xref: /linux/fs/aio.c (revision 1cd4bc987abb2823836cbb8f887026011ccddc8a)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct folio		**ring_folios;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct folio		*internal_folios[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 };
243 
244 static void __init aio_sysctl_init(void)
245 {
246 	register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251 
252 static struct kmem_cache	*kiocb_cachep;
253 static struct kmem_cache	*kioctx_cachep;
254 
255 static struct vfsmount *aio_mnt;
256 
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259 
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 	struct file *file;
263 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 	if (IS_ERR(inode))
265 		return ERR_CAST(inode);
266 
267 	inode->i_mapping->a_ops = &aio_ctx_aops;
268 	inode->i_mapping->i_private_data = ctx;
269 	inode->i_size = PAGE_SIZE * nr_pages;
270 
271 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 				O_RDWR, &aio_ring_fops);
273 	if (IS_ERR(file))
274 		iput(inode);
275 	return file;
276 }
277 
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 	if (!init_pseudo(fc, AIO_RING_MAGIC))
281 		return -ENOMEM;
282 	fc->s_iflags |= SB_I_NOEXEC;
283 	return 0;
284 }
285 
286 /* aio_setup
287  *	Creates the slab caches used by the aio routines, panic on
288  *	failure as this is done early during the boot sequence.
289  */
290 static int __init aio_setup(void)
291 {
292 	static struct file_system_type aio_fs = {
293 		.name		= "aio",
294 		.init_fs_context = aio_init_fs_context,
295 		.kill_sb	= kill_anon_super,
296 	};
297 	aio_mnt = kern_mount(&aio_fs);
298 	if (IS_ERR(aio_mnt))
299 		panic("Failed to create aio fs mount.");
300 
301 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	aio_sysctl_init();
304 	return 0;
305 }
306 __initcall(aio_setup);
307 
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 	struct file *aio_ring_file = ctx->aio_ring_file;
311 	struct address_space *i_mapping;
312 
313 	if (aio_ring_file) {
314 		truncate_setsize(file_inode(aio_ring_file), 0);
315 
316 		/* Prevent further access to the kioctx from migratepages */
317 		i_mapping = aio_ring_file->f_mapping;
318 		spin_lock(&i_mapping->i_private_lock);
319 		i_mapping->i_private_data = NULL;
320 		ctx->aio_ring_file = NULL;
321 		spin_unlock(&i_mapping->i_private_lock);
322 
323 		fput(aio_ring_file);
324 	}
325 }
326 
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 	int i;
330 
331 	/* Disconnect the kiotx from the ring file.  This prevents future
332 	 * accesses to the kioctx from page migration.
333 	 */
334 	put_aio_ring_file(ctx);
335 
336 	for (i = 0; i < ctx->nr_pages; i++) {
337 		struct folio *folio = ctx->ring_folios[i];
338 
339 		if (!folio)
340 			continue;
341 
342 		pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
343 			 folio_ref_count(folio));
344 		ctx->ring_folios[i] = NULL;
345 		folio_put(folio);
346 	}
347 
348 	if (ctx->ring_folios && ctx->ring_folios != ctx->internal_folios) {
349 		kfree(ctx->ring_folios);
350 		ctx->ring_folios = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc;
414 
415 	/*
416 	 * We cannot support the _NO_COPY case here, because copy needs to
417 	 * happen under the ctx->completion_lock. That does not work with the
418 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 	 */
420 	if (mode == MIGRATE_SYNC_NO_COPY)
421 		return -EINVAL;
422 
423 	rc = 0;
424 
425 	/* mapping->i_private_lock here protects against the kioctx teardown.  */
426 	spin_lock(&mapping->i_private_lock);
427 	ctx = mapping->i_private_data;
428 	if (!ctx) {
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 
433 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
434 	 * to the ring's head, and prevents page migration from mucking in
435 	 * a partially initialized kiotx.
436 	 */
437 	if (!mutex_trylock(&ctx->ring_lock)) {
438 		rc = -EAGAIN;
439 		goto out;
440 	}
441 
442 	idx = src->index;
443 	if (idx < (pgoff_t)ctx->nr_pages) {
444 		/* Make sure the old folio hasn't already been changed */
445 		if (ctx->ring_folios[idx] != src)
446 			rc = -EAGAIN;
447 	} else
448 		rc = -EINVAL;
449 
450 	if (rc != 0)
451 		goto out_unlock;
452 
453 	/* Writeback must be complete */
454 	BUG_ON(folio_test_writeback(src));
455 	folio_get(dst);
456 
457 	rc = folio_migrate_mapping(mapping, dst, src, 1);
458 	if (rc != MIGRATEPAGE_SUCCESS) {
459 		folio_put(dst);
460 		goto out_unlock;
461 	}
462 
463 	/* Take completion_lock to prevent other writes to the ring buffer
464 	 * while the old folio is copied to the new.  This prevents new
465 	 * events from being lost.
466 	 */
467 	spin_lock_irqsave(&ctx->completion_lock, flags);
468 	folio_migrate_copy(dst, src);
469 	BUG_ON(ctx->ring_folios[idx] != src);
470 	ctx->ring_folios[idx] = dst;
471 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
472 
473 	/* The old folio is no longer accessible. */
474 	folio_put(src);
475 
476 out_unlock:
477 	mutex_unlock(&ctx->ring_lock);
478 out:
479 	spin_unlock(&mapping->i_private_lock);
480 	return rc;
481 }
482 #else
483 #define aio_migrate_folio NULL
484 #endif
485 
486 static const struct address_space_operations aio_ctx_aops = {
487 	.dirty_folio	= noop_dirty_folio,
488 	.migrate_folio	= aio_migrate_folio,
489 };
490 
491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
492 {
493 	struct aio_ring *ring;
494 	struct mm_struct *mm = current->mm;
495 	unsigned long size, unused;
496 	int nr_pages;
497 	int i;
498 	struct file *file;
499 
500 	/* Compensate for the ring buffer's head/tail overlap entry */
501 	nr_events += 2;	/* 1 is required, 2 for good luck */
502 
503 	size = sizeof(struct aio_ring);
504 	size += sizeof(struct io_event) * nr_events;
505 
506 	nr_pages = PFN_UP(size);
507 	if (nr_pages < 0)
508 		return -EINVAL;
509 
510 	file = aio_private_file(ctx, nr_pages);
511 	if (IS_ERR(file)) {
512 		ctx->aio_ring_file = NULL;
513 		return -ENOMEM;
514 	}
515 
516 	ctx->aio_ring_file = file;
517 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 			/ sizeof(struct io_event);
519 
520 	ctx->ring_folios = ctx->internal_folios;
521 	if (nr_pages > AIO_RING_PAGES) {
522 		ctx->ring_folios = kcalloc(nr_pages, sizeof(struct folio *),
523 					   GFP_KERNEL);
524 		if (!ctx->ring_folios) {
525 			put_aio_ring_file(ctx);
526 			return -ENOMEM;
527 		}
528 	}
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		struct folio *folio;
532 
533 		folio = __filemap_get_folio(file->f_mapping, i,
534 					    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
535 					    GFP_USER | __GFP_ZERO);
536 		if (IS_ERR(folio))
537 			break;
538 
539 		pr_debug("pid(%d) [%d] folio->count=%d\n", current->pid, i,
540 			 folio_ref_count(folio));
541 		folio_end_read(folio, true);
542 
543 		ctx->ring_folios[i] = folio;
544 	}
545 	ctx->nr_pages = i;
546 
547 	if (unlikely(i != nr_pages)) {
548 		aio_free_ring(ctx);
549 		return -ENOMEM;
550 	}
551 
552 	ctx->mmap_size = nr_pages * PAGE_SIZE;
553 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
554 
555 	if (mmap_write_lock_killable(mm)) {
556 		ctx->mmap_size = 0;
557 		aio_free_ring(ctx);
558 		return -EINTR;
559 	}
560 
561 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
562 				 PROT_READ | PROT_WRITE,
563 				 MAP_SHARED, 0, 0, &unused, NULL);
564 	mmap_write_unlock(mm);
565 	if (IS_ERR((void *)ctx->mmap_base)) {
566 		ctx->mmap_size = 0;
567 		aio_free_ring(ctx);
568 		return -ENOMEM;
569 	}
570 
571 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
572 
573 	ctx->user_id = ctx->mmap_base;
574 	ctx->nr_events = nr_events; /* trusted copy */
575 
576 	ring = folio_address(ctx->ring_folios[0]);
577 	ring->nr = nr_events;	/* user copy */
578 	ring->id = ~0U;
579 	ring->head = ring->tail = 0;
580 	ring->magic = AIO_RING_MAGIC;
581 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
582 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
583 	ring->header_length = sizeof(struct aio_ring);
584 	flush_dcache_folio(ctx->ring_folios[0]);
585 
586 	return 0;
587 }
588 
589 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
590 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
591 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
592 
593 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
594 {
595 	struct aio_kiocb *req;
596 	struct kioctx *ctx;
597 	unsigned long flags;
598 
599 	/*
600 	 * kiocb didn't come from aio or is neither a read nor a write, hence
601 	 * ignore it.
602 	 */
603 	if (!(iocb->ki_flags & IOCB_AIO_RW))
604 		return;
605 
606 	req = container_of(iocb, struct aio_kiocb, rw);
607 
608 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
609 		return;
610 
611 	ctx = req->ki_ctx;
612 
613 	spin_lock_irqsave(&ctx->ctx_lock, flags);
614 	list_add_tail(&req->ki_list, &ctx->active_reqs);
615 	req->ki_cancel = cancel;
616 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
617 }
618 EXPORT_SYMBOL(kiocb_set_cancel_fn);
619 
620 /*
621  * free_ioctx() should be RCU delayed to synchronize against the RCU
622  * protected lookup_ioctx() and also needs process context to call
623  * aio_free_ring().  Use rcu_work.
624  */
625 static void free_ioctx(struct work_struct *work)
626 {
627 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
628 					  free_rwork);
629 	pr_debug("freeing %p\n", ctx);
630 
631 	aio_free_ring(ctx);
632 	free_percpu(ctx->cpu);
633 	percpu_ref_exit(&ctx->reqs);
634 	percpu_ref_exit(&ctx->users);
635 	kmem_cache_free(kioctx_cachep, ctx);
636 }
637 
638 static void free_ioctx_reqs(struct percpu_ref *ref)
639 {
640 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
641 
642 	/* At this point we know that there are no any in-flight requests */
643 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
644 		complete(&ctx->rq_wait->comp);
645 
646 	/* Synchronize against RCU protected table->table[] dereferences */
647 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
648 	queue_rcu_work(system_wq, &ctx->free_rwork);
649 }
650 
651 /*
652  * When this function runs, the kioctx has been removed from the "hash table"
653  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
654  * now it's safe to cancel any that need to be.
655  */
656 static void free_ioctx_users(struct percpu_ref *ref)
657 {
658 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
659 	struct aio_kiocb *req;
660 
661 	spin_lock_irq(&ctx->ctx_lock);
662 
663 	while (!list_empty(&ctx->active_reqs)) {
664 		req = list_first_entry(&ctx->active_reqs,
665 				       struct aio_kiocb, ki_list);
666 		req->ki_cancel(&req->rw);
667 		list_del_init(&req->ki_list);
668 	}
669 
670 	spin_unlock_irq(&ctx->ctx_lock);
671 
672 	percpu_ref_kill(&ctx->reqs);
673 	percpu_ref_put(&ctx->reqs);
674 }
675 
676 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
677 {
678 	unsigned i, new_nr;
679 	struct kioctx_table *table, *old;
680 	struct aio_ring *ring;
681 
682 	spin_lock(&mm->ioctx_lock);
683 	table = rcu_dereference_raw(mm->ioctx_table);
684 
685 	while (1) {
686 		if (table)
687 			for (i = 0; i < table->nr; i++)
688 				if (!rcu_access_pointer(table->table[i])) {
689 					ctx->id = i;
690 					rcu_assign_pointer(table->table[i], ctx);
691 					spin_unlock(&mm->ioctx_lock);
692 
693 					/* While kioctx setup is in progress,
694 					 * we are protected from page migration
695 					 * changes ring_folios by ->ring_lock.
696 					 */
697 					ring = folio_address(ctx->ring_folios[0]);
698 					ring->id = ctx->id;
699 					return 0;
700 				}
701 
702 		new_nr = (table ? table->nr : 1) * 4;
703 		spin_unlock(&mm->ioctx_lock);
704 
705 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
706 		if (!table)
707 			return -ENOMEM;
708 
709 		table->nr = new_nr;
710 
711 		spin_lock(&mm->ioctx_lock);
712 		old = rcu_dereference_raw(mm->ioctx_table);
713 
714 		if (!old) {
715 			rcu_assign_pointer(mm->ioctx_table, table);
716 		} else if (table->nr > old->nr) {
717 			memcpy(table->table, old->table,
718 			       old->nr * sizeof(struct kioctx *));
719 
720 			rcu_assign_pointer(mm->ioctx_table, table);
721 			kfree_rcu(old, rcu);
722 		} else {
723 			kfree(table);
724 			table = old;
725 		}
726 	}
727 }
728 
729 static void aio_nr_sub(unsigned nr)
730 {
731 	spin_lock(&aio_nr_lock);
732 	if (WARN_ON(aio_nr - nr > aio_nr))
733 		aio_nr = 0;
734 	else
735 		aio_nr -= nr;
736 	spin_unlock(&aio_nr_lock);
737 }
738 
739 /* ioctx_alloc
740  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
741  */
742 static struct kioctx *ioctx_alloc(unsigned nr_events)
743 {
744 	struct mm_struct *mm = current->mm;
745 	struct kioctx *ctx;
746 	int err = -ENOMEM;
747 
748 	/*
749 	 * Store the original nr_events -- what userspace passed to io_setup(),
750 	 * for counting against the global limit -- before it changes.
751 	 */
752 	unsigned int max_reqs = nr_events;
753 
754 	/*
755 	 * We keep track of the number of available ringbuffer slots, to prevent
756 	 * overflow (reqs_available), and we also use percpu counters for this.
757 	 *
758 	 * So since up to half the slots might be on other cpu's percpu counters
759 	 * and unavailable, double nr_events so userspace sees what they
760 	 * expected: additionally, we move req_batch slots to/from percpu
761 	 * counters at a time, so make sure that isn't 0:
762 	 */
763 	nr_events = max(nr_events, num_possible_cpus() * 4);
764 	nr_events *= 2;
765 
766 	/* Prevent overflows */
767 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
768 		pr_debug("ENOMEM: nr_events too high\n");
769 		return ERR_PTR(-EINVAL);
770 	}
771 
772 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
773 		return ERR_PTR(-EAGAIN);
774 
775 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
776 	if (!ctx)
777 		return ERR_PTR(-ENOMEM);
778 
779 	ctx->max_reqs = max_reqs;
780 
781 	spin_lock_init(&ctx->ctx_lock);
782 	spin_lock_init(&ctx->completion_lock);
783 	mutex_init(&ctx->ring_lock);
784 	/* Protect against page migration throughout kiotx setup by keeping
785 	 * the ring_lock mutex held until setup is complete. */
786 	mutex_lock(&ctx->ring_lock);
787 	init_waitqueue_head(&ctx->wait);
788 
789 	INIT_LIST_HEAD(&ctx->active_reqs);
790 
791 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
792 		goto err;
793 
794 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
795 		goto err;
796 
797 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
798 	if (!ctx->cpu)
799 		goto err;
800 
801 	err = aio_setup_ring(ctx, nr_events);
802 	if (err < 0)
803 		goto err;
804 
805 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
806 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
807 	if (ctx->req_batch < 1)
808 		ctx->req_batch = 1;
809 
810 	/* limit the number of system wide aios */
811 	spin_lock(&aio_nr_lock);
812 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
813 	    aio_nr + ctx->max_reqs < aio_nr) {
814 		spin_unlock(&aio_nr_lock);
815 		err = -EAGAIN;
816 		goto err_ctx;
817 	}
818 	aio_nr += ctx->max_reqs;
819 	spin_unlock(&aio_nr_lock);
820 
821 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
822 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
823 
824 	err = ioctx_add_table(ctx, mm);
825 	if (err)
826 		goto err_cleanup;
827 
828 	/* Release the ring_lock mutex now that all setup is complete. */
829 	mutex_unlock(&ctx->ring_lock);
830 
831 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
832 		 ctx, ctx->user_id, mm, ctx->nr_events);
833 	return ctx;
834 
835 err_cleanup:
836 	aio_nr_sub(ctx->max_reqs);
837 err_ctx:
838 	atomic_set(&ctx->dead, 1);
839 	if (ctx->mmap_size)
840 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
841 	aio_free_ring(ctx);
842 err:
843 	mutex_unlock(&ctx->ring_lock);
844 	free_percpu(ctx->cpu);
845 	percpu_ref_exit(&ctx->reqs);
846 	percpu_ref_exit(&ctx->users);
847 	kmem_cache_free(kioctx_cachep, ctx);
848 	pr_debug("error allocating ioctx %d\n", err);
849 	return ERR_PTR(err);
850 }
851 
852 /* kill_ioctx
853  *	Cancels all outstanding aio requests on an aio context.  Used
854  *	when the processes owning a context have all exited to encourage
855  *	the rapid destruction of the kioctx.
856  */
857 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
858 		      struct ctx_rq_wait *wait)
859 {
860 	struct kioctx_table *table;
861 
862 	spin_lock(&mm->ioctx_lock);
863 	if (atomic_xchg(&ctx->dead, 1)) {
864 		spin_unlock(&mm->ioctx_lock);
865 		return -EINVAL;
866 	}
867 
868 	table = rcu_dereference_raw(mm->ioctx_table);
869 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
870 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
871 	spin_unlock(&mm->ioctx_lock);
872 
873 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
874 	wake_up_all(&ctx->wait);
875 
876 	/*
877 	 * It'd be more correct to do this in free_ioctx(), after all
878 	 * the outstanding kiocbs have finished - but by then io_destroy
879 	 * has already returned, so io_setup() could potentially return
880 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
881 	 *  could tell).
882 	 */
883 	aio_nr_sub(ctx->max_reqs);
884 
885 	if (ctx->mmap_size)
886 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
887 
888 	ctx->rq_wait = wait;
889 	percpu_ref_kill(&ctx->users);
890 	return 0;
891 }
892 
893 /*
894  * exit_aio: called when the last user of mm goes away.  At this point, there is
895  * no way for any new requests to be submited or any of the io_* syscalls to be
896  * called on the context.
897  *
898  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
899  * them.
900  */
901 void exit_aio(struct mm_struct *mm)
902 {
903 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
904 	struct ctx_rq_wait wait;
905 	int i, skipped;
906 
907 	if (!table)
908 		return;
909 
910 	atomic_set(&wait.count, table->nr);
911 	init_completion(&wait.comp);
912 
913 	skipped = 0;
914 	for (i = 0; i < table->nr; ++i) {
915 		struct kioctx *ctx =
916 			rcu_dereference_protected(table->table[i], true);
917 
918 		if (!ctx) {
919 			skipped++;
920 			continue;
921 		}
922 
923 		/*
924 		 * We don't need to bother with munmap() here - exit_mmap(mm)
925 		 * is coming and it'll unmap everything. And we simply can't,
926 		 * this is not necessarily our ->mm.
927 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
928 		 * that it needs to unmap the area, just set it to 0.
929 		 */
930 		ctx->mmap_size = 0;
931 		kill_ioctx(mm, ctx, &wait);
932 	}
933 
934 	if (!atomic_sub_and_test(skipped, &wait.count)) {
935 		/* Wait until all IO for the context are done. */
936 		wait_for_completion(&wait.comp);
937 	}
938 
939 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
940 	kfree(table);
941 }
942 
943 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
944 {
945 	struct kioctx_cpu *kcpu;
946 	unsigned long flags;
947 
948 	local_irq_save(flags);
949 	kcpu = this_cpu_ptr(ctx->cpu);
950 	kcpu->reqs_available += nr;
951 
952 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
953 		kcpu->reqs_available -= ctx->req_batch;
954 		atomic_add(ctx->req_batch, &ctx->reqs_available);
955 	}
956 
957 	local_irq_restore(flags);
958 }
959 
960 static bool __get_reqs_available(struct kioctx *ctx)
961 {
962 	struct kioctx_cpu *kcpu;
963 	bool ret = false;
964 	unsigned long flags;
965 
966 	local_irq_save(flags);
967 	kcpu = this_cpu_ptr(ctx->cpu);
968 	if (!kcpu->reqs_available) {
969 		int avail = atomic_read(&ctx->reqs_available);
970 
971 		do {
972 			if (avail < ctx->req_batch)
973 				goto out;
974 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
975 					     &avail, avail - ctx->req_batch));
976 
977 		kcpu->reqs_available += ctx->req_batch;
978 	}
979 
980 	ret = true;
981 	kcpu->reqs_available--;
982 out:
983 	local_irq_restore(flags);
984 	return ret;
985 }
986 
987 /* refill_reqs_available
988  *	Updates the reqs_available reference counts used for tracking the
989  *	number of free slots in the completion ring.  This can be called
990  *	from aio_complete() (to optimistically update reqs_available) or
991  *	from aio_get_req() (the we're out of events case).  It must be
992  *	called holding ctx->completion_lock.
993  */
994 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
995                                   unsigned tail)
996 {
997 	unsigned events_in_ring, completed;
998 
999 	/* Clamp head since userland can write to it. */
1000 	head %= ctx->nr_events;
1001 	if (head <= tail)
1002 		events_in_ring = tail - head;
1003 	else
1004 		events_in_ring = ctx->nr_events - (head - tail);
1005 
1006 	completed = ctx->completed_events;
1007 	if (events_in_ring < completed)
1008 		completed -= events_in_ring;
1009 	else
1010 		completed = 0;
1011 
1012 	if (!completed)
1013 		return;
1014 
1015 	ctx->completed_events -= completed;
1016 	put_reqs_available(ctx, completed);
1017 }
1018 
1019 /* user_refill_reqs_available
1020  *	Called to refill reqs_available when aio_get_req() encounters an
1021  *	out of space in the completion ring.
1022  */
1023 static void user_refill_reqs_available(struct kioctx *ctx)
1024 {
1025 	spin_lock_irq(&ctx->completion_lock);
1026 	if (ctx->completed_events) {
1027 		struct aio_ring *ring;
1028 		unsigned head;
1029 
1030 		/* Access of ring->head may race with aio_read_events_ring()
1031 		 * here, but that's okay since whether we read the old version
1032 		 * or the new version, and either will be valid.  The important
1033 		 * part is that head cannot pass tail since we prevent
1034 		 * aio_complete() from updating tail by holding
1035 		 * ctx->completion_lock.  Even if head is invalid, the check
1036 		 * against ctx->completed_events below will make sure we do the
1037 		 * safe/right thing.
1038 		 */
1039 		ring = folio_address(ctx->ring_folios[0]);
1040 		head = ring->head;
1041 
1042 		refill_reqs_available(ctx, head, ctx->tail);
1043 	}
1044 
1045 	spin_unlock_irq(&ctx->completion_lock);
1046 }
1047 
1048 static bool get_reqs_available(struct kioctx *ctx)
1049 {
1050 	if (__get_reqs_available(ctx))
1051 		return true;
1052 	user_refill_reqs_available(ctx);
1053 	return __get_reqs_available(ctx);
1054 }
1055 
1056 /* aio_get_req
1057  *	Allocate a slot for an aio request.
1058  * Returns NULL if no requests are free.
1059  *
1060  * The refcount is initialized to 2 - one for the async op completion,
1061  * one for the synchronous code that does this.
1062  */
1063 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1064 {
1065 	struct aio_kiocb *req;
1066 
1067 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1068 	if (unlikely(!req))
1069 		return NULL;
1070 
1071 	if (unlikely(!get_reqs_available(ctx))) {
1072 		kmem_cache_free(kiocb_cachep, req);
1073 		return NULL;
1074 	}
1075 
1076 	percpu_ref_get(&ctx->reqs);
1077 	req->ki_ctx = ctx;
1078 	INIT_LIST_HEAD(&req->ki_list);
1079 	refcount_set(&req->ki_refcnt, 2);
1080 	req->ki_eventfd = NULL;
1081 	return req;
1082 }
1083 
1084 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1085 {
1086 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1087 	struct mm_struct *mm = current->mm;
1088 	struct kioctx *ctx, *ret = NULL;
1089 	struct kioctx_table *table;
1090 	unsigned id;
1091 
1092 	if (get_user(id, &ring->id))
1093 		return NULL;
1094 
1095 	rcu_read_lock();
1096 	table = rcu_dereference(mm->ioctx_table);
1097 
1098 	if (!table || id >= table->nr)
1099 		goto out;
1100 
1101 	id = array_index_nospec(id, table->nr);
1102 	ctx = rcu_dereference(table->table[id]);
1103 	if (ctx && ctx->user_id == ctx_id) {
1104 		if (percpu_ref_tryget_live(&ctx->users))
1105 			ret = ctx;
1106 	}
1107 out:
1108 	rcu_read_unlock();
1109 	return ret;
1110 }
1111 
1112 static inline void iocb_destroy(struct aio_kiocb *iocb)
1113 {
1114 	if (iocb->ki_eventfd)
1115 		eventfd_ctx_put(iocb->ki_eventfd);
1116 	if (iocb->ki_filp)
1117 		fput(iocb->ki_filp);
1118 	percpu_ref_put(&iocb->ki_ctx->reqs);
1119 	kmem_cache_free(kiocb_cachep, iocb);
1120 }
1121 
1122 struct aio_waiter {
1123 	struct wait_queue_entry	w;
1124 	size_t			min_nr;
1125 };
1126 
1127 /* aio_complete
1128  *	Called when the io request on the given iocb is complete.
1129  */
1130 static void aio_complete(struct aio_kiocb *iocb)
1131 {
1132 	struct kioctx	*ctx = iocb->ki_ctx;
1133 	struct aio_ring	*ring;
1134 	struct io_event	*ev_page, *event;
1135 	unsigned tail, pos, head, avail;
1136 	unsigned long	flags;
1137 
1138 	/*
1139 	 * Add a completion event to the ring buffer. Must be done holding
1140 	 * ctx->completion_lock to prevent other code from messing with the tail
1141 	 * pointer since we might be called from irq context.
1142 	 */
1143 	spin_lock_irqsave(&ctx->completion_lock, flags);
1144 
1145 	tail = ctx->tail;
1146 	pos = tail + AIO_EVENTS_OFFSET;
1147 
1148 	if (++tail >= ctx->nr_events)
1149 		tail = 0;
1150 
1151 	ev_page = folio_address(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1152 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1153 
1154 	*event = iocb->ki_res;
1155 
1156 	flush_dcache_folio(ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE]);
1157 
1158 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1159 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1160 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1161 
1162 	/* after flagging the request as done, we
1163 	 * must never even look at it again
1164 	 */
1165 	smp_wmb();	/* make event visible before updating tail */
1166 
1167 	ctx->tail = tail;
1168 
1169 	ring = folio_address(ctx->ring_folios[0]);
1170 	head = ring->head;
1171 	ring->tail = tail;
1172 	flush_dcache_folio(ctx->ring_folios[0]);
1173 
1174 	ctx->completed_events++;
1175 	if (ctx->completed_events > 1)
1176 		refill_reqs_available(ctx, head, tail);
1177 
1178 	avail = tail > head
1179 		? tail - head
1180 		: tail + ctx->nr_events - head;
1181 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1182 
1183 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1184 
1185 	/*
1186 	 * Check if the user asked us to deliver the result through an
1187 	 * eventfd. The eventfd_signal() function is safe to be called
1188 	 * from IRQ context.
1189 	 */
1190 	if (iocb->ki_eventfd)
1191 		eventfd_signal(iocb->ki_eventfd);
1192 
1193 	/*
1194 	 * We have to order our ring_info tail store above and test
1195 	 * of the wait list below outside the wait lock.  This is
1196 	 * like in wake_up_bit() where clearing a bit has to be
1197 	 * ordered with the unlocked test.
1198 	 */
1199 	smp_mb();
1200 
1201 	if (waitqueue_active(&ctx->wait)) {
1202 		struct aio_waiter *curr, *next;
1203 		unsigned long flags;
1204 
1205 		spin_lock_irqsave(&ctx->wait.lock, flags);
1206 		list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1207 			if (avail >= curr->min_nr) {
1208 				wake_up_process(curr->w.private);
1209 				list_del_init_careful(&curr->w.entry);
1210 			}
1211 		spin_unlock_irqrestore(&ctx->wait.lock, flags);
1212 	}
1213 }
1214 
1215 static inline void iocb_put(struct aio_kiocb *iocb)
1216 {
1217 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1218 		aio_complete(iocb);
1219 		iocb_destroy(iocb);
1220 	}
1221 }
1222 
1223 /* aio_read_events_ring
1224  *	Pull an event off of the ioctx's event ring.  Returns the number of
1225  *	events fetched
1226  */
1227 static long aio_read_events_ring(struct kioctx *ctx,
1228 				 struct io_event __user *event, long nr)
1229 {
1230 	struct aio_ring *ring;
1231 	unsigned head, tail, pos;
1232 	long ret = 0;
1233 	int copy_ret;
1234 
1235 	/*
1236 	 * The mutex can block and wake us up and that will cause
1237 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1238 	 * and repeat. This should be rare enough that it doesn't cause
1239 	 * peformance issues. See the comment in read_events() for more detail.
1240 	 */
1241 	sched_annotate_sleep();
1242 	mutex_lock(&ctx->ring_lock);
1243 
1244 	/* Access to ->ring_folios here is protected by ctx->ring_lock. */
1245 	ring = folio_address(ctx->ring_folios[0]);
1246 	head = ring->head;
1247 	tail = ring->tail;
1248 
1249 	/*
1250 	 * Ensure that once we've read the current tail pointer, that
1251 	 * we also see the events that were stored up to the tail.
1252 	 */
1253 	smp_rmb();
1254 
1255 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1256 
1257 	if (head == tail)
1258 		goto out;
1259 
1260 	head %= ctx->nr_events;
1261 	tail %= ctx->nr_events;
1262 
1263 	while (ret < nr) {
1264 		long avail;
1265 		struct io_event *ev;
1266 		struct folio *folio;
1267 
1268 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1269 		if (head == tail)
1270 			break;
1271 
1272 		pos = head + AIO_EVENTS_OFFSET;
1273 		folio = ctx->ring_folios[pos / AIO_EVENTS_PER_PAGE];
1274 		pos %= AIO_EVENTS_PER_PAGE;
1275 
1276 		avail = min(avail, nr - ret);
1277 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1278 
1279 		ev = folio_address(folio);
1280 		copy_ret = copy_to_user(event + ret, ev + pos,
1281 					sizeof(*ev) * avail);
1282 
1283 		if (unlikely(copy_ret)) {
1284 			ret = -EFAULT;
1285 			goto out;
1286 		}
1287 
1288 		ret += avail;
1289 		head += avail;
1290 		head %= ctx->nr_events;
1291 	}
1292 
1293 	ring = folio_address(ctx->ring_folios[0]);
1294 	ring->head = head;
1295 	flush_dcache_folio(ctx->ring_folios[0]);
1296 
1297 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1298 out:
1299 	mutex_unlock(&ctx->ring_lock);
1300 
1301 	return ret;
1302 }
1303 
1304 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1305 			    struct io_event __user *event, long *i)
1306 {
1307 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1308 
1309 	if (ret > 0)
1310 		*i += ret;
1311 
1312 	if (unlikely(atomic_read(&ctx->dead)))
1313 		ret = -EINVAL;
1314 
1315 	if (!*i)
1316 		*i = ret;
1317 
1318 	return ret < 0 || *i >= min_nr;
1319 }
1320 
1321 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1322 			struct io_event __user *event,
1323 			ktime_t until)
1324 {
1325 	struct hrtimer_sleeper	t;
1326 	struct aio_waiter	w;
1327 	long ret = 0, ret2 = 0;
1328 
1329 	/*
1330 	 * Note that aio_read_events() is being called as the conditional - i.e.
1331 	 * we're calling it after prepare_to_wait() has set task state to
1332 	 * TASK_INTERRUPTIBLE.
1333 	 *
1334 	 * But aio_read_events() can block, and if it blocks it's going to flip
1335 	 * the task state back to TASK_RUNNING.
1336 	 *
1337 	 * This should be ok, provided it doesn't flip the state back to
1338 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1339 	 * will only happen if the mutex_lock() call blocks, and we then find
1340 	 * the ringbuffer empty. So in practice we should be ok, but it's
1341 	 * something to be aware of when touching this code.
1342 	 */
1343 	aio_read_events(ctx, min_nr, nr, event, &ret);
1344 	if (until == 0 || ret < 0 || ret >= min_nr)
1345 		return ret;
1346 
1347 	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1348 	if (until != KTIME_MAX) {
1349 		hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1350 		hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1351 	}
1352 
1353 	init_wait(&w.w);
1354 
1355 	while (1) {
1356 		unsigned long nr_got = ret;
1357 
1358 		w.min_nr = min_nr - ret;
1359 
1360 		ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1361 		if (!ret2 && !t.task)
1362 			ret2 = -ETIME;
1363 
1364 		if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1365 			break;
1366 
1367 		if (nr_got == ret)
1368 			schedule();
1369 	}
1370 
1371 	finish_wait(&ctx->wait, &w.w);
1372 	hrtimer_cancel(&t.timer);
1373 	destroy_hrtimer_on_stack(&t.timer);
1374 
1375 	return ret;
1376 }
1377 
1378 /* sys_io_setup:
1379  *	Create an aio_context capable of receiving at least nr_events.
1380  *	ctxp must not point to an aio_context that already exists, and
1381  *	must be initialized to 0 prior to the call.  On successful
1382  *	creation of the aio_context, *ctxp is filled in with the resulting
1383  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1384  *	if the specified nr_events exceeds internal limits.  May fail
1385  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1386  *	of available events.  May fail with -ENOMEM if insufficient kernel
1387  *	resources are available.  May fail with -EFAULT if an invalid
1388  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1389  *	implemented.
1390  */
1391 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1392 {
1393 	struct kioctx *ioctx = NULL;
1394 	unsigned long ctx;
1395 	long ret;
1396 
1397 	ret = get_user(ctx, ctxp);
1398 	if (unlikely(ret))
1399 		goto out;
1400 
1401 	ret = -EINVAL;
1402 	if (unlikely(ctx || nr_events == 0)) {
1403 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1404 		         ctx, nr_events);
1405 		goto out;
1406 	}
1407 
1408 	ioctx = ioctx_alloc(nr_events);
1409 	ret = PTR_ERR(ioctx);
1410 	if (!IS_ERR(ioctx)) {
1411 		ret = put_user(ioctx->user_id, ctxp);
1412 		if (ret)
1413 			kill_ioctx(current->mm, ioctx, NULL);
1414 		percpu_ref_put(&ioctx->users);
1415 	}
1416 
1417 out:
1418 	return ret;
1419 }
1420 
1421 #ifdef CONFIG_COMPAT
1422 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1423 {
1424 	struct kioctx *ioctx = NULL;
1425 	unsigned long ctx;
1426 	long ret;
1427 
1428 	ret = get_user(ctx, ctx32p);
1429 	if (unlikely(ret))
1430 		goto out;
1431 
1432 	ret = -EINVAL;
1433 	if (unlikely(ctx || nr_events == 0)) {
1434 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1435 		         ctx, nr_events);
1436 		goto out;
1437 	}
1438 
1439 	ioctx = ioctx_alloc(nr_events);
1440 	ret = PTR_ERR(ioctx);
1441 	if (!IS_ERR(ioctx)) {
1442 		/* truncating is ok because it's a user address */
1443 		ret = put_user((u32)ioctx->user_id, ctx32p);
1444 		if (ret)
1445 			kill_ioctx(current->mm, ioctx, NULL);
1446 		percpu_ref_put(&ioctx->users);
1447 	}
1448 
1449 out:
1450 	return ret;
1451 }
1452 #endif
1453 
1454 /* sys_io_destroy:
1455  *	Destroy the aio_context specified.  May cancel any outstanding
1456  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1457  *	implemented.  May fail with -EINVAL if the context pointed to
1458  *	is invalid.
1459  */
1460 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1461 {
1462 	struct kioctx *ioctx = lookup_ioctx(ctx);
1463 	if (likely(NULL != ioctx)) {
1464 		struct ctx_rq_wait wait;
1465 		int ret;
1466 
1467 		init_completion(&wait.comp);
1468 		atomic_set(&wait.count, 1);
1469 
1470 		/* Pass requests_done to kill_ioctx() where it can be set
1471 		 * in a thread-safe way. If we try to set it here then we have
1472 		 * a race condition if two io_destroy() called simultaneously.
1473 		 */
1474 		ret = kill_ioctx(current->mm, ioctx, &wait);
1475 		percpu_ref_put(&ioctx->users);
1476 
1477 		/* Wait until all IO for the context are done. Otherwise kernel
1478 		 * keep using user-space buffers even if user thinks the context
1479 		 * is destroyed.
1480 		 */
1481 		if (!ret)
1482 			wait_for_completion(&wait.comp);
1483 
1484 		return ret;
1485 	}
1486 	pr_debug("EINVAL: invalid context id\n");
1487 	return -EINVAL;
1488 }
1489 
1490 static void aio_remove_iocb(struct aio_kiocb *iocb)
1491 {
1492 	struct kioctx *ctx = iocb->ki_ctx;
1493 	unsigned long flags;
1494 
1495 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1496 	list_del(&iocb->ki_list);
1497 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1498 }
1499 
1500 static void aio_complete_rw(struct kiocb *kiocb, long res)
1501 {
1502 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1503 
1504 	if (!list_empty_careful(&iocb->ki_list))
1505 		aio_remove_iocb(iocb);
1506 
1507 	if (kiocb->ki_flags & IOCB_WRITE) {
1508 		struct inode *inode = file_inode(kiocb->ki_filp);
1509 
1510 		if (S_ISREG(inode->i_mode))
1511 			kiocb_end_write(kiocb);
1512 	}
1513 
1514 	iocb->ki_res.res = res;
1515 	iocb->ki_res.res2 = 0;
1516 	iocb_put(iocb);
1517 }
1518 
1519 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1520 {
1521 	int ret;
1522 
1523 	req->ki_complete = aio_complete_rw;
1524 	req->private = NULL;
1525 	req->ki_pos = iocb->aio_offset;
1526 	req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1527 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1528 		req->ki_flags |= IOCB_EVENTFD;
1529 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1530 		/*
1531 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1532 		 * aio_reqprio is interpreted as an I/O scheduling
1533 		 * class and priority.
1534 		 */
1535 		ret = ioprio_check_cap(iocb->aio_reqprio);
1536 		if (ret) {
1537 			pr_debug("aio ioprio check cap error: %d\n", ret);
1538 			return ret;
1539 		}
1540 
1541 		req->ki_ioprio = iocb->aio_reqprio;
1542 	} else
1543 		req->ki_ioprio = get_current_ioprio();
1544 
1545 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1546 	if (unlikely(ret))
1547 		return ret;
1548 
1549 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1550 	return 0;
1551 }
1552 
1553 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1554 		struct iovec **iovec, bool vectored, bool compat,
1555 		struct iov_iter *iter)
1556 {
1557 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1558 	size_t len = iocb->aio_nbytes;
1559 
1560 	if (!vectored) {
1561 		ssize_t ret = import_ubuf(rw, buf, len, iter);
1562 		*iovec = NULL;
1563 		return ret;
1564 	}
1565 
1566 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1567 }
1568 
1569 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1570 {
1571 	switch (ret) {
1572 	case -EIOCBQUEUED:
1573 		break;
1574 	case -ERESTARTSYS:
1575 	case -ERESTARTNOINTR:
1576 	case -ERESTARTNOHAND:
1577 	case -ERESTART_RESTARTBLOCK:
1578 		/*
1579 		 * There's no easy way to restart the syscall since other AIO's
1580 		 * may be already running. Just fail this IO with EINTR.
1581 		 */
1582 		ret = -EINTR;
1583 		fallthrough;
1584 	default:
1585 		req->ki_complete(req, ret);
1586 	}
1587 }
1588 
1589 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1590 			bool vectored, bool compat)
1591 {
1592 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1593 	struct iov_iter iter;
1594 	struct file *file;
1595 	int ret;
1596 
1597 	ret = aio_prep_rw(req, iocb);
1598 	if (ret)
1599 		return ret;
1600 	file = req->ki_filp;
1601 	if (unlikely(!(file->f_mode & FMODE_READ)))
1602 		return -EBADF;
1603 	if (unlikely(!file->f_op->read_iter))
1604 		return -EINVAL;
1605 
1606 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1607 	if (ret < 0)
1608 		return ret;
1609 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1610 	if (!ret)
1611 		aio_rw_done(req, file->f_op->read_iter(req, &iter));
1612 	kfree(iovec);
1613 	return ret;
1614 }
1615 
1616 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1617 			 bool vectored, bool compat)
1618 {
1619 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1620 	struct iov_iter iter;
1621 	struct file *file;
1622 	int ret;
1623 
1624 	ret = aio_prep_rw(req, iocb);
1625 	if (ret)
1626 		return ret;
1627 	file = req->ki_filp;
1628 
1629 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1630 		return -EBADF;
1631 	if (unlikely(!file->f_op->write_iter))
1632 		return -EINVAL;
1633 
1634 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1635 	if (ret < 0)
1636 		return ret;
1637 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1638 	if (!ret) {
1639 		if (S_ISREG(file_inode(file)->i_mode))
1640 			kiocb_start_write(req);
1641 		req->ki_flags |= IOCB_WRITE;
1642 		aio_rw_done(req, file->f_op->write_iter(req, &iter));
1643 	}
1644 	kfree(iovec);
1645 	return ret;
1646 }
1647 
1648 static void aio_fsync_work(struct work_struct *work)
1649 {
1650 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1651 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1652 
1653 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1654 	revert_creds(old_cred);
1655 	put_cred(iocb->fsync.creds);
1656 	iocb_put(iocb);
1657 }
1658 
1659 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1660 		     bool datasync)
1661 {
1662 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1663 			iocb->aio_rw_flags))
1664 		return -EINVAL;
1665 
1666 	if (unlikely(!req->file->f_op->fsync))
1667 		return -EINVAL;
1668 
1669 	req->creds = prepare_creds();
1670 	if (!req->creds)
1671 		return -ENOMEM;
1672 
1673 	req->datasync = datasync;
1674 	INIT_WORK(&req->work, aio_fsync_work);
1675 	schedule_work(&req->work);
1676 	return 0;
1677 }
1678 
1679 static void aio_poll_put_work(struct work_struct *work)
1680 {
1681 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1682 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1683 
1684 	iocb_put(iocb);
1685 }
1686 
1687 /*
1688  * Safely lock the waitqueue which the request is on, synchronizing with the
1689  * case where the ->poll() provider decides to free its waitqueue early.
1690  *
1691  * Returns true on success, meaning that req->head->lock was locked, req->wait
1692  * is on req->head, and an RCU read lock was taken.  Returns false if the
1693  * request was already removed from its waitqueue (which might no longer exist).
1694  */
1695 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1696 {
1697 	wait_queue_head_t *head;
1698 
1699 	/*
1700 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1701 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1702 	 * lock in the first place can race with the waitqueue being freed.
1703 	 *
1704 	 * We solve this as eventpoll does: by taking advantage of the fact that
1705 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1706 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1707 	 * non-NULL, we can then lock it without the memory being freed out from
1708 	 * under us, then check whether the request is still on the queue.
1709 	 *
1710 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1711 	 * case the caller deletes the entry from the queue, leaving it empty.
1712 	 * In that case, only RCU prevents the queue memory from being freed.
1713 	 */
1714 	rcu_read_lock();
1715 	head = smp_load_acquire(&req->head);
1716 	if (head) {
1717 		spin_lock(&head->lock);
1718 		if (!list_empty(&req->wait.entry))
1719 			return true;
1720 		spin_unlock(&head->lock);
1721 	}
1722 	rcu_read_unlock();
1723 	return false;
1724 }
1725 
1726 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1727 {
1728 	spin_unlock(&req->head->lock);
1729 	rcu_read_unlock();
1730 }
1731 
1732 static void aio_poll_complete_work(struct work_struct *work)
1733 {
1734 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1735 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1736 	struct poll_table_struct pt = { ._key = req->events };
1737 	struct kioctx *ctx = iocb->ki_ctx;
1738 	__poll_t mask = 0;
1739 
1740 	if (!READ_ONCE(req->cancelled))
1741 		mask = vfs_poll(req->file, &pt) & req->events;
1742 
1743 	/*
1744 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1745 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1746 	 * synchronize with them.  In the cancellation case the list_del_init
1747 	 * itself is not actually needed, but harmless so we keep it in to
1748 	 * avoid further branches in the fast path.
1749 	 */
1750 	spin_lock_irq(&ctx->ctx_lock);
1751 	if (poll_iocb_lock_wq(req)) {
1752 		if (!mask && !READ_ONCE(req->cancelled)) {
1753 			/*
1754 			 * The request isn't actually ready to be completed yet.
1755 			 * Reschedule completion if another wakeup came in.
1756 			 */
1757 			if (req->work_need_resched) {
1758 				schedule_work(&req->work);
1759 				req->work_need_resched = false;
1760 			} else {
1761 				req->work_scheduled = false;
1762 			}
1763 			poll_iocb_unlock_wq(req);
1764 			spin_unlock_irq(&ctx->ctx_lock);
1765 			return;
1766 		}
1767 		list_del_init(&req->wait.entry);
1768 		poll_iocb_unlock_wq(req);
1769 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1770 	list_del_init(&iocb->ki_list);
1771 	iocb->ki_res.res = mangle_poll(mask);
1772 	spin_unlock_irq(&ctx->ctx_lock);
1773 
1774 	iocb_put(iocb);
1775 }
1776 
1777 /* assumes we are called with irqs disabled */
1778 static int aio_poll_cancel(struct kiocb *iocb)
1779 {
1780 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1781 	struct poll_iocb *req = &aiocb->poll;
1782 
1783 	if (poll_iocb_lock_wq(req)) {
1784 		WRITE_ONCE(req->cancelled, true);
1785 		if (!req->work_scheduled) {
1786 			schedule_work(&aiocb->poll.work);
1787 			req->work_scheduled = true;
1788 		}
1789 		poll_iocb_unlock_wq(req);
1790 	} /* else, the request was force-cancelled by POLLFREE already */
1791 
1792 	return 0;
1793 }
1794 
1795 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1796 		void *key)
1797 {
1798 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1799 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1800 	__poll_t mask = key_to_poll(key);
1801 	unsigned long flags;
1802 
1803 	/* for instances that support it check for an event match first: */
1804 	if (mask && !(mask & req->events))
1805 		return 0;
1806 
1807 	/*
1808 	 * Complete the request inline if possible.  This requires that three
1809 	 * conditions be met:
1810 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1811 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1812 	 *	the events, so inline completion isn't possible.
1813 	 *   2. The completion work must not have already been scheduled.
1814 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1815 	 *	already hold the waitqueue lock, so this inverts the normal
1816 	 *	locking order.  Use irqsave/irqrestore because not all
1817 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1818 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1819 	 */
1820 	if (mask && !req->work_scheduled &&
1821 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1822 		struct kioctx *ctx = iocb->ki_ctx;
1823 
1824 		list_del_init(&req->wait.entry);
1825 		list_del(&iocb->ki_list);
1826 		iocb->ki_res.res = mangle_poll(mask);
1827 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1828 			iocb = NULL;
1829 			INIT_WORK(&req->work, aio_poll_put_work);
1830 			schedule_work(&req->work);
1831 		}
1832 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1833 		if (iocb)
1834 			iocb_put(iocb);
1835 	} else {
1836 		/*
1837 		 * Schedule the completion work if needed.  If it was already
1838 		 * scheduled, record that another wakeup came in.
1839 		 *
1840 		 * Don't remove the request from the waitqueue here, as it might
1841 		 * not actually be complete yet (we won't know until vfs_poll()
1842 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1843 		 * exception to this; see below.
1844 		 */
1845 		if (req->work_scheduled) {
1846 			req->work_need_resched = true;
1847 		} else {
1848 			schedule_work(&req->work);
1849 			req->work_scheduled = true;
1850 		}
1851 
1852 		/*
1853 		 * If the waitqueue is being freed early but we can't complete
1854 		 * the request inline, we have to tear down the request as best
1855 		 * we can.  That means immediately removing the request from its
1856 		 * waitqueue and preventing all further accesses to the
1857 		 * waitqueue via the request.  We also need to schedule the
1858 		 * completion work (done above).  Also mark the request as
1859 		 * cancelled, to potentially skip an unneeded call to ->poll().
1860 		 */
1861 		if (mask & POLLFREE) {
1862 			WRITE_ONCE(req->cancelled, true);
1863 			list_del_init(&req->wait.entry);
1864 
1865 			/*
1866 			 * Careful: this *must* be the last step, since as soon
1867 			 * as req->head is NULL'ed out, the request can be
1868 			 * completed and freed, since aio_poll_complete_work()
1869 			 * will no longer need to take the waitqueue lock.
1870 			 */
1871 			smp_store_release(&req->head, NULL);
1872 		}
1873 	}
1874 	return 1;
1875 }
1876 
1877 struct aio_poll_table {
1878 	struct poll_table_struct	pt;
1879 	struct aio_kiocb		*iocb;
1880 	bool				queued;
1881 	int				error;
1882 };
1883 
1884 static void
1885 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1886 		struct poll_table_struct *p)
1887 {
1888 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1889 
1890 	/* multiple wait queues per file are not supported */
1891 	if (unlikely(pt->queued)) {
1892 		pt->error = -EINVAL;
1893 		return;
1894 	}
1895 
1896 	pt->queued = true;
1897 	pt->error = 0;
1898 	pt->iocb->poll.head = head;
1899 	add_wait_queue(head, &pt->iocb->poll.wait);
1900 }
1901 
1902 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1903 {
1904 	struct kioctx *ctx = aiocb->ki_ctx;
1905 	struct poll_iocb *req = &aiocb->poll;
1906 	struct aio_poll_table apt;
1907 	bool cancel = false;
1908 	__poll_t mask;
1909 
1910 	/* reject any unknown events outside the normal event mask. */
1911 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1912 		return -EINVAL;
1913 	/* reject fields that are not defined for poll */
1914 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1915 		return -EINVAL;
1916 
1917 	INIT_WORK(&req->work, aio_poll_complete_work);
1918 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1919 
1920 	req->head = NULL;
1921 	req->cancelled = false;
1922 	req->work_scheduled = false;
1923 	req->work_need_resched = false;
1924 
1925 	apt.pt._qproc = aio_poll_queue_proc;
1926 	apt.pt._key = req->events;
1927 	apt.iocb = aiocb;
1928 	apt.queued = false;
1929 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1930 
1931 	/* initialized the list so that we can do list_empty checks */
1932 	INIT_LIST_HEAD(&req->wait.entry);
1933 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1934 
1935 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1936 	spin_lock_irq(&ctx->ctx_lock);
1937 	if (likely(apt.queued)) {
1938 		bool on_queue = poll_iocb_lock_wq(req);
1939 
1940 		if (!on_queue || req->work_scheduled) {
1941 			/*
1942 			 * aio_poll_wake() already either scheduled the async
1943 			 * completion work, or completed the request inline.
1944 			 */
1945 			if (apt.error) /* unsupported case: multiple queues */
1946 				cancel = true;
1947 			apt.error = 0;
1948 			mask = 0;
1949 		}
1950 		if (mask || apt.error) {
1951 			/* Steal to complete synchronously. */
1952 			list_del_init(&req->wait.entry);
1953 		} else if (cancel) {
1954 			/* Cancel if possible (may be too late though). */
1955 			WRITE_ONCE(req->cancelled, true);
1956 		} else if (on_queue) {
1957 			/*
1958 			 * Actually waiting for an event, so add the request to
1959 			 * active_reqs so that it can be cancelled if needed.
1960 			 */
1961 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1962 			aiocb->ki_cancel = aio_poll_cancel;
1963 		}
1964 		if (on_queue)
1965 			poll_iocb_unlock_wq(req);
1966 	}
1967 	if (mask) { /* no async, we'd stolen it */
1968 		aiocb->ki_res.res = mangle_poll(mask);
1969 		apt.error = 0;
1970 	}
1971 	spin_unlock_irq(&ctx->ctx_lock);
1972 	if (mask)
1973 		iocb_put(aiocb);
1974 	return apt.error;
1975 }
1976 
1977 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1978 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1979 			   bool compat)
1980 {
1981 	req->ki_filp = fget(iocb->aio_fildes);
1982 	if (unlikely(!req->ki_filp))
1983 		return -EBADF;
1984 
1985 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1986 		struct eventfd_ctx *eventfd;
1987 		/*
1988 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1989 		 * instance of the file* now. The file descriptor must be
1990 		 * an eventfd() fd, and will be signaled for each completed
1991 		 * event using the eventfd_signal() function.
1992 		 */
1993 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1994 		if (IS_ERR(eventfd))
1995 			return PTR_ERR(eventfd);
1996 
1997 		req->ki_eventfd = eventfd;
1998 	}
1999 
2000 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
2001 		pr_debug("EFAULT: aio_key\n");
2002 		return -EFAULT;
2003 	}
2004 
2005 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
2006 	req->ki_res.data = iocb->aio_data;
2007 	req->ki_res.res = 0;
2008 	req->ki_res.res2 = 0;
2009 
2010 	switch (iocb->aio_lio_opcode) {
2011 	case IOCB_CMD_PREAD:
2012 		return aio_read(&req->rw, iocb, false, compat);
2013 	case IOCB_CMD_PWRITE:
2014 		return aio_write(&req->rw, iocb, false, compat);
2015 	case IOCB_CMD_PREADV:
2016 		return aio_read(&req->rw, iocb, true, compat);
2017 	case IOCB_CMD_PWRITEV:
2018 		return aio_write(&req->rw, iocb, true, compat);
2019 	case IOCB_CMD_FSYNC:
2020 		return aio_fsync(&req->fsync, iocb, false);
2021 	case IOCB_CMD_FDSYNC:
2022 		return aio_fsync(&req->fsync, iocb, true);
2023 	case IOCB_CMD_POLL:
2024 		return aio_poll(req, iocb);
2025 	default:
2026 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2027 		return -EINVAL;
2028 	}
2029 }
2030 
2031 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2032 			 bool compat)
2033 {
2034 	struct aio_kiocb *req;
2035 	struct iocb iocb;
2036 	int err;
2037 
2038 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2039 		return -EFAULT;
2040 
2041 	/* enforce forwards compatibility on users */
2042 	if (unlikely(iocb.aio_reserved2)) {
2043 		pr_debug("EINVAL: reserve field set\n");
2044 		return -EINVAL;
2045 	}
2046 
2047 	/* prevent overflows */
2048 	if (unlikely(
2049 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2050 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2051 	    ((ssize_t)iocb.aio_nbytes < 0)
2052 	   )) {
2053 		pr_debug("EINVAL: overflow check\n");
2054 		return -EINVAL;
2055 	}
2056 
2057 	req = aio_get_req(ctx);
2058 	if (unlikely(!req))
2059 		return -EAGAIN;
2060 
2061 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2062 
2063 	/* Done with the synchronous reference */
2064 	iocb_put(req);
2065 
2066 	/*
2067 	 * If err is 0, we'd either done aio_complete() ourselves or have
2068 	 * arranged for that to be done asynchronously.  Anything non-zero
2069 	 * means that we need to destroy req ourselves.
2070 	 */
2071 	if (unlikely(err)) {
2072 		iocb_destroy(req);
2073 		put_reqs_available(ctx, 1);
2074 	}
2075 	return err;
2076 }
2077 
2078 /* sys_io_submit:
2079  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2080  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2081  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2082  *	*iocbpp[0] is not properly initialized, if the operation specified
2083  *	is invalid for the file descriptor in the iocb.  May fail with
2084  *	-EFAULT if any of the data structures point to invalid data.  May
2085  *	fail with -EBADF if the file descriptor specified in the first
2086  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2087  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2088  *	fail with -ENOSYS if not implemented.
2089  */
2090 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2091 		struct iocb __user * __user *, iocbpp)
2092 {
2093 	struct kioctx *ctx;
2094 	long ret = 0;
2095 	int i = 0;
2096 	struct blk_plug plug;
2097 
2098 	if (unlikely(nr < 0))
2099 		return -EINVAL;
2100 
2101 	ctx = lookup_ioctx(ctx_id);
2102 	if (unlikely(!ctx)) {
2103 		pr_debug("EINVAL: invalid context id\n");
2104 		return -EINVAL;
2105 	}
2106 
2107 	if (nr > ctx->nr_events)
2108 		nr = ctx->nr_events;
2109 
2110 	if (nr > AIO_PLUG_THRESHOLD)
2111 		blk_start_plug(&plug);
2112 	for (i = 0; i < nr; i++) {
2113 		struct iocb __user *user_iocb;
2114 
2115 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2116 			ret = -EFAULT;
2117 			break;
2118 		}
2119 
2120 		ret = io_submit_one(ctx, user_iocb, false);
2121 		if (ret)
2122 			break;
2123 	}
2124 	if (nr > AIO_PLUG_THRESHOLD)
2125 		blk_finish_plug(&plug);
2126 
2127 	percpu_ref_put(&ctx->users);
2128 	return i ? i : ret;
2129 }
2130 
2131 #ifdef CONFIG_COMPAT
2132 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2133 		       int, nr, compat_uptr_t __user *, iocbpp)
2134 {
2135 	struct kioctx *ctx;
2136 	long ret = 0;
2137 	int i = 0;
2138 	struct blk_plug plug;
2139 
2140 	if (unlikely(nr < 0))
2141 		return -EINVAL;
2142 
2143 	ctx = lookup_ioctx(ctx_id);
2144 	if (unlikely(!ctx)) {
2145 		pr_debug("EINVAL: invalid context id\n");
2146 		return -EINVAL;
2147 	}
2148 
2149 	if (nr > ctx->nr_events)
2150 		nr = ctx->nr_events;
2151 
2152 	if (nr > AIO_PLUG_THRESHOLD)
2153 		blk_start_plug(&plug);
2154 	for (i = 0; i < nr; i++) {
2155 		compat_uptr_t user_iocb;
2156 
2157 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2158 			ret = -EFAULT;
2159 			break;
2160 		}
2161 
2162 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2163 		if (ret)
2164 			break;
2165 	}
2166 	if (nr > AIO_PLUG_THRESHOLD)
2167 		blk_finish_plug(&plug);
2168 
2169 	percpu_ref_put(&ctx->users);
2170 	return i ? i : ret;
2171 }
2172 #endif
2173 
2174 /* sys_io_cancel:
2175  *	Attempts to cancel an iocb previously passed to io_submit.  If
2176  *	the operation is successfully cancelled, the resulting event is
2177  *	copied into the memory pointed to by result without being placed
2178  *	into the completion queue and 0 is returned.  May fail with
2179  *	-EFAULT if any of the data structures pointed to are invalid.
2180  *	May fail with -EINVAL if aio_context specified by ctx_id is
2181  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2182  *	cancelled.  Will fail with -ENOSYS if not implemented.
2183  */
2184 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2185 		struct io_event __user *, result)
2186 {
2187 	struct kioctx *ctx;
2188 	struct aio_kiocb *kiocb;
2189 	int ret = -EINVAL;
2190 	u32 key;
2191 	u64 obj = (u64)(unsigned long)iocb;
2192 
2193 	if (unlikely(get_user(key, &iocb->aio_key)))
2194 		return -EFAULT;
2195 	if (unlikely(key != KIOCB_KEY))
2196 		return -EINVAL;
2197 
2198 	ctx = lookup_ioctx(ctx_id);
2199 	if (unlikely(!ctx))
2200 		return -EINVAL;
2201 
2202 	spin_lock_irq(&ctx->ctx_lock);
2203 	/* TODO: use a hash or array, this sucks. */
2204 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2205 		if (kiocb->ki_res.obj == obj) {
2206 			ret = kiocb->ki_cancel(&kiocb->rw);
2207 			list_del_init(&kiocb->ki_list);
2208 			break;
2209 		}
2210 	}
2211 	spin_unlock_irq(&ctx->ctx_lock);
2212 
2213 	if (!ret) {
2214 		/*
2215 		 * The result argument is no longer used - the io_event is
2216 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2217 		 * cancellation is progress:
2218 		 */
2219 		ret = -EINPROGRESS;
2220 	}
2221 
2222 	percpu_ref_put(&ctx->users);
2223 
2224 	return ret;
2225 }
2226 
2227 static long do_io_getevents(aio_context_t ctx_id,
2228 		long min_nr,
2229 		long nr,
2230 		struct io_event __user *events,
2231 		struct timespec64 *ts)
2232 {
2233 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2234 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2235 	long ret = -EINVAL;
2236 
2237 	if (likely(ioctx)) {
2238 		if (likely(min_nr <= nr && min_nr >= 0))
2239 			ret = read_events(ioctx, min_nr, nr, events, until);
2240 		percpu_ref_put(&ioctx->users);
2241 	}
2242 
2243 	return ret;
2244 }
2245 
2246 /* io_getevents:
2247  *	Attempts to read at least min_nr events and up to nr events from
2248  *	the completion queue for the aio_context specified by ctx_id. If
2249  *	it succeeds, the number of read events is returned. May fail with
2250  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2251  *	out of range, if timeout is out of range.  May fail with -EFAULT
2252  *	if any of the memory specified is invalid.  May return 0 or
2253  *	< min_nr if the timeout specified by timeout has elapsed
2254  *	before sufficient events are available, where timeout == NULL
2255  *	specifies an infinite timeout. Note that the timeout pointed to by
2256  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2257  */
2258 #ifdef CONFIG_64BIT
2259 
2260 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2261 		long, min_nr,
2262 		long, nr,
2263 		struct io_event __user *, events,
2264 		struct __kernel_timespec __user *, timeout)
2265 {
2266 	struct timespec64	ts;
2267 	int			ret;
2268 
2269 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2270 		return -EFAULT;
2271 
2272 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2273 	if (!ret && signal_pending(current))
2274 		ret = -EINTR;
2275 	return ret;
2276 }
2277 
2278 #endif
2279 
2280 struct __aio_sigset {
2281 	const sigset_t __user	*sigmask;
2282 	size_t		sigsetsize;
2283 };
2284 
2285 SYSCALL_DEFINE6(io_pgetevents,
2286 		aio_context_t, ctx_id,
2287 		long, min_nr,
2288 		long, nr,
2289 		struct io_event __user *, events,
2290 		struct __kernel_timespec __user *, timeout,
2291 		const struct __aio_sigset __user *, usig)
2292 {
2293 	struct __aio_sigset	ksig = { NULL, };
2294 	struct timespec64	ts;
2295 	bool interrupted;
2296 	int ret;
2297 
2298 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2299 		return -EFAULT;
2300 
2301 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2302 		return -EFAULT;
2303 
2304 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2305 	if (ret)
2306 		return ret;
2307 
2308 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2309 
2310 	interrupted = signal_pending(current);
2311 	restore_saved_sigmask_unless(interrupted);
2312 	if (interrupted && !ret)
2313 		ret = -ERESTARTNOHAND;
2314 
2315 	return ret;
2316 }
2317 
2318 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2319 
2320 SYSCALL_DEFINE6(io_pgetevents_time32,
2321 		aio_context_t, ctx_id,
2322 		long, min_nr,
2323 		long, nr,
2324 		struct io_event __user *, events,
2325 		struct old_timespec32 __user *, timeout,
2326 		const struct __aio_sigset __user *, usig)
2327 {
2328 	struct __aio_sigset	ksig = { NULL, };
2329 	struct timespec64	ts;
2330 	bool interrupted;
2331 	int ret;
2332 
2333 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2334 		return -EFAULT;
2335 
2336 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2337 		return -EFAULT;
2338 
2339 
2340 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2341 	if (ret)
2342 		return ret;
2343 
2344 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2345 
2346 	interrupted = signal_pending(current);
2347 	restore_saved_sigmask_unless(interrupted);
2348 	if (interrupted && !ret)
2349 		ret = -ERESTARTNOHAND;
2350 
2351 	return ret;
2352 }
2353 
2354 #endif
2355 
2356 #if defined(CONFIG_COMPAT_32BIT_TIME)
2357 
2358 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2359 		__s32, min_nr,
2360 		__s32, nr,
2361 		struct io_event __user *, events,
2362 		struct old_timespec32 __user *, timeout)
2363 {
2364 	struct timespec64 t;
2365 	int ret;
2366 
2367 	if (timeout && get_old_timespec32(&t, timeout))
2368 		return -EFAULT;
2369 
2370 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2371 	if (!ret && signal_pending(current))
2372 		ret = -EINTR;
2373 	return ret;
2374 }
2375 
2376 #endif
2377 
2378 #ifdef CONFIG_COMPAT
2379 
2380 struct __compat_aio_sigset {
2381 	compat_uptr_t		sigmask;
2382 	compat_size_t		sigsetsize;
2383 };
2384 
2385 #if defined(CONFIG_COMPAT_32BIT_TIME)
2386 
2387 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2388 		compat_aio_context_t, ctx_id,
2389 		compat_long_t, min_nr,
2390 		compat_long_t, nr,
2391 		struct io_event __user *, events,
2392 		struct old_timespec32 __user *, timeout,
2393 		const struct __compat_aio_sigset __user *, usig)
2394 {
2395 	struct __compat_aio_sigset ksig = { 0, };
2396 	struct timespec64 t;
2397 	bool interrupted;
2398 	int ret;
2399 
2400 	if (timeout && get_old_timespec32(&t, timeout))
2401 		return -EFAULT;
2402 
2403 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2404 		return -EFAULT;
2405 
2406 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2407 	if (ret)
2408 		return ret;
2409 
2410 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2411 
2412 	interrupted = signal_pending(current);
2413 	restore_saved_sigmask_unless(interrupted);
2414 	if (interrupted && !ret)
2415 		ret = -ERESTARTNOHAND;
2416 
2417 	return ret;
2418 }
2419 
2420 #endif
2421 
2422 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2423 		compat_aio_context_t, ctx_id,
2424 		compat_long_t, min_nr,
2425 		compat_long_t, nr,
2426 		struct io_event __user *, events,
2427 		struct __kernel_timespec __user *, timeout,
2428 		const struct __compat_aio_sigset __user *, usig)
2429 {
2430 	struct __compat_aio_sigset ksig = { 0, };
2431 	struct timespec64 t;
2432 	bool interrupted;
2433 	int ret;
2434 
2435 	if (timeout && get_timespec64(&t, timeout))
2436 		return -EFAULT;
2437 
2438 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2439 		return -EFAULT;
2440 
2441 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2442 	if (ret)
2443 		return ret;
2444 
2445 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2446 
2447 	interrupted = signal_pending(current);
2448 	restore_saved_sigmask_unless(interrupted);
2449 	if (interrupted && !ret)
2450 		ret = -ERESTARTNOHAND;
2451 
2452 	return ret;
2453 }
2454 #endif
2455