xref: /linux/fs/aio.c (revision 0d456bad36d42d16022be045c8a53ddbb59ee478)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/export.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/compat.h>
38 
39 #include <asm/kmap_types.h>
40 #include <asm/uaccess.h>
41 
42 #if DEBUG > 1
43 #define dprintk		printk
44 #else
45 #define dprintk(x...)	do { ; } while (0)
46 #endif
47 
48 /*------ sysctl variables----*/
49 static DEFINE_SPINLOCK(aio_nr_lock);
50 unsigned long aio_nr;		/* current system wide number of aio requests */
51 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
52 /*----end sysctl variables---*/
53 
54 static struct kmem_cache	*kiocb_cachep;
55 static struct kmem_cache	*kioctx_cachep;
56 
57 static struct workqueue_struct *aio_wq;
58 
59 static void aio_kick_handler(struct work_struct *);
60 static void aio_queue_work(struct kioctx *);
61 
62 /* aio_setup
63  *	Creates the slab caches used by the aio routines, panic on
64  *	failure as this is done early during the boot sequence.
65  */
66 static int __init aio_setup(void)
67 {
68 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
69 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
70 
71 	aio_wq = alloc_workqueue("aio", 0, 1);	/* used to limit concurrency */
72 	BUG_ON(!aio_wq);
73 
74 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
75 
76 	return 0;
77 }
78 __initcall(aio_setup);
79 
80 static void aio_free_ring(struct kioctx *ctx)
81 {
82 	struct aio_ring_info *info = &ctx->ring_info;
83 	long i;
84 
85 	for (i=0; i<info->nr_pages; i++)
86 		put_page(info->ring_pages[i]);
87 
88 	if (info->mmap_size) {
89 		BUG_ON(ctx->mm != current->mm);
90 		vm_munmap(info->mmap_base, info->mmap_size);
91 	}
92 
93 	if (info->ring_pages && info->ring_pages != info->internal_pages)
94 		kfree(info->ring_pages);
95 	info->ring_pages = NULL;
96 	info->nr = 0;
97 }
98 
99 static int aio_setup_ring(struct kioctx *ctx)
100 {
101 	struct aio_ring *ring;
102 	struct aio_ring_info *info = &ctx->ring_info;
103 	unsigned nr_events = ctx->max_reqs;
104 	unsigned long size;
105 	int nr_pages;
106 
107 	/* Compensate for the ring buffer's head/tail overlap entry */
108 	nr_events += 2;	/* 1 is required, 2 for good luck */
109 
110 	size = sizeof(struct aio_ring);
111 	size += sizeof(struct io_event) * nr_events;
112 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
113 
114 	if (nr_pages < 0)
115 		return -EINVAL;
116 
117 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
118 
119 	info->nr = 0;
120 	info->ring_pages = info->internal_pages;
121 	if (nr_pages > AIO_RING_PAGES) {
122 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
123 		if (!info->ring_pages)
124 			return -ENOMEM;
125 	}
126 
127 	info->mmap_size = nr_pages * PAGE_SIZE;
128 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
129 	down_write(&ctx->mm->mmap_sem);
130 	info->mmap_base = do_mmap_pgoff(NULL, 0, info->mmap_size,
131 					PROT_READ|PROT_WRITE,
132 					MAP_ANONYMOUS|MAP_PRIVATE, 0);
133 	if (IS_ERR((void *)info->mmap_base)) {
134 		up_write(&ctx->mm->mmap_sem);
135 		info->mmap_size = 0;
136 		aio_free_ring(ctx);
137 		return -EAGAIN;
138 	}
139 
140 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
141 	info->nr_pages = get_user_pages(current, ctx->mm,
142 					info->mmap_base, nr_pages,
143 					1, 0, info->ring_pages, NULL);
144 	up_write(&ctx->mm->mmap_sem);
145 
146 	if (unlikely(info->nr_pages != nr_pages)) {
147 		aio_free_ring(ctx);
148 		return -EAGAIN;
149 	}
150 
151 	ctx->user_id = info->mmap_base;
152 
153 	info->nr = nr_events;		/* trusted copy */
154 
155 	ring = kmap_atomic(info->ring_pages[0]);
156 	ring->nr = nr_events;	/* user copy */
157 	ring->id = ctx->user_id;
158 	ring->head = ring->tail = 0;
159 	ring->magic = AIO_RING_MAGIC;
160 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
161 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
162 	ring->header_length = sizeof(struct aio_ring);
163 	kunmap_atomic(ring);
164 
165 	return 0;
166 }
167 
168 
169 /* aio_ring_event: returns a pointer to the event at the given index from
170  * kmap_atomic().  Release the pointer with put_aio_ring_event();
171  */
172 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
173 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
174 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
175 
176 #define aio_ring_event(info, nr) ({					\
177 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
178 	struct io_event *__event;					\
179 	__event = kmap_atomic(						\
180 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE]); \
181 	__event += pos % AIO_EVENTS_PER_PAGE;				\
182 	__event;							\
183 })
184 
185 #define put_aio_ring_event(event) do {		\
186 	struct io_event *__event = (event);	\
187 	(void)__event;				\
188 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK)); \
189 } while(0)
190 
191 static void ctx_rcu_free(struct rcu_head *head)
192 {
193 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
194 	kmem_cache_free(kioctx_cachep, ctx);
195 }
196 
197 /* __put_ioctx
198  *	Called when the last user of an aio context has gone away,
199  *	and the struct needs to be freed.
200  */
201 static void __put_ioctx(struct kioctx *ctx)
202 {
203 	unsigned nr_events = ctx->max_reqs;
204 	BUG_ON(ctx->reqs_active);
205 
206 	cancel_delayed_work_sync(&ctx->wq);
207 	aio_free_ring(ctx);
208 	mmdrop(ctx->mm);
209 	ctx->mm = NULL;
210 	if (nr_events) {
211 		spin_lock(&aio_nr_lock);
212 		BUG_ON(aio_nr - nr_events > aio_nr);
213 		aio_nr -= nr_events;
214 		spin_unlock(&aio_nr_lock);
215 	}
216 	pr_debug("__put_ioctx: freeing %p\n", ctx);
217 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
218 }
219 
220 static inline int try_get_ioctx(struct kioctx *kioctx)
221 {
222 	return atomic_inc_not_zero(&kioctx->users);
223 }
224 
225 static inline void put_ioctx(struct kioctx *kioctx)
226 {
227 	BUG_ON(atomic_read(&kioctx->users) <= 0);
228 	if (unlikely(atomic_dec_and_test(&kioctx->users)))
229 		__put_ioctx(kioctx);
230 }
231 
232 /* ioctx_alloc
233  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
234  */
235 static struct kioctx *ioctx_alloc(unsigned nr_events)
236 {
237 	struct mm_struct *mm;
238 	struct kioctx *ctx;
239 	int err = -ENOMEM;
240 
241 	/* Prevent overflows */
242 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
243 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
244 		pr_debug("ENOMEM: nr_events too high\n");
245 		return ERR_PTR(-EINVAL);
246 	}
247 
248 	if (!nr_events || (unsigned long)nr_events > aio_max_nr)
249 		return ERR_PTR(-EAGAIN);
250 
251 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
252 	if (!ctx)
253 		return ERR_PTR(-ENOMEM);
254 
255 	ctx->max_reqs = nr_events;
256 	mm = ctx->mm = current->mm;
257 	atomic_inc(&mm->mm_count);
258 
259 	atomic_set(&ctx->users, 2);
260 	spin_lock_init(&ctx->ctx_lock);
261 	spin_lock_init(&ctx->ring_info.ring_lock);
262 	init_waitqueue_head(&ctx->wait);
263 
264 	INIT_LIST_HEAD(&ctx->active_reqs);
265 	INIT_LIST_HEAD(&ctx->run_list);
266 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
267 
268 	if (aio_setup_ring(ctx) < 0)
269 		goto out_freectx;
270 
271 	/* limit the number of system wide aios */
272 	spin_lock(&aio_nr_lock);
273 	if (aio_nr + nr_events > aio_max_nr ||
274 	    aio_nr + nr_events < aio_nr) {
275 		spin_unlock(&aio_nr_lock);
276 		goto out_cleanup;
277 	}
278 	aio_nr += ctx->max_reqs;
279 	spin_unlock(&aio_nr_lock);
280 
281 	/* now link into global list. */
282 	spin_lock(&mm->ioctx_lock);
283 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
284 	spin_unlock(&mm->ioctx_lock);
285 
286 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
287 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
288 	return ctx;
289 
290 out_cleanup:
291 	err = -EAGAIN;
292 	aio_free_ring(ctx);
293 out_freectx:
294 	mmdrop(mm);
295 	kmem_cache_free(kioctx_cachep, ctx);
296 	dprintk("aio: error allocating ioctx %d\n", err);
297 	return ERR_PTR(err);
298 }
299 
300 /* kill_ctx
301  *	Cancels all outstanding aio requests on an aio context.  Used
302  *	when the processes owning a context have all exited to encourage
303  *	the rapid destruction of the kioctx.
304  */
305 static void kill_ctx(struct kioctx *ctx)
306 {
307 	int (*cancel)(struct kiocb *, struct io_event *);
308 	struct task_struct *tsk = current;
309 	DECLARE_WAITQUEUE(wait, tsk);
310 	struct io_event res;
311 
312 	spin_lock_irq(&ctx->ctx_lock);
313 	ctx->dead = 1;
314 	while (!list_empty(&ctx->active_reqs)) {
315 		struct list_head *pos = ctx->active_reqs.next;
316 		struct kiocb *iocb = list_kiocb(pos);
317 		list_del_init(&iocb->ki_list);
318 		cancel = iocb->ki_cancel;
319 		kiocbSetCancelled(iocb);
320 		if (cancel) {
321 			iocb->ki_users++;
322 			spin_unlock_irq(&ctx->ctx_lock);
323 			cancel(iocb, &res);
324 			spin_lock_irq(&ctx->ctx_lock);
325 		}
326 	}
327 
328 	if (!ctx->reqs_active)
329 		goto out;
330 
331 	add_wait_queue(&ctx->wait, &wait);
332 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
333 	while (ctx->reqs_active) {
334 		spin_unlock_irq(&ctx->ctx_lock);
335 		io_schedule();
336 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
337 		spin_lock_irq(&ctx->ctx_lock);
338 	}
339 	__set_task_state(tsk, TASK_RUNNING);
340 	remove_wait_queue(&ctx->wait, &wait);
341 
342 out:
343 	spin_unlock_irq(&ctx->ctx_lock);
344 }
345 
346 /* wait_on_sync_kiocb:
347  *	Waits on the given sync kiocb to complete.
348  */
349 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
350 {
351 	while (iocb->ki_users) {
352 		set_current_state(TASK_UNINTERRUPTIBLE);
353 		if (!iocb->ki_users)
354 			break;
355 		io_schedule();
356 	}
357 	__set_current_state(TASK_RUNNING);
358 	return iocb->ki_user_data;
359 }
360 EXPORT_SYMBOL(wait_on_sync_kiocb);
361 
362 /* exit_aio: called when the last user of mm goes away.  At this point,
363  * there is no way for any new requests to be submited or any of the
364  * io_* syscalls to be called on the context.  However, there may be
365  * outstanding requests which hold references to the context; as they
366  * go away, they will call put_ioctx and release any pinned memory
367  * associated with the request (held via struct page * references).
368  */
369 void exit_aio(struct mm_struct *mm)
370 {
371 	struct kioctx *ctx;
372 
373 	while (!hlist_empty(&mm->ioctx_list)) {
374 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
375 		hlist_del_rcu(&ctx->list);
376 
377 		kill_ctx(ctx);
378 
379 		if (1 != atomic_read(&ctx->users))
380 			printk(KERN_DEBUG
381 				"exit_aio:ioctx still alive: %d %d %d\n",
382 				atomic_read(&ctx->users), ctx->dead,
383 				ctx->reqs_active);
384 		/*
385 		 * We don't need to bother with munmap() here -
386 		 * exit_mmap(mm) is coming and it'll unmap everything.
387 		 * Since aio_free_ring() uses non-zero ->mmap_size
388 		 * as indicator that it needs to unmap the area,
389 		 * just set it to 0; aio_free_ring() is the only
390 		 * place that uses ->mmap_size, so it's safe.
391 		 * That way we get all munmap done to current->mm -
392 		 * all other callers have ctx->mm == current->mm.
393 		 */
394 		ctx->ring_info.mmap_size = 0;
395 		put_ioctx(ctx);
396 	}
397 }
398 
399 /* aio_get_req
400  *	Allocate a slot for an aio request.  Increments the users count
401  * of the kioctx so that the kioctx stays around until all requests are
402  * complete.  Returns NULL if no requests are free.
403  *
404  * Returns with kiocb->users set to 2.  The io submit code path holds
405  * an extra reference while submitting the i/o.
406  * This prevents races between the aio code path referencing the
407  * req (after submitting it) and aio_complete() freeing the req.
408  */
409 static struct kiocb *__aio_get_req(struct kioctx *ctx)
410 {
411 	struct kiocb *req = NULL;
412 
413 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
414 	if (unlikely(!req))
415 		return NULL;
416 
417 	req->ki_flags = 0;
418 	req->ki_users = 2;
419 	req->ki_key = 0;
420 	req->ki_ctx = ctx;
421 	req->ki_cancel = NULL;
422 	req->ki_retry = NULL;
423 	req->ki_dtor = NULL;
424 	req->private = NULL;
425 	req->ki_iovec = NULL;
426 	INIT_LIST_HEAD(&req->ki_run_list);
427 	req->ki_eventfd = NULL;
428 
429 	return req;
430 }
431 
432 /*
433  * struct kiocb's are allocated in batches to reduce the number of
434  * times the ctx lock is acquired and released.
435  */
436 #define KIOCB_BATCH_SIZE	32L
437 struct kiocb_batch {
438 	struct list_head head;
439 	long count; /* number of requests left to allocate */
440 };
441 
442 static void kiocb_batch_init(struct kiocb_batch *batch, long total)
443 {
444 	INIT_LIST_HEAD(&batch->head);
445 	batch->count = total;
446 }
447 
448 static void kiocb_batch_free(struct kioctx *ctx, struct kiocb_batch *batch)
449 {
450 	struct kiocb *req, *n;
451 
452 	if (list_empty(&batch->head))
453 		return;
454 
455 	spin_lock_irq(&ctx->ctx_lock);
456 	list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
457 		list_del(&req->ki_batch);
458 		list_del(&req->ki_list);
459 		kmem_cache_free(kiocb_cachep, req);
460 		ctx->reqs_active--;
461 	}
462 	if (unlikely(!ctx->reqs_active && ctx->dead))
463 		wake_up_all(&ctx->wait);
464 	spin_unlock_irq(&ctx->ctx_lock);
465 }
466 
467 /*
468  * Allocate a batch of kiocbs.  This avoids taking and dropping the
469  * context lock a lot during setup.
470  */
471 static int kiocb_batch_refill(struct kioctx *ctx, struct kiocb_batch *batch)
472 {
473 	unsigned short allocated, to_alloc;
474 	long avail;
475 	struct kiocb *req, *n;
476 	struct aio_ring *ring;
477 
478 	to_alloc = min(batch->count, KIOCB_BATCH_SIZE);
479 	for (allocated = 0; allocated < to_alloc; allocated++) {
480 		req = __aio_get_req(ctx);
481 		if (!req)
482 			/* allocation failed, go with what we've got */
483 			break;
484 		list_add(&req->ki_batch, &batch->head);
485 	}
486 
487 	if (allocated == 0)
488 		goto out;
489 
490 	spin_lock_irq(&ctx->ctx_lock);
491 	ring = kmap_atomic(ctx->ring_info.ring_pages[0]);
492 
493 	avail = aio_ring_avail(&ctx->ring_info, ring) - ctx->reqs_active;
494 	BUG_ON(avail < 0);
495 	if (avail < allocated) {
496 		/* Trim back the number of requests. */
497 		list_for_each_entry_safe(req, n, &batch->head, ki_batch) {
498 			list_del(&req->ki_batch);
499 			kmem_cache_free(kiocb_cachep, req);
500 			if (--allocated <= avail)
501 				break;
502 		}
503 	}
504 
505 	batch->count -= allocated;
506 	list_for_each_entry(req, &batch->head, ki_batch) {
507 		list_add(&req->ki_list, &ctx->active_reqs);
508 		ctx->reqs_active++;
509 	}
510 
511 	kunmap_atomic(ring);
512 	spin_unlock_irq(&ctx->ctx_lock);
513 
514 out:
515 	return allocated;
516 }
517 
518 static inline struct kiocb *aio_get_req(struct kioctx *ctx,
519 					struct kiocb_batch *batch)
520 {
521 	struct kiocb *req;
522 
523 	if (list_empty(&batch->head))
524 		if (kiocb_batch_refill(ctx, batch) == 0)
525 			return NULL;
526 	req = list_first_entry(&batch->head, struct kiocb, ki_batch);
527 	list_del(&req->ki_batch);
528 	return req;
529 }
530 
531 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
532 {
533 	assert_spin_locked(&ctx->ctx_lock);
534 
535 	if (req->ki_eventfd != NULL)
536 		eventfd_ctx_put(req->ki_eventfd);
537 	if (req->ki_dtor)
538 		req->ki_dtor(req);
539 	if (req->ki_iovec != &req->ki_inline_vec)
540 		kfree(req->ki_iovec);
541 	kmem_cache_free(kiocb_cachep, req);
542 	ctx->reqs_active--;
543 
544 	if (unlikely(!ctx->reqs_active && ctx->dead))
545 		wake_up_all(&ctx->wait);
546 }
547 
548 /* __aio_put_req
549  *	Returns true if this put was the last user of the request.
550  */
551 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
552 {
553 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
554 		req, atomic_long_read(&req->ki_filp->f_count));
555 
556 	assert_spin_locked(&ctx->ctx_lock);
557 
558 	req->ki_users--;
559 	BUG_ON(req->ki_users < 0);
560 	if (likely(req->ki_users))
561 		return 0;
562 	list_del(&req->ki_list);		/* remove from active_reqs */
563 	req->ki_cancel = NULL;
564 	req->ki_retry = NULL;
565 
566 	fput(req->ki_filp);
567 	req->ki_filp = NULL;
568 	really_put_req(ctx, req);
569 	return 1;
570 }
571 
572 /* aio_put_req
573  *	Returns true if this put was the last user of the kiocb,
574  *	false if the request is still in use.
575  */
576 int aio_put_req(struct kiocb *req)
577 {
578 	struct kioctx *ctx = req->ki_ctx;
579 	int ret;
580 	spin_lock_irq(&ctx->ctx_lock);
581 	ret = __aio_put_req(ctx, req);
582 	spin_unlock_irq(&ctx->ctx_lock);
583 	return ret;
584 }
585 EXPORT_SYMBOL(aio_put_req);
586 
587 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
588 {
589 	struct mm_struct *mm = current->mm;
590 	struct kioctx *ctx, *ret = NULL;
591 	struct hlist_node *n;
592 
593 	rcu_read_lock();
594 
595 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
596 		/*
597 		 * RCU protects us against accessing freed memory but
598 		 * we have to be careful not to get a reference when the
599 		 * reference count already dropped to 0 (ctx->dead test
600 		 * is unreliable because of races).
601 		 */
602 		if (ctx->user_id == ctx_id && !ctx->dead && try_get_ioctx(ctx)){
603 			ret = ctx;
604 			break;
605 		}
606 	}
607 
608 	rcu_read_unlock();
609 	return ret;
610 }
611 
612 /*
613  * Queue up a kiocb to be retried. Assumes that the kiocb
614  * has already been marked as kicked, and places it on
615  * the retry run list for the corresponding ioctx, if it
616  * isn't already queued. Returns 1 if it actually queued
617  * the kiocb (to tell the caller to activate the work
618  * queue to process it), or 0, if it found that it was
619  * already queued.
620  */
621 static inline int __queue_kicked_iocb(struct kiocb *iocb)
622 {
623 	struct kioctx *ctx = iocb->ki_ctx;
624 
625 	assert_spin_locked(&ctx->ctx_lock);
626 
627 	if (list_empty(&iocb->ki_run_list)) {
628 		list_add_tail(&iocb->ki_run_list,
629 			&ctx->run_list);
630 		return 1;
631 	}
632 	return 0;
633 }
634 
635 /* aio_run_iocb
636  *	This is the core aio execution routine. It is
637  *	invoked both for initial i/o submission and
638  *	subsequent retries via the aio_kick_handler.
639  *	Expects to be invoked with iocb->ki_ctx->lock
640  *	already held. The lock is released and reacquired
641  *	as needed during processing.
642  *
643  * Calls the iocb retry method (already setup for the
644  * iocb on initial submission) for operation specific
645  * handling, but takes care of most of common retry
646  * execution details for a given iocb. The retry method
647  * needs to be non-blocking as far as possible, to avoid
648  * holding up other iocbs waiting to be serviced by the
649  * retry kernel thread.
650  *
651  * The trickier parts in this code have to do with
652  * ensuring that only one retry instance is in progress
653  * for a given iocb at any time. Providing that guarantee
654  * simplifies the coding of individual aio operations as
655  * it avoids various potential races.
656  */
657 static ssize_t aio_run_iocb(struct kiocb *iocb)
658 {
659 	struct kioctx	*ctx = iocb->ki_ctx;
660 	ssize_t (*retry)(struct kiocb *);
661 	ssize_t ret;
662 
663 	if (!(retry = iocb->ki_retry)) {
664 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
665 		return 0;
666 	}
667 
668 	/*
669 	 * We don't want the next retry iteration for this
670 	 * operation to start until this one has returned and
671 	 * updated the iocb state. However, wait_queue functions
672 	 * can trigger a kick_iocb from interrupt context in the
673 	 * meantime, indicating that data is available for the next
674 	 * iteration. We want to remember that and enable the
675 	 * next retry iteration _after_ we are through with
676 	 * this one.
677 	 *
678 	 * So, in order to be able to register a "kick", but
679 	 * prevent it from being queued now, we clear the kick
680 	 * flag, but make the kick code *think* that the iocb is
681 	 * still on the run list until we are actually done.
682 	 * When we are done with this iteration, we check if
683 	 * the iocb was kicked in the meantime and if so, queue
684 	 * it up afresh.
685 	 */
686 
687 	kiocbClearKicked(iocb);
688 
689 	/*
690 	 * This is so that aio_complete knows it doesn't need to
691 	 * pull the iocb off the run list (We can't just call
692 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
693 	 * queue this on the run list yet)
694 	 */
695 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
696 	spin_unlock_irq(&ctx->ctx_lock);
697 
698 	/* Quit retrying if the i/o has been cancelled */
699 	if (kiocbIsCancelled(iocb)) {
700 		ret = -EINTR;
701 		aio_complete(iocb, ret, 0);
702 		/* must not access the iocb after this */
703 		goto out;
704 	}
705 
706 	/*
707 	 * Now we are all set to call the retry method in async
708 	 * context.
709 	 */
710 	ret = retry(iocb);
711 
712 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
713 		/*
714 		 * There's no easy way to restart the syscall since other AIO's
715 		 * may be already running. Just fail this IO with EINTR.
716 		 */
717 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
718 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
719 			ret = -EINTR;
720 		aio_complete(iocb, ret, 0);
721 	}
722 out:
723 	spin_lock_irq(&ctx->ctx_lock);
724 
725 	if (-EIOCBRETRY == ret) {
726 		/*
727 		 * OK, now that we are done with this iteration
728 		 * and know that there is more left to go,
729 		 * this is where we let go so that a subsequent
730 		 * "kick" can start the next iteration
731 		 */
732 
733 		/* will make __queue_kicked_iocb succeed from here on */
734 		INIT_LIST_HEAD(&iocb->ki_run_list);
735 		/* we must queue the next iteration ourselves, if it
736 		 * has already been kicked */
737 		if (kiocbIsKicked(iocb)) {
738 			__queue_kicked_iocb(iocb);
739 
740 			/*
741 			 * __queue_kicked_iocb will always return 1 here, because
742 			 * iocb->ki_run_list is empty at this point so it should
743 			 * be safe to unconditionally queue the context into the
744 			 * work queue.
745 			 */
746 			aio_queue_work(ctx);
747 		}
748 	}
749 	return ret;
750 }
751 
752 /*
753  * __aio_run_iocbs:
754  * 	Process all pending retries queued on the ioctx
755  * 	run list.
756  * Assumes it is operating within the aio issuer's mm
757  * context.
758  */
759 static int __aio_run_iocbs(struct kioctx *ctx)
760 {
761 	struct kiocb *iocb;
762 	struct list_head run_list;
763 
764 	assert_spin_locked(&ctx->ctx_lock);
765 
766 	list_replace_init(&ctx->run_list, &run_list);
767 	while (!list_empty(&run_list)) {
768 		iocb = list_entry(run_list.next, struct kiocb,
769 			ki_run_list);
770 		list_del(&iocb->ki_run_list);
771 		/*
772 		 * Hold an extra reference while retrying i/o.
773 		 */
774 		iocb->ki_users++;       /* grab extra reference */
775 		aio_run_iocb(iocb);
776 		__aio_put_req(ctx, iocb);
777  	}
778 	if (!list_empty(&ctx->run_list))
779 		return 1;
780 	return 0;
781 }
782 
783 static void aio_queue_work(struct kioctx * ctx)
784 {
785 	unsigned long timeout;
786 	/*
787 	 * if someone is waiting, get the work started right
788 	 * away, otherwise, use a longer delay
789 	 */
790 	smp_mb();
791 	if (waitqueue_active(&ctx->wait))
792 		timeout = 1;
793 	else
794 		timeout = HZ/10;
795 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
796 }
797 
798 /*
799  * aio_run_all_iocbs:
800  *	Process all pending retries queued on the ioctx
801  *	run list, and keep running them until the list
802  *	stays empty.
803  * Assumes it is operating within the aio issuer's mm context.
804  */
805 static inline void aio_run_all_iocbs(struct kioctx *ctx)
806 {
807 	spin_lock_irq(&ctx->ctx_lock);
808 	while (__aio_run_iocbs(ctx))
809 		;
810 	spin_unlock_irq(&ctx->ctx_lock);
811 }
812 
813 /*
814  * aio_kick_handler:
815  * 	Work queue handler triggered to process pending
816  * 	retries on an ioctx. Takes on the aio issuer's
817  *	mm context before running the iocbs, so that
818  *	copy_xxx_user operates on the issuer's address
819  *      space.
820  * Run on aiod's context.
821  */
822 static void aio_kick_handler(struct work_struct *work)
823 {
824 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
825 	mm_segment_t oldfs = get_fs();
826 	struct mm_struct *mm;
827 	int requeue;
828 
829 	set_fs(USER_DS);
830 	use_mm(ctx->mm);
831 	spin_lock_irq(&ctx->ctx_lock);
832 	requeue =__aio_run_iocbs(ctx);
833 	mm = ctx->mm;
834 	spin_unlock_irq(&ctx->ctx_lock);
835  	unuse_mm(mm);
836 	set_fs(oldfs);
837 	/*
838 	 * we're in a worker thread already; no point using non-zero delay
839 	 */
840 	if (requeue)
841 		queue_delayed_work(aio_wq, &ctx->wq, 0);
842 }
843 
844 
845 /*
846  * Called by kick_iocb to queue the kiocb for retry
847  * and if required activate the aio work queue to process
848  * it
849  */
850 static void try_queue_kicked_iocb(struct kiocb *iocb)
851 {
852  	struct kioctx	*ctx = iocb->ki_ctx;
853 	unsigned long flags;
854 	int run = 0;
855 
856 	spin_lock_irqsave(&ctx->ctx_lock, flags);
857 	/* set this inside the lock so that we can't race with aio_run_iocb()
858 	 * testing it and putting the iocb on the run list under the lock */
859 	if (!kiocbTryKick(iocb))
860 		run = __queue_kicked_iocb(iocb);
861 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
862 	if (run)
863 		aio_queue_work(ctx);
864 }
865 
866 /*
867  * kick_iocb:
868  *      Called typically from a wait queue callback context
869  *      to trigger a retry of the iocb.
870  *      The retry is usually executed by aio workqueue
871  *      threads (See aio_kick_handler).
872  */
873 void kick_iocb(struct kiocb *iocb)
874 {
875 	/* sync iocbs are easy: they can only ever be executing from a
876 	 * single context. */
877 	if (is_sync_kiocb(iocb)) {
878 		kiocbSetKicked(iocb);
879 	        wake_up_process(iocb->ki_obj.tsk);
880 		return;
881 	}
882 
883 	try_queue_kicked_iocb(iocb);
884 }
885 EXPORT_SYMBOL(kick_iocb);
886 
887 /* aio_complete
888  *	Called when the io request on the given iocb is complete.
889  *	Returns true if this is the last user of the request.  The
890  *	only other user of the request can be the cancellation code.
891  */
892 int aio_complete(struct kiocb *iocb, long res, long res2)
893 {
894 	struct kioctx	*ctx = iocb->ki_ctx;
895 	struct aio_ring_info	*info;
896 	struct aio_ring	*ring;
897 	struct io_event	*event;
898 	unsigned long	flags;
899 	unsigned long	tail;
900 	int		ret;
901 
902 	/*
903 	 * Special case handling for sync iocbs:
904 	 *  - events go directly into the iocb for fast handling
905 	 *  - the sync task with the iocb in its stack holds the single iocb
906 	 *    ref, no other paths have a way to get another ref
907 	 *  - the sync task helpfully left a reference to itself in the iocb
908 	 */
909 	if (is_sync_kiocb(iocb)) {
910 		BUG_ON(iocb->ki_users != 1);
911 		iocb->ki_user_data = res;
912 		iocb->ki_users = 0;
913 		wake_up_process(iocb->ki_obj.tsk);
914 		return 1;
915 	}
916 
917 	info = &ctx->ring_info;
918 
919 	/* add a completion event to the ring buffer.
920 	 * must be done holding ctx->ctx_lock to prevent
921 	 * other code from messing with the tail
922 	 * pointer since we might be called from irq
923 	 * context.
924 	 */
925 	spin_lock_irqsave(&ctx->ctx_lock, flags);
926 
927 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
928 		list_del_init(&iocb->ki_run_list);
929 
930 	/*
931 	 * cancelled requests don't get events, userland was given one
932 	 * when the event got cancelled.
933 	 */
934 	if (kiocbIsCancelled(iocb))
935 		goto put_rq;
936 
937 	ring = kmap_atomic(info->ring_pages[0]);
938 
939 	tail = info->tail;
940 	event = aio_ring_event(info, tail);
941 	if (++tail >= info->nr)
942 		tail = 0;
943 
944 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
945 	event->data = iocb->ki_user_data;
946 	event->res = res;
947 	event->res2 = res2;
948 
949 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
950 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
951 		res, res2);
952 
953 	/* after flagging the request as done, we
954 	 * must never even look at it again
955 	 */
956 	smp_wmb();	/* make event visible before updating tail */
957 
958 	info->tail = tail;
959 	ring->tail = tail;
960 
961 	put_aio_ring_event(event);
962 	kunmap_atomic(ring);
963 
964 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
965 
966 	/*
967 	 * Check if the user asked us to deliver the result through an
968 	 * eventfd. The eventfd_signal() function is safe to be called
969 	 * from IRQ context.
970 	 */
971 	if (iocb->ki_eventfd != NULL)
972 		eventfd_signal(iocb->ki_eventfd, 1);
973 
974 put_rq:
975 	/* everything turned out well, dispose of the aiocb. */
976 	ret = __aio_put_req(ctx, iocb);
977 
978 	/*
979 	 * We have to order our ring_info tail store above and test
980 	 * of the wait list below outside the wait lock.  This is
981 	 * like in wake_up_bit() where clearing a bit has to be
982 	 * ordered with the unlocked test.
983 	 */
984 	smp_mb();
985 
986 	if (waitqueue_active(&ctx->wait))
987 		wake_up(&ctx->wait);
988 
989 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
990 	return ret;
991 }
992 EXPORT_SYMBOL(aio_complete);
993 
994 /* aio_read_evt
995  *	Pull an event off of the ioctx's event ring.  Returns the number of
996  *	events fetched (0 or 1 ;-)
997  *	FIXME: make this use cmpxchg.
998  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
999  */
1000 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1001 {
1002 	struct aio_ring_info *info = &ioctx->ring_info;
1003 	struct aio_ring *ring;
1004 	unsigned long head;
1005 	int ret = 0;
1006 
1007 	ring = kmap_atomic(info->ring_pages[0]);
1008 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1009 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1010 		 (unsigned long)ring->nr);
1011 
1012 	if (ring->head == ring->tail)
1013 		goto out;
1014 
1015 	spin_lock(&info->ring_lock);
1016 
1017 	head = ring->head % info->nr;
1018 	if (head != ring->tail) {
1019 		struct io_event *evp = aio_ring_event(info, head);
1020 		*ent = *evp;
1021 		head = (head + 1) % info->nr;
1022 		smp_mb(); /* finish reading the event before updatng the head */
1023 		ring->head = head;
1024 		ret = 1;
1025 		put_aio_ring_event(evp);
1026 	}
1027 	spin_unlock(&info->ring_lock);
1028 
1029 out:
1030 	kunmap_atomic(ring);
1031 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1032 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1033 	return ret;
1034 }
1035 
1036 struct aio_timeout {
1037 	struct timer_list	timer;
1038 	int			timed_out;
1039 	struct task_struct	*p;
1040 };
1041 
1042 static void timeout_func(unsigned long data)
1043 {
1044 	struct aio_timeout *to = (struct aio_timeout *)data;
1045 
1046 	to->timed_out = 1;
1047 	wake_up_process(to->p);
1048 }
1049 
1050 static inline void init_timeout(struct aio_timeout *to)
1051 {
1052 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1053 	to->timed_out = 0;
1054 	to->p = current;
1055 }
1056 
1057 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1058 			       const struct timespec *ts)
1059 {
1060 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1061 	if (time_after(to->timer.expires, jiffies))
1062 		add_timer(&to->timer);
1063 	else
1064 		to->timed_out = 1;
1065 }
1066 
1067 static inline void clear_timeout(struct aio_timeout *to)
1068 {
1069 	del_singleshot_timer_sync(&to->timer);
1070 }
1071 
1072 static int read_events(struct kioctx *ctx,
1073 			long min_nr, long nr,
1074 			struct io_event __user *event,
1075 			struct timespec __user *timeout)
1076 {
1077 	long			start_jiffies = jiffies;
1078 	struct task_struct	*tsk = current;
1079 	DECLARE_WAITQUEUE(wait, tsk);
1080 	int			ret;
1081 	int			i = 0;
1082 	struct io_event		ent;
1083 	struct aio_timeout	to;
1084 	int			retry = 0;
1085 
1086 	/* needed to zero any padding within an entry (there shouldn't be
1087 	 * any, but C is fun!
1088 	 */
1089 	memset(&ent, 0, sizeof(ent));
1090 retry:
1091 	ret = 0;
1092 	while (likely(i < nr)) {
1093 		ret = aio_read_evt(ctx, &ent);
1094 		if (unlikely(ret <= 0))
1095 			break;
1096 
1097 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1098 			ent.data, ent.obj, ent.res, ent.res2);
1099 
1100 		/* Could we split the check in two? */
1101 		ret = -EFAULT;
1102 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1103 			dprintk("aio: lost an event due to EFAULT.\n");
1104 			break;
1105 		}
1106 		ret = 0;
1107 
1108 		/* Good, event copied to userland, update counts. */
1109 		event ++;
1110 		i ++;
1111 	}
1112 
1113 	if (min_nr <= i)
1114 		return i;
1115 	if (ret)
1116 		return ret;
1117 
1118 	/* End fast path */
1119 
1120 	/* racey check, but it gets redone */
1121 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1122 		retry = 1;
1123 		aio_run_all_iocbs(ctx);
1124 		goto retry;
1125 	}
1126 
1127 	init_timeout(&to);
1128 	if (timeout) {
1129 		struct timespec	ts;
1130 		ret = -EFAULT;
1131 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1132 			goto out;
1133 
1134 		set_timeout(start_jiffies, &to, &ts);
1135 	}
1136 
1137 	while (likely(i < nr)) {
1138 		add_wait_queue_exclusive(&ctx->wait, &wait);
1139 		do {
1140 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1141 			ret = aio_read_evt(ctx, &ent);
1142 			if (ret)
1143 				break;
1144 			if (min_nr <= i)
1145 				break;
1146 			if (unlikely(ctx->dead)) {
1147 				ret = -EINVAL;
1148 				break;
1149 			}
1150 			if (to.timed_out)	/* Only check after read evt */
1151 				break;
1152 			/* Try to only show up in io wait if there are ops
1153 			 *  in flight */
1154 			if (ctx->reqs_active)
1155 				io_schedule();
1156 			else
1157 				schedule();
1158 			if (signal_pending(tsk)) {
1159 				ret = -EINTR;
1160 				break;
1161 			}
1162 			/*ret = aio_read_evt(ctx, &ent);*/
1163 		} while (1) ;
1164 
1165 		set_task_state(tsk, TASK_RUNNING);
1166 		remove_wait_queue(&ctx->wait, &wait);
1167 
1168 		if (unlikely(ret <= 0))
1169 			break;
1170 
1171 		ret = -EFAULT;
1172 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1173 			dprintk("aio: lost an event due to EFAULT.\n");
1174 			break;
1175 		}
1176 
1177 		/* Good, event copied to userland, update counts. */
1178 		event ++;
1179 		i ++;
1180 	}
1181 
1182 	if (timeout)
1183 		clear_timeout(&to);
1184 out:
1185 	destroy_timer_on_stack(&to.timer);
1186 	return i ? i : ret;
1187 }
1188 
1189 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1190  * against races with itself via ->dead.
1191  */
1192 static void io_destroy(struct kioctx *ioctx)
1193 {
1194 	struct mm_struct *mm = current->mm;
1195 	int was_dead;
1196 
1197 	/* delete the entry from the list is someone else hasn't already */
1198 	spin_lock(&mm->ioctx_lock);
1199 	was_dead = ioctx->dead;
1200 	ioctx->dead = 1;
1201 	hlist_del_rcu(&ioctx->list);
1202 	spin_unlock(&mm->ioctx_lock);
1203 
1204 	dprintk("aio_release(%p)\n", ioctx);
1205 	if (likely(!was_dead))
1206 		put_ioctx(ioctx);	/* twice for the list */
1207 
1208 	kill_ctx(ioctx);
1209 
1210 	/*
1211 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1212 	 * by other CPUs at this point.  Right now, we rely on the
1213 	 * locking done by the above calls to ensure this consistency.
1214 	 */
1215 	wake_up_all(&ioctx->wait);
1216 }
1217 
1218 /* sys_io_setup:
1219  *	Create an aio_context capable of receiving at least nr_events.
1220  *	ctxp must not point to an aio_context that already exists, and
1221  *	must be initialized to 0 prior to the call.  On successful
1222  *	creation of the aio_context, *ctxp is filled in with the resulting
1223  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1224  *	if the specified nr_events exceeds internal limits.  May fail
1225  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1226  *	of available events.  May fail with -ENOMEM if insufficient kernel
1227  *	resources are available.  May fail with -EFAULT if an invalid
1228  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1229  *	implemented.
1230  */
1231 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1232 {
1233 	struct kioctx *ioctx = NULL;
1234 	unsigned long ctx;
1235 	long ret;
1236 
1237 	ret = get_user(ctx, ctxp);
1238 	if (unlikely(ret))
1239 		goto out;
1240 
1241 	ret = -EINVAL;
1242 	if (unlikely(ctx || nr_events == 0)) {
1243 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1244 		         ctx, nr_events);
1245 		goto out;
1246 	}
1247 
1248 	ioctx = ioctx_alloc(nr_events);
1249 	ret = PTR_ERR(ioctx);
1250 	if (!IS_ERR(ioctx)) {
1251 		ret = put_user(ioctx->user_id, ctxp);
1252 		if (ret)
1253 			io_destroy(ioctx);
1254 		put_ioctx(ioctx);
1255 	}
1256 
1257 out:
1258 	return ret;
1259 }
1260 
1261 /* sys_io_destroy:
1262  *	Destroy the aio_context specified.  May cancel any outstanding
1263  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1264  *	implemented.  May fail with -EINVAL if the context pointed to
1265  *	is invalid.
1266  */
1267 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1268 {
1269 	struct kioctx *ioctx = lookup_ioctx(ctx);
1270 	if (likely(NULL != ioctx)) {
1271 		io_destroy(ioctx);
1272 		put_ioctx(ioctx);
1273 		return 0;
1274 	}
1275 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1276 	return -EINVAL;
1277 }
1278 
1279 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1280 {
1281 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1282 
1283 	BUG_ON(ret <= 0);
1284 
1285 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1286 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1287 		iov->iov_base += this;
1288 		iov->iov_len -= this;
1289 		iocb->ki_left -= this;
1290 		ret -= this;
1291 		if (iov->iov_len == 0) {
1292 			iocb->ki_cur_seg++;
1293 			iov++;
1294 		}
1295 	}
1296 
1297 	/* the caller should not have done more io than what fit in
1298 	 * the remaining iovecs */
1299 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1300 }
1301 
1302 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1303 {
1304 	struct file *file = iocb->ki_filp;
1305 	struct address_space *mapping = file->f_mapping;
1306 	struct inode *inode = mapping->host;
1307 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1308 			 unsigned long, loff_t);
1309 	ssize_t ret = 0;
1310 	unsigned short opcode;
1311 
1312 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1313 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1314 		rw_op = file->f_op->aio_read;
1315 		opcode = IOCB_CMD_PREADV;
1316 	} else {
1317 		rw_op = file->f_op->aio_write;
1318 		opcode = IOCB_CMD_PWRITEV;
1319 	}
1320 
1321 	/* This matches the pread()/pwrite() logic */
1322 	if (iocb->ki_pos < 0)
1323 		return -EINVAL;
1324 
1325 	do {
1326 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1327 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1328 			    iocb->ki_pos);
1329 		if (ret > 0)
1330 			aio_advance_iovec(iocb, ret);
1331 
1332 	/* retry all partial writes.  retry partial reads as long as its a
1333 	 * regular file. */
1334 	} while (ret > 0 && iocb->ki_left > 0 &&
1335 		 (opcode == IOCB_CMD_PWRITEV ||
1336 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1337 
1338 	/* This means we must have transferred all that we could */
1339 	/* No need to retry anymore */
1340 	if ((ret == 0) || (iocb->ki_left == 0))
1341 		ret = iocb->ki_nbytes - iocb->ki_left;
1342 
1343 	/* If we managed to write some out we return that, rather than
1344 	 * the eventual error. */
1345 	if (opcode == IOCB_CMD_PWRITEV
1346 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1347 	    && iocb->ki_nbytes - iocb->ki_left)
1348 		ret = iocb->ki_nbytes - iocb->ki_left;
1349 
1350 	return ret;
1351 }
1352 
1353 static ssize_t aio_fdsync(struct kiocb *iocb)
1354 {
1355 	struct file *file = iocb->ki_filp;
1356 	ssize_t ret = -EINVAL;
1357 
1358 	if (file->f_op->aio_fsync)
1359 		ret = file->f_op->aio_fsync(iocb, 1);
1360 	return ret;
1361 }
1362 
1363 static ssize_t aio_fsync(struct kiocb *iocb)
1364 {
1365 	struct file *file = iocb->ki_filp;
1366 	ssize_t ret = -EINVAL;
1367 
1368 	if (file->f_op->aio_fsync)
1369 		ret = file->f_op->aio_fsync(iocb, 0);
1370 	return ret;
1371 }
1372 
1373 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1374 {
1375 	ssize_t ret;
1376 
1377 #ifdef CONFIG_COMPAT
1378 	if (compat)
1379 		ret = compat_rw_copy_check_uvector(type,
1380 				(struct compat_iovec __user *)kiocb->ki_buf,
1381 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1382 				&kiocb->ki_iovec);
1383 	else
1384 #endif
1385 		ret = rw_copy_check_uvector(type,
1386 				(struct iovec __user *)kiocb->ki_buf,
1387 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1388 				&kiocb->ki_iovec);
1389 	if (ret < 0)
1390 		goto out;
1391 
1392 	ret = rw_verify_area(type, kiocb->ki_filp, &kiocb->ki_pos, ret);
1393 	if (ret < 0)
1394 		goto out;
1395 
1396 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1397 	kiocb->ki_cur_seg = 0;
1398 	/* ki_nbytes/left now reflect bytes instead of segs */
1399 	kiocb->ki_nbytes = ret;
1400 	kiocb->ki_left = ret;
1401 
1402 	ret = 0;
1403 out:
1404 	return ret;
1405 }
1406 
1407 static ssize_t aio_setup_single_vector(int type, struct file * file, struct kiocb *kiocb)
1408 {
1409 	int bytes;
1410 
1411 	bytes = rw_verify_area(type, file, &kiocb->ki_pos, kiocb->ki_left);
1412 	if (bytes < 0)
1413 		return bytes;
1414 
1415 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1416 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1417 	kiocb->ki_iovec->iov_len = bytes;
1418 	kiocb->ki_nr_segs = 1;
1419 	kiocb->ki_cur_seg = 0;
1420 	return 0;
1421 }
1422 
1423 /*
1424  * aio_setup_iocb:
1425  *	Performs the initial checks and aio retry method
1426  *	setup for the kiocb at the time of io submission.
1427  */
1428 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1429 {
1430 	struct file *file = kiocb->ki_filp;
1431 	ssize_t ret = 0;
1432 
1433 	switch (kiocb->ki_opcode) {
1434 	case IOCB_CMD_PREAD:
1435 		ret = -EBADF;
1436 		if (unlikely(!(file->f_mode & FMODE_READ)))
1437 			break;
1438 		ret = -EFAULT;
1439 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1440 			kiocb->ki_left)))
1441 			break;
1442 		ret = aio_setup_single_vector(READ, file, kiocb);
1443 		if (ret)
1444 			break;
1445 		ret = -EINVAL;
1446 		if (file->f_op->aio_read)
1447 			kiocb->ki_retry = aio_rw_vect_retry;
1448 		break;
1449 	case IOCB_CMD_PWRITE:
1450 		ret = -EBADF;
1451 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1452 			break;
1453 		ret = -EFAULT;
1454 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1455 			kiocb->ki_left)))
1456 			break;
1457 		ret = aio_setup_single_vector(WRITE, file, kiocb);
1458 		if (ret)
1459 			break;
1460 		ret = -EINVAL;
1461 		if (file->f_op->aio_write)
1462 			kiocb->ki_retry = aio_rw_vect_retry;
1463 		break;
1464 	case IOCB_CMD_PREADV:
1465 		ret = -EBADF;
1466 		if (unlikely(!(file->f_mode & FMODE_READ)))
1467 			break;
1468 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1469 		if (ret)
1470 			break;
1471 		ret = -EINVAL;
1472 		if (file->f_op->aio_read)
1473 			kiocb->ki_retry = aio_rw_vect_retry;
1474 		break;
1475 	case IOCB_CMD_PWRITEV:
1476 		ret = -EBADF;
1477 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1478 			break;
1479 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1480 		if (ret)
1481 			break;
1482 		ret = -EINVAL;
1483 		if (file->f_op->aio_write)
1484 			kiocb->ki_retry = aio_rw_vect_retry;
1485 		break;
1486 	case IOCB_CMD_FDSYNC:
1487 		ret = -EINVAL;
1488 		if (file->f_op->aio_fsync)
1489 			kiocb->ki_retry = aio_fdsync;
1490 		break;
1491 	case IOCB_CMD_FSYNC:
1492 		ret = -EINVAL;
1493 		if (file->f_op->aio_fsync)
1494 			kiocb->ki_retry = aio_fsync;
1495 		break;
1496 	default:
1497 		dprintk("EINVAL: io_submit: no operation provided\n");
1498 		ret = -EINVAL;
1499 	}
1500 
1501 	if (!kiocb->ki_retry)
1502 		return ret;
1503 
1504 	return 0;
1505 }
1506 
1507 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1508 			 struct iocb *iocb, struct kiocb_batch *batch,
1509 			 bool compat)
1510 {
1511 	struct kiocb *req;
1512 	struct file *file;
1513 	ssize_t ret;
1514 
1515 	/* enforce forwards compatibility on users */
1516 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1517 		pr_debug("EINVAL: io_submit: reserve field set\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	/* prevent overflows */
1522 	if (unlikely(
1523 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1524 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1525 	    ((ssize_t)iocb->aio_nbytes < 0)
1526 	   )) {
1527 		pr_debug("EINVAL: io_submit: overflow check\n");
1528 		return -EINVAL;
1529 	}
1530 
1531 	file = fget(iocb->aio_fildes);
1532 	if (unlikely(!file))
1533 		return -EBADF;
1534 
1535 	req = aio_get_req(ctx, batch);  /* returns with 2 references to req */
1536 	if (unlikely(!req)) {
1537 		fput(file);
1538 		return -EAGAIN;
1539 	}
1540 	req->ki_filp = file;
1541 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1542 		/*
1543 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1544 		 * instance of the file* now. The file descriptor must be
1545 		 * an eventfd() fd, and will be signaled for each completed
1546 		 * event using the eventfd_signal() function.
1547 		 */
1548 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1549 		if (IS_ERR(req->ki_eventfd)) {
1550 			ret = PTR_ERR(req->ki_eventfd);
1551 			req->ki_eventfd = NULL;
1552 			goto out_put_req;
1553 		}
1554 	}
1555 
1556 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1557 	if (unlikely(ret)) {
1558 		dprintk("EFAULT: aio_key\n");
1559 		goto out_put_req;
1560 	}
1561 
1562 	req->ki_obj.user = user_iocb;
1563 	req->ki_user_data = iocb->aio_data;
1564 	req->ki_pos = iocb->aio_offset;
1565 
1566 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1567 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1568 	req->ki_opcode = iocb->aio_lio_opcode;
1569 
1570 	ret = aio_setup_iocb(req, compat);
1571 
1572 	if (ret)
1573 		goto out_put_req;
1574 
1575 	spin_lock_irq(&ctx->ctx_lock);
1576 	/*
1577 	 * We could have raced with io_destroy() and are currently holding a
1578 	 * reference to ctx which should be destroyed. We cannot submit IO
1579 	 * since ctx gets freed as soon as io_submit() puts its reference.  The
1580 	 * check here is reliable: io_destroy() sets ctx->dead before waiting
1581 	 * for outstanding IO and the barrier between these two is realized by
1582 	 * unlock of mm->ioctx_lock and lock of ctx->ctx_lock.  Analogously we
1583 	 * increment ctx->reqs_active before checking for ctx->dead and the
1584 	 * barrier is realized by unlock and lock of ctx->ctx_lock. Thus if we
1585 	 * don't see ctx->dead set here, io_destroy() waits for our IO to
1586 	 * finish.
1587 	 */
1588 	if (ctx->dead) {
1589 		spin_unlock_irq(&ctx->ctx_lock);
1590 		ret = -EINVAL;
1591 		goto out_put_req;
1592 	}
1593 	aio_run_iocb(req);
1594 	if (!list_empty(&ctx->run_list)) {
1595 		/* drain the run list */
1596 		while (__aio_run_iocbs(ctx))
1597 			;
1598 	}
1599 	spin_unlock_irq(&ctx->ctx_lock);
1600 
1601 	aio_put_req(req);	/* drop extra ref to req */
1602 	return 0;
1603 
1604 out_put_req:
1605 	aio_put_req(req);	/* drop extra ref to req */
1606 	aio_put_req(req);	/* drop i/o ref to req */
1607 	return ret;
1608 }
1609 
1610 long do_io_submit(aio_context_t ctx_id, long nr,
1611 		  struct iocb __user *__user *iocbpp, bool compat)
1612 {
1613 	struct kioctx *ctx;
1614 	long ret = 0;
1615 	int i = 0;
1616 	struct blk_plug plug;
1617 	struct kiocb_batch batch;
1618 
1619 	if (unlikely(nr < 0))
1620 		return -EINVAL;
1621 
1622 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1623 		nr = LONG_MAX/sizeof(*iocbpp);
1624 
1625 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1626 		return -EFAULT;
1627 
1628 	ctx = lookup_ioctx(ctx_id);
1629 	if (unlikely(!ctx)) {
1630 		pr_debug("EINVAL: io_submit: invalid context id\n");
1631 		return -EINVAL;
1632 	}
1633 
1634 	kiocb_batch_init(&batch, nr);
1635 
1636 	blk_start_plug(&plug);
1637 
1638 	/*
1639 	 * AKPM: should this return a partial result if some of the IOs were
1640 	 * successfully submitted?
1641 	 */
1642 	for (i=0; i<nr; i++) {
1643 		struct iocb __user *user_iocb;
1644 		struct iocb tmp;
1645 
1646 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1647 			ret = -EFAULT;
1648 			break;
1649 		}
1650 
1651 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1652 			ret = -EFAULT;
1653 			break;
1654 		}
1655 
1656 		ret = io_submit_one(ctx, user_iocb, &tmp, &batch, compat);
1657 		if (ret)
1658 			break;
1659 	}
1660 	blk_finish_plug(&plug);
1661 
1662 	kiocb_batch_free(ctx, &batch);
1663 	put_ioctx(ctx);
1664 	return i ? i : ret;
1665 }
1666 
1667 /* sys_io_submit:
1668  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1669  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1670  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1671  *	*iocbpp[0] is not properly initialized, if the operation specified
1672  *	is invalid for the file descriptor in the iocb.  May fail with
1673  *	-EFAULT if any of the data structures point to invalid data.  May
1674  *	fail with -EBADF if the file descriptor specified in the first
1675  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1676  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1677  *	fail with -ENOSYS if not implemented.
1678  */
1679 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1680 		struct iocb __user * __user *, iocbpp)
1681 {
1682 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1683 }
1684 
1685 /* lookup_kiocb
1686  *	Finds a given iocb for cancellation.
1687  */
1688 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1689 				  u32 key)
1690 {
1691 	struct list_head *pos;
1692 
1693 	assert_spin_locked(&ctx->ctx_lock);
1694 
1695 	/* TODO: use a hash or array, this sucks. */
1696 	list_for_each(pos, &ctx->active_reqs) {
1697 		struct kiocb *kiocb = list_kiocb(pos);
1698 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1699 			return kiocb;
1700 	}
1701 	return NULL;
1702 }
1703 
1704 /* sys_io_cancel:
1705  *	Attempts to cancel an iocb previously passed to io_submit.  If
1706  *	the operation is successfully cancelled, the resulting event is
1707  *	copied into the memory pointed to by result without being placed
1708  *	into the completion queue and 0 is returned.  May fail with
1709  *	-EFAULT if any of the data structures pointed to are invalid.
1710  *	May fail with -EINVAL if aio_context specified by ctx_id is
1711  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1712  *	cancelled.  Will fail with -ENOSYS if not implemented.
1713  */
1714 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1715 		struct io_event __user *, result)
1716 {
1717 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1718 	struct kioctx *ctx;
1719 	struct kiocb *kiocb;
1720 	u32 key;
1721 	int ret;
1722 
1723 	ret = get_user(key, &iocb->aio_key);
1724 	if (unlikely(ret))
1725 		return -EFAULT;
1726 
1727 	ctx = lookup_ioctx(ctx_id);
1728 	if (unlikely(!ctx))
1729 		return -EINVAL;
1730 
1731 	spin_lock_irq(&ctx->ctx_lock);
1732 	ret = -EAGAIN;
1733 	kiocb = lookup_kiocb(ctx, iocb, key);
1734 	if (kiocb && kiocb->ki_cancel) {
1735 		cancel = kiocb->ki_cancel;
1736 		kiocb->ki_users ++;
1737 		kiocbSetCancelled(kiocb);
1738 	} else
1739 		cancel = NULL;
1740 	spin_unlock_irq(&ctx->ctx_lock);
1741 
1742 	if (NULL != cancel) {
1743 		struct io_event tmp;
1744 		pr_debug("calling cancel\n");
1745 		memset(&tmp, 0, sizeof(tmp));
1746 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1747 		tmp.data = kiocb->ki_user_data;
1748 		ret = cancel(kiocb, &tmp);
1749 		if (!ret) {
1750 			/* Cancellation succeeded -- copy the result
1751 			 * into the user's buffer.
1752 			 */
1753 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1754 				ret = -EFAULT;
1755 		}
1756 	} else
1757 		ret = -EINVAL;
1758 
1759 	put_ioctx(ctx);
1760 
1761 	return ret;
1762 }
1763 
1764 /* io_getevents:
1765  *	Attempts to read at least min_nr events and up to nr events from
1766  *	the completion queue for the aio_context specified by ctx_id. If
1767  *	it succeeds, the number of read events is returned. May fail with
1768  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1769  *	out of range, if timeout is out of range.  May fail with -EFAULT
1770  *	if any of the memory specified is invalid.  May return 0 or
1771  *	< min_nr if the timeout specified by timeout has elapsed
1772  *	before sufficient events are available, where timeout == NULL
1773  *	specifies an infinite timeout. Note that the timeout pointed to by
1774  *	timeout is relative and will be updated if not NULL and the
1775  *	operation blocks. Will fail with -ENOSYS if not implemented.
1776  */
1777 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1778 		long, min_nr,
1779 		long, nr,
1780 		struct io_event __user *, events,
1781 		struct timespec __user *, timeout)
1782 {
1783 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1784 	long ret = -EINVAL;
1785 
1786 	if (likely(ioctx)) {
1787 		if (likely(min_nr <= nr && min_nr >= 0))
1788 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1789 		put_ioctx(ioctx);
1790 	}
1791 
1792 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1793 	return ret;
1794 }
1795