xref: /linux/fs/aio.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/migrate.h>
40 #include <linux/ramfs.h>
41 #include <linux/percpu-refcount.h>
42 #include <linux/mount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;	/* Written to by userland or under ring_lock
56 				 * mutex by aio_read_events_ring(). */
57 	unsigned	tail;
58 
59 	unsigned	magic;
60 	unsigned	compat_features;
61 	unsigned	incompat_features;
62 	unsigned	header_length;	/* size of aio_ring */
63 
64 
65 	struct io_event		io_events[0];
66 }; /* 128 bytes + ring size */
67 
68 #define AIO_RING_PAGES	8
69 
70 struct kioctx_table {
71 	struct rcu_head	rcu;
72 	unsigned	nr;
73 	struct kioctx	*table[];
74 };
75 
76 struct kioctx_cpu {
77 	unsigned		reqs_available;
78 };
79 
80 struct ctx_rq_wait {
81 	struct completion comp;
82 	atomic_t count;
83 };
84 
85 struct kioctx {
86 	struct percpu_ref	users;
87 	atomic_t		dead;
88 
89 	struct percpu_ref	reqs;
90 
91 	unsigned long		user_id;
92 
93 	struct __percpu kioctx_cpu *cpu;
94 
95 	/*
96 	 * For percpu reqs_available, number of slots we move to/from global
97 	 * counter at a time:
98 	 */
99 	unsigned		req_batch;
100 	/*
101 	 * This is what userspace passed to io_setup(), it's not used for
102 	 * anything but counting against the global max_reqs quota.
103 	 *
104 	 * The real limit is nr_events - 1, which will be larger (see
105 	 * aio_setup_ring())
106 	 */
107 	unsigned		max_reqs;
108 
109 	/* Size of ringbuffer, in units of struct io_event */
110 	unsigned		nr_events;
111 
112 	unsigned long		mmap_base;
113 	unsigned long		mmap_size;
114 
115 	struct page		**ring_pages;
116 	long			nr_pages;
117 
118 	struct work_struct	free_work;
119 
120 	/*
121 	 * signals when all in-flight requests are done
122 	 */
123 	struct ctx_rq_wait	*rq_wait;
124 
125 	struct {
126 		/*
127 		 * This counts the number of available slots in the ringbuffer,
128 		 * so we avoid overflowing it: it's decremented (if positive)
129 		 * when allocating a kiocb and incremented when the resulting
130 		 * io_event is pulled off the ringbuffer.
131 		 *
132 		 * We batch accesses to it with a percpu version.
133 		 */
134 		atomic_t	reqs_available;
135 	} ____cacheline_aligned_in_smp;
136 
137 	struct {
138 		spinlock_t	ctx_lock;
139 		struct list_head active_reqs;	/* used for cancellation */
140 	} ____cacheline_aligned_in_smp;
141 
142 	struct {
143 		struct mutex	ring_lock;
144 		wait_queue_head_t wait;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		unsigned	tail;
149 		unsigned	completed_events;
150 		spinlock_t	completion_lock;
151 	} ____cacheline_aligned_in_smp;
152 
153 	struct page		*internal_pages[AIO_RING_PAGES];
154 	struct file		*aio_ring_file;
155 
156 	unsigned		id;
157 };
158 
159 /*
160  * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
161  * cancelled or completed (this makes a certain amount of sense because
162  * successful cancellation - io_cancel() - does deliver the completion to
163  * userspace).
164  *
165  * And since most things don't implement kiocb cancellation and we'd really like
166  * kiocb completion to be lockless when possible, we use ki_cancel to
167  * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
168  * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
169  */
170 #define KIOCB_CANCELLED		((void *) (~0ULL))
171 
172 struct aio_kiocb {
173 	struct kiocb		common;
174 
175 	struct kioctx		*ki_ctx;
176 	kiocb_cancel_fn		*ki_cancel;
177 
178 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
179 	__u64			ki_user_data;	/* user's data for completion */
180 
181 	struct list_head	ki_list;	/* the aio core uses this
182 						 * for cancellation */
183 
184 	/*
185 	 * If the aio_resfd field of the userspace iocb is not zero,
186 	 * this is the underlying eventfd context to deliver events to.
187 	 */
188 	struct eventfd_ctx	*ki_eventfd;
189 };
190 
191 /*------ sysctl variables----*/
192 static DEFINE_SPINLOCK(aio_nr_lock);
193 unsigned long aio_nr;		/* current system wide number of aio requests */
194 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
195 /*----end sysctl variables---*/
196 
197 static struct kmem_cache	*kiocb_cachep;
198 static struct kmem_cache	*kioctx_cachep;
199 
200 static struct vfsmount *aio_mnt;
201 
202 static const struct file_operations aio_ring_fops;
203 static const struct address_space_operations aio_ctx_aops;
204 
205 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
206 {
207 	struct qstr this = QSTR_INIT("[aio]", 5);
208 	struct file *file;
209 	struct path path;
210 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
211 	if (IS_ERR(inode))
212 		return ERR_CAST(inode);
213 
214 	inode->i_mapping->a_ops = &aio_ctx_aops;
215 	inode->i_mapping->private_data = ctx;
216 	inode->i_size = PAGE_SIZE * nr_pages;
217 
218 	path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
219 	if (!path.dentry) {
220 		iput(inode);
221 		return ERR_PTR(-ENOMEM);
222 	}
223 	path.mnt = mntget(aio_mnt);
224 
225 	d_instantiate(path.dentry, inode);
226 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
227 	if (IS_ERR(file)) {
228 		path_put(&path);
229 		return file;
230 	}
231 
232 	file->f_flags = O_RDWR;
233 	return file;
234 }
235 
236 static struct dentry *aio_mount(struct file_system_type *fs_type,
237 				int flags, const char *dev_name, void *data)
238 {
239 	static const struct dentry_operations ops = {
240 		.d_dname	= simple_dname,
241 	};
242 	return mount_pseudo(fs_type, "aio:", NULL, &ops, AIO_RING_MAGIC);
243 }
244 
245 /* aio_setup
246  *	Creates the slab caches used by the aio routines, panic on
247  *	failure as this is done early during the boot sequence.
248  */
249 static int __init aio_setup(void)
250 {
251 	static struct file_system_type aio_fs = {
252 		.name		= "aio",
253 		.mount		= aio_mount,
254 		.kill_sb	= kill_anon_super,
255 	};
256 	aio_mnt = kern_mount(&aio_fs);
257 	if (IS_ERR(aio_mnt))
258 		panic("Failed to create aio fs mount.");
259 
260 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
261 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
262 
263 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
264 
265 	return 0;
266 }
267 __initcall(aio_setup);
268 
269 static void put_aio_ring_file(struct kioctx *ctx)
270 {
271 	struct file *aio_ring_file = ctx->aio_ring_file;
272 	if (aio_ring_file) {
273 		truncate_setsize(aio_ring_file->f_inode, 0);
274 
275 		/* Prevent further access to the kioctx from migratepages */
276 		spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
277 		aio_ring_file->f_inode->i_mapping->private_data = NULL;
278 		ctx->aio_ring_file = NULL;
279 		spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
280 
281 		fput(aio_ring_file);
282 	}
283 }
284 
285 static void aio_free_ring(struct kioctx *ctx)
286 {
287 	int i;
288 
289 	/* Disconnect the kiotx from the ring file.  This prevents future
290 	 * accesses to the kioctx from page migration.
291 	 */
292 	put_aio_ring_file(ctx);
293 
294 	for (i = 0; i < ctx->nr_pages; i++) {
295 		struct page *page;
296 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
297 				page_count(ctx->ring_pages[i]));
298 		page = ctx->ring_pages[i];
299 		if (!page)
300 			continue;
301 		ctx->ring_pages[i] = NULL;
302 		put_page(page);
303 	}
304 
305 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
306 		kfree(ctx->ring_pages);
307 		ctx->ring_pages = NULL;
308 	}
309 }
310 
311 static int aio_ring_mremap(struct vm_area_struct *vma)
312 {
313 	struct file *file = vma->vm_file;
314 	struct mm_struct *mm = vma->vm_mm;
315 	struct kioctx_table *table;
316 	int i, res = -EINVAL;
317 
318 	spin_lock(&mm->ioctx_lock);
319 	rcu_read_lock();
320 	table = rcu_dereference(mm->ioctx_table);
321 	for (i = 0; i < table->nr; i++) {
322 		struct kioctx *ctx;
323 
324 		ctx = table->table[i];
325 		if (ctx && ctx->aio_ring_file == file) {
326 			if (!atomic_read(&ctx->dead)) {
327 				ctx->user_id = ctx->mmap_base = vma->vm_start;
328 				res = 0;
329 			}
330 			break;
331 		}
332 	}
333 
334 	rcu_read_unlock();
335 	spin_unlock(&mm->ioctx_lock);
336 	return res;
337 }
338 
339 static const struct vm_operations_struct aio_ring_vm_ops = {
340 	.mremap		= aio_ring_mremap,
341 #if IS_ENABLED(CONFIG_MMU)
342 	.fault		= filemap_fault,
343 	.map_pages	= filemap_map_pages,
344 	.page_mkwrite	= filemap_page_mkwrite,
345 #endif
346 };
347 
348 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
349 {
350 	vma->vm_flags |= VM_DONTEXPAND;
351 	vma->vm_ops = &aio_ring_vm_ops;
352 	return 0;
353 }
354 
355 static const struct file_operations aio_ring_fops = {
356 	.mmap = aio_ring_mmap,
357 };
358 
359 #if IS_ENABLED(CONFIG_MIGRATION)
360 static int aio_migratepage(struct address_space *mapping, struct page *new,
361 			struct page *old, enum migrate_mode mode)
362 {
363 	struct kioctx *ctx;
364 	unsigned long flags;
365 	pgoff_t idx;
366 	int rc;
367 
368 	rc = 0;
369 
370 	/* mapping->private_lock here protects against the kioctx teardown.  */
371 	spin_lock(&mapping->private_lock);
372 	ctx = mapping->private_data;
373 	if (!ctx) {
374 		rc = -EINVAL;
375 		goto out;
376 	}
377 
378 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
379 	 * to the ring's head, and prevents page migration from mucking in
380 	 * a partially initialized kiotx.
381 	 */
382 	if (!mutex_trylock(&ctx->ring_lock)) {
383 		rc = -EAGAIN;
384 		goto out;
385 	}
386 
387 	idx = old->index;
388 	if (idx < (pgoff_t)ctx->nr_pages) {
389 		/* Make sure the old page hasn't already been changed */
390 		if (ctx->ring_pages[idx] != old)
391 			rc = -EAGAIN;
392 	} else
393 		rc = -EINVAL;
394 
395 	if (rc != 0)
396 		goto out_unlock;
397 
398 	/* Writeback must be complete */
399 	BUG_ON(PageWriteback(old));
400 	get_page(new);
401 
402 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
403 	if (rc != MIGRATEPAGE_SUCCESS) {
404 		put_page(new);
405 		goto out_unlock;
406 	}
407 
408 	/* Take completion_lock to prevent other writes to the ring buffer
409 	 * while the old page is copied to the new.  This prevents new
410 	 * events from being lost.
411 	 */
412 	spin_lock_irqsave(&ctx->completion_lock, flags);
413 	migrate_page_copy(new, old);
414 	BUG_ON(ctx->ring_pages[idx] != old);
415 	ctx->ring_pages[idx] = new;
416 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
417 
418 	/* The old page is no longer accessible. */
419 	put_page(old);
420 
421 out_unlock:
422 	mutex_unlock(&ctx->ring_lock);
423 out:
424 	spin_unlock(&mapping->private_lock);
425 	return rc;
426 }
427 #endif
428 
429 static const struct address_space_operations aio_ctx_aops = {
430 	.set_page_dirty = __set_page_dirty_no_writeback,
431 #if IS_ENABLED(CONFIG_MIGRATION)
432 	.migratepage	= aio_migratepage,
433 #endif
434 };
435 
436 static int aio_setup_ring(struct kioctx *ctx)
437 {
438 	struct aio_ring *ring;
439 	unsigned nr_events = ctx->max_reqs;
440 	struct mm_struct *mm = current->mm;
441 	unsigned long size, unused;
442 	int nr_pages;
443 	int i;
444 	struct file *file;
445 
446 	/* Compensate for the ring buffer's head/tail overlap entry */
447 	nr_events += 2;	/* 1 is required, 2 for good luck */
448 
449 	size = sizeof(struct aio_ring);
450 	size += sizeof(struct io_event) * nr_events;
451 
452 	nr_pages = PFN_UP(size);
453 	if (nr_pages < 0)
454 		return -EINVAL;
455 
456 	file = aio_private_file(ctx, nr_pages);
457 	if (IS_ERR(file)) {
458 		ctx->aio_ring_file = NULL;
459 		return -ENOMEM;
460 	}
461 
462 	ctx->aio_ring_file = file;
463 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
464 			/ sizeof(struct io_event);
465 
466 	ctx->ring_pages = ctx->internal_pages;
467 	if (nr_pages > AIO_RING_PAGES) {
468 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
469 					  GFP_KERNEL);
470 		if (!ctx->ring_pages) {
471 			put_aio_ring_file(ctx);
472 			return -ENOMEM;
473 		}
474 	}
475 
476 	for (i = 0; i < nr_pages; i++) {
477 		struct page *page;
478 		page = find_or_create_page(file->f_inode->i_mapping,
479 					   i, GFP_HIGHUSER | __GFP_ZERO);
480 		if (!page)
481 			break;
482 		pr_debug("pid(%d) page[%d]->count=%d\n",
483 			 current->pid, i, page_count(page));
484 		SetPageUptodate(page);
485 		unlock_page(page);
486 
487 		ctx->ring_pages[i] = page;
488 	}
489 	ctx->nr_pages = i;
490 
491 	if (unlikely(i != nr_pages)) {
492 		aio_free_ring(ctx);
493 		return -ENOMEM;
494 	}
495 
496 	ctx->mmap_size = nr_pages * PAGE_SIZE;
497 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
498 
499 	if (down_write_killable(&mm->mmap_sem)) {
500 		ctx->mmap_size = 0;
501 		aio_free_ring(ctx);
502 		return -EINTR;
503 	}
504 
505 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
506 				       PROT_READ | PROT_WRITE,
507 				       MAP_SHARED, 0, &unused);
508 	up_write(&mm->mmap_sem);
509 	if (IS_ERR((void *)ctx->mmap_base)) {
510 		ctx->mmap_size = 0;
511 		aio_free_ring(ctx);
512 		return -ENOMEM;
513 	}
514 
515 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
516 
517 	ctx->user_id = ctx->mmap_base;
518 	ctx->nr_events = nr_events; /* trusted copy */
519 
520 	ring = kmap_atomic(ctx->ring_pages[0]);
521 	ring->nr = nr_events;	/* user copy */
522 	ring->id = ~0U;
523 	ring->head = ring->tail = 0;
524 	ring->magic = AIO_RING_MAGIC;
525 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
526 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
527 	ring->header_length = sizeof(struct aio_ring);
528 	kunmap_atomic(ring);
529 	flush_dcache_page(ctx->ring_pages[0]);
530 
531 	return 0;
532 }
533 
534 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
535 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
536 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
537 
538 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
539 {
540 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
541 	struct kioctx *ctx = req->ki_ctx;
542 	unsigned long flags;
543 
544 	spin_lock_irqsave(&ctx->ctx_lock, flags);
545 
546 	if (!req->ki_list.next)
547 		list_add(&req->ki_list, &ctx->active_reqs);
548 
549 	req->ki_cancel = cancel;
550 
551 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
552 }
553 EXPORT_SYMBOL(kiocb_set_cancel_fn);
554 
555 static int kiocb_cancel(struct aio_kiocb *kiocb)
556 {
557 	kiocb_cancel_fn *old, *cancel;
558 
559 	/*
560 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
561 	 * actually has a cancel function, hence the cmpxchg()
562 	 */
563 
564 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
565 	do {
566 		if (!cancel || cancel == KIOCB_CANCELLED)
567 			return -EINVAL;
568 
569 		old = cancel;
570 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
571 	} while (cancel != old);
572 
573 	return cancel(&kiocb->common);
574 }
575 
576 static void free_ioctx(struct work_struct *work)
577 {
578 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
579 
580 	pr_debug("freeing %p\n", ctx);
581 
582 	aio_free_ring(ctx);
583 	free_percpu(ctx->cpu);
584 	percpu_ref_exit(&ctx->reqs);
585 	percpu_ref_exit(&ctx->users);
586 	kmem_cache_free(kioctx_cachep, ctx);
587 }
588 
589 static void free_ioctx_reqs(struct percpu_ref *ref)
590 {
591 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
592 
593 	/* At this point we know that there are no any in-flight requests */
594 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
595 		complete(&ctx->rq_wait->comp);
596 
597 	INIT_WORK(&ctx->free_work, free_ioctx);
598 	schedule_work(&ctx->free_work);
599 }
600 
601 /*
602  * When this function runs, the kioctx has been removed from the "hash table"
603  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
604  * now it's safe to cancel any that need to be.
605  */
606 static void free_ioctx_users(struct percpu_ref *ref)
607 {
608 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
609 	struct aio_kiocb *req;
610 
611 	spin_lock_irq(&ctx->ctx_lock);
612 
613 	while (!list_empty(&ctx->active_reqs)) {
614 		req = list_first_entry(&ctx->active_reqs,
615 				       struct aio_kiocb, ki_list);
616 
617 		list_del_init(&req->ki_list);
618 		kiocb_cancel(req);
619 	}
620 
621 	spin_unlock_irq(&ctx->ctx_lock);
622 
623 	percpu_ref_kill(&ctx->reqs);
624 	percpu_ref_put(&ctx->reqs);
625 }
626 
627 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
628 {
629 	unsigned i, new_nr;
630 	struct kioctx_table *table, *old;
631 	struct aio_ring *ring;
632 
633 	spin_lock(&mm->ioctx_lock);
634 	table = rcu_dereference_raw(mm->ioctx_table);
635 
636 	while (1) {
637 		if (table)
638 			for (i = 0; i < table->nr; i++)
639 				if (!table->table[i]) {
640 					ctx->id = i;
641 					table->table[i] = ctx;
642 					spin_unlock(&mm->ioctx_lock);
643 
644 					/* While kioctx setup is in progress,
645 					 * we are protected from page migration
646 					 * changes ring_pages by ->ring_lock.
647 					 */
648 					ring = kmap_atomic(ctx->ring_pages[0]);
649 					ring->id = ctx->id;
650 					kunmap_atomic(ring);
651 					return 0;
652 				}
653 
654 		new_nr = (table ? table->nr : 1) * 4;
655 		spin_unlock(&mm->ioctx_lock);
656 
657 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
658 				new_nr, GFP_KERNEL);
659 		if (!table)
660 			return -ENOMEM;
661 
662 		table->nr = new_nr;
663 
664 		spin_lock(&mm->ioctx_lock);
665 		old = rcu_dereference_raw(mm->ioctx_table);
666 
667 		if (!old) {
668 			rcu_assign_pointer(mm->ioctx_table, table);
669 		} else if (table->nr > old->nr) {
670 			memcpy(table->table, old->table,
671 			       old->nr * sizeof(struct kioctx *));
672 
673 			rcu_assign_pointer(mm->ioctx_table, table);
674 			kfree_rcu(old, rcu);
675 		} else {
676 			kfree(table);
677 			table = old;
678 		}
679 	}
680 }
681 
682 static void aio_nr_sub(unsigned nr)
683 {
684 	spin_lock(&aio_nr_lock);
685 	if (WARN_ON(aio_nr - nr > aio_nr))
686 		aio_nr = 0;
687 	else
688 		aio_nr -= nr;
689 	spin_unlock(&aio_nr_lock);
690 }
691 
692 /* ioctx_alloc
693  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
694  */
695 static struct kioctx *ioctx_alloc(unsigned nr_events)
696 {
697 	struct mm_struct *mm = current->mm;
698 	struct kioctx *ctx;
699 	int err = -ENOMEM;
700 
701 	/*
702 	 * We keep track of the number of available ringbuffer slots, to prevent
703 	 * overflow (reqs_available), and we also use percpu counters for this.
704 	 *
705 	 * So since up to half the slots might be on other cpu's percpu counters
706 	 * and unavailable, double nr_events so userspace sees what they
707 	 * expected: additionally, we move req_batch slots to/from percpu
708 	 * counters at a time, so make sure that isn't 0:
709 	 */
710 	nr_events = max(nr_events, num_possible_cpus() * 4);
711 	nr_events *= 2;
712 
713 	/* Prevent overflows */
714 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
715 		pr_debug("ENOMEM: nr_events too high\n");
716 		return ERR_PTR(-EINVAL);
717 	}
718 
719 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
720 		return ERR_PTR(-EAGAIN);
721 
722 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
723 	if (!ctx)
724 		return ERR_PTR(-ENOMEM);
725 
726 	ctx->max_reqs = nr_events;
727 
728 	spin_lock_init(&ctx->ctx_lock);
729 	spin_lock_init(&ctx->completion_lock);
730 	mutex_init(&ctx->ring_lock);
731 	/* Protect against page migration throughout kiotx setup by keeping
732 	 * the ring_lock mutex held until setup is complete. */
733 	mutex_lock(&ctx->ring_lock);
734 	init_waitqueue_head(&ctx->wait);
735 
736 	INIT_LIST_HEAD(&ctx->active_reqs);
737 
738 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
739 		goto err;
740 
741 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
742 		goto err;
743 
744 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
745 	if (!ctx->cpu)
746 		goto err;
747 
748 	err = aio_setup_ring(ctx);
749 	if (err < 0)
750 		goto err;
751 
752 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
753 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
754 	if (ctx->req_batch < 1)
755 		ctx->req_batch = 1;
756 
757 	/* limit the number of system wide aios */
758 	spin_lock(&aio_nr_lock);
759 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
760 	    aio_nr + nr_events < aio_nr) {
761 		spin_unlock(&aio_nr_lock);
762 		err = -EAGAIN;
763 		goto err_ctx;
764 	}
765 	aio_nr += ctx->max_reqs;
766 	spin_unlock(&aio_nr_lock);
767 
768 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
769 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
770 
771 	err = ioctx_add_table(ctx, mm);
772 	if (err)
773 		goto err_cleanup;
774 
775 	/* Release the ring_lock mutex now that all setup is complete. */
776 	mutex_unlock(&ctx->ring_lock);
777 
778 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
779 		 ctx, ctx->user_id, mm, ctx->nr_events);
780 	return ctx;
781 
782 err_cleanup:
783 	aio_nr_sub(ctx->max_reqs);
784 err_ctx:
785 	atomic_set(&ctx->dead, 1);
786 	if (ctx->mmap_size)
787 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
788 	aio_free_ring(ctx);
789 err:
790 	mutex_unlock(&ctx->ring_lock);
791 	free_percpu(ctx->cpu);
792 	percpu_ref_exit(&ctx->reqs);
793 	percpu_ref_exit(&ctx->users);
794 	kmem_cache_free(kioctx_cachep, ctx);
795 	pr_debug("error allocating ioctx %d\n", err);
796 	return ERR_PTR(err);
797 }
798 
799 /* kill_ioctx
800  *	Cancels all outstanding aio requests on an aio context.  Used
801  *	when the processes owning a context have all exited to encourage
802  *	the rapid destruction of the kioctx.
803  */
804 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
805 		      struct ctx_rq_wait *wait)
806 {
807 	struct kioctx_table *table;
808 
809 	spin_lock(&mm->ioctx_lock);
810 	if (atomic_xchg(&ctx->dead, 1)) {
811 		spin_unlock(&mm->ioctx_lock);
812 		return -EINVAL;
813 	}
814 
815 	table = rcu_dereference_raw(mm->ioctx_table);
816 	WARN_ON(ctx != table->table[ctx->id]);
817 	table->table[ctx->id] = NULL;
818 	spin_unlock(&mm->ioctx_lock);
819 
820 	/* percpu_ref_kill() will do the necessary call_rcu() */
821 	wake_up_all(&ctx->wait);
822 
823 	/*
824 	 * It'd be more correct to do this in free_ioctx(), after all
825 	 * the outstanding kiocbs have finished - but by then io_destroy
826 	 * has already returned, so io_setup() could potentially return
827 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
828 	 *  could tell).
829 	 */
830 	aio_nr_sub(ctx->max_reqs);
831 
832 	if (ctx->mmap_size)
833 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
834 
835 	ctx->rq_wait = wait;
836 	percpu_ref_kill(&ctx->users);
837 	return 0;
838 }
839 
840 /*
841  * exit_aio: called when the last user of mm goes away.  At this point, there is
842  * no way for any new requests to be submited or any of the io_* syscalls to be
843  * called on the context.
844  *
845  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
846  * them.
847  */
848 void exit_aio(struct mm_struct *mm)
849 {
850 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
851 	struct ctx_rq_wait wait;
852 	int i, skipped;
853 
854 	if (!table)
855 		return;
856 
857 	atomic_set(&wait.count, table->nr);
858 	init_completion(&wait.comp);
859 
860 	skipped = 0;
861 	for (i = 0; i < table->nr; ++i) {
862 		struct kioctx *ctx = table->table[i];
863 
864 		if (!ctx) {
865 			skipped++;
866 			continue;
867 		}
868 
869 		/*
870 		 * We don't need to bother with munmap() here - exit_mmap(mm)
871 		 * is coming and it'll unmap everything. And we simply can't,
872 		 * this is not necessarily our ->mm.
873 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
874 		 * that it needs to unmap the area, just set it to 0.
875 		 */
876 		ctx->mmap_size = 0;
877 		kill_ioctx(mm, ctx, &wait);
878 	}
879 
880 	if (!atomic_sub_and_test(skipped, &wait.count)) {
881 		/* Wait until all IO for the context are done. */
882 		wait_for_completion(&wait.comp);
883 	}
884 
885 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
886 	kfree(table);
887 }
888 
889 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
890 {
891 	struct kioctx_cpu *kcpu;
892 	unsigned long flags;
893 
894 	local_irq_save(flags);
895 	kcpu = this_cpu_ptr(ctx->cpu);
896 	kcpu->reqs_available += nr;
897 
898 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
899 		kcpu->reqs_available -= ctx->req_batch;
900 		atomic_add(ctx->req_batch, &ctx->reqs_available);
901 	}
902 
903 	local_irq_restore(flags);
904 }
905 
906 static bool get_reqs_available(struct kioctx *ctx)
907 {
908 	struct kioctx_cpu *kcpu;
909 	bool ret = false;
910 	unsigned long flags;
911 
912 	local_irq_save(flags);
913 	kcpu = this_cpu_ptr(ctx->cpu);
914 	if (!kcpu->reqs_available) {
915 		int old, avail = atomic_read(&ctx->reqs_available);
916 
917 		do {
918 			if (avail < ctx->req_batch)
919 				goto out;
920 
921 			old = avail;
922 			avail = atomic_cmpxchg(&ctx->reqs_available,
923 					       avail, avail - ctx->req_batch);
924 		} while (avail != old);
925 
926 		kcpu->reqs_available += ctx->req_batch;
927 	}
928 
929 	ret = true;
930 	kcpu->reqs_available--;
931 out:
932 	local_irq_restore(flags);
933 	return ret;
934 }
935 
936 /* refill_reqs_available
937  *	Updates the reqs_available reference counts used for tracking the
938  *	number of free slots in the completion ring.  This can be called
939  *	from aio_complete() (to optimistically update reqs_available) or
940  *	from aio_get_req() (the we're out of events case).  It must be
941  *	called holding ctx->completion_lock.
942  */
943 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
944                                   unsigned tail)
945 {
946 	unsigned events_in_ring, completed;
947 
948 	/* Clamp head since userland can write to it. */
949 	head %= ctx->nr_events;
950 	if (head <= tail)
951 		events_in_ring = tail - head;
952 	else
953 		events_in_ring = ctx->nr_events - (head - tail);
954 
955 	completed = ctx->completed_events;
956 	if (events_in_ring < completed)
957 		completed -= events_in_ring;
958 	else
959 		completed = 0;
960 
961 	if (!completed)
962 		return;
963 
964 	ctx->completed_events -= completed;
965 	put_reqs_available(ctx, completed);
966 }
967 
968 /* user_refill_reqs_available
969  *	Called to refill reqs_available when aio_get_req() encounters an
970  *	out of space in the completion ring.
971  */
972 static void user_refill_reqs_available(struct kioctx *ctx)
973 {
974 	spin_lock_irq(&ctx->completion_lock);
975 	if (ctx->completed_events) {
976 		struct aio_ring *ring;
977 		unsigned head;
978 
979 		/* Access of ring->head may race with aio_read_events_ring()
980 		 * here, but that's okay since whether we read the old version
981 		 * or the new version, and either will be valid.  The important
982 		 * part is that head cannot pass tail since we prevent
983 		 * aio_complete() from updating tail by holding
984 		 * ctx->completion_lock.  Even if head is invalid, the check
985 		 * against ctx->completed_events below will make sure we do the
986 		 * safe/right thing.
987 		 */
988 		ring = kmap_atomic(ctx->ring_pages[0]);
989 		head = ring->head;
990 		kunmap_atomic(ring);
991 
992 		refill_reqs_available(ctx, head, ctx->tail);
993 	}
994 
995 	spin_unlock_irq(&ctx->completion_lock);
996 }
997 
998 /* aio_get_req
999  *	Allocate a slot for an aio request.
1000  * Returns NULL if no requests are free.
1001  */
1002 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1003 {
1004 	struct aio_kiocb *req;
1005 
1006 	if (!get_reqs_available(ctx)) {
1007 		user_refill_reqs_available(ctx);
1008 		if (!get_reqs_available(ctx))
1009 			return NULL;
1010 	}
1011 
1012 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1013 	if (unlikely(!req))
1014 		goto out_put;
1015 
1016 	percpu_ref_get(&ctx->reqs);
1017 
1018 	req->ki_ctx = ctx;
1019 	return req;
1020 out_put:
1021 	put_reqs_available(ctx, 1);
1022 	return NULL;
1023 }
1024 
1025 static void kiocb_free(struct aio_kiocb *req)
1026 {
1027 	if (req->common.ki_filp)
1028 		fput(req->common.ki_filp);
1029 	if (req->ki_eventfd != NULL)
1030 		eventfd_ctx_put(req->ki_eventfd);
1031 	kmem_cache_free(kiocb_cachep, req);
1032 }
1033 
1034 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1035 {
1036 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1037 	struct mm_struct *mm = current->mm;
1038 	struct kioctx *ctx, *ret = NULL;
1039 	struct kioctx_table *table;
1040 	unsigned id;
1041 
1042 	if (get_user(id, &ring->id))
1043 		return NULL;
1044 
1045 	rcu_read_lock();
1046 	table = rcu_dereference(mm->ioctx_table);
1047 
1048 	if (!table || id >= table->nr)
1049 		goto out;
1050 
1051 	ctx = table->table[id];
1052 	if (ctx && ctx->user_id == ctx_id) {
1053 		percpu_ref_get(&ctx->users);
1054 		ret = ctx;
1055 	}
1056 out:
1057 	rcu_read_unlock();
1058 	return ret;
1059 }
1060 
1061 /* aio_complete
1062  *	Called when the io request on the given iocb is complete.
1063  */
1064 static void aio_complete(struct kiocb *kiocb, long res, long res2)
1065 {
1066 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1067 	struct kioctx	*ctx = iocb->ki_ctx;
1068 	struct aio_ring	*ring;
1069 	struct io_event	*ev_page, *event;
1070 	unsigned tail, pos, head;
1071 	unsigned long	flags;
1072 
1073 	/*
1074 	 * Special case handling for sync iocbs:
1075 	 *  - events go directly into the iocb for fast handling
1076 	 *  - the sync task with the iocb in its stack holds the single iocb
1077 	 *    ref, no other paths have a way to get another ref
1078 	 *  - the sync task helpfully left a reference to itself in the iocb
1079 	 */
1080 	BUG_ON(is_sync_kiocb(kiocb));
1081 
1082 	if (iocb->ki_list.next) {
1083 		unsigned long flags;
1084 
1085 		spin_lock_irqsave(&ctx->ctx_lock, flags);
1086 		list_del(&iocb->ki_list);
1087 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1088 	}
1089 
1090 	/*
1091 	 * Add a completion event to the ring buffer. Must be done holding
1092 	 * ctx->completion_lock to prevent other code from messing with the tail
1093 	 * pointer since we might be called from irq context.
1094 	 */
1095 	spin_lock_irqsave(&ctx->completion_lock, flags);
1096 
1097 	tail = ctx->tail;
1098 	pos = tail + AIO_EVENTS_OFFSET;
1099 
1100 	if (++tail >= ctx->nr_events)
1101 		tail = 0;
1102 
1103 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1104 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1105 
1106 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1107 	event->data = iocb->ki_user_data;
1108 	event->res = res;
1109 	event->res2 = res2;
1110 
1111 	kunmap_atomic(ev_page);
1112 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1113 
1114 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1115 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1116 		 res, res2);
1117 
1118 	/* after flagging the request as done, we
1119 	 * must never even look at it again
1120 	 */
1121 	smp_wmb();	/* make event visible before updating tail */
1122 
1123 	ctx->tail = tail;
1124 
1125 	ring = kmap_atomic(ctx->ring_pages[0]);
1126 	head = ring->head;
1127 	ring->tail = tail;
1128 	kunmap_atomic(ring);
1129 	flush_dcache_page(ctx->ring_pages[0]);
1130 
1131 	ctx->completed_events++;
1132 	if (ctx->completed_events > 1)
1133 		refill_reqs_available(ctx, head, tail);
1134 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1135 
1136 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1137 
1138 	/*
1139 	 * Check if the user asked us to deliver the result through an
1140 	 * eventfd. The eventfd_signal() function is safe to be called
1141 	 * from IRQ context.
1142 	 */
1143 	if (iocb->ki_eventfd != NULL)
1144 		eventfd_signal(iocb->ki_eventfd, 1);
1145 
1146 	/* everything turned out well, dispose of the aiocb. */
1147 	kiocb_free(iocb);
1148 
1149 	/*
1150 	 * We have to order our ring_info tail store above and test
1151 	 * of the wait list below outside the wait lock.  This is
1152 	 * like in wake_up_bit() where clearing a bit has to be
1153 	 * ordered with the unlocked test.
1154 	 */
1155 	smp_mb();
1156 
1157 	if (waitqueue_active(&ctx->wait))
1158 		wake_up(&ctx->wait);
1159 
1160 	percpu_ref_put(&ctx->reqs);
1161 }
1162 
1163 /* aio_read_events_ring
1164  *	Pull an event off of the ioctx's event ring.  Returns the number of
1165  *	events fetched
1166  */
1167 static long aio_read_events_ring(struct kioctx *ctx,
1168 				 struct io_event __user *event, long nr)
1169 {
1170 	struct aio_ring *ring;
1171 	unsigned head, tail, pos;
1172 	long ret = 0;
1173 	int copy_ret;
1174 
1175 	/*
1176 	 * The mutex can block and wake us up and that will cause
1177 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1178 	 * and repeat. This should be rare enough that it doesn't cause
1179 	 * peformance issues. See the comment in read_events() for more detail.
1180 	 */
1181 	sched_annotate_sleep();
1182 	mutex_lock(&ctx->ring_lock);
1183 
1184 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1185 	ring = kmap_atomic(ctx->ring_pages[0]);
1186 	head = ring->head;
1187 	tail = ring->tail;
1188 	kunmap_atomic(ring);
1189 
1190 	/*
1191 	 * Ensure that once we've read the current tail pointer, that
1192 	 * we also see the events that were stored up to the tail.
1193 	 */
1194 	smp_rmb();
1195 
1196 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1197 
1198 	if (head == tail)
1199 		goto out;
1200 
1201 	head %= ctx->nr_events;
1202 	tail %= ctx->nr_events;
1203 
1204 	while (ret < nr) {
1205 		long avail;
1206 		struct io_event *ev;
1207 		struct page *page;
1208 
1209 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1210 		if (head == tail)
1211 			break;
1212 
1213 		avail = min(avail, nr - ret);
1214 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1215 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1216 
1217 		pos = head + AIO_EVENTS_OFFSET;
1218 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1219 		pos %= AIO_EVENTS_PER_PAGE;
1220 
1221 		ev = kmap(page);
1222 		copy_ret = copy_to_user(event + ret, ev + pos,
1223 					sizeof(*ev) * avail);
1224 		kunmap(page);
1225 
1226 		if (unlikely(copy_ret)) {
1227 			ret = -EFAULT;
1228 			goto out;
1229 		}
1230 
1231 		ret += avail;
1232 		head += avail;
1233 		head %= ctx->nr_events;
1234 	}
1235 
1236 	ring = kmap_atomic(ctx->ring_pages[0]);
1237 	ring->head = head;
1238 	kunmap_atomic(ring);
1239 	flush_dcache_page(ctx->ring_pages[0]);
1240 
1241 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1242 out:
1243 	mutex_unlock(&ctx->ring_lock);
1244 
1245 	return ret;
1246 }
1247 
1248 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1249 			    struct io_event __user *event, long *i)
1250 {
1251 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1252 
1253 	if (ret > 0)
1254 		*i += ret;
1255 
1256 	if (unlikely(atomic_read(&ctx->dead)))
1257 		ret = -EINVAL;
1258 
1259 	if (!*i)
1260 		*i = ret;
1261 
1262 	return ret < 0 || *i >= min_nr;
1263 }
1264 
1265 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1266 			struct io_event __user *event,
1267 			struct timespec __user *timeout)
1268 {
1269 	ktime_t until = { .tv64 = KTIME_MAX };
1270 	long ret = 0;
1271 
1272 	if (timeout) {
1273 		struct timespec	ts;
1274 
1275 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1276 			return -EFAULT;
1277 
1278 		until = timespec_to_ktime(ts);
1279 	}
1280 
1281 	/*
1282 	 * Note that aio_read_events() is being called as the conditional - i.e.
1283 	 * we're calling it after prepare_to_wait() has set task state to
1284 	 * TASK_INTERRUPTIBLE.
1285 	 *
1286 	 * But aio_read_events() can block, and if it blocks it's going to flip
1287 	 * the task state back to TASK_RUNNING.
1288 	 *
1289 	 * This should be ok, provided it doesn't flip the state back to
1290 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1291 	 * will only happen if the mutex_lock() call blocks, and we then find
1292 	 * the ringbuffer empty. So in practice we should be ok, but it's
1293 	 * something to be aware of when touching this code.
1294 	 */
1295 	if (until.tv64 == 0)
1296 		aio_read_events(ctx, min_nr, nr, event, &ret);
1297 	else
1298 		wait_event_interruptible_hrtimeout(ctx->wait,
1299 				aio_read_events(ctx, min_nr, nr, event, &ret),
1300 				until);
1301 
1302 	if (!ret && signal_pending(current))
1303 		ret = -EINTR;
1304 
1305 	return ret;
1306 }
1307 
1308 /* sys_io_setup:
1309  *	Create an aio_context capable of receiving at least nr_events.
1310  *	ctxp must not point to an aio_context that already exists, and
1311  *	must be initialized to 0 prior to the call.  On successful
1312  *	creation of the aio_context, *ctxp is filled in with the resulting
1313  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1314  *	if the specified nr_events exceeds internal limits.  May fail
1315  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1316  *	of available events.  May fail with -ENOMEM if insufficient kernel
1317  *	resources are available.  May fail with -EFAULT if an invalid
1318  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1319  *	implemented.
1320  */
1321 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1322 {
1323 	struct kioctx *ioctx = NULL;
1324 	unsigned long ctx;
1325 	long ret;
1326 
1327 	ret = get_user(ctx, ctxp);
1328 	if (unlikely(ret))
1329 		goto out;
1330 
1331 	ret = -EINVAL;
1332 	if (unlikely(ctx || nr_events == 0)) {
1333 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1334 		         ctx, nr_events);
1335 		goto out;
1336 	}
1337 
1338 	ioctx = ioctx_alloc(nr_events);
1339 	ret = PTR_ERR(ioctx);
1340 	if (!IS_ERR(ioctx)) {
1341 		ret = put_user(ioctx->user_id, ctxp);
1342 		if (ret)
1343 			kill_ioctx(current->mm, ioctx, NULL);
1344 		percpu_ref_put(&ioctx->users);
1345 	}
1346 
1347 out:
1348 	return ret;
1349 }
1350 
1351 /* sys_io_destroy:
1352  *	Destroy the aio_context specified.  May cancel any outstanding
1353  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1354  *	implemented.  May fail with -EINVAL if the context pointed to
1355  *	is invalid.
1356  */
1357 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1358 {
1359 	struct kioctx *ioctx = lookup_ioctx(ctx);
1360 	if (likely(NULL != ioctx)) {
1361 		struct ctx_rq_wait wait;
1362 		int ret;
1363 
1364 		init_completion(&wait.comp);
1365 		atomic_set(&wait.count, 1);
1366 
1367 		/* Pass requests_done to kill_ioctx() where it can be set
1368 		 * in a thread-safe way. If we try to set it here then we have
1369 		 * a race condition if two io_destroy() called simultaneously.
1370 		 */
1371 		ret = kill_ioctx(current->mm, ioctx, &wait);
1372 		percpu_ref_put(&ioctx->users);
1373 
1374 		/* Wait until all IO for the context are done. Otherwise kernel
1375 		 * keep using user-space buffers even if user thinks the context
1376 		 * is destroyed.
1377 		 */
1378 		if (!ret)
1379 			wait_for_completion(&wait.comp);
1380 
1381 		return ret;
1382 	}
1383 	pr_debug("EINVAL: invalid context id\n");
1384 	return -EINVAL;
1385 }
1386 
1387 typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1388 
1389 static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1390 				 struct iovec **iovec,
1391 				 bool compat,
1392 				 struct iov_iter *iter)
1393 {
1394 #ifdef CONFIG_COMPAT
1395 	if (compat)
1396 		return compat_import_iovec(rw,
1397 				(struct compat_iovec __user *)buf,
1398 				len, UIO_FASTIOV, iovec, iter);
1399 #endif
1400 	return import_iovec(rw, (struct iovec __user *)buf,
1401 				len, UIO_FASTIOV, iovec, iter);
1402 }
1403 
1404 /*
1405  * aio_run_iocb:
1406  *	Performs the initial checks and io submission.
1407  */
1408 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1409 			    char __user *buf, size_t len, bool compat)
1410 {
1411 	struct file *file = req->ki_filp;
1412 	ssize_t ret;
1413 	int rw;
1414 	fmode_t mode;
1415 	rw_iter_op *iter_op;
1416 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1417 	struct iov_iter iter;
1418 
1419 	switch (opcode) {
1420 	case IOCB_CMD_PREAD:
1421 	case IOCB_CMD_PREADV:
1422 		mode	= FMODE_READ;
1423 		rw	= READ;
1424 		iter_op	= file->f_op->read_iter;
1425 		goto rw_common;
1426 
1427 	case IOCB_CMD_PWRITE:
1428 	case IOCB_CMD_PWRITEV:
1429 		mode	= FMODE_WRITE;
1430 		rw	= WRITE;
1431 		iter_op	= file->f_op->write_iter;
1432 		goto rw_common;
1433 rw_common:
1434 		if (unlikely(!(file->f_mode & mode)))
1435 			return -EBADF;
1436 
1437 		if (!iter_op)
1438 			return -EINVAL;
1439 
1440 		if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1441 			ret = aio_setup_vectored_rw(rw, buf, len,
1442 						&iovec, compat, &iter);
1443 		else {
1444 			ret = import_single_range(rw, buf, len, iovec, &iter);
1445 			iovec = NULL;
1446 		}
1447 		if (!ret)
1448 			ret = rw_verify_area(rw, file, &req->ki_pos,
1449 					     iov_iter_count(&iter));
1450 		if (ret < 0) {
1451 			kfree(iovec);
1452 			return ret;
1453 		}
1454 
1455 		if (rw == WRITE)
1456 			file_start_write(file);
1457 
1458 		ret = iter_op(req, &iter);
1459 
1460 		if (rw == WRITE)
1461 			file_end_write(file);
1462 		kfree(iovec);
1463 		break;
1464 
1465 	case IOCB_CMD_FDSYNC:
1466 		if (!file->f_op->aio_fsync)
1467 			return -EINVAL;
1468 
1469 		ret = file->f_op->aio_fsync(req, 1);
1470 		break;
1471 
1472 	case IOCB_CMD_FSYNC:
1473 		if (!file->f_op->aio_fsync)
1474 			return -EINVAL;
1475 
1476 		ret = file->f_op->aio_fsync(req, 0);
1477 		break;
1478 
1479 	default:
1480 		pr_debug("EINVAL: no operation provided\n");
1481 		return -EINVAL;
1482 	}
1483 
1484 	if (ret != -EIOCBQUEUED) {
1485 		/*
1486 		 * There's no easy way to restart the syscall since other AIO's
1487 		 * may be already running. Just fail this IO with EINTR.
1488 		 */
1489 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1490 			     ret == -ERESTARTNOHAND ||
1491 			     ret == -ERESTART_RESTARTBLOCK))
1492 			ret = -EINTR;
1493 		aio_complete(req, ret, 0);
1494 	}
1495 
1496 	return 0;
1497 }
1498 
1499 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1500 			 struct iocb *iocb, bool compat)
1501 {
1502 	struct aio_kiocb *req;
1503 	ssize_t ret;
1504 
1505 	/* enforce forwards compatibility on users */
1506 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1507 		pr_debug("EINVAL: reserve field set\n");
1508 		return -EINVAL;
1509 	}
1510 
1511 	/* prevent overflows */
1512 	if (unlikely(
1513 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1514 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1515 	    ((ssize_t)iocb->aio_nbytes < 0)
1516 	   )) {
1517 		pr_debug("EINVAL: overflow check\n");
1518 		return -EINVAL;
1519 	}
1520 
1521 	req = aio_get_req(ctx);
1522 	if (unlikely(!req))
1523 		return -EAGAIN;
1524 
1525 	req->common.ki_filp = fget(iocb->aio_fildes);
1526 	if (unlikely(!req->common.ki_filp)) {
1527 		ret = -EBADF;
1528 		goto out_put_req;
1529 	}
1530 	req->common.ki_pos = iocb->aio_offset;
1531 	req->common.ki_complete = aio_complete;
1532 	req->common.ki_flags = iocb_flags(req->common.ki_filp);
1533 
1534 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1535 		/*
1536 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1537 		 * instance of the file* now. The file descriptor must be
1538 		 * an eventfd() fd, and will be signaled for each completed
1539 		 * event using the eventfd_signal() function.
1540 		 */
1541 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1542 		if (IS_ERR(req->ki_eventfd)) {
1543 			ret = PTR_ERR(req->ki_eventfd);
1544 			req->ki_eventfd = NULL;
1545 			goto out_put_req;
1546 		}
1547 
1548 		req->common.ki_flags |= IOCB_EVENTFD;
1549 	}
1550 
1551 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1552 	if (unlikely(ret)) {
1553 		pr_debug("EFAULT: aio_key\n");
1554 		goto out_put_req;
1555 	}
1556 
1557 	req->ki_user_iocb = user_iocb;
1558 	req->ki_user_data = iocb->aio_data;
1559 
1560 	ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1561 			   (char __user *)(unsigned long)iocb->aio_buf,
1562 			   iocb->aio_nbytes,
1563 			   compat);
1564 	if (ret)
1565 		goto out_put_req;
1566 
1567 	return 0;
1568 out_put_req:
1569 	put_reqs_available(ctx, 1);
1570 	percpu_ref_put(&ctx->reqs);
1571 	kiocb_free(req);
1572 	return ret;
1573 }
1574 
1575 long do_io_submit(aio_context_t ctx_id, long nr,
1576 		  struct iocb __user *__user *iocbpp, bool compat)
1577 {
1578 	struct kioctx *ctx;
1579 	long ret = 0;
1580 	int i = 0;
1581 	struct blk_plug plug;
1582 
1583 	if (unlikely(nr < 0))
1584 		return -EINVAL;
1585 
1586 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1587 		nr = LONG_MAX/sizeof(*iocbpp);
1588 
1589 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1590 		return -EFAULT;
1591 
1592 	ctx = lookup_ioctx(ctx_id);
1593 	if (unlikely(!ctx)) {
1594 		pr_debug("EINVAL: invalid context id\n");
1595 		return -EINVAL;
1596 	}
1597 
1598 	blk_start_plug(&plug);
1599 
1600 	/*
1601 	 * AKPM: should this return a partial result if some of the IOs were
1602 	 * successfully submitted?
1603 	 */
1604 	for (i=0; i<nr; i++) {
1605 		struct iocb __user *user_iocb;
1606 		struct iocb tmp;
1607 
1608 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1609 			ret = -EFAULT;
1610 			break;
1611 		}
1612 
1613 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1614 			ret = -EFAULT;
1615 			break;
1616 		}
1617 
1618 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1619 		if (ret)
1620 			break;
1621 	}
1622 	blk_finish_plug(&plug);
1623 
1624 	percpu_ref_put(&ctx->users);
1625 	return i ? i : ret;
1626 }
1627 
1628 /* sys_io_submit:
1629  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1630  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1631  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1632  *	*iocbpp[0] is not properly initialized, if the operation specified
1633  *	is invalid for the file descriptor in the iocb.  May fail with
1634  *	-EFAULT if any of the data structures point to invalid data.  May
1635  *	fail with -EBADF if the file descriptor specified in the first
1636  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1637  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1638  *	fail with -ENOSYS if not implemented.
1639  */
1640 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1641 		struct iocb __user * __user *, iocbpp)
1642 {
1643 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1644 }
1645 
1646 /* lookup_kiocb
1647  *	Finds a given iocb for cancellation.
1648  */
1649 static struct aio_kiocb *
1650 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1651 {
1652 	struct aio_kiocb *kiocb;
1653 
1654 	assert_spin_locked(&ctx->ctx_lock);
1655 
1656 	if (key != KIOCB_KEY)
1657 		return NULL;
1658 
1659 	/* TODO: use a hash or array, this sucks. */
1660 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1661 		if (kiocb->ki_user_iocb == iocb)
1662 			return kiocb;
1663 	}
1664 	return NULL;
1665 }
1666 
1667 /* sys_io_cancel:
1668  *	Attempts to cancel an iocb previously passed to io_submit.  If
1669  *	the operation is successfully cancelled, the resulting event is
1670  *	copied into the memory pointed to by result without being placed
1671  *	into the completion queue and 0 is returned.  May fail with
1672  *	-EFAULT if any of the data structures pointed to are invalid.
1673  *	May fail with -EINVAL if aio_context specified by ctx_id is
1674  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1675  *	cancelled.  Will fail with -ENOSYS if not implemented.
1676  */
1677 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1678 		struct io_event __user *, result)
1679 {
1680 	struct kioctx *ctx;
1681 	struct aio_kiocb *kiocb;
1682 	u32 key;
1683 	int ret;
1684 
1685 	ret = get_user(key, &iocb->aio_key);
1686 	if (unlikely(ret))
1687 		return -EFAULT;
1688 
1689 	ctx = lookup_ioctx(ctx_id);
1690 	if (unlikely(!ctx))
1691 		return -EINVAL;
1692 
1693 	spin_lock_irq(&ctx->ctx_lock);
1694 
1695 	kiocb = lookup_kiocb(ctx, iocb, key);
1696 	if (kiocb)
1697 		ret = kiocb_cancel(kiocb);
1698 	else
1699 		ret = -EINVAL;
1700 
1701 	spin_unlock_irq(&ctx->ctx_lock);
1702 
1703 	if (!ret) {
1704 		/*
1705 		 * The result argument is no longer used - the io_event is
1706 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1707 		 * cancellation is progress:
1708 		 */
1709 		ret = -EINPROGRESS;
1710 	}
1711 
1712 	percpu_ref_put(&ctx->users);
1713 
1714 	return ret;
1715 }
1716 
1717 /* io_getevents:
1718  *	Attempts to read at least min_nr events and up to nr events from
1719  *	the completion queue for the aio_context specified by ctx_id. If
1720  *	it succeeds, the number of read events is returned. May fail with
1721  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1722  *	out of range, if timeout is out of range.  May fail with -EFAULT
1723  *	if any of the memory specified is invalid.  May return 0 or
1724  *	< min_nr if the timeout specified by timeout has elapsed
1725  *	before sufficient events are available, where timeout == NULL
1726  *	specifies an infinite timeout. Note that the timeout pointed to by
1727  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1728  */
1729 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1730 		long, min_nr,
1731 		long, nr,
1732 		struct io_event __user *, events,
1733 		struct timespec __user *, timeout)
1734 {
1735 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1736 	long ret = -EINVAL;
1737 
1738 	if (likely(ioctx)) {
1739 		if (likely(min_nr <= nr && min_nr >= 0))
1740 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1741 		percpu_ref_put(&ioctx->users);
1742 	}
1743 	return ret;
1744 }
1745