events, num_possible_cpus() * 4);
751 	nr_events *= 2;
752 
753 	/* Prevent overflows */
754 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
755 		pr_debug("ENOMEM: nr_events too high\n");
756 		return ERR_PTR(-EINVAL);
757 	}
758 
759 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
760 		return ERR_PTR(-EAGAIN);
761 
762 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
763 	if (!ctx)
764 		return ERR_PTR(-ENOMEM);
765 
766 	ctx->max_reqs = max_reqs;
767 
768 	spin_lock_init(&ctx->ctx_lock);
769 	spin_lock_init(&ctx->completion_lock);
770 	mutex_init(&ctx->ring_lock);
771 	/* Protect against page migration throughout kiotx setup by keeping
772 	 * the ring_lock mutex held until setup is complete. */
773 	mutex_lock(&ctx->ring_lock);
774 	init_waitqueue_head(&ctx->wait);
775 
776 	INIT_LIST_HEAD(&ctx->active_reqs);
777 
778 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
779 		goto err;
780 
781 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
782 		goto err;
783 
784 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
785 	if (!ctx->cpu)
786 		goto err;
787 
788 	err = aio_setup_ring(ctx, nr_events);
789 	if (err < 0)
790 		goto err;
791 
792 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
793 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
794 	if (ctx->req_batch < 1)
795 		ctx->req_batch = 1;
796 
797 	/* limit the number of system wide aios */
798 	spin_lock(&aio_nr_lock);
799 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
800 	    aio_nr + ctx->max_reqs < aio_nr) {
801 		spin_unlock(&aio_nr_lock);
802 		err = -EAGAIN;
803 		goto err_ctx;
804 	}
805 	aio_nr += ctx->max_reqs;
806 	spin_unlock(&aio_nr_lock);
807 
808 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
809 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
810 
811 	err = ioctx_add_table(ctx, mm);
812 	if (err)
813 		goto err_cleanup;
814 
815 	/* Release the ring_lock mutex now that all setup is complete. */
816 	mutex_unlock(&ctx->ring_lock);
817 
818 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
819 		 ctx, ctx->user_id, mm, ctx->nr_events);
820 	return ctx;
821 
822 err_cleanup:
823 	aio_nr_sub(ctx->max_reqs);
824 err_ctx:
825 	atomic_set(&ctx->dead, 1);
826 	if (ctx->mmap_size)
827 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
828 	aio_free_ring(ctx);
829 err:
830 	mutex_unlock(&ctx->ring_lock);
831 	free_percpu(ctx->cpu);
832 	percpu_ref_exit(&ctx->reqs);
833 	percpu_ref_exit(&ctx->users);
834 	kmem_cache_free(kioctx_cachep, ctx);
835 	pr_debug("error allocating ioctx %d\n", err);
836 	return ERR_PTR(err);
837 }
838 
839 /* kill_ioctx
840  *	Cancels all outstanding aio requests on an aio context.  Used
841  *	when the processes owning a context have all exited to encourage
842  *	the rapid destruction of the kioctx.
843  */
844 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
845 		      struct ctx_rq_wait *wait)
846 {
847 	struct kioctx_table *table;
848 
849 	spin_lock(&mm->ioctx_lock);
850 	if (atomic_xchg(&ctx->dead, 1)) {
851 		spin_unlock(&mm->ioctx_lock);
852 		return -EINVAL;
853 	}
854 
855 	table = rcu_dereference_raw(mm->ioctx_table);
856 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
857 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
858 	spin_unlock(&mm->ioctx_lock);
859 
860 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
861 	wake_up_all(&ctx->wait);
862 
863 	/*
864 	 * It'd be more correct to do this in free_ioctx(), after all
865 	 * the outstanding kiocbs have finished - but by then io_destroy
866 	 * has already returned, so io_setup() could potentially return
867 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
868 	 *  could tell).
869 	 */
870 	aio_nr_sub(ctx->max_reqs);
871 
872 	if (ctx->mmap_size)
873 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
874 
875 	ctx->rq_wait = wait;
876 	percpu_ref_kill(&ctx->users);
877 	return 0;
878 }
879 
880 /*
881  * exit_aio: called when the last user of mm goes away.  At this point, there is
882  * no way for any new requests to be submited or any of the io_* syscalls to be
883  * called on the context.
884  *
885  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
886  * them.
887  */
888 void exit_aio(struct mm_struct *mm)
889 {
890 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
891 	struct ctx_rq_wait wait;
892 	int i, skipped;
893 
894 	if (!table)
895 		return;
896 
897 	atomic_set(&wait.count, table->nr);
898 	init_completion(&wait.comp);
899 
900 	skipped = 0;
901 	for (i = 0; i < table->nr; ++i) {
902 		struct kioctx *ctx =
903 			rcu_dereference_protected(table->table[i], true);
904 
905 		if (!ctx) {
906 			skipped++;
907 			continue;
908 		}
909 
910 		/*
911 		 * We don't need to bother with munmap() here - exit_mmap(mm)
912 		 * is coming and it'll unmap everything. And we simply can't,
913 		 * this is not necessarily our ->mm.
914 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
915 		 * that it needs to unmap the area, just set it to 0.
916 		 */
917 		ctx->mmap_size = 0;
918 		kill_ioctx(mm, ctx, &wait);
919 	}
920 
921 	if (!atomic_sub_and_test(skipped, &wait.count)) {
922 		/* Wait until all IO for the context are done. */
923 		wait_for_completion(&wait.comp);
924 	}
925 
926 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
927 	kfree(table);
928 }
929 
930 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
931 {
932 	struct kioctx_cpu *kcpu;
933 	unsigned long flags;
934 
935 	local_irq_save(flags);
936 	kcpu = this_cpu_ptr(ctx->cpu);
937 	kcpu->reqs_available += nr;
938 
939 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
940 		kcpu->reqs_available -= ctx->req_batch;
941 		atomic_add(ctx->req_batch, &ctx->reqs_available);
942 	}
943 
944 	local_irq_restore(flags);
945 }
946 
947 static bool __get_reqs_available(struct kioctx *ctx)
948 {
949 	struct kioctx_cpu *kcpu;
950 	bool ret = false;
951 	unsigned long flags;
952 
953 	local_irq_save(flags);
954 	kcpu = this_cpu_ptr(ctx->cpu);
955 	if (!kcpu->reqs_available) {
956 		int avail = atomic_read(&ctx->reqs_available);
957 
958 		do {
959 			if (avail < ctx->req_batch)
960 				goto out;
961 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
962 					     &avail, avail - ctx->req_batch));
963 
964 		kcpu->reqs_available += ctx->req_batch;
965 	}
966 
967 	ret = true;
968 	kcpu->reqs_available--;
969 out:
970 	local_irq_restore(flags);
971 	return ret;
972 }
973 
974 /* refill_reqs_available
975  *	Updates the reqs_available reference counts used for tracking the
976  *	number of free slots in the completion ring.  This can be called
977  *	from aio_complete() (to optimistically update reqs_available) or
978  *	from aio_get_req() (the we're out of events case).  It must be
979  *	called holding ctx->completion_lock.
980  */
981 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
982                                   unsigned tail)
983 {
984 	unsigned events_in_ring, completed;
985 
986 	/* Clamp head since userland can write to it. */
987 	head %= ctx->nr_events;
988 	if (head <= tail)
989 		events_in_ring = tail - head;
990 	else
991 		events_in_ring = ctx->nr_events - (head - tail);
992 
993 	completed = ctx->completed_events;
994 	if (events_in_ring < completed)
995 		completed -= events_in_ring;
996 	else
997 		completed = 0;
998 
999 	if (!completed)
1000 		return;
1001 
1002 	ctx->completed_events -= completed;
1003 	put_reqs_available(ctx, completed);
1004 }
1005 
1006 /* user_refill_reqs_available
1007  *	Called to refill reqs_available when aio_get_req() encounters an
1008  *	out of space in the completion ring.
1009  */
1010 static void user_refill_reqs_available(struct kioctx *ctx)
1011 {
1012 	spin_lock_irq(&ctx->completion_lock);
1013 	if (ctx->completed_events) {
1014 		struct aio_ring *ring;
1015 		unsigned head;
1016 
1017 		/* Access of ring->head may race with aio_read_events_ring()
1018 		 * here, but that's okay since whether we read the old version
1019 		 * or the new version, and either will be valid.  The important
1020 		 * part is that head cannot pass tail since we prevent
1021 		 * aio_complete() from updating tail by holding
1022 		 * ctx->completion_lock.  Even if head is invalid, the check
1023 		 * against ctx->completed_events below will make sure we do the
1024 		 * safe/right thing.
1025 		 */
1026 		ring = page_address(ctx->ring_pages[0]);
1027 		head = ring->head;
1028 
1029 		refill_reqs_available(ctx, head, ctx->tail);
1030 	}
1031 
1032 	spin_unlock_irq(&ctx->completion_lock);
1033 }
1034 
1035 static bool get_reqs_available(struct kioctx *ctx)
1036 {
1037 	if (__get_reqs_available(ctx))
1038 		return true;
1039 	user_refill_reqs_available(ctx);
1040 	return __get_reqs_available(ctx);
1041 }
1042 
1043 /* aio_get_req
1044  *	Allocate a slot for an aio request.
1045  * Returns NULL if no requests are free.
1046  *
1047  * The refcount is initialized to 2 - one for the async op completion,
1048  * one for the synchronous code that does this.
1049  */
1050 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1051 {
1052 	struct aio_kiocb *req;
1053 
1054 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1055 	if (unlikely(!req))
1056 		return NULL;
1057 
1058 	if (unlikely(!get_reqs_available(ctx))) {
1059 		kmem_cache_free(kiocb_cachep, req);
1060 		return NULL;
1061 	}
1062 
1063 	percpu_ref_get(&ctx->reqs);
1064 	req->ki_ctx = ctx;
1065 	INIT_LIST_HEAD(&req->ki_list);
1066 	refcount_set(&req->ki_refcnt, 2);
1067 	req->ki_eventfd = NULL;
1068 	return req;
1069 }
1070 
1071 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1072 {
1073 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1074 	struct mm_struct *mm = current->mm;
1075 	struct kioctx *ctx, *ret = NULL;
1076 	struct kioctx_table *table;
1077 	unsigned id;
1078 
1079 	if (get_user(id, &ring->id))
1080 		return NULL;
1081 
1082 	rcu_read_lock();
1083 	table = rcu_dereference(mm->ioctx_table);
1084 
1085 	if (!table || id >= table->nr)
1086 		goto out;
1087 
1088 	id = array_index_nospec(id, table->nr);
1089 	ctx = rcu_dereference(table->table[id]);
1090 	if (ctx && ctx->user_id == ctx_id) {
1091 		if (percpu_ref_tryget_live(&ctx->users))
1092 			ret = ctx;
1093 	}
1094 out:
1095 	rcu_read_unlock();
1096 	return ret;
1097 }
1098 
1099 static inline void iocb_destroy(struct aio_kiocb *iocb)
1100 {
1101 	if (iocb->ki_eventfd)
1102 		eventfd_ctx_put(iocb->ki_eventfd);
1103 	if (iocb->ki_filp)
1104 		fput(iocb->ki_filp);
1105 	percpu_ref_put(&iocb->ki_ctx->reqs);
1106 	kmem_cache_free(kiocb_cachep, iocb);
1107 }
1108 
1109 struct aio_waiter {
1110 	struct wait_queue_entry	w;
1111 	size_t			min_nr;
1112 };
1113 
1114 /* aio_complete
1115  *	Called when the io request on the given iocb is complete.
1116  */
1117 static void aio_complete(struct aio_kiocb *iocb)
1118 {
1119 	struct kioctx	*ctx = iocb->ki_ctx;
1120 	struct aio_ring	*ring;
1121 	struct io_event	*ev_page, *event;
1122 	unsigned tail, pos, head, avail;
1123 	unsigned long	flags;
1124 
1125 	/*
1126 	 * Add a completion event to the ring buffer. Must be done holding
1127 	 * ctx->completion_lock to prevent other code from messing with the tail
1128 	 * pointer since we might be called from irq context.
1129 	 */
1130 	spin_lock_irqsave(&ctx->completion_lock, flags);
1131 
1132 	tail = ctx->tail;
1133 	pos = tail + AIO_EVENTS_OFFSET;
1134 
1135 	if (++tail >= ctx->nr_events)
1136 		tail = 0;
1137 
1138 	ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1139 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1140 
1141 	*event = iocb->ki_res;
1142 
1143 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1144 
1145 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1146 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1147 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1148 
1149 	/* after flagging the request as done, we
1150 	 * must never even look at it again
1151 	 */
1152 	smp_wmb();	/* make event visible before updating tail */
1153 
1154 	ctx->tail = tail;
1155 
1156 	ring = page_address(ctx->ring_pages[0]);
1157 	head = ring->head;
1158 	ring->tail = tail;
1159 	flush_dcache_page(ctx->ring_pages[0]);
1160 
1161 	ctx->completed_events++;
1162 	if (ctx->completed_events > 1)
1163 		refill_reqs_available(ctx, head, tail);
1164 
1165 	avail = tail > head
1166 		? tail - head
1167 		: tail + ctx->nr_events - head;
1168 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1169 
1170 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1171 
1172 	/*
1173 	 * Check if the user asked us to deliver the result through an
1174 	 * eventfd. The eventfd_signal() function is safe to be called
1175 	 * from IRQ context.
1176 	 */
1177 	if (iocb->ki_eventfd)
1178 		eventfd_signal(iocb->ki_eventfd);
1179 
1180 	/*
1181 	 * We have to order our ring_info tail store above and test
1182 	 * of the wait list below outside the wait lock.  This is
1183 	 * like in wake_up_bit() where clearing a bit has to be
1184 	 * ordered with the unlocked test.
1185 	 */
1186 	smp_mb();
1187 
1188 	if (waitqueue_active(&ctx->wait)) {
1189 		struct aio_waiter *curr, *next;
1190 		unsigned long flags;
1191 
1192 		spin_lock_irqsave(&ctx->wait.lock, flags);
1193 		list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1194 			if (avail >= curr->min_nr) {
1195 				list_del_init_careful(&curr->w.entry);
1196 				wake_up_process(curr->w.private);
1197 			}
1198 		spin_unlock_irqrestore(&ctx->wait.lock, flags);
1199 	}
1200 }
1201 
1202 static inline void iocb_put(struct aio_kiocb *iocb)
1203 {
1204 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1205 		aio_complete(iocb);
1206 		iocb_destroy(iocb);
1207 	}
1208 }
1209 
1210 /* aio_read_events_ring
1211  *	Pull an event off of the ioctx's event ring.  Returns the number of
1212  *	events fetched
1213  */
1214 static long aio_read_events_ring(struct kioctx *ctx,
1215 				 struct io_event __user *event, long nr)
1216 {
1217 	struct aio_ring *ring;
1218 	unsigned head, tail, pos;
1219 	long ret = 0;
1220 	int copy_ret;
1221 
1222 	/*
1223 	 * The mutex can block and wake us up and that will cause
1224 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1225 	 * and repeat. This should be rare enough that it doesn't cause
1226 	 * peformance issues. See the comment in read_events() for more detail.
1227 	 */
1228 	sched_annotate_sleep();
1229 	mutex_lock(&ctx->ring_lock);
1230 
1231 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1232 	ring = page_address(ctx->ring_pages[0]);
1233 	head = ring->head;
1234 	tail = ring->tail;
1235 
1236 	/*
1237 	 * Ensure that once we've read the current tail pointer, that
1238 	 * we also see the events that were stored up to the tail.
1239 	 */
1240 	smp_rmb();
1241 
1242 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1243 
1244 	if (head == tail)
1245 		goto out;
1246 
1247 	head %= ctx->nr_events;
1248 	tail %= ctx->nr_events;
1249 
1250 	while (ret < nr) {
1251 		long avail;
1252 		struct io_event *ev;
1253 		struct page *page;
1254 
1255 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1256 		if (head == tail)
1257 			break;
1258 
1259 		pos = head + AIO_EVENTS_OFFSET;
1260 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1261 		pos %= AIO_EVENTS_PER_PAGE;
1262 
1263 		avail = min(avail, nr - ret);
1264 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1265 
1266 		ev = page_address(page);
1267 		copy_ret = copy_to_user(event + ret, ev + pos,
1268 					sizeof(*ev) * avail);
1269 
1270 		if (unlikely(copy_ret)) {
1271 			ret = -EFAULT;
1272 			goto out;
1273 		}
1274 
1275 		ret += avail;
1276 		head += avail;
1277 		head %= ctx->nr_events;
1278 	}
1279 
1280 	ring = page_address(ctx->ring_pages[0]);
1281 	ring->head = head;
1282 	flush_dcache_page(ctx->ring_pages[0]);
1283 
1284 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1285 out:
1286 	mutex_unlock(&ctx->ring_lock);
1287 
1288 	return ret;
1289 }
1290 
1291 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1292 			    struct io_event __user *event, long *i)
1293 {
1294 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1295 
1296 	if (ret > 0)
1297 		*i += ret;
1298 
1299 	if (unlikely(atomic_read(&ctx->dead)))
1300 		ret = -EINVAL;
1301 
1302 	if (!*i)
1303 		*i = ret;
1304 
1305 	return ret < 0 || *i >= min_nr;
1306 }
1307 
1308 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1309 			struct io_event __user *event,
1310 			ktime_t until)
1311 {
1312 	struct hrtimer_sleeper	t;
1313 	struct aio_waiter	w;
1314 	long ret = 0, ret2 = 0;
1315 
1316 	/*
1317 	 * Note that aio_read_events() is being called as the conditional - i.e.
1318 	 * we're calling it after prepare_to_wait() has set task state to
1319 	 * TASK_INTERRUPTIBLE.
1320 	 *
1321 	 * But aio_read_events() can block, and if it blocks it's going to flip
1322 	 * the task state back to TASK_RUNNING.
1323 	 *
1324 	 * This should be ok, provided it doesn't flip the state back to
1325 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1326 	 * will only happen if the mutex_lock() call blocks, and we then find
1327 	 * the ringbuffer empty. So in practice we should be ok, but it's
1328 	 * something to be aware of when touching this code.
1329 	 */
1330 	aio_read_events(ctx, min_nr, nr, event, &ret);
1331 	if (until == 0 || ret < 0 || ret >= min_nr)
1332 		return ret;
1333 
1334 	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1335 	if (until != KTIME_MAX) {
1336 		hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1337 		hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1338 	}
1339 
1340 	init_wait(&w.w);
1341 
1342 	while (1) {
1343 		unsigned long nr_got = ret;
1344 
1345 		w.min_nr = min_nr - ret;
1346 
1347 		ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1348 		if (!ret2 && !t.task)
1349 			ret2 = -ETIME;
1350 
1351 		if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1352 			break;
1353 
1354 		if (nr_got == ret)
1355 			schedule();
1356 	}
1357 
1358 	finish_wait(&ctx->wait, &w.w);
1359 	hrtimer_cancel(&t.timer);
1360 	destroy_hrtimer_on_stack(&t.timer);
1361 
1362 	return ret;
1363 }
1364 
1365 /* sys_io_setup:
1366  *	Create an aio_context capable of receiving at least nr_events.
1367  *	ctxp must not point to an aio_context that already exists, and
1368  *	must be initialized to 0 prior to the call.  On successful
1369  *	creation of the aio_context, *ctxp is filled in with the resulting
1370  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1371  *	if the specified nr_events exceeds internal limits.  May fail
1372  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1373  *	of available events.  May fail with -ENOMEM if insufficient kernel
1374  *	resources are available.  May fail with -EFAULT if an invalid
1375  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1376  *	implemented.
1377  */
1378 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1379 {
1380 	struct kioctx *ioctx = NULL;
1381 	unsigned long ctx;
1382 	long ret;
1383 
1384 	ret = get_user(ctx, ctxp);
1385 	if (unlikely(ret))
1386 		goto out;
1387 
1388 	ret = -EINVAL;
1389 	if (unlikely(ctx || nr_events == 0)) {
1390 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1391 		         ctx, nr_events);
1392 		goto out;
1393 	}
1394 
1395 	ioctx = ioctx_alloc(nr_events);
1396 	ret = PTR_ERR(ioctx);
1397 	if (!IS_ERR(ioctx)) {
1398 		ret = put_user(ioctx->user_id, ctxp);
1399 		if (ret)
1400 			kill_ioctx(current->mm, ioctx, NULL);
1401 		percpu_ref_put(&ioctx->users);
1402 	}
1403 
1404 out:
1405 	return ret;
1406 }
1407 
1408 #ifdef CONFIG_COMPAT
1409 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1410 {
1411 	struct kioctx *ioctx = NULL;
1412 	unsigned long ctx;
1413 	long ret;
1414 
1415 	ret = get_user(ctx, ctx32p);
1416 	if (unlikely(ret))
1417 		goto out;
1418 
1419 	ret = -EINVAL;
1420 	if (unlikely(ctx || nr_events == 0)) {
1421 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1422 		         ctx, nr_events);
1423 		goto out;
1424 	}
1425 
1426 	ioctx = ioctx_alloc(nr_events);
1427 	ret = PTR_ERR(ioctx);
1428 	if (!IS_ERR(ioctx)) {
1429 		/* truncating is ok because it's a user address */
1430 		ret = put_user((u32)ioctx->user_id, ctx32p);
1431 		if (ret)
1432 			kill_ioctx(current->mm, ioctx, NULL);
1433 		percpu_ref_put(&ioctx->users);
1434 	}
1435 
1436 out:
1437 	return ret;
1438 }
1439 #endif
1440 
1441 /* sys_io_destroy:
1442  *	Destroy the aio_context specified.  May cancel any outstanding
1443  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1444  *	implemented.  May fail with -EINVAL if the context pointed to
1445  *	is invalid.
1446  */
1447 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1448 {
1449 	struct kioctx *ioctx = lookup_ioctx(ctx);
1450 	if (likely(NULL != ioctx)) {
1451 		struct ctx_rq_wait wait;
1452 		int ret;
1453 
1454 		init_completion(&wait.comp);
1455 		atomic_set(&wait.count, 1);
1456 
1457 		/* Pass requests_done to kill_ioctx() where it can be set
1458 		 * in a thread-safe way. If we try to set it here then we have
1459 		 * a race condition if two io_destroy() called simultaneously.
1460 		 */
1461 		ret = kill_ioctx(current->mm, ioctx, &wait);
1462 		percpu_ref_put(&ioctx->users);
1463 
1464 		/* Wait until all IO for the context are done. Otherwise kernel
1465 		 * keep using user-space buffers even if user thinks the context
1466 		 * is destroyed.
1467 		 */
1468 		if (!ret)
1469 			wait_for_completion(&wait.comp);
1470 
1471 		return ret;
1472 	}
1473 	pr_debug("EINVAL: invalid context id\n");
1474 	return -EINVAL;
1475 }
1476 
1477 static void aio_remove_iocb(struct aio_kiocb *iocb)
1478 {
1479 	struct kioctx *ctx = iocb->ki_ctx;
1480 	unsigned long flags;
1481 
1482 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1483 	list_del(&iocb->ki_list);
1484 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1485 }
1486 
1487 static void aio_complete_rw(struct kiocb *kiocb, long res)
1488 {
1489 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1490 
1491 	if (!list_empty_careful(&iocb->ki_list))
1492 		aio_remove_iocb(iocb);
1493 
1494 	if (kiocb->ki_flags & IOCB_WRITE) {
1495 		struct inode *inode = file_inode(kiocb->ki_filp);
1496 
1497 		if (S_ISREG(inode->i_mode))
1498 			kiocb_end_write(kiocb);
1499 	}
1500 
1501 	iocb->ki_res.res = res;
1502 	iocb->ki_res.res2 = 0;
1503 	iocb_put(iocb);
1504 }
1505 
1506 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1507 {
1508 	int ret;
1509 
1510 	req->ki_complete = aio_complete_rw;
1511 	req->private = NULL;
1512 	req->ki_pos = iocb->aio_offset;
1513 	req->ki_flags = req->ki_filp->f_iocb_flags;
1514 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1515 		req->ki_flags |= IOCB_EVENTFD;
1516 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1517 		/*
1518 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1519 		 * aio_reqprio is interpreted as an I/O scheduling
1520 		 * class and priority.
1521 		 */
1522 		ret = ioprio_check_cap(iocb->aio_reqprio);
1523 		if (ret) {
1524 			pr_debug("aio ioprio check cap error: %d\n", ret);
1525 			return ret;
1526 		}
1527 
1528 		req->ki_ioprio = iocb->aio_reqprio;
1529 	} else
1530 		req->ki_ioprio = get_current_ioprio();
1531 
1532 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1533 	if (unlikely(ret))
1534 		return ret;
1535 
1536 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1537 	return 0;
1538 }
1539 
1540 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1541 		struct iovec **iovec, bool vectored, bool compat,
1542 		struct iov_iter *iter)
1543 {
1544 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1545 	size_t len = iocb->aio_nbytes;
1546 
1547 	if (!vectored) {
1548 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1549 		*iovec = NULL;
1550 		return ret;
1551 	}
1552 
1553 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1554 }
1555 
1556 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1557 {
1558 	switch (ret) {
1559 	case -EIOCBQUEUED:
1560 		break;
1561 	case -ERESTARTSYS:
1562 	case -ERESTARTNOINTR:
1563 	case -ERESTARTNOHAND:
1564 	case -ERESTART_RESTARTBLOCK:
1565 		/*
1566 		 * There's no easy way to restart the syscall since other AIO's
1567 		 * may be already running. Just fail this IO with EINTR.
1568 		 */
1569 		ret = -EINTR;
1570 		fallthrough;
1571 	default:
1572 		req->ki_complete(req, ret);
1573 	}
1574 }
1575 
1576 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1577 			bool vectored, bool compat)
1578 {
1579 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1580 	struct iov_iter iter;
1581 	struct file *file;
1582 	int ret;
1583 
1584 	ret = aio_prep_rw(req, iocb);
1585 	if (ret)
1586 		return ret;
1587 	file = req->ki_filp;
1588 	if (unlikely(!(file->f_mode & FMODE_READ)))
1589 		return -EBADF;
1590 	if (unlikely(!file->f_op->read_iter))
1591 		return -EINVAL;
1592 
1593 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1594 	if (ret < 0)
1595 		return ret;
1596 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1597 	if (!ret)
1598 		aio_rw_done(req, call_read_iter(file, req, &iter));
1599 	kfree(iovec);
1600 	return ret;
1601 }
1602 
1603 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1604 			 bool vectored, bool compat)
1605 {
1606 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1607 	struct iov_iter iter;
1608 	struct file *file;
1609 	int ret;
1610 
1611 	ret = aio_prep_rw(req, iocb);
1612 	if (ret)
1613 		return ret;
1614 	file = req->ki_filp;
1615 
1616 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1617 		return -EBADF;
1618 	if (unlikely(!file->f_op->write_iter))
1619 		return -EINVAL;
1620 
1621 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1622 	if (ret < 0)
1623 		return ret;
1624 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1625 	if (!ret) {
1626 		if (S_ISREG(file_inode(file)->i_mode))
1627 			kiocb_start_write(req);
1628 		req->ki_flags |= IOCB_WRITE;
1629 		aio_rw_done(req, call_write_iter(file, req, &iter));
1630 	}
1631 	kfree(iovec);
1632 	return ret;
1633 }
1634 
1635 static void aio_fsync_work(struct work_struct *work)
1636 {
1637 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1638 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1639 
1640 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1641 	revert_creds(old_cred);
1642 	put_cred(iocb->fsync.creds);
1643 	iocb_put(iocb);
1644 }
1645 
1646 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1647 		     bool datasync)
1648 {
1649 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1650 			iocb->aio_rw_flags))
1651 		return -EINVAL;
1652 
1653 	if (unlikely(!req->file->f_op->fsync))
1654 		return -EINVAL;
1655 
1656 	req->creds = prepare_creds();
1657 	if (!req->creds)
1658 		return -ENOMEM;
1659 
1660 	req->datasync = datasync;
1661 	INIT_WORK(&req->work, aio_fsync_work);
1662 	schedule_work(&req->work);
1663 	return 0;
1664 }
1665 
1666 static void aio_poll_put_work(struct work_struct *work)
1667 {
1668 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1669 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1670 
1671 	iocb_put(iocb);
1672 }
1673 
1674 /*
1675  * Safely lock the waitqueue which the request is on, synchronizing with the
1676  * case where the ->poll() provider decides to free its waitqueue early.
1677  *
1678  * Returns true on success, meaning that req->head->lock was locked, req->wait
1679  * is on req->head, and an RCU read lock was taken.  Returns false if the
1680  * request was already removed from its waitqueue (which might no longer exist).
1681  */
1682 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1683 {
1684 	wait_queue_head_t *head;
1685 
1686 	/*
1687 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1688 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1689 	 * lock in the first place can race with the waitqueue being freed.
1690 	 *
1691 	 * We solve this as eventpoll does: by taking advantage of the fact that
1692 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1693 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1694 	 * non-NULL, we can then lock it without the memory being freed out from
1695 	 * under us, then check whether the request is still on the queue.
1696 	 *
1697 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1698 	 * case the caller deletes the entry from the queue, leaving it empty.
1699 	 * In that case, only RCU prevents the queue memory from being freed.
1700 	 */
1701 	rcu_read_lock();
1702 	head = smp_load_acquire(&req->head);
1703 	if (head) {
1704 		spin_lock(&head->lock);
1705 		if (!list_empty(&req->wait.entry))
1706 			return true;
1707 		spin_unlock(&head->lock);
1708 	}
1709 	rcu_read_unlock();
1710 	return false;
1711 }
1712 
1713 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1714 {
1715 	spin_unlock(&req->head->lock);
1716 	rcu_read_unlock();
1717 }
1718 
1719 static void aio_poll_complete_work(struct work_struct *work)
1720 {
1721 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1722 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1723 	struct poll_table_struct pt = { ._key = req->events };
1724 	struct kioctx *ctx = iocb->ki_ctx;
1725 	__poll_t mask = 0;
1726 
1727 	if (!READ_ONCE(req->cancelled))
1728 		mask = vfs_poll(req->file, &pt) & req->events;
1729 
1730 	/*
1731 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1732 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1733 	 * synchronize with them.  In the cancellation case the list_del_init
1734 	 * itself is not actually needed, but harmless so we keep it in to
1735 	 * avoid further branches in the fast path.
1736 	 */
1737 	spin_lock_irq(&ctx->ctx_lock);
1738 	if (poll_iocb_lock_wq(req)) {
1739 		if (!mask && !READ_ONCE(req->cancelled)) {
1740 			/*
1741 			 * The request isn't actually ready to be completed yet.
1742 			 * Reschedule completion if another wakeup came in.
1743 			 */
1744 			if (req->work_need_resched) {
1745 				schedule_work(&req->work);
1746 				req->work_need_resched = false;
1747 			} else {
1748 				req->work_scheduled = false;
1749 			}
1750 			poll_iocb_unlock_wq(req);
1751 			spin_unlock_irq(&ctx->ctx_lock);
1752 			return;
1753 		}
1754 		list_del_init(&req->wait.entry);
1755 		poll_iocb_unlock_wq(req);
1756 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1757 	list_del_init(&iocb->ki_list);
1758 	iocb->ki_res.res = mangle_poll(mask);
1759 	spin_unlock_irq(&ctx->ctx_lock);
1760 
1761 	iocb_put(iocb);
1762 }
1763 
1764 /* assumes we are called with irqs disabled */
1765 static int aio_poll_cancel(struct kiocb *iocb)
1766 {
1767 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1768 	struct poll_iocb *req = &aiocb->poll;
1769 
1770 	if (poll_iocb_lock_wq(req)) {
1771 		WRITE_ONCE(req->cancelled, true);
1772 		if (!req->work_scheduled) {
1773 			schedule_work(&aiocb->poll.work);
1774 			req->work_scheduled = true;
1775 		}
1776 		poll_iocb_unlock_wq(req);
1777 	} /* else, the request was force-cancelled by POLLFREE already */
1778 
1779 	return 0;
1780 }
1781 
1782 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1783 		void *key)
1784 {
1785 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1786 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1787 	__poll_t mask = key_to_poll(key);
1788 	unsigned long flags;
1789 
1790 	/* for instances that support it check for an event match first: */
1791 	if (mask && !(mask & req->events))
1792 		return 0;
1793 
1794 	/*
1795 	 * Complete the request inline if possible.  This requires that three
1796 	 * conditions be met:
1797 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1798 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1799 	 *	the events, so inline completion isn't possible.
1800 	 *   2. The completion work must not have already been scheduled.
1801 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1802 	 *	already hold the waitqueue lock, so this inverts the normal
1803 	 *	locking order.  Use irqsave/irqrestore because not all
1804 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1805 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1806 	 */
1807 	if (mask && !req->work_scheduled &&
1808 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1809 		struct kioctx *ctx = iocb->ki_ctx;
1810 
1811 		list_del_init(&req->wait.entry);
1812 		list_del(&iocb->ki_list);
1813 		iocb->ki_res.res = mangle_poll(mask);
1814 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1815 			iocb = NULL;
1816 			INIT_WORK(&req->work, aio_poll_put_work);
1817 			schedule_work(&req->work);
1818 		}
1819 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1820 		if (iocb)
1821 			iocb_put(iocb);
1822 	} else {
1823 		/*
1824 		 * Schedule the completion work if needed.  If it was already
1825 		 * scheduled, record that another wakeup came in.
1826 		 *
1827 		 * Don't remove the request from the waitqueue here, as it might
1828 		 * not actually be complete yet (we won't know until vfs_poll()
1829 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1830 		 * exception to this; see below.
1831 		 */
1832 		if (req->work_scheduled) {
1833 			req->work_need_resched = true;
1834 		} else {
1835 			schedule_work(&req->work);
1836 			req->work_scheduled = true;
1837 		}
1838 
1839 		/*
1840 		 * If the waitqueue is being freed early but we can't complete
1841 		 * the request inline, we have to tear down the request as best
1842 		 * we can.  That means immediately removing the request from its
1843 		 * waitqueue and preventing all further accesses to the
1844 		 * waitqueue via the request.  We also need to schedule the
1845 		 * completion work (done above).  Also mark the request as
1846 		 * cancelled, to potentially skip an unneeded call to ->poll().
1847 		 */
1848 		if (mask & POLLFREE) {
1849 			WRITE_ONCE(req->cancelled, true);
1850 			list_del_init(&req->wait.entry);
1851 
1852 			/*
1853 			 * Careful: this *must* be the last step, since as soon
1854 			 * as req->head is NULL'ed out, the request can be
1855 			 * completed and freed, since aio_poll_complete_work()
1856 			 * will no longer need to take the waitqueue lock.
1857 			 */
1858 			smp_store_release(&req->head, NULL);
1859 		}
1860 	}
1861 	return 1;
1862 }
1863 
1864 struct aio_poll_table {
1865 	struct poll_table_struct	pt;
1866 	struct aio_kiocb		*iocb;
1867 	bool				queued;
1868 	int				error;
1869 };
1870 
1871 static void
1872 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1873 		struct poll_table_struct *p)
1874 {
1875 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1876 
1877 	/* multiple wait queues per file are not supported */
1878 	if (unlikely(pt->queued)) {
1879 		pt->error = -EINVAL;
1880 		return;
1881 	}
1882 
1883 	pt->queued = true;
1884 	pt->error = 0;
1885 	pt->iocb->poll.head = head;
1886 	add_wait_queue(head, &pt->iocb->poll.wait);
1887 }
1888 
1889 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1890 {
1891 	struct kioctx *ctx = aiocb->ki_ctx;
1892 	struct poll_iocb *req = &aiocb->poll;
1893 	struct aio_poll_table apt;
1894 	bool cancel = false;
1895 	__poll_t mask;
1896 
1897 	/* reject any unknown events outside the normal event mask. */
1898 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1899 		return -EINVAL;
1900 	/* reject fields that are not defined for poll */
1901 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1902 		return -EINVAL;
1903 
1904 	INIT_WORK(&req->work, aio_poll_complete_work);
1905 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1906 
1907 	req->head = NULL;
1908 	req->cancelled = false;
1909 	req->work_scheduled = false;
1910 	req->work_need_resched = false;
1911 
1912 	apt.pt._qproc = aio_poll_queue_proc;
1913 	apt.pt._key = req->events;
1914 	apt.iocb = aiocb;
1915 	apt.queued = false;
1916 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1917 
1918 	/* initialized the list so that we can do list_empty checks */
1919 	INIT_LIST_HEAD(&req->wait.entry);
1920 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1921 
1922 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1923 	spin_lock_irq(&ctx->ctx_lock);
1924 	if (likely(apt.queued)) {
1925 		bool on_queue = poll_iocb_lock_wq(req);
1926 
1927 		if (!on_queue || req->work_scheduled) {
1928 			/*
1929 			 * aio_poll_wake() already either scheduled the async
1930 			 * completion work, or completed the request inline.
1931 			 */
1932 			if (apt.error) /* unsupported case: multiple queues */
1933 				cancel = true;
1934 			apt.error = 0;
1935 			mask = 0;
1936 		}
1937 		if (mask || apt.error) {
1938 			/* Steal to complete synchronously. */
1939 			list_del_init(&req->wait.entry);
1940 		} else if (cancel) {
1941 			/* Cancel if possible (may be too late though). */
1942 			WRITE_ONCE(req->cancelled, true);
1943 		} else if (on_queue) {
1944 			/*
1945 			 * Actually waiting for an event, so add the request to
1946 			 * active_reqs so that it can be cancelled if needed.
1947 			 */
1948 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1949 			aiocb->ki_cancel = aio_poll_cancel;
1950 		}
1951 		if (on_queue)
1952 			poll_iocb_unlock_wq(req);
1953 	}
1954 	if (mask) { /* no async, we'd stolen it */
1955 		aiocb->ki_res.res = mangle_poll(mask);
1956 		apt.error = 0;
1957 	}
1958 	spin_unlock_irq(&ctx->ctx_lock);
1959 	if (mask)
1960 		iocb_put(aiocb);
1961 	return apt.error;
1962 }
1963 
1964 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1965 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1966 			   bool compat)
1967 {
1968 	req->ki_filp = fget(iocb->aio_fildes);
1969 	if (unlikely(!req->ki_filp))
1970 		return -EBADF;
1971 
1972 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1973 		struct eventfd_ctx *eventfd;
1974 		/*
1975 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1976 		 * instance of the file* now. The file descriptor must be
1977 		 * an eventfd() fd, and will be signaled for each completed
1978 		 * event using the eventfd_signal() function.
1979 		 */
1980 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1981 		if (IS_ERR(eventfd))
1982 			return PTR_ERR(eventfd);
1983 
1984 		req->ki_eventfd = eventfd;
1985 	}
1986 
1987 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1988 		pr_debug("EFAULT: aio_key\n");
1989 		return -EFAULT;
1990 	}
1991 
1992 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1993 	req->ki_res.data = iocb->aio_data;
1994 	req->ki_res.res = 0;
1995 	req->ki_res.res2 = 0;
1996 
1997 	switch (iocb->aio_lio_opcode) {
1998 	case IOCB_CMD_PREAD:
1999 		return aio_read(&req->rw, iocb, false, compat);
2000 	case IOCB_CMD_PWRITE:
2001 		return aio_write(&req->rw, iocb, false, compat);
2002 	case IOCB_CMD_PREADV:
2003 		return aio_read(&req->rw, iocb, true, compat);
2004 	case IOCB_CMD_PWRITEV:
2005 		return aio_write(&req->rw, iocb, true, compat);
2006 	case IOCB_CMD_FSYNC:
2007 		return aio_fsync(&req->fsync, iocb, false);
2008 	case IOCB_CMD_FDSYNC:
2009 		return aio_fsync(&req->fsync, iocb, true);
2010 	case IOCB_CMD_POLL:
2011 		return aio_poll(req, iocb);
2012 	default:
2013 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2014 		return -EINVAL;
2015 	}
2016 }
2017 
2018 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2019 			 bool compat)
2020 {
2021 	struct aio_kiocb *req;
2022 	struct iocb iocb;
2023 	int err;
2024 
2025 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2026 		return -EFAULT;
2027 
2028 	/* enforce forwards compatibility on users */
2029 	if (unlikely(iocb.aio_reserved2)) {
2030 		pr_debug("EINVAL: reserve field set\n");
2031 		return -EINVAL;
2032 	}
2033 
2034 	/* prevent overflows */
2035 	if (unlikely(
2036 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2037 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2038 	    ((ssize_t)iocb.aio_nbytes < 0)
2039 	   )) {
2040 		pr_debug("EINVAL: overflow check\n");
2041 		return -EINVAL;
2042 	}
2043 
2044 	req = aio_get_req(ctx);
2045 	if (unlikely(!req))
2046 		return -EAGAIN;
2047 
2048 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2049 
2050 	/* Done with the synchronous reference */
2051 	iocb_put(req);
2052 
2053 	/*
2054 	 * If err is 0, we'd either done aio_complete() ourselves or have
2055 	 * arranged for that to be done asynchronously.  Anything non-zero
2056 	 * means that we need to destroy req ourselves.
2057 	 */
2058 	if (unlikely(err)) {
2059 		iocb_destroy(req);
2060 		put_reqs_available(ctx, 1);
2061 	}
2062 	return err;
2063 }
2064 
2065 /* sys_io_submit:
2066  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2067  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2068  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2069  *	*iocbpp[0] is not properly initialized, if the operation specified
2070  *	is invalid for the file descriptor in the iocb.  May fail with
2071  *	-EFAULT if any of the data structures point to invalid data.  May
2072  *	fail with -EBADF if the file descriptor specified in the first
2073  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2074  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2075  *	fail with -ENOSYS if not implemented.
2076  */
2077 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2078 		struct iocb __user * __user *, iocbpp)
2079 {
2080 	struct kioctx *ctx;
2081 	long ret = 0;
2082 	int i = 0;
2083 	struct blk_plug plug;
2084 
2085 	if (unlikely(nr < 0))
2086 		return -EINVAL;
2087 
2088 	ctx = lookup_ioctx(ctx_id);
2089 	if (unlikely(!ctx)) {
2090 		pr_debug("EINVAL: invalid context id\n");
2091 		return -EINVAL;
2092 	}
2093 
2094 	if (nr > ctx->nr_events)
2095 		nr = ctx->nr_events;
2096 
2097 	if (nr > AIO_PLUG_THRESHOLD)
2098 		blk_start_plug(&plug);
2099 	for (i = 0; i < nr; i++) {
2100 		struct iocb __user *user_iocb;
2101 
2102 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2103 			ret = -EFAULT;
2104 			break;
2105 		}
2106 
2107 		ret = io_submit_one(ctx, user_iocb, false);
2108 		if (ret)
2109 			break;
2110 	}
2111 	if (nr > AIO_PLUG_THRESHOLD)
2112 		blk_finish_plug(&plug);
2113 
2114 	percpu_ref_put(&ctx->users);
2115 	return i ? i : ret;
2116 }
2117 
2118 #ifdef CONFIG_COMPAT
2119 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2120 		       int, nr, compat_uptr_t __user *, iocbpp)
2121 {
2122 	struct kioctx *ctx;
2123 	long ret = 0;
2124 	int i = 0;
2125 	struct blk_plug plug;
2126 
2127 	if (unlikely(nr < 0))
2128 		return -EINVAL;
2129 
2130 	ctx = lookup_ioctx(ctx_id);
2131 	if (unlikely(!ctx)) {
2132 		pr_debug("EINVAL: invalid context id\n");
2133 		return -EINVAL;
2134 	}
2135 
2136 	if (nr > ctx->nr_events)
2137 		nr = ctx->nr_events;
2138 
2139 	if (nr > AIO_PLUG_THRESHOLD)
2140 		blk_start_plug(&plug);
2141 	for (i = 0; i < nr; i++) {
2142 		compat_uptr_t user_iocb;
2143 
2144 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2145 			ret = -EFAULT;
2146 			break;
2147 		}
2148 
2149 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2150 		if (ret)
2151 			break;
2152 	}
2153 	if (nr > AIO_PLUG_THRESHOLD)
2154 		blk_finish_plug(&plug);
2155 
2156 	percpu_ref_put(&ctx->users);
2157 	return i ? i : ret;
2158 }
2159 #endif
2160 
2161 /* sys_io_cancel:
2162  *	Attempts to cancel an iocb previously passed to io_submit.  If
2163  *	the operation is successfully cancelled, the resulting event is
2164  *	copied into the memory pointed to by result without being placed
2165  *	into the completion queue and 0 is returned.  May fail with
2166  *	-EFAULT if any of the data structures pointed to are invalid.
2167  *	May fail with -EINVAL if aio_context specified by ctx_id is
2168  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2169  *	cancelled.  Will fail with -ENOSYS if not implemented.
2170  */
2171 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2172 		struct io_event __user *, result)
2173 {
2174 	struct kioctx *ctx;
2175 	struct aio_kiocb *kiocb;
2176 	int ret = -EINVAL;
2177 	u32 key;
2178 	u64 obj = (u64)(unsigned long)iocb;
2179 
2180 	if (unlikely(get_user(key, &iocb->aio_key)))
2181 		return -EFAULT;
2182 	if (unlikely(key != KIOCB_KEY))
2183 		return -EINVAL;
2184 
2185 	ctx = lookup_ioctx(ctx_id);
2186 	if (unlikely(!ctx))
2187 		return -EINVAL;
2188 
2189 	spin_lock_irq(&ctx->ctx_lock);
2190 	/* TODO: use a hash or array, this sucks. */
2191 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2192 		if (kiocb->ki_res.obj == obj) {
2193 			ret = kiocb->ki_cancel(&kiocb->rw);
2194 			list_del_init(&kiocb->ki_list);
2195 			break;
2196 		}
2197 	}
2198 	spin_unlock_irq(&ctx->ctx_lock);
2199 
2200 	if (!ret) {
2201 		/*
2202 		 * The result argument is no longer used - the io_event is
2203 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2204 		 * cancellation is progress:
2205 		 */
2206 		ret = -EINPROGRESS;
2207 	}
2208 
2209 	percpu_ref_put(&ctx->users);
2210 
2211 	return ret;
2212 }
2213 
2214 static long do_io_getevents(aio_context_t ctx_id,
2215 		long min_nr,
2216 		long nr,
2217 		struct io_event __user *events,
2218 		struct timespec64 *ts)
2219 {
2220 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2221 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2222 	long ret = -EINVAL;
2223 
2224 	if (likely(ioctx)) {
2225 		if (likely(min_nr <= nr && min_nr >= 0))
2226 			ret = read_events(ioctx, min_nr, nr, events, until);
2227 		percpu_ref_put(&ioctx->users);
2228 	}
2229 
2230 	return ret;
2231 }
2232 
2233 /* io_getevents:
2234  *	Attempts to read at least min_nr events and up to nr events from
2235  *	the completion queue for the aio_context specified by ctx_id. If
2236  *	it succeeds, the number of read events is returned. May fail with
2237  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2238  *	out of range, if timeout is out of range.  May fail with -EFAULT
2239  *	if any of the memory specified is invalid.  May return 0 or
2240  *	< min_nr if the timeout specified by timeout has elapsed
2241  *	before sufficient events are available, where timeout == NULL
2242  *	specifies an infinite timeout. Note that the timeout pointed to by
2243  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2244  */
2245 #ifdef CONFIG_64BIT
2246 
2247 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2248 		long, min_nr,
2249 		long, nr,
2250 		struct io_event __user *, events,
2251 		struct __kernel_timespec __user *, timeout)
2252 {
2253 	struct timespec64	ts;
2254 	int			ret;
2255 
2256 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2257 		return -EFAULT;
2258 
2259 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2260 	if (!ret && signal_pending(current))
2261 		ret = -EINTR;
2262 	return ret;
2263 }
2264 
2265 #endif
2266 
2267 struct __aio_sigset {
2268 	const sigset_t __user	*sigmask;
2269 	size_t		sigsetsize;
2270 };
2271 
2272 SYSCALL_DEFINE6(io_pgetevents,
2273 		aio_context_t, ctx_id,
2274 		long, min_nr,
2275 		long, nr,
2276 		struct io_event __user *, events,
2277 		struct __kernel_timespec __user *, timeout,
2278 		const struct __aio_sigset __user *, usig)
2279 {
2280 	struct __aio_sigset	ksig = { NULL, };
2281 	struct timespec64	ts;
2282 	bool interrupted;
2283 	int ret;
2284 
2285 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2286 		return -EFAULT;
2287 
2288 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2289 		return -EFAULT;
2290 
2291 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2292 	if (ret)
2293 		return ret;
2294 
2295 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2296 
2297 	interrupted = signal_pending(current);
2298 	restore_saved_sigmask_unless(interrupted);
2299 	if (interrupted && !ret)
2300 		ret = -ERESTARTNOHAND;
2301 
2302 	return ret;
2303 }
2304 
2305 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2306 
2307 SYSCALL_DEFINE6(io_pgetevents_time32,
2308 		aio_context_t, ctx_id,
2309 		long, min_nr,
2310 		long, nr,
2311 		struct io_event __user *, events,
2312 		struct old_timespec32 __user *, timeout,
2313 		const struct __aio_sigset __user *, usig)
2314 {
2315 	struct __aio_sigset	ksig = { NULL, };
2316 	struct timespec64	ts;
2317 	bool interrupted;
2318 	int ret;
2319 
2320 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2321 		return -EFAULT;
2322 
2323 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2324 		return -EFAULT;
2325 
2326 
2327 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2328 	if (ret)
2329 		return ret;
2330 
2331 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2332 
2333 	interrupted = signal_pending(current);
2334 	restore_saved_sigmask_unless(interrupted);
2335 	if (interrupted && !ret)
2336 		ret = -ERESTARTNOHAND;
2337 
2338 	return ret;
2339 }
2340 
2341 #endif
2342 
2343 #if defined(CONFIG_COMPAT_32BIT_TIME)
2344 
2345 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2346 		__s32, min_nr,
2347 		__s32, nr,
2348 		struct io_event __user *, events,
2349 		struct old_timespec32 __user *, timeout)
2350 {
2351 	struct timespec64 t;
2352 	int ret;
2353 
2354 	if (timeout && get_old_timespec32(&t, timeout))
2355 		return -EFAULT;
2356 
2357 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2358 	if (!ret && signal_pending(current))
2359 		ret = -EINTR;
2360 	return ret;
2361 }
2362 
2363 #endif
2364 
2365 #ifdef CONFIG_COMPAT
2366 
2367 struct __compat_aio_sigset {
2368 	compat_uptr_t		sigmask;
2369 	compat_size_t		sigsetsize;
2370 };
2371 
2372 #if defined(CONFIG_COMPAT_32BIT_TIME)
2373 
2374 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2375 		compat_aio_context_t, ctx_id,
2376 		compat_long_t, min_nr,
2377 		compat_long_t, nr,
2378 		struct io_event __user *, events,
2379 		struct old_timespec32 __user *, timeout,
2380 		const struct __compat_aio_sigset __user *, usig)
2381 {
2382 	struct __compat_aio_sigset ksig = { 0, };
2383 	struct timespec64 t;
2384 	bool interrupted;
2385 	int ret;
2386 
2387 	if (timeout && get_old_timespec32(&t, timeout))
2388 		return -EFAULT;
2389 
2390 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2391 		return -EFAULT;
2392 
2393 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2394 	if (ret)
2395 		return ret;
2396 
2397 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2398 
2399 	interrupted = signal_pending(current);
2400 	restore_saved_sigmask_unless(interrupted);
2401 	if (interrupted && !ret)
2402 		ret = -ERESTARTNOHAND;
2403 
2404 	return ret;
2405 }
2406 
2407 #endif
2408 
2409 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2410 		compat_aio_context_t, ctx_id,
2411 		compat_long_t, min_nr,
2412 		compat_long_t, nr,
2413 		struct io_event __user *, events,
2414 		struct __kernel_timespec __user *, timeout,
2415 		const struct __compat_aio_sigset __user *, usig)
2416 {
2417 	struct __compat_aio_sigset ksig = { 0, };
2418 	struct timespec64 t;
2419 	bool interrupted;
2420 	int ret;
2421 
2422 	if (timeout && get_timespec64(&t, timeout))
2423 		return -EFAULT;
2424 
2425 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2426 		return -EFAULT;
2427 
2428 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2429 	if (ret)
2430 		return ret;
2431 
2432 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2433 
2434 	interrupted = signal_pending(current);
2435 	restore_saved_sigmask_unless(interrupted);
2436 	if (interrupted && !ret)
2437 		ret = -ERESTARTNOHAND;
2438 
2439 	return ret;
2440 }
2441 #endif
2442