1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * Copyright 2018 Christoph Hellwig. 9 * 10 * See ../COPYING for licensing terms. 11 */ 12 #define pr_fmt(fmt) "%s: " fmt, __func__ 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/time.h> 18 #include <linux/aio_abi.h> 19 #include <linux/export.h> 20 #include <linux/syscalls.h> 21 #include <linux/backing-dev.h> 22 #include <linux/refcount.h> 23 #include <linux/uio.h> 24 25 #include <linux/sched/signal.h> 26 #include <linux/fs.h> 27 #include <linux/file.h> 28 #include <linux/mm.h> 29 #include <linux/mman.h> 30 #include <linux/percpu.h> 31 #include <linux/slab.h> 32 #include <linux/timer.h> 33 #include <linux/aio.h> 34 #include <linux/highmem.h> 35 #include <linux/workqueue.h> 36 #include <linux/security.h> 37 #include <linux/eventfd.h> 38 #include <linux/blkdev.h> 39 #include <linux/compat.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 #include <linux/mount.h> 44 #include <linux/pseudo_fs.h> 45 46 #include <linux/uaccess.h> 47 #include <linux/nospec.h> 48 49 #include "internal.h" 50 51 #define KIOCB_KEY 0 52 53 #define AIO_RING_MAGIC 0xa10a10a1 54 #define AIO_RING_COMPAT_FEATURES 1 55 #define AIO_RING_INCOMPAT_FEATURES 0 56 struct aio_ring { 57 unsigned id; /* kernel internal index number */ 58 unsigned nr; /* number of io_events */ 59 unsigned head; /* Written to by userland or under ring_lock 60 * mutex by aio_read_events_ring(). */ 61 unsigned tail; 62 63 unsigned magic; 64 unsigned compat_features; 65 unsigned incompat_features; 66 unsigned header_length; /* size of aio_ring */ 67 68 69 struct io_event io_events[]; 70 }; /* 128 bytes + ring size */ 71 72 /* 73 * Plugging is meant to work with larger batches of IOs. If we don't 74 * have more than the below, then don't bother setting up a plug. 75 */ 76 #define AIO_PLUG_THRESHOLD 2 77 78 #define AIO_RING_PAGES 8 79 80 struct kioctx_table { 81 struct rcu_head rcu; 82 unsigned nr; 83 struct kioctx __rcu *table[] __counted_by(nr); 84 }; 85 86 struct kioctx_cpu { 87 unsigned reqs_available; 88 }; 89 90 struct ctx_rq_wait { 91 struct completion comp; 92 atomic_t count; 93 }; 94 95 struct kioctx { 96 struct percpu_ref users; 97 atomic_t dead; 98 99 struct percpu_ref reqs; 100 101 unsigned long user_id; 102 103 struct __percpu kioctx_cpu *cpu; 104 105 /* 106 * For percpu reqs_available, number of slots we move to/from global 107 * counter at a time: 108 */ 109 unsigned req_batch; 110 /* 111 * This is what userspace passed to io_setup(), it's not used for 112 * anything but counting against the global max_reqs quota. 113 * 114 * The real limit is nr_events - 1, which will be larger (see 115 * aio_setup_ring()) 116 */ 117 unsigned max_reqs; 118 119 /* Size of ringbuffer, in units of struct io_event */ 120 unsigned nr_events; 121 122 unsigned long mmap_base; 123 unsigned long mmap_size; 124 125 struct page **ring_pages; 126 long nr_pages; 127 128 struct rcu_work free_rwork; /* see free_ioctx() */ 129 130 /* 131 * signals when all in-flight requests are done 132 */ 133 struct ctx_rq_wait *rq_wait; 134 135 struct { 136 /* 137 * This counts the number of available slots in the ringbuffer, 138 * so we avoid overflowing it: it's decremented (if positive) 139 * when allocating a kiocb and incremented when the resulting 140 * io_event is pulled off the ringbuffer. 141 * 142 * We batch accesses to it with a percpu version. 143 */ 144 atomic_t reqs_available; 145 } ____cacheline_aligned_in_smp; 146 147 struct { 148 spinlock_t ctx_lock; 149 struct list_head active_reqs; /* used for cancellation */ 150 } ____cacheline_aligned_in_smp; 151 152 struct { 153 struct mutex ring_lock; 154 wait_queue_head_t wait; 155 } ____cacheline_aligned_in_smp; 156 157 struct { 158 unsigned tail; 159 unsigned completed_events; 160 spinlock_t completion_lock; 161 } ____cacheline_aligned_in_smp; 162 163 struct page *internal_pages[AIO_RING_PAGES]; 164 struct file *aio_ring_file; 165 166 unsigned id; 167 }; 168 169 /* 170 * First field must be the file pointer in all the 171 * iocb unions! See also 'struct kiocb' in <linux/fs.h> 172 */ 173 struct fsync_iocb { 174 struct file *file; 175 struct work_struct work; 176 bool datasync; 177 struct cred *creds; 178 }; 179 180 struct poll_iocb { 181 struct file *file; 182 struct wait_queue_head *head; 183 __poll_t events; 184 bool cancelled; 185 bool work_scheduled; 186 bool work_need_resched; 187 struct wait_queue_entry wait; 188 struct work_struct work; 189 }; 190 191 /* 192 * NOTE! Each of the iocb union members has the file pointer 193 * as the first entry in their struct definition. So you can 194 * access the file pointer through any of the sub-structs, 195 * or directly as just 'ki_filp' in this struct. 196 */ 197 struct aio_kiocb { 198 union { 199 struct file *ki_filp; 200 struct kiocb rw; 201 struct fsync_iocb fsync; 202 struct poll_iocb poll; 203 }; 204 205 struct kioctx *ki_ctx; 206 kiocb_cancel_fn *ki_cancel; 207 208 struct io_event ki_res; 209 210 struct list_head ki_list; /* the aio core uses this 211 * for cancellation */ 212 refcount_t ki_refcnt; 213 214 /* 215 * If the aio_resfd field of the userspace iocb is not zero, 216 * this is the underlying eventfd context to deliver events to. 217 */ 218 struct eventfd_ctx *ki_eventfd; 219 }; 220 221 /*------ sysctl variables----*/ 222 static DEFINE_SPINLOCK(aio_nr_lock); 223 static unsigned long aio_nr; /* current system wide number of aio requests */ 224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 225 /*----end sysctl variables---*/ 226 #ifdef CONFIG_SYSCTL 227 static struct ctl_table aio_sysctls[] = { 228 { 229 .procname = "aio-nr", 230 .data = &aio_nr, 231 .maxlen = sizeof(aio_nr), 232 .mode = 0444, 233 .proc_handler = proc_doulongvec_minmax, 234 }, 235 { 236 .procname = "aio-max-nr", 237 .data = &aio_max_nr, 238 .maxlen = sizeof(aio_max_nr), 239 .mode = 0644, 240 .proc_handler = proc_doulongvec_minmax, 241 }, 242 }; 243 244 static void __init aio_sysctl_init(void) 245 { 246 register_sysctl_init("fs", aio_sysctls); 247 } 248 #else 249 #define aio_sysctl_init() do { } while (0) 250 #endif 251 252 static struct kmem_cache *kiocb_cachep; 253 static struct kmem_cache *kioctx_cachep; 254 255 static struct vfsmount *aio_mnt; 256 257 static const struct file_operations aio_ring_fops; 258 static const struct address_space_operations aio_ctx_aops; 259 260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages) 261 { 262 struct file *file; 263 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb); 264 if (IS_ERR(inode)) 265 return ERR_CAST(inode); 266 267 inode->i_mapping->a_ops = &aio_ctx_aops; 268 inode->i_mapping->i_private_data = ctx; 269 inode->i_size = PAGE_SIZE * nr_pages; 270 271 file = alloc_file_pseudo(inode, aio_mnt, "[aio]", 272 O_RDWR, &aio_ring_fops); 273 if (IS_ERR(file)) 274 iput(inode); 275 return file; 276 } 277 278 static int aio_init_fs_context(struct fs_context *fc) 279 { 280 if (!init_pseudo(fc, AIO_RING_MAGIC)) 281 return -ENOMEM; 282 fc->s_iflags |= SB_I_NOEXEC; 283 return 0; 284 } 285 286 /* aio_setup 287 * Creates the slab caches used by the aio routines, panic on 288 * failure as this is done early during the boot sequence. 289 */ 290 static int __init aio_setup(void) 291 { 292 static struct file_system_type aio_fs = { 293 .name = "aio", 294 .init_fs_context = aio_init_fs_context, 295 .kill_sb = kill_anon_super, 296 }; 297 aio_mnt = kern_mount(&aio_fs); 298 if (IS_ERR(aio_mnt)) 299 panic("Failed to create aio fs mount."); 300 301 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 302 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 303 aio_sysctl_init(); 304 return 0; 305 } 306 __initcall(aio_setup); 307 308 static void put_aio_ring_file(struct kioctx *ctx) 309 { 310 struct file *aio_ring_file = ctx->aio_ring_file; 311 struct address_space *i_mapping; 312 313 if (aio_ring_file) { 314 truncate_setsize(file_inode(aio_ring_file), 0); 315 316 /* Prevent further access to the kioctx from migratepages */ 317 i_mapping = aio_ring_file->f_mapping; 318 spin_lock(&i_mapping->i_private_lock); 319 i_mapping->i_private_data = NULL; 320 ctx->aio_ring_file = NULL; 321 spin_unlock(&i_mapping->i_private_lock); 322 323 fput(aio_ring_file); 324 } 325 } 326 327 static void aio_free_ring(struct kioctx *ctx) 328 { 329 int i; 330 331 /* Disconnect the kiotx from the ring file. This prevents future 332 * accesses to the kioctx from page migration. 333 */ 334 put_aio_ring_file(ctx); 335 336 for (i = 0; i < ctx->nr_pages; i++) { 337 struct page *page; 338 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 339 page_count(ctx->ring_pages[i])); 340 page = ctx->ring_pages[i]; 341 if (!page) 342 continue; 343 ctx->ring_pages[i] = NULL; 344 put_page(page); 345 } 346 347 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) { 348 kfree(ctx->ring_pages); 349 ctx->ring_pages = NULL; 350 } 351 } 352 353 static int aio_ring_mremap(struct vm_area_struct *vma) 354 { 355 struct file *file = vma->vm_file; 356 struct mm_struct *mm = vma->vm_mm; 357 struct kioctx_table *table; 358 int i, res = -EINVAL; 359 360 spin_lock(&mm->ioctx_lock); 361 rcu_read_lock(); 362 table = rcu_dereference(mm->ioctx_table); 363 if (!table) 364 goto out_unlock; 365 366 for (i = 0; i < table->nr; i++) { 367 struct kioctx *ctx; 368 369 ctx = rcu_dereference(table->table[i]); 370 if (ctx && ctx->aio_ring_file == file) { 371 if (!atomic_read(&ctx->dead)) { 372 ctx->user_id = ctx->mmap_base = vma->vm_start; 373 res = 0; 374 } 375 break; 376 } 377 } 378 379 out_unlock: 380 rcu_read_unlock(); 381 spin_unlock(&mm->ioctx_lock); 382 return res; 383 } 384 385 static const struct vm_operations_struct aio_ring_vm_ops = { 386 .mremap = aio_ring_mremap, 387 #if IS_ENABLED(CONFIG_MMU) 388 .fault = filemap_fault, 389 .map_pages = filemap_map_pages, 390 .page_mkwrite = filemap_page_mkwrite, 391 #endif 392 }; 393 394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 395 { 396 vm_flags_set(vma, VM_DONTEXPAND); 397 vma->vm_ops = &aio_ring_vm_ops; 398 return 0; 399 } 400 401 static const struct file_operations aio_ring_fops = { 402 .mmap = aio_ring_mmap, 403 }; 404 405 #if IS_ENABLED(CONFIG_MIGRATION) 406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst, 407 struct folio *src, enum migrate_mode mode) 408 { 409 struct kioctx *ctx; 410 unsigned long flags; 411 pgoff_t idx; 412 int rc; 413 414 /* 415 * We cannot support the _NO_COPY case here, because copy needs to 416 * happen under the ctx->completion_lock. That does not work with the 417 * migration workflow of MIGRATE_SYNC_NO_COPY. 418 */ 419 if (mode == MIGRATE_SYNC_NO_COPY) 420 return -EINVAL; 421 422 rc = 0; 423 424 /* mapping->i_private_lock here protects against the kioctx teardown. */ 425 spin_lock(&mapping->i_private_lock); 426 ctx = mapping->i_private_data; 427 if (!ctx) { 428 rc = -EINVAL; 429 goto out; 430 } 431 432 /* The ring_lock mutex. The prevents aio_read_events() from writing 433 * to the ring's head, and prevents page migration from mucking in 434 * a partially initialized kiotx. 435 */ 436 if (!mutex_trylock(&ctx->ring_lock)) { 437 rc = -EAGAIN; 438 goto out; 439 } 440 441 idx = src->index; 442 if (idx < (pgoff_t)ctx->nr_pages) { 443 /* Make sure the old folio hasn't already been changed */ 444 if (ctx->ring_pages[idx] != &src->page) 445 rc = -EAGAIN; 446 } else 447 rc = -EINVAL; 448 449 if (rc != 0) 450 goto out_unlock; 451 452 /* Writeback must be complete */ 453 BUG_ON(folio_test_writeback(src)); 454 folio_get(dst); 455 456 rc = folio_migrate_mapping(mapping, dst, src, 1); 457 if (rc != MIGRATEPAGE_SUCCESS) { 458 folio_put(dst); 459 goto out_unlock; 460 } 461 462 /* Take completion_lock to prevent other writes to the ring buffer 463 * while the old folio is copied to the new. This prevents new 464 * events from being lost. 465 */ 466 spin_lock_irqsave(&ctx->completion_lock, flags); 467 folio_migrate_copy(dst, src); 468 BUG_ON(ctx->ring_pages[idx] != &src->page); 469 ctx->ring_pages[idx] = &dst->page; 470 spin_unlock_irqrestore(&ctx->completion_lock, flags); 471 472 /* The old folio is no longer accessible. */ 473 folio_put(src); 474 475 out_unlock: 476 mutex_unlock(&ctx->ring_lock); 477 out: 478 spin_unlock(&mapping->i_private_lock); 479 return rc; 480 } 481 #else 482 #define aio_migrate_folio NULL 483 #endif 484 485 static const struct address_space_operations aio_ctx_aops = { 486 .dirty_folio = noop_dirty_folio, 487 .migrate_folio = aio_migrate_folio, 488 }; 489 490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events) 491 { 492 struct aio_ring *ring; 493 struct mm_struct *mm = current->mm; 494 unsigned long size, unused; 495 int nr_pages; 496 int i; 497 struct file *file; 498 499 /* Compensate for the ring buffer's head/tail overlap entry */ 500 nr_events += 2; /* 1 is required, 2 for good luck */ 501 502 size = sizeof(struct aio_ring); 503 size += sizeof(struct io_event) * nr_events; 504 505 nr_pages = PFN_UP(size); 506 if (nr_pages < 0) 507 return -EINVAL; 508 509 file = aio_private_file(ctx, nr_pages); 510 if (IS_ERR(file)) { 511 ctx->aio_ring_file = NULL; 512 return -ENOMEM; 513 } 514 515 ctx->aio_ring_file = file; 516 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 517 / sizeof(struct io_event); 518 519 ctx->ring_pages = ctx->internal_pages; 520 if (nr_pages > AIO_RING_PAGES) { 521 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 522 GFP_KERNEL); 523 if (!ctx->ring_pages) { 524 put_aio_ring_file(ctx); 525 return -ENOMEM; 526 } 527 } 528 529 for (i = 0; i < nr_pages; i++) { 530 struct page *page; 531 page = find_or_create_page(file->f_mapping, 532 i, GFP_USER | __GFP_ZERO); 533 if (!page) 534 break; 535 pr_debug("pid(%d) page[%d]->count=%d\n", 536 current->pid, i, page_count(page)); 537 SetPageUptodate(page); 538 unlock_page(page); 539 540 ctx->ring_pages[i] = page; 541 } 542 ctx->nr_pages = i; 543 544 if (unlikely(i != nr_pages)) { 545 aio_free_ring(ctx); 546 return -ENOMEM; 547 } 548 549 ctx->mmap_size = nr_pages * PAGE_SIZE; 550 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 551 552 if (mmap_write_lock_killable(mm)) { 553 ctx->mmap_size = 0; 554 aio_free_ring(ctx); 555 return -EINTR; 556 } 557 558 ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size, 559 PROT_READ | PROT_WRITE, 560 MAP_SHARED, 0, 0, &unused, NULL); 561 mmap_write_unlock(mm); 562 if (IS_ERR((void *)ctx->mmap_base)) { 563 ctx->mmap_size = 0; 564 aio_free_ring(ctx); 565 return -ENOMEM; 566 } 567 568 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 569 570 ctx->user_id = ctx->mmap_base; 571 ctx->nr_events = nr_events; /* trusted copy */ 572 573 ring = page_address(ctx->ring_pages[0]); 574 ring->nr = nr_events; /* user copy */ 575 ring->id = ~0U; 576 ring->head = ring->tail = 0; 577 ring->magic = AIO_RING_MAGIC; 578 ring->compat_features = AIO_RING_COMPAT_FEATURES; 579 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 580 ring->header_length = sizeof(struct aio_ring); 581 flush_dcache_page(ctx->ring_pages[0]); 582 583 return 0; 584 } 585 586 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 587 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 588 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 589 590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel) 591 { 592 struct aio_kiocb *req; 593 struct kioctx *ctx; 594 unsigned long flags; 595 596 /* 597 * kiocb didn't come from aio or is neither a read nor a write, hence 598 * ignore it. 599 */ 600 if (!(iocb->ki_flags & IOCB_AIO_RW)) 601 return; 602 603 req = container_of(iocb, struct aio_kiocb, rw); 604 605 if (WARN_ON_ONCE(!list_empty(&req->ki_list))) 606 return; 607 608 ctx = req->ki_ctx; 609 610 spin_lock_irqsave(&ctx->ctx_lock, flags); 611 list_add_tail(&req->ki_list, &ctx->active_reqs); 612 req->ki_cancel = cancel; 613 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 614 } 615 EXPORT_SYMBOL(kiocb_set_cancel_fn); 616 617 /* 618 * free_ioctx() should be RCU delayed to synchronize against the RCU 619 * protected lookup_ioctx() and also needs process context to call 620 * aio_free_ring(). Use rcu_work. 621 */ 622 static void free_ioctx(struct work_struct *work) 623 { 624 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx, 625 free_rwork); 626 pr_debug("freeing %p\n", ctx); 627 628 aio_free_ring(ctx); 629 free_percpu(ctx->cpu); 630 percpu_ref_exit(&ctx->reqs); 631 percpu_ref_exit(&ctx->users); 632 kmem_cache_free(kioctx_cachep, ctx); 633 } 634 635 static void free_ioctx_reqs(struct percpu_ref *ref) 636 { 637 struct kioctx *ctx = container_of(ref, struct kioctx, reqs); 638 639 /* At this point we know that there are no any in-flight requests */ 640 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count)) 641 complete(&ctx->rq_wait->comp); 642 643 /* Synchronize against RCU protected table->table[] dereferences */ 644 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx); 645 queue_rcu_work(system_wq, &ctx->free_rwork); 646 } 647 648 /* 649 * When this function runs, the kioctx has been removed from the "hash table" 650 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 651 * now it's safe to cancel any that need to be. 652 */ 653 static void free_ioctx_users(struct percpu_ref *ref) 654 { 655 struct kioctx *ctx = container_of(ref, struct kioctx, users); 656 struct aio_kiocb *req; 657 658 spin_lock_irq(&ctx->ctx_lock); 659 660 while (!list_empty(&ctx->active_reqs)) { 661 req = list_first_entry(&ctx->active_reqs, 662 struct aio_kiocb, ki_list); 663 req->ki_cancel(&req->rw); 664 list_del_init(&req->ki_list); 665 } 666 667 spin_unlock_irq(&ctx->ctx_lock); 668 669 percpu_ref_kill(&ctx->reqs); 670 percpu_ref_put(&ctx->reqs); 671 } 672 673 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm) 674 { 675 unsigned i, new_nr; 676 struct kioctx_table *table, *old; 677 struct aio_ring *ring; 678 679 spin_lock(&mm->ioctx_lock); 680 table = rcu_dereference_raw(mm->ioctx_table); 681 682 while (1) { 683 if (table) 684 for (i = 0; i < table->nr; i++) 685 if (!rcu_access_pointer(table->table[i])) { 686 ctx->id = i; 687 rcu_assign_pointer(table->table[i], ctx); 688 spin_unlock(&mm->ioctx_lock); 689 690 /* While kioctx setup is in progress, 691 * we are protected from page migration 692 * changes ring_pages by ->ring_lock. 693 */ 694 ring = page_address(ctx->ring_pages[0]); 695 ring->id = ctx->id; 696 return 0; 697 } 698 699 new_nr = (table ? table->nr : 1) * 4; 700 spin_unlock(&mm->ioctx_lock); 701 702 table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL); 703 if (!table) 704 return -ENOMEM; 705 706 table->nr = new_nr; 707 708 spin_lock(&mm->ioctx_lock); 709 old = rcu_dereference_raw(mm->ioctx_table); 710 711 if (!old) { 712 rcu_assign_pointer(mm->ioctx_table, table); 713 } else if (table->nr > old->nr) { 714 memcpy(table->table, old->table, 715 old->nr * sizeof(struct kioctx *)); 716 717 rcu_assign_pointer(mm->ioctx_table, table); 718 kfree_rcu(old, rcu); 719 } else { 720 kfree(table); 721 table = old; 722 } 723 } 724 } 725 726 static void aio_nr_sub(unsigned nr) 727 { 728 spin_lock(&aio_nr_lock); 729 if (WARN_ON(aio_nr - nr > aio_nr)) 730 aio_nr = 0; 731 else 732 aio_nr -= nr; 733 spin_unlock(&aio_nr_lock); 734 } 735 736 /* ioctx_alloc 737 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 738 */ 739 static struct kioctx *ioctx_alloc(unsigned nr_events) 740 { 741 struct mm_struct *mm = current->mm; 742 struct kioctx *ctx; 743 int err = -ENOMEM; 744 745 /* 746 * Store the original nr_events -- what userspace passed to io_setup(), 747 * for counting against the global limit -- before it changes. 748 */ 749 unsigned int max_reqs = nr_events; 750 751 /* 752 * We keep track of the number of available ringbuffer slots, to prevent 753 * overflow (reqs_available), and we also use percpu counters for this. 754 * 755 * So since up to half the slots might be on other cpu's percpu counters 756 * and unavailable, double nr_events so userspace sees what they 757 * expected: additionally, we move req_batch slots to/from percpu 758 * counters at a time, so make sure that isn't 0: 759 */ 760 nr_events = max(nr_events, num_possible_cpus() * 4); 761 nr_events *= 2; 762 763 /* Prevent overflows */ 764 if (nr_events > (0x10000000U / sizeof(struct io_event))) { 765 pr_debug("ENOMEM: nr_events too high\n"); 766 return ERR_PTR(-EINVAL); 767 } 768 769 if (!nr_events || (unsigned long)max_reqs > aio_max_nr) 770 return ERR_PTR(-EAGAIN); 771 772 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 773 if (!ctx) 774 return ERR_PTR(-ENOMEM); 775 776 ctx->max_reqs = max_reqs; 777 778 spin_lock_init(&ctx->ctx_lock); 779 spin_lock_init(&ctx->completion_lock); 780 mutex_init(&ctx->ring_lock); 781 /* Protect against page migration throughout kiotx setup by keeping 782 * the ring_lock mutex held until setup is complete. */ 783 mutex_lock(&ctx->ring_lock); 784 init_waitqueue_head(&ctx->wait); 785 786 INIT_LIST_HEAD(&ctx->active_reqs); 787 788 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL)) 789 goto err; 790 791 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL)) 792 goto err; 793 794 ctx->cpu = alloc_percpu(struct kioctx_cpu); 795 if (!ctx->cpu) 796 goto err; 797 798 err = aio_setup_ring(ctx, nr_events); 799 if (err < 0) 800 goto err; 801 802 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 803 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 804 if (ctx->req_batch < 1) 805 ctx->req_batch = 1; 806 807 /* limit the number of system wide aios */ 808 spin_lock(&aio_nr_lock); 809 if (aio_nr + ctx->max_reqs > aio_max_nr || 810 aio_nr + ctx->max_reqs < aio_nr) { 811 spin_unlock(&aio_nr_lock); 812 err = -EAGAIN; 813 goto err_ctx; 814 } 815 aio_nr += ctx->max_reqs; 816 spin_unlock(&aio_nr_lock); 817 818 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 819 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */ 820 821 err = ioctx_add_table(ctx, mm); 822 if (err) 823 goto err_cleanup; 824 825 /* Release the ring_lock mutex now that all setup is complete. */ 826 mutex_unlock(&ctx->ring_lock); 827 828 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 829 ctx, ctx->user_id, mm, ctx->nr_events); 830 return ctx; 831 832 err_cleanup: 833 aio_nr_sub(ctx->max_reqs); 834 err_ctx: 835 atomic_set(&ctx->dead, 1); 836 if (ctx->mmap_size) 837 vm_munmap(ctx->mmap_base, ctx->mmap_size); 838 aio_free_ring(ctx); 839 err: 840 mutex_unlock(&ctx->ring_lock); 841 free_percpu(ctx->cpu); 842 percpu_ref_exit(&ctx->reqs); 843 percpu_ref_exit(&ctx->users); 844 kmem_cache_free(kioctx_cachep, ctx); 845 pr_debug("error allocating ioctx %d\n", err); 846 return ERR_PTR(err); 847 } 848 849 /* kill_ioctx 850 * Cancels all outstanding aio requests on an aio context. Used 851 * when the processes owning a context have all exited to encourage 852 * the rapid destruction of the kioctx. 853 */ 854 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx, 855 struct ctx_rq_wait *wait) 856 { 857 struct kioctx_table *table; 858 859 spin_lock(&mm->ioctx_lock); 860 if (atomic_xchg(&ctx->dead, 1)) { 861 spin_unlock(&mm->ioctx_lock); 862 return -EINVAL; 863 } 864 865 table = rcu_dereference_raw(mm->ioctx_table); 866 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id])); 867 RCU_INIT_POINTER(table->table[ctx->id], NULL); 868 spin_unlock(&mm->ioctx_lock); 869 870 /* free_ioctx_reqs() will do the necessary RCU synchronization */ 871 wake_up_all(&ctx->wait); 872 873 /* 874 * It'd be more correct to do this in free_ioctx(), after all 875 * the outstanding kiocbs have finished - but by then io_destroy 876 * has already returned, so io_setup() could potentially return 877 * -EAGAIN with no ioctxs actually in use (as far as userspace 878 * could tell). 879 */ 880 aio_nr_sub(ctx->max_reqs); 881 882 if (ctx->mmap_size) 883 vm_munmap(ctx->mmap_base, ctx->mmap_size); 884 885 ctx->rq_wait = wait; 886 percpu_ref_kill(&ctx->users); 887 return 0; 888 } 889 890 /* 891 * exit_aio: called when the last user of mm goes away. At this point, there is 892 * no way for any new requests to be submited or any of the io_* syscalls to be 893 * called on the context. 894 * 895 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 896 * them. 897 */ 898 void exit_aio(struct mm_struct *mm) 899 { 900 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table); 901 struct ctx_rq_wait wait; 902 int i, skipped; 903 904 if (!table) 905 return; 906 907 atomic_set(&wait.count, table->nr); 908 init_completion(&wait.comp); 909 910 skipped = 0; 911 for (i = 0; i < table->nr; ++i) { 912 struct kioctx *ctx = 913 rcu_dereference_protected(table->table[i], true); 914 915 if (!ctx) { 916 skipped++; 917 continue; 918 } 919 920 /* 921 * We don't need to bother with munmap() here - exit_mmap(mm) 922 * is coming and it'll unmap everything. And we simply can't, 923 * this is not necessarily our ->mm. 924 * Since kill_ioctx() uses non-zero ->mmap_size as indicator 925 * that it needs to unmap the area, just set it to 0. 926 */ 927 ctx->mmap_size = 0; 928 kill_ioctx(mm, ctx, &wait); 929 } 930 931 if (!atomic_sub_and_test(skipped, &wait.count)) { 932 /* Wait until all IO for the context are done. */ 933 wait_for_completion(&wait.comp); 934 } 935 936 RCU_INIT_POINTER(mm->ioctx_table, NULL); 937 kfree(table); 938 } 939 940 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 941 { 942 struct kioctx_cpu *kcpu; 943 unsigned long flags; 944 945 local_irq_save(flags); 946 kcpu = this_cpu_ptr(ctx->cpu); 947 kcpu->reqs_available += nr; 948 949 while (kcpu->reqs_available >= ctx->req_batch * 2) { 950 kcpu->reqs_available -= ctx->req_batch; 951 atomic_add(ctx->req_batch, &ctx->reqs_available); 952 } 953 954 local_irq_restore(flags); 955 } 956 957 static bool __get_reqs_available(struct kioctx *ctx) 958 { 959 struct kioctx_cpu *kcpu; 960 bool ret = false; 961 unsigned long flags; 962 963 local_irq_save(flags); 964 kcpu = this_cpu_ptr(ctx->cpu); 965 if (!kcpu->reqs_available) { 966 int avail = atomic_read(&ctx->reqs_available); 967 968 do { 969 if (avail < ctx->req_batch) 970 goto out; 971 } while (!atomic_try_cmpxchg(&ctx->reqs_available, 972 &avail, avail - ctx->req_batch)); 973 974 kcpu->reqs_available += ctx->req_batch; 975 } 976 977 ret = true; 978 kcpu->reqs_available--; 979 out: 980 local_irq_restore(flags); 981 return ret; 982 } 983 984 /* refill_reqs_available 985 * Updates the reqs_available reference counts used for tracking the 986 * number of free slots in the completion ring. This can be called 987 * from aio_complete() (to optimistically update reqs_available) or 988 * from aio_get_req() (the we're out of events case). It must be 989 * called holding ctx->completion_lock. 990 */ 991 static void refill_reqs_available(struct kioctx *ctx, unsigned head, 992 unsigned tail) 993 { 994 unsigned events_in_ring, completed; 995 996 /* Clamp head since userland can write to it. */ 997 head %= ctx->nr_events; 998 if (head <= tail) 999 events_in_ring = tail - head; 1000 else 1001 events_in_ring = ctx->nr_events - (head - tail); 1002 1003 completed = ctx->completed_events; 1004 if (events_in_ring < completed) 1005 completed -= events_in_ring; 1006 else 1007 completed = 0; 1008 1009 if (!completed) 1010 return; 1011 1012 ctx->completed_events -= completed; 1013 put_reqs_available(ctx, completed); 1014 } 1015 1016 /* user_refill_reqs_available 1017 * Called to refill reqs_available when aio_get_req() encounters an 1018 * out of space in the completion ring. 1019 */ 1020 static void user_refill_reqs_available(struct kioctx *ctx) 1021 { 1022 spin_lock_irq(&ctx->completion_lock); 1023 if (ctx->completed_events) { 1024 struct aio_ring *ring; 1025 unsigned head; 1026 1027 /* Access of ring->head may race with aio_read_events_ring() 1028 * here, but that's okay since whether we read the old version 1029 * or the new version, and either will be valid. The important 1030 * part is that head cannot pass tail since we prevent 1031 * aio_complete() from updating tail by holding 1032 * ctx->completion_lock. Even if head is invalid, the check 1033 * against ctx->completed_events below will make sure we do the 1034 * safe/right thing. 1035 */ 1036 ring = page_address(ctx->ring_pages[0]); 1037 head = ring->head; 1038 1039 refill_reqs_available(ctx, head, ctx->tail); 1040 } 1041 1042 spin_unlock_irq(&ctx->completion_lock); 1043 } 1044 1045 static bool get_reqs_available(struct kioctx *ctx) 1046 { 1047 if (__get_reqs_available(ctx)) 1048 return true; 1049 user_refill_reqs_available(ctx); 1050 return __get_reqs_available(ctx); 1051 } 1052 1053 /* aio_get_req 1054 * Allocate a slot for an aio request. 1055 * Returns NULL if no requests are free. 1056 * 1057 * The refcount is initialized to 2 - one for the async op completion, 1058 * one for the synchronous code that does this. 1059 */ 1060 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx) 1061 { 1062 struct aio_kiocb *req; 1063 1064 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 1065 if (unlikely(!req)) 1066 return NULL; 1067 1068 if (unlikely(!get_reqs_available(ctx))) { 1069 kmem_cache_free(kiocb_cachep, req); 1070 return NULL; 1071 } 1072 1073 percpu_ref_get(&ctx->reqs); 1074 req->ki_ctx = ctx; 1075 INIT_LIST_HEAD(&req->ki_list); 1076 refcount_set(&req->ki_refcnt, 2); 1077 req->ki_eventfd = NULL; 1078 return req; 1079 } 1080 1081 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 1082 { 1083 struct aio_ring __user *ring = (void __user *)ctx_id; 1084 struct mm_struct *mm = current->mm; 1085 struct kioctx *ctx, *ret = NULL; 1086 struct kioctx_table *table; 1087 unsigned id; 1088 1089 if (get_user(id, &ring->id)) 1090 return NULL; 1091 1092 rcu_read_lock(); 1093 table = rcu_dereference(mm->ioctx_table); 1094 1095 if (!table || id >= table->nr) 1096 goto out; 1097 1098 id = array_index_nospec(id, table->nr); 1099 ctx = rcu_dereference(table->table[id]); 1100 if (ctx && ctx->user_id == ctx_id) { 1101 if (percpu_ref_tryget_live(&ctx->users)) 1102 ret = ctx; 1103 } 1104 out: 1105 rcu_read_unlock(); 1106 return ret; 1107 } 1108 1109 static inline void iocb_destroy(struct aio_kiocb *iocb) 1110 { 1111 if (iocb->ki_eventfd) 1112 eventfd_ctx_put(iocb->ki_eventfd); 1113 if (iocb->ki_filp) 1114 fput(iocb->ki_filp); 1115 percpu_ref_put(&iocb->ki_ctx->reqs); 1116 kmem_cache_free(kiocb_cachep, iocb); 1117 } 1118 1119 struct aio_waiter { 1120 struct wait_queue_entry w; 1121 size_t min_nr; 1122 }; 1123 1124 /* aio_complete 1125 * Called when the io request on the given iocb is complete. 1126 */ 1127 static void aio_complete(struct aio_kiocb *iocb) 1128 { 1129 struct kioctx *ctx = iocb->ki_ctx; 1130 struct aio_ring *ring; 1131 struct io_event *ev_page, *event; 1132 unsigned tail, pos, head, avail; 1133 unsigned long flags; 1134 1135 /* 1136 * Add a completion event to the ring buffer. Must be done holding 1137 * ctx->completion_lock to prevent other code from messing with the tail 1138 * pointer since we might be called from irq context. 1139 */ 1140 spin_lock_irqsave(&ctx->completion_lock, flags); 1141 1142 tail = ctx->tail; 1143 pos = tail + AIO_EVENTS_OFFSET; 1144 1145 if (++tail >= ctx->nr_events) 1146 tail = 0; 1147 1148 ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1149 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 1150 1151 *event = iocb->ki_res; 1152 1153 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 1154 1155 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb, 1156 (void __user *)(unsigned long)iocb->ki_res.obj, 1157 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2); 1158 1159 /* after flagging the request as done, we 1160 * must never even look at it again 1161 */ 1162 smp_wmb(); /* make event visible before updating tail */ 1163 1164 ctx->tail = tail; 1165 1166 ring = page_address(ctx->ring_pages[0]); 1167 head = ring->head; 1168 ring->tail = tail; 1169 flush_dcache_page(ctx->ring_pages[0]); 1170 1171 ctx->completed_events++; 1172 if (ctx->completed_events > 1) 1173 refill_reqs_available(ctx, head, tail); 1174 1175 avail = tail > head 1176 ? tail - head 1177 : tail + ctx->nr_events - head; 1178 spin_unlock_irqrestore(&ctx->completion_lock, flags); 1179 1180 pr_debug("added to ring %p at [%u]\n", iocb, tail); 1181 1182 /* 1183 * Check if the user asked us to deliver the result through an 1184 * eventfd. The eventfd_signal() function is safe to be called 1185 * from IRQ context. 1186 */ 1187 if (iocb->ki_eventfd) 1188 eventfd_signal(iocb->ki_eventfd); 1189 1190 /* 1191 * We have to order our ring_info tail store above and test 1192 * of the wait list below outside the wait lock. This is 1193 * like in wake_up_bit() where clearing a bit has to be 1194 * ordered with the unlocked test. 1195 */ 1196 smp_mb(); 1197 1198 if (waitqueue_active(&ctx->wait)) { 1199 struct aio_waiter *curr, *next; 1200 unsigned long flags; 1201 1202 spin_lock_irqsave(&ctx->wait.lock, flags); 1203 list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry) 1204 if (avail >= curr->min_nr) { 1205 wake_up_process(curr->w.private); 1206 list_del_init_careful(&curr->w.entry); 1207 } 1208 spin_unlock_irqrestore(&ctx->wait.lock, flags); 1209 } 1210 } 1211 1212 static inline void iocb_put(struct aio_kiocb *iocb) 1213 { 1214 if (refcount_dec_and_test(&iocb->ki_refcnt)) { 1215 aio_complete(iocb); 1216 iocb_destroy(iocb); 1217 } 1218 } 1219 1220 /* aio_read_events_ring 1221 * Pull an event off of the ioctx's event ring. Returns the number of 1222 * events fetched 1223 */ 1224 static long aio_read_events_ring(struct kioctx *ctx, 1225 struct io_event __user *event, long nr) 1226 { 1227 struct aio_ring *ring; 1228 unsigned head, tail, pos; 1229 long ret = 0; 1230 int copy_ret; 1231 1232 /* 1233 * The mutex can block and wake us up and that will cause 1234 * wait_event_interruptible_hrtimeout() to schedule without sleeping 1235 * and repeat. This should be rare enough that it doesn't cause 1236 * peformance issues. See the comment in read_events() for more detail. 1237 */ 1238 sched_annotate_sleep(); 1239 mutex_lock(&ctx->ring_lock); 1240 1241 /* Access to ->ring_pages here is protected by ctx->ring_lock. */ 1242 ring = page_address(ctx->ring_pages[0]); 1243 head = ring->head; 1244 tail = ring->tail; 1245 1246 /* 1247 * Ensure that once we've read the current tail pointer, that 1248 * we also see the events that were stored up to the tail. 1249 */ 1250 smp_rmb(); 1251 1252 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 1253 1254 if (head == tail) 1255 goto out; 1256 1257 head %= ctx->nr_events; 1258 tail %= ctx->nr_events; 1259 1260 while (ret < nr) { 1261 long avail; 1262 struct io_event *ev; 1263 struct page *page; 1264 1265 avail = (head <= tail ? tail : ctx->nr_events) - head; 1266 if (head == tail) 1267 break; 1268 1269 pos = head + AIO_EVENTS_OFFSET; 1270 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 1271 pos %= AIO_EVENTS_PER_PAGE; 1272 1273 avail = min(avail, nr - ret); 1274 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos); 1275 1276 ev = page_address(page); 1277 copy_ret = copy_to_user(event + ret, ev + pos, 1278 sizeof(*ev) * avail); 1279 1280 if (unlikely(copy_ret)) { 1281 ret = -EFAULT; 1282 goto out; 1283 } 1284 1285 ret += avail; 1286 head += avail; 1287 head %= ctx->nr_events; 1288 } 1289 1290 ring = page_address(ctx->ring_pages[0]); 1291 ring->head = head; 1292 flush_dcache_page(ctx->ring_pages[0]); 1293 1294 pr_debug("%li h%u t%u\n", ret, head, tail); 1295 out: 1296 mutex_unlock(&ctx->ring_lock); 1297 1298 return ret; 1299 } 1300 1301 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 1302 struct io_event __user *event, long *i) 1303 { 1304 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 1305 1306 if (ret > 0) 1307 *i += ret; 1308 1309 if (unlikely(atomic_read(&ctx->dead))) 1310 ret = -EINVAL; 1311 1312 if (!*i) 1313 *i = ret; 1314 1315 return ret < 0 || *i >= min_nr; 1316 } 1317 1318 static long read_events(struct kioctx *ctx, long min_nr, long nr, 1319 struct io_event __user *event, 1320 ktime_t until) 1321 { 1322 struct hrtimer_sleeper t; 1323 struct aio_waiter w; 1324 long ret = 0, ret2 = 0; 1325 1326 /* 1327 * Note that aio_read_events() is being called as the conditional - i.e. 1328 * we're calling it after prepare_to_wait() has set task state to 1329 * TASK_INTERRUPTIBLE. 1330 * 1331 * But aio_read_events() can block, and if it blocks it's going to flip 1332 * the task state back to TASK_RUNNING. 1333 * 1334 * This should be ok, provided it doesn't flip the state back to 1335 * TASK_RUNNING and return 0 too much - that causes us to spin. That 1336 * will only happen if the mutex_lock() call blocks, and we then find 1337 * the ringbuffer empty. So in practice we should be ok, but it's 1338 * something to be aware of when touching this code. 1339 */ 1340 aio_read_events(ctx, min_nr, nr, event, &ret); 1341 if (until == 0 || ret < 0 || ret >= min_nr) 1342 return ret; 1343 1344 hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1345 if (until != KTIME_MAX) { 1346 hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns); 1347 hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL); 1348 } 1349 1350 init_wait(&w.w); 1351 1352 while (1) { 1353 unsigned long nr_got = ret; 1354 1355 w.min_nr = min_nr - ret; 1356 1357 ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE); 1358 if (!ret2 && !t.task) 1359 ret2 = -ETIME; 1360 1361 if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2) 1362 break; 1363 1364 if (nr_got == ret) 1365 schedule(); 1366 } 1367 1368 finish_wait(&ctx->wait, &w.w); 1369 hrtimer_cancel(&t.timer); 1370 destroy_hrtimer_on_stack(&t.timer); 1371 1372 return ret; 1373 } 1374 1375 /* sys_io_setup: 1376 * Create an aio_context capable of receiving at least nr_events. 1377 * ctxp must not point to an aio_context that already exists, and 1378 * must be initialized to 0 prior to the call. On successful 1379 * creation of the aio_context, *ctxp is filled in with the resulting 1380 * handle. May fail with -EINVAL if *ctxp is not initialized, 1381 * if the specified nr_events exceeds internal limits. May fail 1382 * with -EAGAIN if the specified nr_events exceeds the user's limit 1383 * of available events. May fail with -ENOMEM if insufficient kernel 1384 * resources are available. May fail with -EFAULT if an invalid 1385 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1386 * implemented. 1387 */ 1388 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 1389 { 1390 struct kioctx *ioctx = NULL; 1391 unsigned long ctx; 1392 long ret; 1393 1394 ret = get_user(ctx, ctxp); 1395 if (unlikely(ret)) 1396 goto out; 1397 1398 ret = -EINVAL; 1399 if (unlikely(ctx || nr_events == 0)) { 1400 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1401 ctx, nr_events); 1402 goto out; 1403 } 1404 1405 ioctx = ioctx_alloc(nr_events); 1406 ret = PTR_ERR(ioctx); 1407 if (!IS_ERR(ioctx)) { 1408 ret = put_user(ioctx->user_id, ctxp); 1409 if (ret) 1410 kill_ioctx(current->mm, ioctx, NULL); 1411 percpu_ref_put(&ioctx->users); 1412 } 1413 1414 out: 1415 return ret; 1416 } 1417 1418 #ifdef CONFIG_COMPAT 1419 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p) 1420 { 1421 struct kioctx *ioctx = NULL; 1422 unsigned long ctx; 1423 long ret; 1424 1425 ret = get_user(ctx, ctx32p); 1426 if (unlikely(ret)) 1427 goto out; 1428 1429 ret = -EINVAL; 1430 if (unlikely(ctx || nr_events == 0)) { 1431 pr_debug("EINVAL: ctx %lu nr_events %u\n", 1432 ctx, nr_events); 1433 goto out; 1434 } 1435 1436 ioctx = ioctx_alloc(nr_events); 1437 ret = PTR_ERR(ioctx); 1438 if (!IS_ERR(ioctx)) { 1439 /* truncating is ok because it's a user address */ 1440 ret = put_user((u32)ioctx->user_id, ctx32p); 1441 if (ret) 1442 kill_ioctx(current->mm, ioctx, NULL); 1443 percpu_ref_put(&ioctx->users); 1444 } 1445 1446 out: 1447 return ret; 1448 } 1449 #endif 1450 1451 /* sys_io_destroy: 1452 * Destroy the aio_context specified. May cancel any outstanding 1453 * AIOs and block on completion. Will fail with -ENOSYS if not 1454 * implemented. May fail with -EINVAL if the context pointed to 1455 * is invalid. 1456 */ 1457 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1458 { 1459 struct kioctx *ioctx = lookup_ioctx(ctx); 1460 if (likely(NULL != ioctx)) { 1461 struct ctx_rq_wait wait; 1462 int ret; 1463 1464 init_completion(&wait.comp); 1465 atomic_set(&wait.count, 1); 1466 1467 /* Pass requests_done to kill_ioctx() where it can be set 1468 * in a thread-safe way. If we try to set it here then we have 1469 * a race condition if two io_destroy() called simultaneously. 1470 */ 1471 ret = kill_ioctx(current->mm, ioctx, &wait); 1472 percpu_ref_put(&ioctx->users); 1473 1474 /* Wait until all IO for the context are done. Otherwise kernel 1475 * keep using user-space buffers even if user thinks the context 1476 * is destroyed. 1477 */ 1478 if (!ret) 1479 wait_for_completion(&wait.comp); 1480 1481 return ret; 1482 } 1483 pr_debug("EINVAL: invalid context id\n"); 1484 return -EINVAL; 1485 } 1486 1487 static void aio_remove_iocb(struct aio_kiocb *iocb) 1488 { 1489 struct kioctx *ctx = iocb->ki_ctx; 1490 unsigned long flags; 1491 1492 spin_lock_irqsave(&ctx->ctx_lock, flags); 1493 list_del(&iocb->ki_list); 1494 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1495 } 1496 1497 static void aio_complete_rw(struct kiocb *kiocb, long res) 1498 { 1499 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw); 1500 1501 if (!list_empty_careful(&iocb->ki_list)) 1502 aio_remove_iocb(iocb); 1503 1504 if (kiocb->ki_flags & IOCB_WRITE) { 1505 struct inode *inode = file_inode(kiocb->ki_filp); 1506 1507 if (S_ISREG(inode->i_mode)) 1508 kiocb_end_write(kiocb); 1509 } 1510 1511 iocb->ki_res.res = res; 1512 iocb->ki_res.res2 = 0; 1513 iocb_put(iocb); 1514 } 1515 1516 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb) 1517 { 1518 int ret; 1519 1520 req->ki_complete = aio_complete_rw; 1521 req->private = NULL; 1522 req->ki_pos = iocb->aio_offset; 1523 req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW; 1524 if (iocb->aio_flags & IOCB_FLAG_RESFD) 1525 req->ki_flags |= IOCB_EVENTFD; 1526 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) { 1527 /* 1528 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then 1529 * aio_reqprio is interpreted as an I/O scheduling 1530 * class and priority. 1531 */ 1532 ret = ioprio_check_cap(iocb->aio_reqprio); 1533 if (ret) { 1534 pr_debug("aio ioprio check cap error: %d\n", ret); 1535 return ret; 1536 } 1537 1538 req->ki_ioprio = iocb->aio_reqprio; 1539 } else 1540 req->ki_ioprio = get_current_ioprio(); 1541 1542 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags); 1543 if (unlikely(ret)) 1544 return ret; 1545 1546 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */ 1547 return 0; 1548 } 1549 1550 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb, 1551 struct iovec **iovec, bool vectored, bool compat, 1552 struct iov_iter *iter) 1553 { 1554 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf; 1555 size_t len = iocb->aio_nbytes; 1556 1557 if (!vectored) { 1558 ssize_t ret = import_ubuf(rw, buf, len, iter); 1559 *iovec = NULL; 1560 return ret; 1561 } 1562 1563 return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat); 1564 } 1565 1566 static inline void aio_rw_done(struct kiocb *req, ssize_t ret) 1567 { 1568 switch (ret) { 1569 case -EIOCBQUEUED: 1570 break; 1571 case -ERESTARTSYS: 1572 case -ERESTARTNOINTR: 1573 case -ERESTARTNOHAND: 1574 case -ERESTART_RESTARTBLOCK: 1575 /* 1576 * There's no easy way to restart the syscall since other AIO's 1577 * may be already running. Just fail this IO with EINTR. 1578 */ 1579 ret = -EINTR; 1580 fallthrough; 1581 default: 1582 req->ki_complete(req, ret); 1583 } 1584 } 1585 1586 static int aio_read(struct kiocb *req, const struct iocb *iocb, 1587 bool vectored, bool compat) 1588 { 1589 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1590 struct iov_iter iter; 1591 struct file *file; 1592 int ret; 1593 1594 ret = aio_prep_rw(req, iocb); 1595 if (ret) 1596 return ret; 1597 file = req->ki_filp; 1598 if (unlikely(!(file->f_mode & FMODE_READ))) 1599 return -EBADF; 1600 if (unlikely(!file->f_op->read_iter)) 1601 return -EINVAL; 1602 1603 ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter); 1604 if (ret < 0) 1605 return ret; 1606 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter)); 1607 if (!ret) 1608 aio_rw_done(req, call_read_iter(file, req, &iter)); 1609 kfree(iovec); 1610 return ret; 1611 } 1612 1613 static int aio_write(struct kiocb *req, const struct iocb *iocb, 1614 bool vectored, bool compat) 1615 { 1616 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs; 1617 struct iov_iter iter; 1618 struct file *file; 1619 int ret; 1620 1621 ret = aio_prep_rw(req, iocb); 1622 if (ret) 1623 return ret; 1624 file = req->ki_filp; 1625 1626 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1627 return -EBADF; 1628 if (unlikely(!file->f_op->write_iter)) 1629 return -EINVAL; 1630 1631 ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter); 1632 if (ret < 0) 1633 return ret; 1634 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter)); 1635 if (!ret) { 1636 if (S_ISREG(file_inode(file)->i_mode)) 1637 kiocb_start_write(req); 1638 req->ki_flags |= IOCB_WRITE; 1639 aio_rw_done(req, call_write_iter(file, req, &iter)); 1640 } 1641 kfree(iovec); 1642 return ret; 1643 } 1644 1645 static void aio_fsync_work(struct work_struct *work) 1646 { 1647 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work); 1648 const struct cred *old_cred = override_creds(iocb->fsync.creds); 1649 1650 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync); 1651 revert_creds(old_cred); 1652 put_cred(iocb->fsync.creds); 1653 iocb_put(iocb); 1654 } 1655 1656 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb, 1657 bool datasync) 1658 { 1659 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes || 1660 iocb->aio_rw_flags)) 1661 return -EINVAL; 1662 1663 if (unlikely(!req->file->f_op->fsync)) 1664 return -EINVAL; 1665 1666 req->creds = prepare_creds(); 1667 if (!req->creds) 1668 return -ENOMEM; 1669 1670 req->datasync = datasync; 1671 INIT_WORK(&req->work, aio_fsync_work); 1672 schedule_work(&req->work); 1673 return 0; 1674 } 1675 1676 static void aio_poll_put_work(struct work_struct *work) 1677 { 1678 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1679 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1680 1681 iocb_put(iocb); 1682 } 1683 1684 /* 1685 * Safely lock the waitqueue which the request is on, synchronizing with the 1686 * case where the ->poll() provider decides to free its waitqueue early. 1687 * 1688 * Returns true on success, meaning that req->head->lock was locked, req->wait 1689 * is on req->head, and an RCU read lock was taken. Returns false if the 1690 * request was already removed from its waitqueue (which might no longer exist). 1691 */ 1692 static bool poll_iocb_lock_wq(struct poll_iocb *req) 1693 { 1694 wait_queue_head_t *head; 1695 1696 /* 1697 * While we hold the waitqueue lock and the waitqueue is nonempty, 1698 * wake_up_pollfree() will wait for us. However, taking the waitqueue 1699 * lock in the first place can race with the waitqueue being freed. 1700 * 1701 * We solve this as eventpoll does: by taking advantage of the fact that 1702 * all users of wake_up_pollfree() will RCU-delay the actual free. If 1703 * we enter rcu_read_lock() and see that the pointer to the queue is 1704 * non-NULL, we can then lock it without the memory being freed out from 1705 * under us, then check whether the request is still on the queue. 1706 * 1707 * Keep holding rcu_read_lock() as long as we hold the queue lock, in 1708 * case the caller deletes the entry from the queue, leaving it empty. 1709 * In that case, only RCU prevents the queue memory from being freed. 1710 */ 1711 rcu_read_lock(); 1712 head = smp_load_acquire(&req->head); 1713 if (head) { 1714 spin_lock(&head->lock); 1715 if (!list_empty(&req->wait.entry)) 1716 return true; 1717 spin_unlock(&head->lock); 1718 } 1719 rcu_read_unlock(); 1720 return false; 1721 } 1722 1723 static void poll_iocb_unlock_wq(struct poll_iocb *req) 1724 { 1725 spin_unlock(&req->head->lock); 1726 rcu_read_unlock(); 1727 } 1728 1729 static void aio_poll_complete_work(struct work_struct *work) 1730 { 1731 struct poll_iocb *req = container_of(work, struct poll_iocb, work); 1732 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1733 struct poll_table_struct pt = { ._key = req->events }; 1734 struct kioctx *ctx = iocb->ki_ctx; 1735 __poll_t mask = 0; 1736 1737 if (!READ_ONCE(req->cancelled)) 1738 mask = vfs_poll(req->file, &pt) & req->events; 1739 1740 /* 1741 * Note that ->ki_cancel callers also delete iocb from active_reqs after 1742 * calling ->ki_cancel. We need the ctx_lock roundtrip here to 1743 * synchronize with them. In the cancellation case the list_del_init 1744 * itself is not actually needed, but harmless so we keep it in to 1745 * avoid further branches in the fast path. 1746 */ 1747 spin_lock_irq(&ctx->ctx_lock); 1748 if (poll_iocb_lock_wq(req)) { 1749 if (!mask && !READ_ONCE(req->cancelled)) { 1750 /* 1751 * The request isn't actually ready to be completed yet. 1752 * Reschedule completion if another wakeup came in. 1753 */ 1754 if (req->work_need_resched) { 1755 schedule_work(&req->work); 1756 req->work_need_resched = false; 1757 } else { 1758 req->work_scheduled = false; 1759 } 1760 poll_iocb_unlock_wq(req); 1761 spin_unlock_irq(&ctx->ctx_lock); 1762 return; 1763 } 1764 list_del_init(&req->wait.entry); 1765 poll_iocb_unlock_wq(req); 1766 } /* else, POLLFREE has freed the waitqueue, so we must complete */ 1767 list_del_init(&iocb->ki_list); 1768 iocb->ki_res.res = mangle_poll(mask); 1769 spin_unlock_irq(&ctx->ctx_lock); 1770 1771 iocb_put(iocb); 1772 } 1773 1774 /* assumes we are called with irqs disabled */ 1775 static int aio_poll_cancel(struct kiocb *iocb) 1776 { 1777 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw); 1778 struct poll_iocb *req = &aiocb->poll; 1779 1780 if (poll_iocb_lock_wq(req)) { 1781 WRITE_ONCE(req->cancelled, true); 1782 if (!req->work_scheduled) { 1783 schedule_work(&aiocb->poll.work); 1784 req->work_scheduled = true; 1785 } 1786 poll_iocb_unlock_wq(req); 1787 } /* else, the request was force-cancelled by POLLFREE already */ 1788 1789 return 0; 1790 } 1791 1792 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync, 1793 void *key) 1794 { 1795 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait); 1796 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll); 1797 __poll_t mask = key_to_poll(key); 1798 unsigned long flags; 1799 1800 /* for instances that support it check for an event match first: */ 1801 if (mask && !(mask & req->events)) 1802 return 0; 1803 1804 /* 1805 * Complete the request inline if possible. This requires that three 1806 * conditions be met: 1807 * 1. An event mask must have been passed. If a plain wakeup was done 1808 * instead, then mask == 0 and we have to call vfs_poll() to get 1809 * the events, so inline completion isn't possible. 1810 * 2. The completion work must not have already been scheduled. 1811 * 3. ctx_lock must not be busy. We have to use trylock because we 1812 * already hold the waitqueue lock, so this inverts the normal 1813 * locking order. Use irqsave/irqrestore because not all 1814 * filesystems (e.g. fuse) call this function with IRQs disabled, 1815 * yet IRQs have to be disabled before ctx_lock is obtained. 1816 */ 1817 if (mask && !req->work_scheduled && 1818 spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) { 1819 struct kioctx *ctx = iocb->ki_ctx; 1820 1821 list_del_init(&req->wait.entry); 1822 list_del(&iocb->ki_list); 1823 iocb->ki_res.res = mangle_poll(mask); 1824 if (iocb->ki_eventfd && !eventfd_signal_allowed()) { 1825 iocb = NULL; 1826 INIT_WORK(&req->work, aio_poll_put_work); 1827 schedule_work(&req->work); 1828 } 1829 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1830 if (iocb) 1831 iocb_put(iocb); 1832 } else { 1833 /* 1834 * Schedule the completion work if needed. If it was already 1835 * scheduled, record that another wakeup came in. 1836 * 1837 * Don't remove the request from the waitqueue here, as it might 1838 * not actually be complete yet (we won't know until vfs_poll() 1839 * is called), and we must not miss any wakeups. POLLFREE is an 1840 * exception to this; see below. 1841 */ 1842 if (req->work_scheduled) { 1843 req->work_need_resched = true; 1844 } else { 1845 schedule_work(&req->work); 1846 req->work_scheduled = true; 1847 } 1848 1849 /* 1850 * If the waitqueue is being freed early but we can't complete 1851 * the request inline, we have to tear down the request as best 1852 * we can. That means immediately removing the request from its 1853 * waitqueue and preventing all further accesses to the 1854 * waitqueue via the request. We also need to schedule the 1855 * completion work (done above). Also mark the request as 1856 * cancelled, to potentially skip an unneeded call to ->poll(). 1857 */ 1858 if (mask & POLLFREE) { 1859 WRITE_ONCE(req->cancelled, true); 1860 list_del_init(&req->wait.entry); 1861 1862 /* 1863 * Careful: this *must* be the last step, since as soon 1864 * as req->head is NULL'ed out, the request can be 1865 * completed and freed, since aio_poll_complete_work() 1866 * will no longer need to take the waitqueue lock. 1867 */ 1868 smp_store_release(&req->head, NULL); 1869 } 1870 } 1871 return 1; 1872 } 1873 1874 struct aio_poll_table { 1875 struct poll_table_struct pt; 1876 struct aio_kiocb *iocb; 1877 bool queued; 1878 int error; 1879 }; 1880 1881 static void 1882 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head, 1883 struct poll_table_struct *p) 1884 { 1885 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt); 1886 1887 /* multiple wait queues per file are not supported */ 1888 if (unlikely(pt->queued)) { 1889 pt->error = -EINVAL; 1890 return; 1891 } 1892 1893 pt->queued = true; 1894 pt->error = 0; 1895 pt->iocb->poll.head = head; 1896 add_wait_queue(head, &pt->iocb->poll.wait); 1897 } 1898 1899 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb) 1900 { 1901 struct kioctx *ctx = aiocb->ki_ctx; 1902 struct poll_iocb *req = &aiocb->poll; 1903 struct aio_poll_table apt; 1904 bool cancel = false; 1905 __poll_t mask; 1906 1907 /* reject any unknown events outside the normal event mask. */ 1908 if ((u16)iocb->aio_buf != iocb->aio_buf) 1909 return -EINVAL; 1910 /* reject fields that are not defined for poll */ 1911 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags) 1912 return -EINVAL; 1913 1914 INIT_WORK(&req->work, aio_poll_complete_work); 1915 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP; 1916 1917 req->head = NULL; 1918 req->cancelled = false; 1919 req->work_scheduled = false; 1920 req->work_need_resched = false; 1921 1922 apt.pt._qproc = aio_poll_queue_proc; 1923 apt.pt._key = req->events; 1924 apt.iocb = aiocb; 1925 apt.queued = false; 1926 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */ 1927 1928 /* initialized the list so that we can do list_empty checks */ 1929 INIT_LIST_HEAD(&req->wait.entry); 1930 init_waitqueue_func_entry(&req->wait, aio_poll_wake); 1931 1932 mask = vfs_poll(req->file, &apt.pt) & req->events; 1933 spin_lock_irq(&ctx->ctx_lock); 1934 if (likely(apt.queued)) { 1935 bool on_queue = poll_iocb_lock_wq(req); 1936 1937 if (!on_queue || req->work_scheduled) { 1938 /* 1939 * aio_poll_wake() already either scheduled the async 1940 * completion work, or completed the request inline. 1941 */ 1942 if (apt.error) /* unsupported case: multiple queues */ 1943 cancel = true; 1944 apt.error = 0; 1945 mask = 0; 1946 } 1947 if (mask || apt.error) { 1948 /* Steal to complete synchronously. */ 1949 list_del_init(&req->wait.entry); 1950 } else if (cancel) { 1951 /* Cancel if possible (may be too late though). */ 1952 WRITE_ONCE(req->cancelled, true); 1953 } else if (on_queue) { 1954 /* 1955 * Actually waiting for an event, so add the request to 1956 * active_reqs so that it can be cancelled if needed. 1957 */ 1958 list_add_tail(&aiocb->ki_list, &ctx->active_reqs); 1959 aiocb->ki_cancel = aio_poll_cancel; 1960 } 1961 if (on_queue) 1962 poll_iocb_unlock_wq(req); 1963 } 1964 if (mask) { /* no async, we'd stolen it */ 1965 aiocb->ki_res.res = mangle_poll(mask); 1966 apt.error = 0; 1967 } 1968 spin_unlock_irq(&ctx->ctx_lock); 1969 if (mask) 1970 iocb_put(aiocb); 1971 return apt.error; 1972 } 1973 1974 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb, 1975 struct iocb __user *user_iocb, struct aio_kiocb *req, 1976 bool compat) 1977 { 1978 req->ki_filp = fget(iocb->aio_fildes); 1979 if (unlikely(!req->ki_filp)) 1980 return -EBADF; 1981 1982 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1983 struct eventfd_ctx *eventfd; 1984 /* 1985 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1986 * instance of the file* now. The file descriptor must be 1987 * an eventfd() fd, and will be signaled for each completed 1988 * event using the eventfd_signal() function. 1989 */ 1990 eventfd = eventfd_ctx_fdget(iocb->aio_resfd); 1991 if (IS_ERR(eventfd)) 1992 return PTR_ERR(eventfd); 1993 1994 req->ki_eventfd = eventfd; 1995 } 1996 1997 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) { 1998 pr_debug("EFAULT: aio_key\n"); 1999 return -EFAULT; 2000 } 2001 2002 req->ki_res.obj = (u64)(unsigned long)user_iocb; 2003 req->ki_res.data = iocb->aio_data; 2004 req->ki_res.res = 0; 2005 req->ki_res.res2 = 0; 2006 2007 switch (iocb->aio_lio_opcode) { 2008 case IOCB_CMD_PREAD: 2009 return aio_read(&req->rw, iocb, false, compat); 2010 case IOCB_CMD_PWRITE: 2011 return aio_write(&req->rw, iocb, false, compat); 2012 case IOCB_CMD_PREADV: 2013 return aio_read(&req->rw, iocb, true, compat); 2014 case IOCB_CMD_PWRITEV: 2015 return aio_write(&req->rw, iocb, true, compat); 2016 case IOCB_CMD_FSYNC: 2017 return aio_fsync(&req->fsync, iocb, false); 2018 case IOCB_CMD_FDSYNC: 2019 return aio_fsync(&req->fsync, iocb, true); 2020 case IOCB_CMD_POLL: 2021 return aio_poll(req, iocb); 2022 default: 2023 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode); 2024 return -EINVAL; 2025 } 2026 } 2027 2028 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 2029 bool compat) 2030 { 2031 struct aio_kiocb *req; 2032 struct iocb iocb; 2033 int err; 2034 2035 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb)))) 2036 return -EFAULT; 2037 2038 /* enforce forwards compatibility on users */ 2039 if (unlikely(iocb.aio_reserved2)) { 2040 pr_debug("EINVAL: reserve field set\n"); 2041 return -EINVAL; 2042 } 2043 2044 /* prevent overflows */ 2045 if (unlikely( 2046 (iocb.aio_buf != (unsigned long)iocb.aio_buf) || 2047 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) || 2048 ((ssize_t)iocb.aio_nbytes < 0) 2049 )) { 2050 pr_debug("EINVAL: overflow check\n"); 2051 return -EINVAL; 2052 } 2053 2054 req = aio_get_req(ctx); 2055 if (unlikely(!req)) 2056 return -EAGAIN; 2057 2058 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat); 2059 2060 /* Done with the synchronous reference */ 2061 iocb_put(req); 2062 2063 /* 2064 * If err is 0, we'd either done aio_complete() ourselves or have 2065 * arranged for that to be done asynchronously. Anything non-zero 2066 * means that we need to destroy req ourselves. 2067 */ 2068 if (unlikely(err)) { 2069 iocb_destroy(req); 2070 put_reqs_available(ctx, 1); 2071 } 2072 return err; 2073 } 2074 2075 /* sys_io_submit: 2076 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 2077 * the number of iocbs queued. May return -EINVAL if the aio_context 2078 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 2079 * *iocbpp[0] is not properly initialized, if the operation specified 2080 * is invalid for the file descriptor in the iocb. May fail with 2081 * -EFAULT if any of the data structures point to invalid data. May 2082 * fail with -EBADF if the file descriptor specified in the first 2083 * iocb is invalid. May fail with -EAGAIN if insufficient resources 2084 * are available to queue any iocbs. Will return 0 if nr is 0. Will 2085 * fail with -ENOSYS if not implemented. 2086 */ 2087 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 2088 struct iocb __user * __user *, iocbpp) 2089 { 2090 struct kioctx *ctx; 2091 long ret = 0; 2092 int i = 0; 2093 struct blk_plug plug; 2094 2095 if (unlikely(nr < 0)) 2096 return -EINVAL; 2097 2098 ctx = lookup_ioctx(ctx_id); 2099 if (unlikely(!ctx)) { 2100 pr_debug("EINVAL: invalid context id\n"); 2101 return -EINVAL; 2102 } 2103 2104 if (nr > ctx->nr_events) 2105 nr = ctx->nr_events; 2106 2107 if (nr > AIO_PLUG_THRESHOLD) 2108 blk_start_plug(&plug); 2109 for (i = 0; i < nr; i++) { 2110 struct iocb __user *user_iocb; 2111 2112 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2113 ret = -EFAULT; 2114 break; 2115 } 2116 2117 ret = io_submit_one(ctx, user_iocb, false); 2118 if (ret) 2119 break; 2120 } 2121 if (nr > AIO_PLUG_THRESHOLD) 2122 blk_finish_plug(&plug); 2123 2124 percpu_ref_put(&ctx->users); 2125 return i ? i : ret; 2126 } 2127 2128 #ifdef CONFIG_COMPAT 2129 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id, 2130 int, nr, compat_uptr_t __user *, iocbpp) 2131 { 2132 struct kioctx *ctx; 2133 long ret = 0; 2134 int i = 0; 2135 struct blk_plug plug; 2136 2137 if (unlikely(nr < 0)) 2138 return -EINVAL; 2139 2140 ctx = lookup_ioctx(ctx_id); 2141 if (unlikely(!ctx)) { 2142 pr_debug("EINVAL: invalid context id\n"); 2143 return -EINVAL; 2144 } 2145 2146 if (nr > ctx->nr_events) 2147 nr = ctx->nr_events; 2148 2149 if (nr > AIO_PLUG_THRESHOLD) 2150 blk_start_plug(&plug); 2151 for (i = 0; i < nr; i++) { 2152 compat_uptr_t user_iocb; 2153 2154 if (unlikely(get_user(user_iocb, iocbpp + i))) { 2155 ret = -EFAULT; 2156 break; 2157 } 2158 2159 ret = io_submit_one(ctx, compat_ptr(user_iocb), true); 2160 if (ret) 2161 break; 2162 } 2163 if (nr > AIO_PLUG_THRESHOLD) 2164 blk_finish_plug(&plug); 2165 2166 percpu_ref_put(&ctx->users); 2167 return i ? i : ret; 2168 } 2169 #endif 2170 2171 /* sys_io_cancel: 2172 * Attempts to cancel an iocb previously passed to io_submit. If 2173 * the operation is successfully cancelled, the resulting event is 2174 * copied into the memory pointed to by result without being placed 2175 * into the completion queue and 0 is returned. May fail with 2176 * -EFAULT if any of the data structures pointed to are invalid. 2177 * May fail with -EINVAL if aio_context specified by ctx_id is 2178 * invalid. May fail with -EAGAIN if the iocb specified was not 2179 * cancelled. Will fail with -ENOSYS if not implemented. 2180 */ 2181 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 2182 struct io_event __user *, result) 2183 { 2184 struct kioctx *ctx; 2185 struct aio_kiocb *kiocb; 2186 int ret = -EINVAL; 2187 u32 key; 2188 u64 obj = (u64)(unsigned long)iocb; 2189 2190 if (unlikely(get_user(key, &iocb->aio_key))) 2191 return -EFAULT; 2192 if (unlikely(key != KIOCB_KEY)) 2193 return -EINVAL; 2194 2195 ctx = lookup_ioctx(ctx_id); 2196 if (unlikely(!ctx)) 2197 return -EINVAL; 2198 2199 spin_lock_irq(&ctx->ctx_lock); 2200 /* TODO: use a hash or array, this sucks. */ 2201 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) { 2202 if (kiocb->ki_res.obj == obj) { 2203 ret = kiocb->ki_cancel(&kiocb->rw); 2204 list_del_init(&kiocb->ki_list); 2205 break; 2206 } 2207 } 2208 spin_unlock_irq(&ctx->ctx_lock); 2209 2210 if (!ret) { 2211 /* 2212 * The result argument is no longer used - the io_event is 2213 * always delivered via the ring buffer. -EINPROGRESS indicates 2214 * cancellation is progress: 2215 */ 2216 ret = -EINPROGRESS; 2217 } 2218 2219 percpu_ref_put(&ctx->users); 2220 2221 return ret; 2222 } 2223 2224 static long do_io_getevents(aio_context_t ctx_id, 2225 long min_nr, 2226 long nr, 2227 struct io_event __user *events, 2228 struct timespec64 *ts) 2229 { 2230 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX; 2231 struct kioctx *ioctx = lookup_ioctx(ctx_id); 2232 long ret = -EINVAL; 2233 2234 if (likely(ioctx)) { 2235 if (likely(min_nr <= nr && min_nr >= 0)) 2236 ret = read_events(ioctx, min_nr, nr, events, until); 2237 percpu_ref_put(&ioctx->users); 2238 } 2239 2240 return ret; 2241 } 2242 2243 /* io_getevents: 2244 * Attempts to read at least min_nr events and up to nr events from 2245 * the completion queue for the aio_context specified by ctx_id. If 2246 * it succeeds, the number of read events is returned. May fail with 2247 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 2248 * out of range, if timeout is out of range. May fail with -EFAULT 2249 * if any of the memory specified is invalid. May return 0 or 2250 * < min_nr if the timeout specified by timeout has elapsed 2251 * before sufficient events are available, where timeout == NULL 2252 * specifies an infinite timeout. Note that the timeout pointed to by 2253 * timeout is relative. Will fail with -ENOSYS if not implemented. 2254 */ 2255 #ifdef CONFIG_64BIT 2256 2257 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 2258 long, min_nr, 2259 long, nr, 2260 struct io_event __user *, events, 2261 struct __kernel_timespec __user *, timeout) 2262 { 2263 struct timespec64 ts; 2264 int ret; 2265 2266 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2267 return -EFAULT; 2268 2269 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2270 if (!ret && signal_pending(current)) 2271 ret = -EINTR; 2272 return ret; 2273 } 2274 2275 #endif 2276 2277 struct __aio_sigset { 2278 const sigset_t __user *sigmask; 2279 size_t sigsetsize; 2280 }; 2281 2282 SYSCALL_DEFINE6(io_pgetevents, 2283 aio_context_t, ctx_id, 2284 long, min_nr, 2285 long, nr, 2286 struct io_event __user *, events, 2287 struct __kernel_timespec __user *, timeout, 2288 const struct __aio_sigset __user *, usig) 2289 { 2290 struct __aio_sigset ksig = { NULL, }; 2291 struct timespec64 ts; 2292 bool interrupted; 2293 int ret; 2294 2295 if (timeout && unlikely(get_timespec64(&ts, timeout))) 2296 return -EFAULT; 2297 2298 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2299 return -EFAULT; 2300 2301 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2302 if (ret) 2303 return ret; 2304 2305 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2306 2307 interrupted = signal_pending(current); 2308 restore_saved_sigmask_unless(interrupted); 2309 if (interrupted && !ret) 2310 ret = -ERESTARTNOHAND; 2311 2312 return ret; 2313 } 2314 2315 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT) 2316 2317 SYSCALL_DEFINE6(io_pgetevents_time32, 2318 aio_context_t, ctx_id, 2319 long, min_nr, 2320 long, nr, 2321 struct io_event __user *, events, 2322 struct old_timespec32 __user *, timeout, 2323 const struct __aio_sigset __user *, usig) 2324 { 2325 struct __aio_sigset ksig = { NULL, }; 2326 struct timespec64 ts; 2327 bool interrupted; 2328 int ret; 2329 2330 if (timeout && unlikely(get_old_timespec32(&ts, timeout))) 2331 return -EFAULT; 2332 2333 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2334 return -EFAULT; 2335 2336 2337 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize); 2338 if (ret) 2339 return ret; 2340 2341 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL); 2342 2343 interrupted = signal_pending(current); 2344 restore_saved_sigmask_unless(interrupted); 2345 if (interrupted && !ret) 2346 ret = -ERESTARTNOHAND; 2347 2348 return ret; 2349 } 2350 2351 #endif 2352 2353 #if defined(CONFIG_COMPAT_32BIT_TIME) 2354 2355 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id, 2356 __s32, min_nr, 2357 __s32, nr, 2358 struct io_event __user *, events, 2359 struct old_timespec32 __user *, timeout) 2360 { 2361 struct timespec64 t; 2362 int ret; 2363 2364 if (timeout && get_old_timespec32(&t, timeout)) 2365 return -EFAULT; 2366 2367 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2368 if (!ret && signal_pending(current)) 2369 ret = -EINTR; 2370 return ret; 2371 } 2372 2373 #endif 2374 2375 #ifdef CONFIG_COMPAT 2376 2377 struct __compat_aio_sigset { 2378 compat_uptr_t sigmask; 2379 compat_size_t sigsetsize; 2380 }; 2381 2382 #if defined(CONFIG_COMPAT_32BIT_TIME) 2383 2384 COMPAT_SYSCALL_DEFINE6(io_pgetevents, 2385 compat_aio_context_t, ctx_id, 2386 compat_long_t, min_nr, 2387 compat_long_t, nr, 2388 struct io_event __user *, events, 2389 struct old_timespec32 __user *, timeout, 2390 const struct __compat_aio_sigset __user *, usig) 2391 { 2392 struct __compat_aio_sigset ksig = { 0, }; 2393 struct timespec64 t; 2394 bool interrupted; 2395 int ret; 2396 2397 if (timeout && get_old_timespec32(&t, timeout)) 2398 return -EFAULT; 2399 2400 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2401 return -EFAULT; 2402 2403 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2404 if (ret) 2405 return ret; 2406 2407 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2408 2409 interrupted = signal_pending(current); 2410 restore_saved_sigmask_unless(interrupted); 2411 if (interrupted && !ret) 2412 ret = -ERESTARTNOHAND; 2413 2414 return ret; 2415 } 2416 2417 #endif 2418 2419 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64, 2420 compat_aio_context_t, ctx_id, 2421 compat_long_t, min_nr, 2422 compat_long_t, nr, 2423 struct io_event __user *, events, 2424 struct __kernel_timespec __user *, timeout, 2425 const struct __compat_aio_sigset __user *, usig) 2426 { 2427 struct __compat_aio_sigset ksig = { 0, }; 2428 struct timespec64 t; 2429 bool interrupted; 2430 int ret; 2431 2432 if (timeout && get_timespec64(&t, timeout)) 2433 return -EFAULT; 2434 2435 if (usig && copy_from_user(&ksig, usig, sizeof(ksig))) 2436 return -EFAULT; 2437 2438 ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize); 2439 if (ret) 2440 return ret; 2441 2442 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL); 2443 2444 interrupted = signal_pending(current); 2445 restore_saved_sigmask_unless(interrupted); 2446 if (interrupted && !ret) 2447 ret = -ERESTARTNOHAND; 2448 2449 return ret; 2450 } 2451 #endif 2452