xref: /linux/fs/aio.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/backing-dev.h>
19 #include <linux/uio.h>
20 
21 #define DEBUG 0
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/timer.h>
31 #include <linux/aio.h>
32 #include <linux/highmem.h>
33 #include <linux/workqueue.h>
34 #include <linux/security.h>
35 #include <linux/eventfd.h>
36 #include <linux/blkdev.h>
37 #include <linux/mempool.h>
38 #include <linux/hash.h>
39 #include <linux/compat.h>
40 
41 #include <asm/kmap_types.h>
42 #include <asm/uaccess.h>
43 
44 #if DEBUG > 1
45 #define dprintk		printk
46 #else
47 #define dprintk(x...)	do { ; } while (0)
48 #endif
49 
50 /*------ sysctl variables----*/
51 static DEFINE_SPINLOCK(aio_nr_lock);
52 unsigned long aio_nr;		/* current system wide number of aio requests */
53 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
54 /*----end sysctl variables---*/
55 
56 static struct kmem_cache	*kiocb_cachep;
57 static struct kmem_cache	*kioctx_cachep;
58 
59 static struct workqueue_struct *aio_wq;
60 
61 /* Used for rare fput completion. */
62 static void aio_fput_routine(struct work_struct *);
63 static DECLARE_WORK(fput_work, aio_fput_routine);
64 
65 static DEFINE_SPINLOCK(fput_lock);
66 static LIST_HEAD(fput_head);
67 
68 #define AIO_BATCH_HASH_BITS	3 /* allocated on-stack, so don't go crazy */
69 #define AIO_BATCH_HASH_SIZE	(1 << AIO_BATCH_HASH_BITS)
70 struct aio_batch_entry {
71 	struct hlist_node list;
72 	struct address_space *mapping;
73 };
74 mempool_t *abe_pool;
75 
76 static void aio_kick_handler(struct work_struct *);
77 static void aio_queue_work(struct kioctx *);
78 
79 /* aio_setup
80  *	Creates the slab caches used by the aio routines, panic on
81  *	failure as this is done early during the boot sequence.
82  */
83 static int __init aio_setup(void)
84 {
85 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
86 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
87 
88 	aio_wq = create_workqueue("aio");
89 	abe_pool = mempool_create_kmalloc_pool(1, sizeof(struct aio_batch_entry));
90 	BUG_ON(!abe_pool);
91 
92 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
93 
94 	return 0;
95 }
96 __initcall(aio_setup);
97 
98 static void aio_free_ring(struct kioctx *ctx)
99 {
100 	struct aio_ring_info *info = &ctx->ring_info;
101 	long i;
102 
103 	for (i=0; i<info->nr_pages; i++)
104 		put_page(info->ring_pages[i]);
105 
106 	if (info->mmap_size) {
107 		down_write(&ctx->mm->mmap_sem);
108 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
109 		up_write(&ctx->mm->mmap_sem);
110 	}
111 
112 	if (info->ring_pages && info->ring_pages != info->internal_pages)
113 		kfree(info->ring_pages);
114 	info->ring_pages = NULL;
115 	info->nr = 0;
116 }
117 
118 static int aio_setup_ring(struct kioctx *ctx)
119 {
120 	struct aio_ring *ring;
121 	struct aio_ring_info *info = &ctx->ring_info;
122 	unsigned nr_events = ctx->max_reqs;
123 	unsigned long size;
124 	int nr_pages;
125 
126 	/* Compensate for the ring buffer's head/tail overlap entry */
127 	nr_events += 2;	/* 1 is required, 2 for good luck */
128 
129 	size = sizeof(struct aio_ring);
130 	size += sizeof(struct io_event) * nr_events;
131 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
132 
133 	if (nr_pages < 0)
134 		return -EINVAL;
135 
136 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
137 
138 	info->nr = 0;
139 	info->ring_pages = info->internal_pages;
140 	if (nr_pages > AIO_RING_PAGES) {
141 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
142 		if (!info->ring_pages)
143 			return -ENOMEM;
144 	}
145 
146 	info->mmap_size = nr_pages * PAGE_SIZE;
147 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
148 	down_write(&ctx->mm->mmap_sem);
149 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
150 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
151 				  0);
152 	if (IS_ERR((void *)info->mmap_base)) {
153 		up_write(&ctx->mm->mmap_sem);
154 		info->mmap_size = 0;
155 		aio_free_ring(ctx);
156 		return -EAGAIN;
157 	}
158 
159 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
160 	info->nr_pages = get_user_pages(current, ctx->mm,
161 					info->mmap_base, nr_pages,
162 					1, 0, info->ring_pages, NULL);
163 	up_write(&ctx->mm->mmap_sem);
164 
165 	if (unlikely(info->nr_pages != nr_pages)) {
166 		aio_free_ring(ctx);
167 		return -EAGAIN;
168 	}
169 
170 	ctx->user_id = info->mmap_base;
171 
172 	info->nr = nr_events;		/* trusted copy */
173 
174 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
175 	ring->nr = nr_events;	/* user copy */
176 	ring->id = ctx->user_id;
177 	ring->head = ring->tail = 0;
178 	ring->magic = AIO_RING_MAGIC;
179 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
180 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
181 	ring->header_length = sizeof(struct aio_ring);
182 	kunmap_atomic(ring, KM_USER0);
183 
184 	return 0;
185 }
186 
187 
188 /* aio_ring_event: returns a pointer to the event at the given index from
189  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
190  */
191 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
192 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
193 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
194 
195 #define aio_ring_event(info, nr, km) ({					\
196 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
197 	struct io_event *__event;					\
198 	__event = kmap_atomic(						\
199 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
200 	__event += pos % AIO_EVENTS_PER_PAGE;				\
201 	__event;							\
202 })
203 
204 #define put_aio_ring_event(event, km) do {	\
205 	struct io_event *__event = (event);	\
206 	(void)__event;				\
207 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
208 } while(0)
209 
210 static void ctx_rcu_free(struct rcu_head *head)
211 {
212 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
213 	unsigned nr_events = ctx->max_reqs;
214 
215 	kmem_cache_free(kioctx_cachep, ctx);
216 
217 	if (nr_events) {
218 		spin_lock(&aio_nr_lock);
219 		BUG_ON(aio_nr - nr_events > aio_nr);
220 		aio_nr -= nr_events;
221 		spin_unlock(&aio_nr_lock);
222 	}
223 }
224 
225 /* __put_ioctx
226  *	Called when the last user of an aio context has gone away,
227  *	and the struct needs to be freed.
228  */
229 static void __put_ioctx(struct kioctx *ctx)
230 {
231 	BUG_ON(ctx->reqs_active);
232 
233 	cancel_delayed_work(&ctx->wq);
234 	cancel_work_sync(&ctx->wq.work);
235 	aio_free_ring(ctx);
236 	mmdrop(ctx->mm);
237 	ctx->mm = NULL;
238 	pr_debug("__put_ioctx: freeing %p\n", ctx);
239 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
240 }
241 
242 #define get_ioctx(kioctx) do {						\
243 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
244 	atomic_inc(&(kioctx)->users);					\
245 } while (0)
246 #define put_ioctx(kioctx) do {						\
247 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
248 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
249 		__put_ioctx(kioctx);					\
250 } while (0)
251 
252 /* ioctx_alloc
253  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
254  */
255 static struct kioctx *ioctx_alloc(unsigned nr_events)
256 {
257 	struct mm_struct *mm;
258 	struct kioctx *ctx;
259 	int did_sync = 0;
260 
261 	/* Prevent overflows */
262 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
263 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
264 		pr_debug("ENOMEM: nr_events too high\n");
265 		return ERR_PTR(-EINVAL);
266 	}
267 
268 	if ((unsigned long)nr_events > aio_max_nr)
269 		return ERR_PTR(-EAGAIN);
270 
271 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
272 	if (!ctx)
273 		return ERR_PTR(-ENOMEM);
274 
275 	ctx->max_reqs = nr_events;
276 	mm = ctx->mm = current->mm;
277 	atomic_inc(&mm->mm_count);
278 
279 	atomic_set(&ctx->users, 1);
280 	spin_lock_init(&ctx->ctx_lock);
281 	spin_lock_init(&ctx->ring_info.ring_lock);
282 	init_waitqueue_head(&ctx->wait);
283 
284 	INIT_LIST_HEAD(&ctx->active_reqs);
285 	INIT_LIST_HEAD(&ctx->run_list);
286 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
287 
288 	if (aio_setup_ring(ctx) < 0)
289 		goto out_freectx;
290 
291 	/* limit the number of system wide aios */
292 	do {
293 		spin_lock_bh(&aio_nr_lock);
294 		if (aio_nr + nr_events > aio_max_nr ||
295 		    aio_nr + nr_events < aio_nr)
296 			ctx->max_reqs = 0;
297 		else
298 			aio_nr += ctx->max_reqs;
299 		spin_unlock_bh(&aio_nr_lock);
300 		if (ctx->max_reqs || did_sync)
301 			break;
302 
303 		/* wait for rcu callbacks to have completed before giving up */
304 		synchronize_rcu();
305 		did_sync = 1;
306 		ctx->max_reqs = nr_events;
307 	} while (1);
308 
309 	if (ctx->max_reqs == 0)
310 		goto out_cleanup;
311 
312 	/* now link into global list. */
313 	spin_lock(&mm->ioctx_lock);
314 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
315 	spin_unlock(&mm->ioctx_lock);
316 
317 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
318 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
319 	return ctx;
320 
321 out_cleanup:
322 	__put_ioctx(ctx);
323 	return ERR_PTR(-EAGAIN);
324 
325 out_freectx:
326 	mmdrop(mm);
327 	kmem_cache_free(kioctx_cachep, ctx);
328 	ctx = ERR_PTR(-ENOMEM);
329 
330 	dprintk("aio: error allocating ioctx %p\n", ctx);
331 	return ctx;
332 }
333 
334 /* aio_cancel_all
335  *	Cancels all outstanding aio requests on an aio context.  Used
336  *	when the processes owning a context have all exited to encourage
337  *	the rapid destruction of the kioctx.
338  */
339 static void aio_cancel_all(struct kioctx *ctx)
340 {
341 	int (*cancel)(struct kiocb *, struct io_event *);
342 	struct io_event res;
343 	spin_lock_irq(&ctx->ctx_lock);
344 	ctx->dead = 1;
345 	while (!list_empty(&ctx->active_reqs)) {
346 		struct list_head *pos = ctx->active_reqs.next;
347 		struct kiocb *iocb = list_kiocb(pos);
348 		list_del_init(&iocb->ki_list);
349 		cancel = iocb->ki_cancel;
350 		kiocbSetCancelled(iocb);
351 		if (cancel) {
352 			iocb->ki_users++;
353 			spin_unlock_irq(&ctx->ctx_lock);
354 			cancel(iocb, &res);
355 			spin_lock_irq(&ctx->ctx_lock);
356 		}
357 	}
358 	spin_unlock_irq(&ctx->ctx_lock);
359 }
360 
361 static void wait_for_all_aios(struct kioctx *ctx)
362 {
363 	struct task_struct *tsk = current;
364 	DECLARE_WAITQUEUE(wait, tsk);
365 
366 	spin_lock_irq(&ctx->ctx_lock);
367 	if (!ctx->reqs_active)
368 		goto out;
369 
370 	add_wait_queue(&ctx->wait, &wait);
371 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
372 	while (ctx->reqs_active) {
373 		spin_unlock_irq(&ctx->ctx_lock);
374 		io_schedule();
375 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
376 		spin_lock_irq(&ctx->ctx_lock);
377 	}
378 	__set_task_state(tsk, TASK_RUNNING);
379 	remove_wait_queue(&ctx->wait, &wait);
380 
381 out:
382 	spin_unlock_irq(&ctx->ctx_lock);
383 }
384 
385 /* wait_on_sync_kiocb:
386  *	Waits on the given sync kiocb to complete.
387  */
388 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
389 {
390 	while (iocb->ki_users) {
391 		set_current_state(TASK_UNINTERRUPTIBLE);
392 		if (!iocb->ki_users)
393 			break;
394 		io_schedule();
395 	}
396 	__set_current_state(TASK_RUNNING);
397 	return iocb->ki_user_data;
398 }
399 EXPORT_SYMBOL(wait_on_sync_kiocb);
400 
401 /* exit_aio: called when the last user of mm goes away.  At this point,
402  * there is no way for any new requests to be submited or any of the
403  * io_* syscalls to be called on the context.  However, there may be
404  * outstanding requests which hold references to the context; as they
405  * go away, they will call put_ioctx and release any pinned memory
406  * associated with the request (held via struct page * references).
407  */
408 void exit_aio(struct mm_struct *mm)
409 {
410 	struct kioctx *ctx;
411 
412 	while (!hlist_empty(&mm->ioctx_list)) {
413 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
414 		hlist_del_rcu(&ctx->list);
415 
416 		aio_cancel_all(ctx);
417 
418 		wait_for_all_aios(ctx);
419 		/*
420 		 * Ensure we don't leave the ctx on the aio_wq
421 		 */
422 		cancel_work_sync(&ctx->wq.work);
423 
424 		if (1 != atomic_read(&ctx->users))
425 			printk(KERN_DEBUG
426 				"exit_aio:ioctx still alive: %d %d %d\n",
427 				atomic_read(&ctx->users), ctx->dead,
428 				ctx->reqs_active);
429 		put_ioctx(ctx);
430 	}
431 }
432 
433 /* aio_get_req
434  *	Allocate a slot for an aio request.  Increments the users count
435  * of the kioctx so that the kioctx stays around until all requests are
436  * complete.  Returns NULL if no requests are free.
437  *
438  * Returns with kiocb->users set to 2.  The io submit code path holds
439  * an extra reference while submitting the i/o.
440  * This prevents races between the aio code path referencing the
441  * req (after submitting it) and aio_complete() freeing the req.
442  */
443 static struct kiocb *__aio_get_req(struct kioctx *ctx)
444 {
445 	struct kiocb *req = NULL;
446 	struct aio_ring *ring;
447 	int okay = 0;
448 
449 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
450 	if (unlikely(!req))
451 		return NULL;
452 
453 	req->ki_flags = 0;
454 	req->ki_users = 2;
455 	req->ki_key = 0;
456 	req->ki_ctx = ctx;
457 	req->ki_cancel = NULL;
458 	req->ki_retry = NULL;
459 	req->ki_dtor = NULL;
460 	req->private = NULL;
461 	req->ki_iovec = NULL;
462 	INIT_LIST_HEAD(&req->ki_run_list);
463 	req->ki_eventfd = NULL;
464 
465 	/* Check if the completion queue has enough free space to
466 	 * accept an event from this io.
467 	 */
468 	spin_lock_irq(&ctx->ctx_lock);
469 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
470 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
471 		list_add(&req->ki_list, &ctx->active_reqs);
472 		ctx->reqs_active++;
473 		okay = 1;
474 	}
475 	kunmap_atomic(ring, KM_USER0);
476 	spin_unlock_irq(&ctx->ctx_lock);
477 
478 	if (!okay) {
479 		kmem_cache_free(kiocb_cachep, req);
480 		req = NULL;
481 	}
482 
483 	return req;
484 }
485 
486 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
487 {
488 	struct kiocb *req;
489 	/* Handle a potential starvation case -- should be exceedingly rare as
490 	 * requests will be stuck on fput_head only if the aio_fput_routine is
491 	 * delayed and the requests were the last user of the struct file.
492 	 */
493 	req = __aio_get_req(ctx);
494 	if (unlikely(NULL == req)) {
495 		aio_fput_routine(NULL);
496 		req = __aio_get_req(ctx);
497 	}
498 	return req;
499 }
500 
501 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
502 {
503 	assert_spin_locked(&ctx->ctx_lock);
504 
505 	if (req->ki_eventfd != NULL)
506 		eventfd_ctx_put(req->ki_eventfd);
507 	if (req->ki_dtor)
508 		req->ki_dtor(req);
509 	if (req->ki_iovec != &req->ki_inline_vec)
510 		kfree(req->ki_iovec);
511 	kmem_cache_free(kiocb_cachep, req);
512 	ctx->reqs_active--;
513 
514 	if (unlikely(!ctx->reqs_active && ctx->dead))
515 		wake_up(&ctx->wait);
516 }
517 
518 static void aio_fput_routine(struct work_struct *data)
519 {
520 	spin_lock_irq(&fput_lock);
521 	while (likely(!list_empty(&fput_head))) {
522 		struct kiocb *req = list_kiocb(fput_head.next);
523 		struct kioctx *ctx = req->ki_ctx;
524 
525 		list_del(&req->ki_list);
526 		spin_unlock_irq(&fput_lock);
527 
528 		/* Complete the fput(s) */
529 		if (req->ki_filp != NULL)
530 			fput(req->ki_filp);
531 
532 		/* Link the iocb into the context's free list */
533 		spin_lock_irq(&ctx->ctx_lock);
534 		really_put_req(ctx, req);
535 		spin_unlock_irq(&ctx->ctx_lock);
536 
537 		put_ioctx(ctx);
538 		spin_lock_irq(&fput_lock);
539 	}
540 	spin_unlock_irq(&fput_lock);
541 }
542 
543 /* __aio_put_req
544  *	Returns true if this put was the last user of the request.
545  */
546 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
547 {
548 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
549 		req, atomic_long_read(&req->ki_filp->f_count));
550 
551 	assert_spin_locked(&ctx->ctx_lock);
552 
553 	req->ki_users--;
554 	BUG_ON(req->ki_users < 0);
555 	if (likely(req->ki_users))
556 		return 0;
557 	list_del(&req->ki_list);		/* remove from active_reqs */
558 	req->ki_cancel = NULL;
559 	req->ki_retry = NULL;
560 
561 	/*
562 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
563 	 * schedule work in case it is not final fput() time. In normal cases,
564 	 * we would not be holding the last reference to the file*, so
565 	 * this function will be executed w/out any aio kthread wakeup.
566 	 */
567 	if (unlikely(!fput_atomic(req->ki_filp))) {
568 		get_ioctx(ctx);
569 		spin_lock(&fput_lock);
570 		list_add(&req->ki_list, &fput_head);
571 		spin_unlock(&fput_lock);
572 		queue_work(aio_wq, &fput_work);
573 	} else {
574 		req->ki_filp = NULL;
575 		really_put_req(ctx, req);
576 	}
577 	return 1;
578 }
579 
580 /* aio_put_req
581  *	Returns true if this put was the last user of the kiocb,
582  *	false if the request is still in use.
583  */
584 int aio_put_req(struct kiocb *req)
585 {
586 	struct kioctx *ctx = req->ki_ctx;
587 	int ret;
588 	spin_lock_irq(&ctx->ctx_lock);
589 	ret = __aio_put_req(ctx, req);
590 	spin_unlock_irq(&ctx->ctx_lock);
591 	return ret;
592 }
593 EXPORT_SYMBOL(aio_put_req);
594 
595 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
596 {
597 	struct mm_struct *mm = current->mm;
598 	struct kioctx *ctx, *ret = NULL;
599 	struct hlist_node *n;
600 
601 	rcu_read_lock();
602 
603 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
604 		if (ctx->user_id == ctx_id && !ctx->dead) {
605 			get_ioctx(ctx);
606 			ret = ctx;
607 			break;
608 		}
609 	}
610 
611 	rcu_read_unlock();
612 	return ret;
613 }
614 
615 /*
616  * Queue up a kiocb to be retried. Assumes that the kiocb
617  * has already been marked as kicked, and places it on
618  * the retry run list for the corresponding ioctx, if it
619  * isn't already queued. Returns 1 if it actually queued
620  * the kiocb (to tell the caller to activate the work
621  * queue to process it), or 0, if it found that it was
622  * already queued.
623  */
624 static inline int __queue_kicked_iocb(struct kiocb *iocb)
625 {
626 	struct kioctx *ctx = iocb->ki_ctx;
627 
628 	assert_spin_locked(&ctx->ctx_lock);
629 
630 	if (list_empty(&iocb->ki_run_list)) {
631 		list_add_tail(&iocb->ki_run_list,
632 			&ctx->run_list);
633 		return 1;
634 	}
635 	return 0;
636 }
637 
638 /* aio_run_iocb
639  *	This is the core aio execution routine. It is
640  *	invoked both for initial i/o submission and
641  *	subsequent retries via the aio_kick_handler.
642  *	Expects to be invoked with iocb->ki_ctx->lock
643  *	already held. The lock is released and reacquired
644  *	as needed during processing.
645  *
646  * Calls the iocb retry method (already setup for the
647  * iocb on initial submission) for operation specific
648  * handling, but takes care of most of common retry
649  * execution details for a given iocb. The retry method
650  * needs to be non-blocking as far as possible, to avoid
651  * holding up other iocbs waiting to be serviced by the
652  * retry kernel thread.
653  *
654  * The trickier parts in this code have to do with
655  * ensuring that only one retry instance is in progress
656  * for a given iocb at any time. Providing that guarantee
657  * simplifies the coding of individual aio operations as
658  * it avoids various potential races.
659  */
660 static ssize_t aio_run_iocb(struct kiocb *iocb)
661 {
662 	struct kioctx	*ctx = iocb->ki_ctx;
663 	ssize_t (*retry)(struct kiocb *);
664 	ssize_t ret;
665 
666 	if (!(retry = iocb->ki_retry)) {
667 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
668 		return 0;
669 	}
670 
671 	/*
672 	 * We don't want the next retry iteration for this
673 	 * operation to start until this one has returned and
674 	 * updated the iocb state. However, wait_queue functions
675 	 * can trigger a kick_iocb from interrupt context in the
676 	 * meantime, indicating that data is available for the next
677 	 * iteration. We want to remember that and enable the
678 	 * next retry iteration _after_ we are through with
679 	 * this one.
680 	 *
681 	 * So, in order to be able to register a "kick", but
682 	 * prevent it from being queued now, we clear the kick
683 	 * flag, but make the kick code *think* that the iocb is
684 	 * still on the run list until we are actually done.
685 	 * When we are done with this iteration, we check if
686 	 * the iocb was kicked in the meantime and if so, queue
687 	 * it up afresh.
688 	 */
689 
690 	kiocbClearKicked(iocb);
691 
692 	/*
693 	 * This is so that aio_complete knows it doesn't need to
694 	 * pull the iocb off the run list (We can't just call
695 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
696 	 * queue this on the run list yet)
697 	 */
698 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
699 	spin_unlock_irq(&ctx->ctx_lock);
700 
701 	/* Quit retrying if the i/o has been cancelled */
702 	if (kiocbIsCancelled(iocb)) {
703 		ret = -EINTR;
704 		aio_complete(iocb, ret, 0);
705 		/* must not access the iocb after this */
706 		goto out;
707 	}
708 
709 	/*
710 	 * Now we are all set to call the retry method in async
711 	 * context.
712 	 */
713 	ret = retry(iocb);
714 
715 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
716 		/*
717 		 * There's no easy way to restart the syscall since other AIO's
718 		 * may be already running. Just fail this IO with EINTR.
719 		 */
720 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
721 			     ret == -ERESTARTNOHAND || ret == -ERESTART_RESTARTBLOCK))
722 			ret = -EINTR;
723 		aio_complete(iocb, ret, 0);
724 	}
725 out:
726 	spin_lock_irq(&ctx->ctx_lock);
727 
728 	if (-EIOCBRETRY == ret) {
729 		/*
730 		 * OK, now that we are done with this iteration
731 		 * and know that there is more left to go,
732 		 * this is where we let go so that a subsequent
733 		 * "kick" can start the next iteration
734 		 */
735 
736 		/* will make __queue_kicked_iocb succeed from here on */
737 		INIT_LIST_HEAD(&iocb->ki_run_list);
738 		/* we must queue the next iteration ourselves, if it
739 		 * has already been kicked */
740 		if (kiocbIsKicked(iocb)) {
741 			__queue_kicked_iocb(iocb);
742 
743 			/*
744 			 * __queue_kicked_iocb will always return 1 here, because
745 			 * iocb->ki_run_list is empty at this point so it should
746 			 * be safe to unconditionally queue the context into the
747 			 * work queue.
748 			 */
749 			aio_queue_work(ctx);
750 		}
751 	}
752 	return ret;
753 }
754 
755 /*
756  * __aio_run_iocbs:
757  * 	Process all pending retries queued on the ioctx
758  * 	run list.
759  * Assumes it is operating within the aio issuer's mm
760  * context.
761  */
762 static int __aio_run_iocbs(struct kioctx *ctx)
763 {
764 	struct kiocb *iocb;
765 	struct list_head run_list;
766 
767 	assert_spin_locked(&ctx->ctx_lock);
768 
769 	list_replace_init(&ctx->run_list, &run_list);
770 	while (!list_empty(&run_list)) {
771 		iocb = list_entry(run_list.next, struct kiocb,
772 			ki_run_list);
773 		list_del(&iocb->ki_run_list);
774 		/*
775 		 * Hold an extra reference while retrying i/o.
776 		 */
777 		iocb->ki_users++;       /* grab extra reference */
778 		aio_run_iocb(iocb);
779 		__aio_put_req(ctx, iocb);
780  	}
781 	if (!list_empty(&ctx->run_list))
782 		return 1;
783 	return 0;
784 }
785 
786 static void aio_queue_work(struct kioctx * ctx)
787 {
788 	unsigned long timeout;
789 	/*
790 	 * if someone is waiting, get the work started right
791 	 * away, otherwise, use a longer delay
792 	 */
793 	smp_mb();
794 	if (waitqueue_active(&ctx->wait))
795 		timeout = 1;
796 	else
797 		timeout = HZ/10;
798 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
799 }
800 
801 
802 /*
803  * aio_run_iocbs:
804  * 	Process all pending retries queued on the ioctx
805  * 	run list.
806  * Assumes it is operating within the aio issuer's mm
807  * context.
808  */
809 static inline void aio_run_iocbs(struct kioctx *ctx)
810 {
811 	int requeue;
812 
813 	spin_lock_irq(&ctx->ctx_lock);
814 
815 	requeue = __aio_run_iocbs(ctx);
816 	spin_unlock_irq(&ctx->ctx_lock);
817 	if (requeue)
818 		aio_queue_work(ctx);
819 }
820 
821 /*
822  * just like aio_run_iocbs, but keeps running them until
823  * the list stays empty
824  */
825 static inline void aio_run_all_iocbs(struct kioctx *ctx)
826 {
827 	spin_lock_irq(&ctx->ctx_lock);
828 	while (__aio_run_iocbs(ctx))
829 		;
830 	spin_unlock_irq(&ctx->ctx_lock);
831 }
832 
833 /*
834  * aio_kick_handler:
835  * 	Work queue handler triggered to process pending
836  * 	retries on an ioctx. Takes on the aio issuer's
837  *	mm context before running the iocbs, so that
838  *	copy_xxx_user operates on the issuer's address
839  *      space.
840  * Run on aiod's context.
841  */
842 static void aio_kick_handler(struct work_struct *work)
843 {
844 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
845 	mm_segment_t oldfs = get_fs();
846 	struct mm_struct *mm;
847 	int requeue;
848 
849 	set_fs(USER_DS);
850 	use_mm(ctx->mm);
851 	spin_lock_irq(&ctx->ctx_lock);
852 	requeue =__aio_run_iocbs(ctx);
853 	mm = ctx->mm;
854 	spin_unlock_irq(&ctx->ctx_lock);
855  	unuse_mm(mm);
856 	set_fs(oldfs);
857 	/*
858 	 * we're in a worker thread already, don't use queue_delayed_work,
859 	 */
860 	if (requeue)
861 		queue_delayed_work(aio_wq, &ctx->wq, 0);
862 }
863 
864 
865 /*
866  * Called by kick_iocb to queue the kiocb for retry
867  * and if required activate the aio work queue to process
868  * it
869  */
870 static void try_queue_kicked_iocb(struct kiocb *iocb)
871 {
872  	struct kioctx	*ctx = iocb->ki_ctx;
873 	unsigned long flags;
874 	int run = 0;
875 
876 	spin_lock_irqsave(&ctx->ctx_lock, flags);
877 	/* set this inside the lock so that we can't race with aio_run_iocb()
878 	 * testing it and putting the iocb on the run list under the lock */
879 	if (!kiocbTryKick(iocb))
880 		run = __queue_kicked_iocb(iocb);
881 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
882 	if (run)
883 		aio_queue_work(ctx);
884 }
885 
886 /*
887  * kick_iocb:
888  *      Called typically from a wait queue callback context
889  *      to trigger a retry of the iocb.
890  *      The retry is usually executed by aio workqueue
891  *      threads (See aio_kick_handler).
892  */
893 void kick_iocb(struct kiocb *iocb)
894 {
895 	/* sync iocbs are easy: they can only ever be executing from a
896 	 * single context. */
897 	if (is_sync_kiocb(iocb)) {
898 		kiocbSetKicked(iocb);
899 	        wake_up_process(iocb->ki_obj.tsk);
900 		return;
901 	}
902 
903 	try_queue_kicked_iocb(iocb);
904 }
905 EXPORT_SYMBOL(kick_iocb);
906 
907 /* aio_complete
908  *	Called when the io request on the given iocb is complete.
909  *	Returns true if this is the last user of the request.  The
910  *	only other user of the request can be the cancellation code.
911  */
912 int aio_complete(struct kiocb *iocb, long res, long res2)
913 {
914 	struct kioctx	*ctx = iocb->ki_ctx;
915 	struct aio_ring_info	*info;
916 	struct aio_ring	*ring;
917 	struct io_event	*event;
918 	unsigned long	flags;
919 	unsigned long	tail;
920 	int		ret;
921 
922 	/*
923 	 * Special case handling for sync iocbs:
924 	 *  - events go directly into the iocb for fast handling
925 	 *  - the sync task with the iocb in its stack holds the single iocb
926 	 *    ref, no other paths have a way to get another ref
927 	 *  - the sync task helpfully left a reference to itself in the iocb
928 	 */
929 	if (is_sync_kiocb(iocb)) {
930 		BUG_ON(iocb->ki_users != 1);
931 		iocb->ki_user_data = res;
932 		iocb->ki_users = 0;
933 		wake_up_process(iocb->ki_obj.tsk);
934 		return 1;
935 	}
936 
937 	info = &ctx->ring_info;
938 
939 	/* add a completion event to the ring buffer.
940 	 * must be done holding ctx->ctx_lock to prevent
941 	 * other code from messing with the tail
942 	 * pointer since we might be called from irq
943 	 * context.
944 	 */
945 	spin_lock_irqsave(&ctx->ctx_lock, flags);
946 
947 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
948 		list_del_init(&iocb->ki_run_list);
949 
950 	/*
951 	 * cancelled requests don't get events, userland was given one
952 	 * when the event got cancelled.
953 	 */
954 	if (kiocbIsCancelled(iocb))
955 		goto put_rq;
956 
957 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
958 
959 	tail = info->tail;
960 	event = aio_ring_event(info, tail, KM_IRQ0);
961 	if (++tail >= info->nr)
962 		tail = 0;
963 
964 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
965 	event->data = iocb->ki_user_data;
966 	event->res = res;
967 	event->res2 = res2;
968 
969 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
970 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
971 		res, res2);
972 
973 	/* after flagging the request as done, we
974 	 * must never even look at it again
975 	 */
976 	smp_wmb();	/* make event visible before updating tail */
977 
978 	info->tail = tail;
979 	ring->tail = tail;
980 
981 	put_aio_ring_event(event, KM_IRQ0);
982 	kunmap_atomic(ring, KM_IRQ1);
983 
984 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
985 
986 	/*
987 	 * Check if the user asked us to deliver the result through an
988 	 * eventfd. The eventfd_signal() function is safe to be called
989 	 * from IRQ context.
990 	 */
991 	if (iocb->ki_eventfd != NULL)
992 		eventfd_signal(iocb->ki_eventfd, 1);
993 
994 put_rq:
995 	/* everything turned out well, dispose of the aiocb. */
996 	ret = __aio_put_req(ctx, iocb);
997 
998 	/*
999 	 * We have to order our ring_info tail store above and test
1000 	 * of the wait list below outside the wait lock.  This is
1001 	 * like in wake_up_bit() where clearing a bit has to be
1002 	 * ordered with the unlocked test.
1003 	 */
1004 	smp_mb();
1005 
1006 	if (waitqueue_active(&ctx->wait))
1007 		wake_up(&ctx->wait);
1008 
1009 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1010 	return ret;
1011 }
1012 EXPORT_SYMBOL(aio_complete);
1013 
1014 /* aio_read_evt
1015  *	Pull an event off of the ioctx's event ring.  Returns the number of
1016  *	events fetched (0 or 1 ;-)
1017  *	FIXME: make this use cmpxchg.
1018  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1019  */
1020 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1021 {
1022 	struct aio_ring_info *info = &ioctx->ring_info;
1023 	struct aio_ring *ring;
1024 	unsigned long head;
1025 	int ret = 0;
1026 
1027 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1028 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1029 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1030 		 (unsigned long)ring->nr);
1031 
1032 	if (ring->head == ring->tail)
1033 		goto out;
1034 
1035 	spin_lock(&info->ring_lock);
1036 
1037 	head = ring->head % info->nr;
1038 	if (head != ring->tail) {
1039 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1040 		*ent = *evp;
1041 		head = (head + 1) % info->nr;
1042 		smp_mb(); /* finish reading the event before updatng the head */
1043 		ring->head = head;
1044 		ret = 1;
1045 		put_aio_ring_event(evp, KM_USER1);
1046 	}
1047 	spin_unlock(&info->ring_lock);
1048 
1049 out:
1050 	kunmap_atomic(ring, KM_USER0);
1051 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1052 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1053 	return ret;
1054 }
1055 
1056 struct aio_timeout {
1057 	struct timer_list	timer;
1058 	int			timed_out;
1059 	struct task_struct	*p;
1060 };
1061 
1062 static void timeout_func(unsigned long data)
1063 {
1064 	struct aio_timeout *to = (struct aio_timeout *)data;
1065 
1066 	to->timed_out = 1;
1067 	wake_up_process(to->p);
1068 }
1069 
1070 static inline void init_timeout(struct aio_timeout *to)
1071 {
1072 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1073 	to->timed_out = 0;
1074 	to->p = current;
1075 }
1076 
1077 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1078 			       const struct timespec *ts)
1079 {
1080 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1081 	if (time_after(to->timer.expires, jiffies))
1082 		add_timer(&to->timer);
1083 	else
1084 		to->timed_out = 1;
1085 }
1086 
1087 static inline void clear_timeout(struct aio_timeout *to)
1088 {
1089 	del_singleshot_timer_sync(&to->timer);
1090 }
1091 
1092 static int read_events(struct kioctx *ctx,
1093 			long min_nr, long nr,
1094 			struct io_event __user *event,
1095 			struct timespec __user *timeout)
1096 {
1097 	long			start_jiffies = jiffies;
1098 	struct task_struct	*tsk = current;
1099 	DECLARE_WAITQUEUE(wait, tsk);
1100 	int			ret;
1101 	int			i = 0;
1102 	struct io_event		ent;
1103 	struct aio_timeout	to;
1104 	int			retry = 0;
1105 
1106 	/* needed to zero any padding within an entry (there shouldn't be
1107 	 * any, but C is fun!
1108 	 */
1109 	memset(&ent, 0, sizeof(ent));
1110 retry:
1111 	ret = 0;
1112 	while (likely(i < nr)) {
1113 		ret = aio_read_evt(ctx, &ent);
1114 		if (unlikely(ret <= 0))
1115 			break;
1116 
1117 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1118 			ent.data, ent.obj, ent.res, ent.res2);
1119 
1120 		/* Could we split the check in two? */
1121 		ret = -EFAULT;
1122 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1123 			dprintk("aio: lost an event due to EFAULT.\n");
1124 			break;
1125 		}
1126 		ret = 0;
1127 
1128 		/* Good, event copied to userland, update counts. */
1129 		event ++;
1130 		i ++;
1131 	}
1132 
1133 	if (min_nr <= i)
1134 		return i;
1135 	if (ret)
1136 		return ret;
1137 
1138 	/* End fast path */
1139 
1140 	/* racey check, but it gets redone */
1141 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1142 		retry = 1;
1143 		aio_run_all_iocbs(ctx);
1144 		goto retry;
1145 	}
1146 
1147 	init_timeout(&to);
1148 	if (timeout) {
1149 		struct timespec	ts;
1150 		ret = -EFAULT;
1151 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1152 			goto out;
1153 
1154 		set_timeout(start_jiffies, &to, &ts);
1155 	}
1156 
1157 	while (likely(i < nr)) {
1158 		add_wait_queue_exclusive(&ctx->wait, &wait);
1159 		do {
1160 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1161 			ret = aio_read_evt(ctx, &ent);
1162 			if (ret)
1163 				break;
1164 			if (min_nr <= i)
1165 				break;
1166 			if (unlikely(ctx->dead)) {
1167 				ret = -EINVAL;
1168 				break;
1169 			}
1170 			if (to.timed_out)	/* Only check after read evt */
1171 				break;
1172 			/* Try to only show up in io wait if there are ops
1173 			 *  in flight */
1174 			if (ctx->reqs_active)
1175 				io_schedule();
1176 			else
1177 				schedule();
1178 			if (signal_pending(tsk)) {
1179 				ret = -EINTR;
1180 				break;
1181 			}
1182 			/*ret = aio_read_evt(ctx, &ent);*/
1183 		} while (1) ;
1184 
1185 		set_task_state(tsk, TASK_RUNNING);
1186 		remove_wait_queue(&ctx->wait, &wait);
1187 
1188 		if (unlikely(ret <= 0))
1189 			break;
1190 
1191 		ret = -EFAULT;
1192 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1193 			dprintk("aio: lost an event due to EFAULT.\n");
1194 			break;
1195 		}
1196 
1197 		/* Good, event copied to userland, update counts. */
1198 		event ++;
1199 		i ++;
1200 	}
1201 
1202 	if (timeout)
1203 		clear_timeout(&to);
1204 out:
1205 	destroy_timer_on_stack(&to.timer);
1206 	return i ? i : ret;
1207 }
1208 
1209 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1210  * against races with itself via ->dead.
1211  */
1212 static void io_destroy(struct kioctx *ioctx)
1213 {
1214 	struct mm_struct *mm = current->mm;
1215 	int was_dead;
1216 
1217 	/* delete the entry from the list is someone else hasn't already */
1218 	spin_lock(&mm->ioctx_lock);
1219 	was_dead = ioctx->dead;
1220 	ioctx->dead = 1;
1221 	hlist_del_rcu(&ioctx->list);
1222 	spin_unlock(&mm->ioctx_lock);
1223 
1224 	dprintk("aio_release(%p)\n", ioctx);
1225 	if (likely(!was_dead))
1226 		put_ioctx(ioctx);	/* twice for the list */
1227 
1228 	aio_cancel_all(ioctx);
1229 	wait_for_all_aios(ioctx);
1230 
1231 	/*
1232 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1233 	 * by other CPUs at this point.  Right now, we rely on the
1234 	 * locking done by the above calls to ensure this consistency.
1235 	 */
1236 	wake_up(&ioctx->wait);
1237 	put_ioctx(ioctx);	/* once for the lookup */
1238 }
1239 
1240 /* sys_io_setup:
1241  *	Create an aio_context capable of receiving at least nr_events.
1242  *	ctxp must not point to an aio_context that already exists, and
1243  *	must be initialized to 0 prior to the call.  On successful
1244  *	creation of the aio_context, *ctxp is filled in with the resulting
1245  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1246  *	if the specified nr_events exceeds internal limits.  May fail
1247  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1248  *	of available events.  May fail with -ENOMEM if insufficient kernel
1249  *	resources are available.  May fail with -EFAULT if an invalid
1250  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1251  *	implemented.
1252  */
1253 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1254 {
1255 	struct kioctx *ioctx = NULL;
1256 	unsigned long ctx;
1257 	long ret;
1258 
1259 	ret = get_user(ctx, ctxp);
1260 	if (unlikely(ret))
1261 		goto out;
1262 
1263 	ret = -EINVAL;
1264 	if (unlikely(ctx || nr_events == 0)) {
1265 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1266 		         ctx, nr_events);
1267 		goto out;
1268 	}
1269 
1270 	ioctx = ioctx_alloc(nr_events);
1271 	ret = PTR_ERR(ioctx);
1272 	if (!IS_ERR(ioctx)) {
1273 		ret = put_user(ioctx->user_id, ctxp);
1274 		if (!ret)
1275 			return 0;
1276 
1277 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1278 		io_destroy(ioctx);
1279 	}
1280 
1281 out:
1282 	return ret;
1283 }
1284 
1285 /* sys_io_destroy:
1286  *	Destroy the aio_context specified.  May cancel any outstanding
1287  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1288  *	implemented.  May fail with -EINVAL if the context pointed to
1289  *	is invalid.
1290  */
1291 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1292 {
1293 	struct kioctx *ioctx = lookup_ioctx(ctx);
1294 	if (likely(NULL != ioctx)) {
1295 		io_destroy(ioctx);
1296 		return 0;
1297 	}
1298 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1299 	return -EINVAL;
1300 }
1301 
1302 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1303 {
1304 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1305 
1306 	BUG_ON(ret <= 0);
1307 
1308 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1309 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1310 		iov->iov_base += this;
1311 		iov->iov_len -= this;
1312 		iocb->ki_left -= this;
1313 		ret -= this;
1314 		if (iov->iov_len == 0) {
1315 			iocb->ki_cur_seg++;
1316 			iov++;
1317 		}
1318 	}
1319 
1320 	/* the caller should not have done more io than what fit in
1321 	 * the remaining iovecs */
1322 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1323 }
1324 
1325 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1326 {
1327 	struct file *file = iocb->ki_filp;
1328 	struct address_space *mapping = file->f_mapping;
1329 	struct inode *inode = mapping->host;
1330 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1331 			 unsigned long, loff_t);
1332 	ssize_t ret = 0;
1333 	unsigned short opcode;
1334 
1335 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1336 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1337 		rw_op = file->f_op->aio_read;
1338 		opcode = IOCB_CMD_PREADV;
1339 	} else {
1340 		rw_op = file->f_op->aio_write;
1341 		opcode = IOCB_CMD_PWRITEV;
1342 	}
1343 
1344 	/* This matches the pread()/pwrite() logic */
1345 	if (iocb->ki_pos < 0)
1346 		return -EINVAL;
1347 
1348 	do {
1349 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1350 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1351 			    iocb->ki_pos);
1352 		if (ret > 0)
1353 			aio_advance_iovec(iocb, ret);
1354 
1355 	/* retry all partial writes.  retry partial reads as long as its a
1356 	 * regular file. */
1357 	} while (ret > 0 && iocb->ki_left > 0 &&
1358 		 (opcode == IOCB_CMD_PWRITEV ||
1359 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1360 
1361 	/* This means we must have transferred all that we could */
1362 	/* No need to retry anymore */
1363 	if ((ret == 0) || (iocb->ki_left == 0))
1364 		ret = iocb->ki_nbytes - iocb->ki_left;
1365 
1366 	/* If we managed to write some out we return that, rather than
1367 	 * the eventual error. */
1368 	if (opcode == IOCB_CMD_PWRITEV
1369 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1370 	    && iocb->ki_nbytes - iocb->ki_left)
1371 		ret = iocb->ki_nbytes - iocb->ki_left;
1372 
1373 	return ret;
1374 }
1375 
1376 static ssize_t aio_fdsync(struct kiocb *iocb)
1377 {
1378 	struct file *file = iocb->ki_filp;
1379 	ssize_t ret = -EINVAL;
1380 
1381 	if (file->f_op->aio_fsync)
1382 		ret = file->f_op->aio_fsync(iocb, 1);
1383 	return ret;
1384 }
1385 
1386 static ssize_t aio_fsync(struct kiocb *iocb)
1387 {
1388 	struct file *file = iocb->ki_filp;
1389 	ssize_t ret = -EINVAL;
1390 
1391 	if (file->f_op->aio_fsync)
1392 		ret = file->f_op->aio_fsync(iocb, 0);
1393 	return ret;
1394 }
1395 
1396 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb, bool compat)
1397 {
1398 	ssize_t ret;
1399 
1400 #ifdef CONFIG_COMPAT
1401 	if (compat)
1402 		ret = compat_rw_copy_check_uvector(type,
1403 				(struct compat_iovec __user *)kiocb->ki_buf,
1404 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1405 				&kiocb->ki_iovec);
1406 	else
1407 #endif
1408 		ret = rw_copy_check_uvector(type,
1409 				(struct iovec __user *)kiocb->ki_buf,
1410 				kiocb->ki_nbytes, 1, &kiocb->ki_inline_vec,
1411 				&kiocb->ki_iovec);
1412 	if (ret < 0)
1413 		goto out;
1414 
1415 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1416 	kiocb->ki_cur_seg = 0;
1417 	/* ki_nbytes/left now reflect bytes instead of segs */
1418 	kiocb->ki_nbytes = ret;
1419 	kiocb->ki_left = ret;
1420 
1421 	ret = 0;
1422 out:
1423 	return ret;
1424 }
1425 
1426 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1427 {
1428 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1429 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1430 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1431 	kiocb->ki_nr_segs = 1;
1432 	kiocb->ki_cur_seg = 0;
1433 	return 0;
1434 }
1435 
1436 /*
1437  * aio_setup_iocb:
1438  *	Performs the initial checks and aio retry method
1439  *	setup for the kiocb at the time of io submission.
1440  */
1441 static ssize_t aio_setup_iocb(struct kiocb *kiocb, bool compat)
1442 {
1443 	struct file *file = kiocb->ki_filp;
1444 	ssize_t ret = 0;
1445 
1446 	switch (kiocb->ki_opcode) {
1447 	case IOCB_CMD_PREAD:
1448 		ret = -EBADF;
1449 		if (unlikely(!(file->f_mode & FMODE_READ)))
1450 			break;
1451 		ret = -EFAULT;
1452 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1453 			kiocb->ki_left)))
1454 			break;
1455 		ret = security_file_permission(file, MAY_READ);
1456 		if (unlikely(ret))
1457 			break;
1458 		ret = aio_setup_single_vector(kiocb);
1459 		if (ret)
1460 			break;
1461 		ret = -EINVAL;
1462 		if (file->f_op->aio_read)
1463 			kiocb->ki_retry = aio_rw_vect_retry;
1464 		break;
1465 	case IOCB_CMD_PWRITE:
1466 		ret = -EBADF;
1467 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1468 			break;
1469 		ret = -EFAULT;
1470 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1471 			kiocb->ki_left)))
1472 			break;
1473 		ret = security_file_permission(file, MAY_WRITE);
1474 		if (unlikely(ret))
1475 			break;
1476 		ret = aio_setup_single_vector(kiocb);
1477 		if (ret)
1478 			break;
1479 		ret = -EINVAL;
1480 		if (file->f_op->aio_write)
1481 			kiocb->ki_retry = aio_rw_vect_retry;
1482 		break;
1483 	case IOCB_CMD_PREADV:
1484 		ret = -EBADF;
1485 		if (unlikely(!(file->f_mode & FMODE_READ)))
1486 			break;
1487 		ret = security_file_permission(file, MAY_READ);
1488 		if (unlikely(ret))
1489 			break;
1490 		ret = aio_setup_vectored_rw(READ, kiocb, compat);
1491 		if (ret)
1492 			break;
1493 		ret = -EINVAL;
1494 		if (file->f_op->aio_read)
1495 			kiocb->ki_retry = aio_rw_vect_retry;
1496 		break;
1497 	case IOCB_CMD_PWRITEV:
1498 		ret = -EBADF;
1499 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1500 			break;
1501 		ret = security_file_permission(file, MAY_WRITE);
1502 		if (unlikely(ret))
1503 			break;
1504 		ret = aio_setup_vectored_rw(WRITE, kiocb, compat);
1505 		if (ret)
1506 			break;
1507 		ret = -EINVAL;
1508 		if (file->f_op->aio_write)
1509 			kiocb->ki_retry = aio_rw_vect_retry;
1510 		break;
1511 	case IOCB_CMD_FDSYNC:
1512 		ret = -EINVAL;
1513 		if (file->f_op->aio_fsync)
1514 			kiocb->ki_retry = aio_fdsync;
1515 		break;
1516 	case IOCB_CMD_FSYNC:
1517 		ret = -EINVAL;
1518 		if (file->f_op->aio_fsync)
1519 			kiocb->ki_retry = aio_fsync;
1520 		break;
1521 	default:
1522 		dprintk("EINVAL: io_submit: no operation provided\n");
1523 		ret = -EINVAL;
1524 	}
1525 
1526 	if (!kiocb->ki_retry)
1527 		return ret;
1528 
1529 	return 0;
1530 }
1531 
1532 static void aio_batch_add(struct address_space *mapping,
1533 			  struct hlist_head *batch_hash)
1534 {
1535 	struct aio_batch_entry *abe;
1536 	struct hlist_node *pos;
1537 	unsigned bucket;
1538 
1539 	bucket = hash_ptr(mapping, AIO_BATCH_HASH_BITS);
1540 	hlist_for_each_entry(abe, pos, &batch_hash[bucket], list) {
1541 		if (abe->mapping == mapping)
1542 			return;
1543 	}
1544 
1545 	abe = mempool_alloc(abe_pool, GFP_KERNEL);
1546 	BUG_ON(!igrab(mapping->host));
1547 	abe->mapping = mapping;
1548 	hlist_add_head(&abe->list, &batch_hash[bucket]);
1549 	return;
1550 }
1551 
1552 static void aio_batch_free(struct hlist_head *batch_hash)
1553 {
1554 	struct aio_batch_entry *abe;
1555 	struct hlist_node *pos, *n;
1556 	int i;
1557 
1558 	for (i = 0; i < AIO_BATCH_HASH_SIZE; i++) {
1559 		hlist_for_each_entry_safe(abe, pos, n, &batch_hash[i], list) {
1560 			blk_run_address_space(abe->mapping);
1561 			iput(abe->mapping->host);
1562 			hlist_del(&abe->list);
1563 			mempool_free(abe, abe_pool);
1564 		}
1565 	}
1566 }
1567 
1568 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1569 			 struct iocb *iocb, struct hlist_head *batch_hash,
1570 			 bool compat)
1571 {
1572 	struct kiocb *req;
1573 	struct file *file;
1574 	ssize_t ret;
1575 
1576 	/* enforce forwards compatibility on users */
1577 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1578 		pr_debug("EINVAL: io_submit: reserve field set\n");
1579 		return -EINVAL;
1580 	}
1581 
1582 	/* prevent overflows */
1583 	if (unlikely(
1584 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1585 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1586 	    ((ssize_t)iocb->aio_nbytes < 0)
1587 	   )) {
1588 		pr_debug("EINVAL: io_submit: overflow check\n");
1589 		return -EINVAL;
1590 	}
1591 
1592 	file = fget(iocb->aio_fildes);
1593 	if (unlikely(!file))
1594 		return -EBADF;
1595 
1596 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1597 	if (unlikely(!req)) {
1598 		fput(file);
1599 		return -EAGAIN;
1600 	}
1601 	req->ki_filp = file;
1602 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1603 		/*
1604 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1605 		 * instance of the file* now. The file descriptor must be
1606 		 * an eventfd() fd, and will be signaled for each completed
1607 		 * event using the eventfd_signal() function.
1608 		 */
1609 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1610 		if (IS_ERR(req->ki_eventfd)) {
1611 			ret = PTR_ERR(req->ki_eventfd);
1612 			req->ki_eventfd = NULL;
1613 			goto out_put_req;
1614 		}
1615 	}
1616 
1617 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1618 	if (unlikely(ret)) {
1619 		dprintk("EFAULT: aio_key\n");
1620 		goto out_put_req;
1621 	}
1622 
1623 	req->ki_obj.user = user_iocb;
1624 	req->ki_user_data = iocb->aio_data;
1625 	req->ki_pos = iocb->aio_offset;
1626 
1627 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1628 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1629 	req->ki_opcode = iocb->aio_lio_opcode;
1630 
1631 	ret = aio_setup_iocb(req, compat);
1632 
1633 	if (ret)
1634 		goto out_put_req;
1635 
1636 	spin_lock_irq(&ctx->ctx_lock);
1637 	aio_run_iocb(req);
1638 	if (!list_empty(&ctx->run_list)) {
1639 		/* drain the run list */
1640 		while (__aio_run_iocbs(ctx))
1641 			;
1642 	}
1643 	spin_unlock_irq(&ctx->ctx_lock);
1644 	if (req->ki_opcode == IOCB_CMD_PREAD ||
1645 	    req->ki_opcode == IOCB_CMD_PREADV ||
1646 	    req->ki_opcode == IOCB_CMD_PWRITE ||
1647 	    req->ki_opcode == IOCB_CMD_PWRITEV)
1648 		aio_batch_add(file->f_mapping, batch_hash);
1649 
1650 	aio_put_req(req);	/* drop extra ref to req */
1651 	return 0;
1652 
1653 out_put_req:
1654 	aio_put_req(req);	/* drop extra ref to req */
1655 	aio_put_req(req);	/* drop i/o ref to req */
1656 	return ret;
1657 }
1658 
1659 long do_io_submit(aio_context_t ctx_id, long nr,
1660 		  struct iocb __user *__user *iocbpp, bool compat)
1661 {
1662 	struct kioctx *ctx;
1663 	long ret = 0;
1664 	int i;
1665 	struct hlist_head batch_hash[AIO_BATCH_HASH_SIZE] = { { 0, }, };
1666 
1667 	if (unlikely(nr < 0))
1668 		return -EINVAL;
1669 
1670 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1671 		nr = LONG_MAX/sizeof(*iocbpp);
1672 
1673 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1674 		return -EFAULT;
1675 
1676 	ctx = lookup_ioctx(ctx_id);
1677 	if (unlikely(!ctx)) {
1678 		pr_debug("EINVAL: io_submit: invalid context id\n");
1679 		return -EINVAL;
1680 	}
1681 
1682 	/*
1683 	 * AKPM: should this return a partial result if some of the IOs were
1684 	 * successfully submitted?
1685 	 */
1686 	for (i=0; i<nr; i++) {
1687 		struct iocb __user *user_iocb;
1688 		struct iocb tmp;
1689 
1690 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1691 			ret = -EFAULT;
1692 			break;
1693 		}
1694 
1695 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1696 			ret = -EFAULT;
1697 			break;
1698 		}
1699 
1700 		ret = io_submit_one(ctx, user_iocb, &tmp, batch_hash, compat);
1701 		if (ret)
1702 			break;
1703 	}
1704 	aio_batch_free(batch_hash);
1705 
1706 	put_ioctx(ctx);
1707 	return i ? i : ret;
1708 }
1709 
1710 /* sys_io_submit:
1711  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1712  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1713  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1714  *	*iocbpp[0] is not properly initialized, if the operation specified
1715  *	is invalid for the file descriptor in the iocb.  May fail with
1716  *	-EFAULT if any of the data structures point to invalid data.  May
1717  *	fail with -EBADF if the file descriptor specified in the first
1718  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1719  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1720  *	fail with -ENOSYS if not implemented.
1721  */
1722 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1723 		struct iocb __user * __user *, iocbpp)
1724 {
1725 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1726 }
1727 
1728 /* lookup_kiocb
1729  *	Finds a given iocb for cancellation.
1730  */
1731 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1732 				  u32 key)
1733 {
1734 	struct list_head *pos;
1735 
1736 	assert_spin_locked(&ctx->ctx_lock);
1737 
1738 	/* TODO: use a hash or array, this sucks. */
1739 	list_for_each(pos, &ctx->active_reqs) {
1740 		struct kiocb *kiocb = list_kiocb(pos);
1741 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1742 			return kiocb;
1743 	}
1744 	return NULL;
1745 }
1746 
1747 /* sys_io_cancel:
1748  *	Attempts to cancel an iocb previously passed to io_submit.  If
1749  *	the operation is successfully cancelled, the resulting event is
1750  *	copied into the memory pointed to by result without being placed
1751  *	into the completion queue and 0 is returned.  May fail with
1752  *	-EFAULT if any of the data structures pointed to are invalid.
1753  *	May fail with -EINVAL if aio_context specified by ctx_id is
1754  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1755  *	cancelled.  Will fail with -ENOSYS if not implemented.
1756  */
1757 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1758 		struct io_event __user *, result)
1759 {
1760 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1761 	struct kioctx *ctx;
1762 	struct kiocb *kiocb;
1763 	u32 key;
1764 	int ret;
1765 
1766 	ret = get_user(key, &iocb->aio_key);
1767 	if (unlikely(ret))
1768 		return -EFAULT;
1769 
1770 	ctx = lookup_ioctx(ctx_id);
1771 	if (unlikely(!ctx))
1772 		return -EINVAL;
1773 
1774 	spin_lock_irq(&ctx->ctx_lock);
1775 	ret = -EAGAIN;
1776 	kiocb = lookup_kiocb(ctx, iocb, key);
1777 	if (kiocb && kiocb->ki_cancel) {
1778 		cancel = kiocb->ki_cancel;
1779 		kiocb->ki_users ++;
1780 		kiocbSetCancelled(kiocb);
1781 	} else
1782 		cancel = NULL;
1783 	spin_unlock_irq(&ctx->ctx_lock);
1784 
1785 	if (NULL != cancel) {
1786 		struct io_event tmp;
1787 		pr_debug("calling cancel\n");
1788 		memset(&tmp, 0, sizeof(tmp));
1789 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1790 		tmp.data = kiocb->ki_user_data;
1791 		ret = cancel(kiocb, &tmp);
1792 		if (!ret) {
1793 			/* Cancellation succeeded -- copy the result
1794 			 * into the user's buffer.
1795 			 */
1796 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1797 				ret = -EFAULT;
1798 		}
1799 	} else
1800 		ret = -EINVAL;
1801 
1802 	put_ioctx(ctx);
1803 
1804 	return ret;
1805 }
1806 
1807 /* io_getevents:
1808  *	Attempts to read at least min_nr events and up to nr events from
1809  *	the completion queue for the aio_context specified by ctx_id. If
1810  *	it succeeds, the number of read events is returned. May fail with
1811  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1812  *	out of range, if timeout is out of range.  May fail with -EFAULT
1813  *	if any of the memory specified is invalid.  May return 0 or
1814  *	< min_nr if the timeout specified by timeout has elapsed
1815  *	before sufficient events are available, where timeout == NULL
1816  *	specifies an infinite timeout. Note that the timeout pointed to by
1817  *	timeout is relative and will be updated if not NULL and the
1818  *	operation blocks. Will fail with -ENOSYS if not implemented.
1819  */
1820 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1821 		long, min_nr,
1822 		long, nr,
1823 		struct io_event __user *, events,
1824 		struct timespec __user *, timeout)
1825 {
1826 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1827 	long ret = -EINVAL;
1828 
1829 	if (likely(ioctx)) {
1830 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1831 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1832 		put_ioctx(ioctx);
1833 	}
1834 
1835 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1836 	return ret;
1837 }
1838