xref: /linux/fs/aio.c (revision 07214013578b156d0fda288a0311d353ea149674)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 };
243 
244 static void __init aio_sysctl_init(void)
245 {
246 	register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251 
252 static struct kmem_cache	*kiocb_cachep;
253 static struct kmem_cache	*kioctx_cachep;
254 
255 static struct vfsmount *aio_mnt;
256 
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259 
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 	struct file *file;
263 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 	if (IS_ERR(inode))
265 		return ERR_CAST(inode);
266 
267 	inode->i_mapping->a_ops = &aio_ctx_aops;
268 	inode->i_mapping->i_private_data = ctx;
269 	inode->i_size = PAGE_SIZE * nr_pages;
270 
271 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 				O_RDWR, &aio_ring_fops);
273 	if (IS_ERR(file))
274 		iput(inode);
275 	return file;
276 }
277 
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 	if (!init_pseudo(fc, AIO_RING_MAGIC))
281 		return -ENOMEM;
282 	fc->s_iflags |= SB_I_NOEXEC;
283 	return 0;
284 }
285 
286 /* aio_setup
287  *	Creates the slab caches used by the aio routines, panic on
288  *	failure as this is done early during the boot sequence.
289  */
290 static int __init aio_setup(void)
291 {
292 	static struct file_system_type aio_fs = {
293 		.name		= "aio",
294 		.init_fs_context = aio_init_fs_context,
295 		.kill_sb	= kill_anon_super,
296 	};
297 	aio_mnt = kern_mount(&aio_fs);
298 	if (IS_ERR(aio_mnt))
299 		panic("Failed to create aio fs mount.");
300 
301 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	aio_sysctl_init();
304 	return 0;
305 }
306 __initcall(aio_setup);
307 
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 	struct file *aio_ring_file = ctx->aio_ring_file;
311 	struct address_space *i_mapping;
312 
313 	if (aio_ring_file) {
314 		truncate_setsize(file_inode(aio_ring_file), 0);
315 
316 		/* Prevent further access to the kioctx from migratepages */
317 		i_mapping = aio_ring_file->f_mapping;
318 		spin_lock(&i_mapping->i_private_lock);
319 		i_mapping->i_private_data = NULL;
320 		ctx->aio_ring_file = NULL;
321 		spin_unlock(&i_mapping->i_private_lock);
322 
323 		fput(aio_ring_file);
324 	}
325 }
326 
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 	int i;
330 
331 	/* Disconnect the kiotx from the ring file.  This prevents future
332 	 * accesses to the kioctx from page migration.
333 	 */
334 	put_aio_ring_file(ctx);
335 
336 	for (i = 0; i < ctx->nr_pages; i++) {
337 		struct page *page;
338 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
339 				page_count(ctx->ring_pages[i]));
340 		page = ctx->ring_pages[i];
341 		if (!page)
342 			continue;
343 		ctx->ring_pages[i] = NULL;
344 		put_page(page);
345 	}
346 
347 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
348 		kfree(ctx->ring_pages);
349 		ctx->ring_pages = NULL;
350 	}
351 }
352 
353 static int aio_ring_mremap(struct vm_area_struct *vma)
354 {
355 	struct file *file = vma->vm_file;
356 	struct mm_struct *mm = vma->vm_mm;
357 	struct kioctx_table *table;
358 	int i, res = -EINVAL;
359 
360 	spin_lock(&mm->ioctx_lock);
361 	rcu_read_lock();
362 	table = rcu_dereference(mm->ioctx_table);
363 	if (!table)
364 		goto out_unlock;
365 
366 	for (i = 0; i < table->nr; i++) {
367 		struct kioctx *ctx;
368 
369 		ctx = rcu_dereference(table->table[i]);
370 		if (ctx && ctx->aio_ring_file == file) {
371 			if (!atomic_read(&ctx->dead)) {
372 				ctx->user_id = ctx->mmap_base = vma->vm_start;
373 				res = 0;
374 			}
375 			break;
376 		}
377 	}
378 
379 out_unlock:
380 	rcu_read_unlock();
381 	spin_unlock(&mm->ioctx_lock);
382 	return res;
383 }
384 
385 static const struct vm_operations_struct aio_ring_vm_ops = {
386 	.mremap		= aio_ring_mremap,
387 #if IS_ENABLED(CONFIG_MMU)
388 	.fault		= filemap_fault,
389 	.map_pages	= filemap_map_pages,
390 	.page_mkwrite	= filemap_page_mkwrite,
391 #endif
392 };
393 
394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
395 {
396 	vm_flags_set(vma, VM_DONTEXPAND);
397 	vma->vm_ops = &aio_ring_vm_ops;
398 	return 0;
399 }
400 
401 static const struct file_operations aio_ring_fops = {
402 	.mmap = aio_ring_mmap,
403 };
404 
405 #if IS_ENABLED(CONFIG_MIGRATION)
406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
407 			struct folio *src, enum migrate_mode mode)
408 {
409 	struct kioctx *ctx;
410 	unsigned long flags;
411 	pgoff_t idx;
412 	int rc;
413 
414 	/*
415 	 * We cannot support the _NO_COPY case here, because copy needs to
416 	 * happen under the ctx->completion_lock. That does not work with the
417 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
418 	 */
419 	if (mode == MIGRATE_SYNC_NO_COPY)
420 		return -EINVAL;
421 
422 	rc = 0;
423 
424 	/* mapping->i_private_lock here protects against the kioctx teardown.  */
425 	spin_lock(&mapping->i_private_lock);
426 	ctx = mapping->i_private_data;
427 	if (!ctx) {
428 		rc = -EINVAL;
429 		goto out;
430 	}
431 
432 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
433 	 * to the ring's head, and prevents page migration from mucking in
434 	 * a partially initialized kiotx.
435 	 */
436 	if (!mutex_trylock(&ctx->ring_lock)) {
437 		rc = -EAGAIN;
438 		goto out;
439 	}
440 
441 	idx = src->index;
442 	if (idx < (pgoff_t)ctx->nr_pages) {
443 		/* Make sure the old folio hasn't already been changed */
444 		if (ctx->ring_pages[idx] != &src->page)
445 			rc = -EAGAIN;
446 	} else
447 		rc = -EINVAL;
448 
449 	if (rc != 0)
450 		goto out_unlock;
451 
452 	/* Writeback must be complete */
453 	BUG_ON(folio_test_writeback(src));
454 	folio_get(dst);
455 
456 	rc = folio_migrate_mapping(mapping, dst, src, 1);
457 	if (rc != MIGRATEPAGE_SUCCESS) {
458 		folio_put(dst);
459 		goto out_unlock;
460 	}
461 
462 	/* Take completion_lock to prevent other writes to the ring buffer
463 	 * while the old folio is copied to the new.  This prevents new
464 	 * events from being lost.
465 	 */
466 	spin_lock_irqsave(&ctx->completion_lock, flags);
467 	folio_migrate_copy(dst, src);
468 	BUG_ON(ctx->ring_pages[idx] != &src->page);
469 	ctx->ring_pages[idx] = &dst->page;
470 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
471 
472 	/* The old folio is no longer accessible. */
473 	folio_put(src);
474 
475 out_unlock:
476 	mutex_unlock(&ctx->ring_lock);
477 out:
478 	spin_unlock(&mapping->i_private_lock);
479 	return rc;
480 }
481 #else
482 #define aio_migrate_folio NULL
483 #endif
484 
485 static const struct address_space_operations aio_ctx_aops = {
486 	.dirty_folio	= noop_dirty_folio,
487 	.migrate_folio	= aio_migrate_folio,
488 };
489 
490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
491 {
492 	struct aio_ring *ring;
493 	struct mm_struct *mm = current->mm;
494 	unsigned long size, unused;
495 	int nr_pages;
496 	int i;
497 	struct file *file;
498 
499 	/* Compensate for the ring buffer's head/tail overlap entry */
500 	nr_events += 2;	/* 1 is required, 2 for good luck */
501 
502 	size = sizeof(struct aio_ring);
503 	size += sizeof(struct io_event) * nr_events;
504 
505 	nr_pages = PFN_UP(size);
506 	if (nr_pages < 0)
507 		return -EINVAL;
508 
509 	file = aio_private_file(ctx, nr_pages);
510 	if (IS_ERR(file)) {
511 		ctx->aio_ring_file = NULL;
512 		return -ENOMEM;
513 	}
514 
515 	ctx->aio_ring_file = file;
516 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
517 			/ sizeof(struct io_event);
518 
519 	ctx->ring_pages = ctx->internal_pages;
520 	if (nr_pages > AIO_RING_PAGES) {
521 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
522 					  GFP_KERNEL);
523 		if (!ctx->ring_pages) {
524 			put_aio_ring_file(ctx);
525 			return -ENOMEM;
526 		}
527 	}
528 
529 	for (i = 0; i < nr_pages; i++) {
530 		struct page *page;
531 		page = find_or_create_page(file->f_mapping,
532 					   i, GFP_USER | __GFP_ZERO);
533 		if (!page)
534 			break;
535 		pr_debug("pid(%d) page[%d]->count=%d\n",
536 			 current->pid, i, page_count(page));
537 		SetPageUptodate(page);
538 		unlock_page(page);
539 
540 		ctx->ring_pages[i] = page;
541 	}
542 	ctx->nr_pages = i;
543 
544 	if (unlikely(i != nr_pages)) {
545 		aio_free_ring(ctx);
546 		return -ENOMEM;
547 	}
548 
549 	ctx->mmap_size = nr_pages * PAGE_SIZE;
550 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
551 
552 	if (mmap_write_lock_killable(mm)) {
553 		ctx->mmap_size = 0;
554 		aio_free_ring(ctx);
555 		return -EINTR;
556 	}
557 
558 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
559 				 PROT_READ | PROT_WRITE,
560 				 MAP_SHARED, 0, 0, &unused, NULL);
561 	mmap_write_unlock(mm);
562 	if (IS_ERR((void *)ctx->mmap_base)) {
563 		ctx->mmap_size = 0;
564 		aio_free_ring(ctx);
565 		return -ENOMEM;
566 	}
567 
568 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
569 
570 	ctx->user_id = ctx->mmap_base;
571 	ctx->nr_events = nr_events; /* trusted copy */
572 
573 	ring = page_address(ctx->ring_pages[0]);
574 	ring->nr = nr_events;	/* user copy */
575 	ring->id = ~0U;
576 	ring->head = ring->tail = 0;
577 	ring->magic = AIO_RING_MAGIC;
578 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
579 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
580 	ring->header_length = sizeof(struct aio_ring);
581 	flush_dcache_page(ctx->ring_pages[0]);
582 
583 	return 0;
584 }
585 
586 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
587 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
588 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
589 
590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
591 {
592 	struct aio_kiocb *req;
593 	struct kioctx *ctx;
594 	unsigned long flags;
595 
596 	/*
597 	 * kiocb didn't come from aio or is neither a read nor a write, hence
598 	 * ignore it.
599 	 */
600 	if (!(iocb->ki_flags & IOCB_AIO_RW))
601 		return;
602 
603 	req = container_of(iocb, struct aio_kiocb, rw);
604 
605 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
606 		return;
607 
608 	ctx = req->ki_ctx;
609 
610 	spin_lock_irqsave(&ctx->ctx_lock, flags);
611 	list_add_tail(&req->ki_list, &ctx->active_reqs);
612 	req->ki_cancel = cancel;
613 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
614 }
615 EXPORT_SYMBOL(kiocb_set_cancel_fn);
616 
617 /*
618  * free_ioctx() should be RCU delayed to synchronize against the RCU
619  * protected lookup_ioctx() and also needs process context to call
620  * aio_free_ring().  Use rcu_work.
621  */
622 static void free_ioctx(struct work_struct *work)
623 {
624 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
625 					  free_rwork);
626 	pr_debug("freeing %p\n", ctx);
627 
628 	aio_free_ring(ctx);
629 	free_percpu(ctx->cpu);
630 	percpu_ref_exit(&ctx->reqs);
631 	percpu_ref_exit(&ctx->users);
632 	kmem_cache_free(kioctx_cachep, ctx);
633 }
634 
635 static void free_ioctx_reqs(struct percpu_ref *ref)
636 {
637 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
638 
639 	/* At this point we know that there are no any in-flight requests */
640 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
641 		complete(&ctx->rq_wait->comp);
642 
643 	/* Synchronize against RCU protected table->table[] dereferences */
644 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
645 	queue_rcu_work(system_wq, &ctx->free_rwork);
646 }
647 
648 /*
649  * When this function runs, the kioctx has been removed from the "hash table"
650  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
651  * now it's safe to cancel any that need to be.
652  */
653 static void free_ioctx_users(struct percpu_ref *ref)
654 {
655 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
656 	struct aio_kiocb *req;
657 
658 	spin_lock_irq(&ctx->ctx_lock);
659 
660 	while (!list_empty(&ctx->active_reqs)) {
661 		req = list_first_entry(&ctx->active_reqs,
662 				       struct aio_kiocb, ki_list);
663 		req->ki_cancel(&req->rw);
664 		list_del_init(&req->ki_list);
665 	}
666 
667 	spin_unlock_irq(&ctx->ctx_lock);
668 
669 	percpu_ref_kill(&ctx->reqs);
670 	percpu_ref_put(&ctx->reqs);
671 }
672 
673 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
674 {
675 	unsigned i, new_nr;
676 	struct kioctx_table *table, *old;
677 	struct aio_ring *ring;
678 
679 	spin_lock(&mm->ioctx_lock);
680 	table = rcu_dereference_raw(mm->ioctx_table);
681 
682 	while (1) {
683 		if (table)
684 			for (i = 0; i < table->nr; i++)
685 				if (!rcu_access_pointer(table->table[i])) {
686 					ctx->id = i;
687 					rcu_assign_pointer(table->table[i], ctx);
688 					spin_unlock(&mm->ioctx_lock);
689 
690 					/* While kioctx setup is in progress,
691 					 * we are protected from page migration
692 					 * changes ring_pages by ->ring_lock.
693 					 */
694 					ring = page_address(ctx->ring_pages[0]);
695 					ring->id = ctx->id;
696 					return 0;
697 				}
698 
699 		new_nr = (table ? table->nr : 1) * 4;
700 		spin_unlock(&mm->ioctx_lock);
701 
702 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
703 		if (!table)
704 			return -ENOMEM;
705 
706 		table->nr = new_nr;
707 
708 		spin_lock(&mm->ioctx_lock);
709 		old = rcu_dereference_raw(mm->ioctx_table);
710 
711 		if (!old) {
712 			rcu_assign_pointer(mm->ioctx_table, table);
713 		} else if (table->nr > old->nr) {
714 			memcpy(table->table, old->table,
715 			       old->nr * sizeof(struct kioctx *));
716 
717 			rcu_assign_pointer(mm->ioctx_table, table);
718 			kfree_rcu(old, rcu);
719 		} else {
720 			kfree(table);
721 			table = old;
722 		}
723 	}
724 }
725 
726 static void aio_nr_sub(unsigned nr)
727 {
728 	spin_lock(&aio_nr_lock);
729 	if (WARN_ON(aio_nr - nr > aio_nr))
730 		aio_nr = 0;
731 	else
732 		aio_nr -= nr;
733 	spin_unlock(&aio_nr_lock);
734 }
735 
736 /* ioctx_alloc
737  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
738  */
739 static struct kioctx *ioctx_alloc(unsigned nr_events)
740 {
741 	struct mm_struct *mm = current->mm;
742 	struct kioctx *ctx;
743 	int err = -ENOMEM;
744 
745 	/*
746 	 * Store the original nr_events -- what userspace passed to io_setup(),
747 	 * for counting against the global limit -- before it changes.
748 	 */
749 	unsigned int max_reqs = nr_events;
750 
751 	/*
752 	 * We keep track of the number of available ringbuffer slots, to prevent
753 	 * overflow (reqs_available), and we also use percpu counters for this.
754 	 *
755 	 * So since up to half the slots might be on other cpu's percpu counters
756 	 * and unavailable, double nr_events so userspace sees what they
757 	 * expected: additionally, we move req_batch slots to/from percpu
758 	 * counters at a time, so make sure that isn't 0:
759 	 */
760 	nr_events = max(nr_events, num_possible_cpus() * 4);
761 	nr_events *= 2;
762 
763 	/* Prevent overflows */
764 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
765 		pr_debug("ENOMEM: nr_events too high\n");
766 		return ERR_PTR(-EINVAL);
767 	}
768 
769 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
770 		return ERR_PTR(-EAGAIN);
771 
772 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
773 	if (!ctx)
774 		return ERR_PTR(-ENOMEM);
775 
776 	ctx->max_reqs = max_reqs;
777 
778 	spin_lock_init(&ctx->ctx_lock);
779 	spin_lock_init(&ctx->completion_lock);
780 	mutex_init(&ctx->ring_lock);
781 	/* Protect against page migration throughout kiotx setup by keeping
782 	 * the ring_lock mutex held until setup is complete. */
783 	mutex_lock(&ctx->ring_lock);
784 	init_waitqueue_head(&ctx->wait);
785 
786 	INIT_LIST_HEAD(&ctx->active_reqs);
787 
788 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
789 		goto err;
790 
791 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
792 		goto err;
793 
794 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
795 	if (!ctx->cpu)
796 		goto err;
797 
798 	err = aio_setup_ring(ctx, nr_events);
799 	if (err < 0)
800 		goto err;
801 
802 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
803 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
804 	if (ctx->req_batch < 1)
805 		ctx->req_batch = 1;
806 
807 	/* limit the number of system wide aios */
808 	spin_lock(&aio_nr_lock);
809 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
810 	    aio_nr + ctx->max_reqs < aio_nr) {
811 		spin_unlock(&aio_nr_lock);
812 		err = -EAGAIN;
813 		goto err_ctx;
814 	}
815 	aio_nr += ctx->max_reqs;
816 	spin_unlock(&aio_nr_lock);
817 
818 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
819 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
820 
821 	err = ioctx_add_table(ctx, mm);
822 	if (err)
823 		goto err_cleanup;
824 
825 	/* Release the ring_lock mutex now that all setup is complete. */
826 	mutex_unlock(&ctx->ring_lock);
827 
828 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
829 		 ctx, ctx->user_id, mm, ctx->nr_events);
830 	return ctx;
831 
832 err_cleanup:
833 	aio_nr_sub(ctx->max_reqs);
834 err_ctx:
835 	atomic_set(&ctx->dead, 1);
836 	if (ctx->mmap_size)
837 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
838 	aio_free_ring(ctx);
839 err:
840 	mutex_unlock(&ctx->ring_lock);
841 	free_percpu(ctx->cpu);
842 	percpu_ref_exit(&ctx->reqs);
843 	percpu_ref_exit(&ctx->users);
844 	kmem_cache_free(kioctx_cachep, ctx);
845 	pr_debug("error allocating ioctx %d\n", err);
846 	return ERR_PTR(err);
847 }
848 
849 /* kill_ioctx
850  *	Cancels all outstanding aio requests on an aio context.  Used
851  *	when the processes owning a context have all exited to encourage
852  *	the rapid destruction of the kioctx.
853  */
854 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
855 		      struct ctx_rq_wait *wait)
856 {
857 	struct kioctx_table *table;
858 
859 	spin_lock(&mm->ioctx_lock);
860 	if (atomic_xchg(&ctx->dead, 1)) {
861 		spin_unlock(&mm->ioctx_lock);
862 		return -EINVAL;
863 	}
864 
865 	table = rcu_dereference_raw(mm->ioctx_table);
866 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
867 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
868 	spin_unlock(&mm->ioctx_lock);
869 
870 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
871 	wake_up_all(&ctx->wait);
872 
873 	/*
874 	 * It'd be more correct to do this in free_ioctx(), after all
875 	 * the outstanding kiocbs have finished - but by then io_destroy
876 	 * has already returned, so io_setup() could potentially return
877 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
878 	 *  could tell).
879 	 */
880 	aio_nr_sub(ctx->max_reqs);
881 
882 	if (ctx->mmap_size)
883 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
884 
885 	ctx->rq_wait = wait;
886 	percpu_ref_kill(&ctx->users);
887 	return 0;
888 }
889 
890 /*
891  * exit_aio: called when the last user of mm goes away.  At this point, there is
892  * no way for any new requests to be submited or any of the io_* syscalls to be
893  * called on the context.
894  *
895  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
896  * them.
897  */
898 void exit_aio(struct mm_struct *mm)
899 {
900 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
901 	struct ctx_rq_wait wait;
902 	int i, skipped;
903 
904 	if (!table)
905 		return;
906 
907 	atomic_set(&wait.count, table->nr);
908 	init_completion(&wait.comp);
909 
910 	skipped = 0;
911 	for (i = 0; i < table->nr; ++i) {
912 		struct kioctx *ctx =
913 			rcu_dereference_protected(table->table[i], true);
914 
915 		if (!ctx) {
916 			skipped++;
917 			continue;
918 		}
919 
920 		/*
921 		 * We don't need to bother with munmap() here - exit_mmap(mm)
922 		 * is coming and it'll unmap everything. And we simply can't,
923 		 * this is not necessarily our ->mm.
924 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
925 		 * that it needs to unmap the area, just set it to 0.
926 		 */
927 		ctx->mmap_size = 0;
928 		kill_ioctx(mm, ctx, &wait);
929 	}
930 
931 	if (!atomic_sub_and_test(skipped, &wait.count)) {
932 		/* Wait until all IO for the context are done. */
933 		wait_for_completion(&wait.comp);
934 	}
935 
936 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
937 	kfree(table);
938 }
939 
940 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
941 {
942 	struct kioctx_cpu *kcpu;
943 	unsigned long flags;
944 
945 	local_irq_save(flags);
946 	kcpu = this_cpu_ptr(ctx->cpu);
947 	kcpu->reqs_available += nr;
948 
949 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
950 		kcpu->reqs_available -= ctx->req_batch;
951 		atomic_add(ctx->req_batch, &ctx->reqs_available);
952 	}
953 
954 	local_irq_restore(flags);
955 }
956 
957 static bool __get_reqs_available(struct kioctx *ctx)
958 {
959 	struct kioctx_cpu *kcpu;
960 	bool ret = false;
961 	unsigned long flags;
962 
963 	local_irq_save(flags);
964 	kcpu = this_cpu_ptr(ctx->cpu);
965 	if (!kcpu->reqs_available) {
966 		int avail = atomic_read(&ctx->reqs_available);
967 
968 		do {
969 			if (avail < ctx->req_batch)
970 				goto out;
971 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
972 					     &avail, avail - ctx->req_batch));
973 
974 		kcpu->reqs_available += ctx->req_batch;
975 	}
976 
977 	ret = true;
978 	kcpu->reqs_available--;
979 out:
980 	local_irq_restore(flags);
981 	return ret;
982 }
983 
984 /* refill_reqs_available
985  *	Updates the reqs_available reference counts used for tracking the
986  *	number of free slots in the completion ring.  This can be called
987  *	from aio_complete() (to optimistically update reqs_available) or
988  *	from aio_get_req() (the we're out of events case).  It must be
989  *	called holding ctx->completion_lock.
990  */
991 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
992                                   unsigned tail)
993 {
994 	unsigned events_in_ring, completed;
995 
996 	/* Clamp head since userland can write to it. */
997 	head %= ctx->nr_events;
998 	if (head <= tail)
999 		events_in_ring = tail - head;
1000 	else
1001 		events_in_ring = ctx->nr_events - (head - tail);
1002 
1003 	completed = ctx->completed_events;
1004 	if (events_in_ring < completed)
1005 		completed -= events_in_ring;
1006 	else
1007 		completed = 0;
1008 
1009 	if (!completed)
1010 		return;
1011 
1012 	ctx->completed_events -= completed;
1013 	put_reqs_available(ctx, completed);
1014 }
1015 
1016 /* user_refill_reqs_available
1017  *	Called to refill reqs_available when aio_get_req() encounters an
1018  *	out of space in the completion ring.
1019  */
1020 static void user_refill_reqs_available(struct kioctx *ctx)
1021 {
1022 	spin_lock_irq(&ctx->completion_lock);
1023 	if (ctx->completed_events) {
1024 		struct aio_ring *ring;
1025 		unsigned head;
1026 
1027 		/* Access of ring->head may race with aio_read_events_ring()
1028 		 * here, but that's okay since whether we read the old version
1029 		 * or the new version, and either will be valid.  The important
1030 		 * part is that head cannot pass tail since we prevent
1031 		 * aio_complete() from updating tail by holding
1032 		 * ctx->completion_lock.  Even if head is invalid, the check
1033 		 * against ctx->completed_events below will make sure we do the
1034 		 * safe/right thing.
1035 		 */
1036 		ring = page_address(ctx->ring_pages[0]);
1037 		head = ring->head;
1038 
1039 		refill_reqs_available(ctx, head, ctx->tail);
1040 	}
1041 
1042 	spin_unlock_irq(&ctx->completion_lock);
1043 }
1044 
1045 static bool get_reqs_available(struct kioctx *ctx)
1046 {
1047 	if (__get_reqs_available(ctx))
1048 		return true;
1049 	user_refill_reqs_available(ctx);
1050 	return __get_reqs_available(ctx);
1051 }
1052 
1053 /* aio_get_req
1054  *	Allocate a slot for an aio request.
1055  * Returns NULL if no requests are free.
1056  *
1057  * The refcount is initialized to 2 - one for the async op completion,
1058  * one for the synchronous code that does this.
1059  */
1060 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1061 {
1062 	struct aio_kiocb *req;
1063 
1064 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1065 	if (unlikely(!req))
1066 		return NULL;
1067 
1068 	if (unlikely(!get_reqs_available(ctx))) {
1069 		kmem_cache_free(kiocb_cachep, req);
1070 		return NULL;
1071 	}
1072 
1073 	percpu_ref_get(&ctx->reqs);
1074 	req->ki_ctx = ctx;
1075 	INIT_LIST_HEAD(&req->ki_list);
1076 	refcount_set(&req->ki_refcnt, 2);
1077 	req->ki_eventfd = NULL;
1078 	return req;
1079 }
1080 
1081 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1082 {
1083 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1084 	struct mm_struct *mm = current->mm;
1085 	struct kioctx *ctx, *ret = NULL;
1086 	struct kioctx_table *table;
1087 	unsigned id;
1088 
1089 	if (get_user(id, &ring->id))
1090 		return NULL;
1091 
1092 	rcu_read_lock();
1093 	table = rcu_dereference(mm->ioctx_table);
1094 
1095 	if (!table || id >= table->nr)
1096 		goto out;
1097 
1098 	id = array_index_nospec(id, table->nr);
1099 	ctx = rcu_dereference(table->table[id]);
1100 	if (ctx && ctx->user_id == ctx_id) {
1101 		if (percpu_ref_tryget_live(&ctx->users))
1102 			ret = ctx;
1103 	}
1104 out:
1105 	rcu_read_unlock();
1106 	return ret;
1107 }
1108 
1109 static inline void iocb_destroy(struct aio_kiocb *iocb)
1110 {
1111 	if (iocb->ki_eventfd)
1112 		eventfd_ctx_put(iocb->ki_eventfd);
1113 	if (iocb->ki_filp)
1114 		fput(iocb->ki_filp);
1115 	percpu_ref_put(&iocb->ki_ctx->reqs);
1116 	kmem_cache_free(kiocb_cachep, iocb);
1117 }
1118 
1119 struct aio_waiter {
1120 	struct wait_queue_entry	w;
1121 	size_t			min_nr;
1122 };
1123 
1124 /* aio_complete
1125  *	Called when the io request on the given iocb is complete.
1126  */
1127 static void aio_complete(struct aio_kiocb *iocb)
1128 {
1129 	struct kioctx	*ctx = iocb->ki_ctx;
1130 	struct aio_ring	*ring;
1131 	struct io_event	*ev_page, *event;
1132 	unsigned tail, pos, head, avail;
1133 	unsigned long	flags;
1134 
1135 	/*
1136 	 * Add a completion event to the ring buffer. Must be done holding
1137 	 * ctx->completion_lock to prevent other code from messing with the tail
1138 	 * pointer since we might be called from irq context.
1139 	 */
1140 	spin_lock_irqsave(&ctx->completion_lock, flags);
1141 
1142 	tail = ctx->tail;
1143 	pos = tail + AIO_EVENTS_OFFSET;
1144 
1145 	if (++tail >= ctx->nr_events)
1146 		tail = 0;
1147 
1148 	ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1149 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1150 
1151 	*event = iocb->ki_res;
1152 
1153 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1154 
1155 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1156 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1157 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1158 
1159 	/* after flagging the request as done, we
1160 	 * must never even look at it again
1161 	 */
1162 	smp_wmb();	/* make event visible before updating tail */
1163 
1164 	ctx->tail = tail;
1165 
1166 	ring = page_address(ctx->ring_pages[0]);
1167 	head = ring->head;
1168 	ring->tail = tail;
1169 	flush_dcache_page(ctx->ring_pages[0]);
1170 
1171 	ctx->completed_events++;
1172 	if (ctx->completed_events > 1)
1173 		refill_reqs_available(ctx, head, tail);
1174 
1175 	avail = tail > head
1176 		? tail - head
1177 		: tail + ctx->nr_events - head;
1178 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1179 
1180 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1181 
1182 	/*
1183 	 * Check if the user asked us to deliver the result through an
1184 	 * eventfd. The eventfd_signal() function is safe to be called
1185 	 * from IRQ context.
1186 	 */
1187 	if (iocb->ki_eventfd)
1188 		eventfd_signal(iocb->ki_eventfd);
1189 
1190 	/*
1191 	 * We have to order our ring_info tail store above and test
1192 	 * of the wait list below outside the wait lock.  This is
1193 	 * like in wake_up_bit() where clearing a bit has to be
1194 	 * ordered with the unlocked test.
1195 	 */
1196 	smp_mb();
1197 
1198 	if (waitqueue_active(&ctx->wait)) {
1199 		struct aio_waiter *curr, *next;
1200 		unsigned long flags;
1201 
1202 		spin_lock_irqsave(&ctx->wait.lock, flags);
1203 		list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1204 			if (avail >= curr->min_nr) {
1205 				wake_up_process(curr->w.private);
1206 				list_del_init_careful(&curr->w.entry);
1207 			}
1208 		spin_unlock_irqrestore(&ctx->wait.lock, flags);
1209 	}
1210 }
1211 
1212 static inline void iocb_put(struct aio_kiocb *iocb)
1213 {
1214 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1215 		aio_complete(iocb);
1216 		iocb_destroy(iocb);
1217 	}
1218 }
1219 
1220 /* aio_read_events_ring
1221  *	Pull an event off of the ioctx's event ring.  Returns the number of
1222  *	events fetched
1223  */
1224 static long aio_read_events_ring(struct kioctx *ctx,
1225 				 struct io_event __user *event, long nr)
1226 {
1227 	struct aio_ring *ring;
1228 	unsigned head, tail, pos;
1229 	long ret = 0;
1230 	int copy_ret;
1231 
1232 	/*
1233 	 * The mutex can block and wake us up and that will cause
1234 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1235 	 * and repeat. This should be rare enough that it doesn't cause
1236 	 * peformance issues. See the comment in read_events() for more detail.
1237 	 */
1238 	sched_annotate_sleep();
1239 	mutex_lock(&ctx->ring_lock);
1240 
1241 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1242 	ring = page_address(ctx->ring_pages[0]);
1243 	head = ring->head;
1244 	tail = ring->tail;
1245 
1246 	/*
1247 	 * Ensure that once we've read the current tail pointer, that
1248 	 * we also see the events that were stored up to the tail.
1249 	 */
1250 	smp_rmb();
1251 
1252 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1253 
1254 	if (head == tail)
1255 		goto out;
1256 
1257 	head %= ctx->nr_events;
1258 	tail %= ctx->nr_events;
1259 
1260 	while (ret < nr) {
1261 		long avail;
1262 		struct io_event *ev;
1263 		struct page *page;
1264 
1265 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1266 		if (head == tail)
1267 			break;
1268 
1269 		pos = head + AIO_EVENTS_OFFSET;
1270 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1271 		pos %= AIO_EVENTS_PER_PAGE;
1272 
1273 		avail = min(avail, nr - ret);
1274 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1275 
1276 		ev = page_address(page);
1277 		copy_ret = copy_to_user(event + ret, ev + pos,
1278 					sizeof(*ev) * avail);
1279 
1280 		if (unlikely(copy_ret)) {
1281 			ret = -EFAULT;
1282 			goto out;
1283 		}
1284 
1285 		ret += avail;
1286 		head += avail;
1287 		head %= ctx->nr_events;
1288 	}
1289 
1290 	ring = page_address(ctx->ring_pages[0]);
1291 	ring->head = head;
1292 	flush_dcache_page(ctx->ring_pages[0]);
1293 
1294 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1295 out:
1296 	mutex_unlock(&ctx->ring_lock);
1297 
1298 	return ret;
1299 }
1300 
1301 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1302 			    struct io_event __user *event, long *i)
1303 {
1304 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1305 
1306 	if (ret > 0)
1307 		*i += ret;
1308 
1309 	if (unlikely(atomic_read(&ctx->dead)))
1310 		ret = -EINVAL;
1311 
1312 	if (!*i)
1313 		*i = ret;
1314 
1315 	return ret < 0 || *i >= min_nr;
1316 }
1317 
1318 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1319 			struct io_event __user *event,
1320 			ktime_t until)
1321 {
1322 	struct hrtimer_sleeper	t;
1323 	struct aio_waiter	w;
1324 	long ret = 0, ret2 = 0;
1325 
1326 	/*
1327 	 * Note that aio_read_events() is being called as the conditional - i.e.
1328 	 * we're calling it after prepare_to_wait() has set task state to
1329 	 * TASK_INTERRUPTIBLE.
1330 	 *
1331 	 * But aio_read_events() can block, and if it blocks it's going to flip
1332 	 * the task state back to TASK_RUNNING.
1333 	 *
1334 	 * This should be ok, provided it doesn't flip the state back to
1335 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1336 	 * will only happen if the mutex_lock() call blocks, and we then find
1337 	 * the ringbuffer empty. So in practice we should be ok, but it's
1338 	 * something to be aware of when touching this code.
1339 	 */
1340 	aio_read_events(ctx, min_nr, nr, event, &ret);
1341 	if (until == 0 || ret < 0 || ret >= min_nr)
1342 		return ret;
1343 
1344 	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1345 	if (until != KTIME_MAX) {
1346 		hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1347 		hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1348 	}
1349 
1350 	init_wait(&w.w);
1351 
1352 	while (1) {
1353 		unsigned long nr_got = ret;
1354 
1355 		w.min_nr = min_nr - ret;
1356 
1357 		ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1358 		if (!ret2 && !t.task)
1359 			ret2 = -ETIME;
1360 
1361 		if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1362 			break;
1363 
1364 		if (nr_got == ret)
1365 			schedule();
1366 	}
1367 
1368 	finish_wait(&ctx->wait, &w.w);
1369 	hrtimer_cancel(&t.timer);
1370 	destroy_hrtimer_on_stack(&t.timer);
1371 
1372 	return ret;
1373 }
1374 
1375 /* sys_io_setup:
1376  *	Create an aio_context capable of receiving at least nr_events.
1377  *	ctxp must not point to an aio_context that already exists, and
1378  *	must be initialized to 0 prior to the call.  On successful
1379  *	creation of the aio_context, *ctxp is filled in with the resulting
1380  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1381  *	if the specified nr_events exceeds internal limits.  May fail
1382  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1383  *	of available events.  May fail with -ENOMEM if insufficient kernel
1384  *	resources are available.  May fail with -EFAULT if an invalid
1385  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1386  *	implemented.
1387  */
1388 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1389 {
1390 	struct kioctx *ioctx = NULL;
1391 	unsigned long ctx;
1392 	long ret;
1393 
1394 	ret = get_user(ctx, ctxp);
1395 	if (unlikely(ret))
1396 		goto out;
1397 
1398 	ret = -EINVAL;
1399 	if (unlikely(ctx || nr_events == 0)) {
1400 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1401 		         ctx, nr_events);
1402 		goto out;
1403 	}
1404 
1405 	ioctx = ioctx_alloc(nr_events);
1406 	ret = PTR_ERR(ioctx);
1407 	if (!IS_ERR(ioctx)) {
1408 		ret = put_user(ioctx->user_id, ctxp);
1409 		if (ret)
1410 			kill_ioctx(current->mm, ioctx, NULL);
1411 		percpu_ref_put(&ioctx->users);
1412 	}
1413 
1414 out:
1415 	return ret;
1416 }
1417 
1418 #ifdef CONFIG_COMPAT
1419 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1420 {
1421 	struct kioctx *ioctx = NULL;
1422 	unsigned long ctx;
1423 	long ret;
1424 
1425 	ret = get_user(ctx, ctx32p);
1426 	if (unlikely(ret))
1427 		goto out;
1428 
1429 	ret = -EINVAL;
1430 	if (unlikely(ctx || nr_events == 0)) {
1431 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1432 		         ctx, nr_events);
1433 		goto out;
1434 	}
1435 
1436 	ioctx = ioctx_alloc(nr_events);
1437 	ret = PTR_ERR(ioctx);
1438 	if (!IS_ERR(ioctx)) {
1439 		/* truncating is ok because it's a user address */
1440 		ret = put_user((u32)ioctx->user_id, ctx32p);
1441 		if (ret)
1442 			kill_ioctx(current->mm, ioctx, NULL);
1443 		percpu_ref_put(&ioctx->users);
1444 	}
1445 
1446 out:
1447 	return ret;
1448 }
1449 #endif
1450 
1451 /* sys_io_destroy:
1452  *	Destroy the aio_context specified.  May cancel any outstanding
1453  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1454  *	implemented.  May fail with -EINVAL if the context pointed to
1455  *	is invalid.
1456  */
1457 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1458 {
1459 	struct kioctx *ioctx = lookup_ioctx(ctx);
1460 	if (likely(NULL != ioctx)) {
1461 		struct ctx_rq_wait wait;
1462 		int ret;
1463 
1464 		init_completion(&wait.comp);
1465 		atomic_set(&wait.count, 1);
1466 
1467 		/* Pass requests_done to kill_ioctx() where it can be set
1468 		 * in a thread-safe way. If we try to set it here then we have
1469 		 * a race condition if two io_destroy() called simultaneously.
1470 		 */
1471 		ret = kill_ioctx(current->mm, ioctx, &wait);
1472 		percpu_ref_put(&ioctx->users);
1473 
1474 		/* Wait until all IO for the context are done. Otherwise kernel
1475 		 * keep using user-space buffers even if user thinks the context
1476 		 * is destroyed.
1477 		 */
1478 		if (!ret)
1479 			wait_for_completion(&wait.comp);
1480 
1481 		return ret;
1482 	}
1483 	pr_debug("EINVAL: invalid context id\n");
1484 	return -EINVAL;
1485 }
1486 
1487 static void aio_remove_iocb(struct aio_kiocb *iocb)
1488 {
1489 	struct kioctx *ctx = iocb->ki_ctx;
1490 	unsigned long flags;
1491 
1492 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1493 	list_del(&iocb->ki_list);
1494 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1495 }
1496 
1497 static void aio_complete_rw(struct kiocb *kiocb, long res)
1498 {
1499 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1500 
1501 	if (!list_empty_careful(&iocb->ki_list))
1502 		aio_remove_iocb(iocb);
1503 
1504 	if (kiocb->ki_flags & IOCB_WRITE) {
1505 		struct inode *inode = file_inode(kiocb->ki_filp);
1506 
1507 		if (S_ISREG(inode->i_mode))
1508 			kiocb_end_write(kiocb);
1509 	}
1510 
1511 	iocb->ki_res.res = res;
1512 	iocb->ki_res.res2 = 0;
1513 	iocb_put(iocb);
1514 }
1515 
1516 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1517 {
1518 	int ret;
1519 
1520 	req->ki_complete = aio_complete_rw;
1521 	req->private = NULL;
1522 	req->ki_pos = iocb->aio_offset;
1523 	req->ki_flags = req->ki_filp->f_iocb_flags | IOCB_AIO_RW;
1524 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1525 		req->ki_flags |= IOCB_EVENTFD;
1526 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1527 		/*
1528 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1529 		 * aio_reqprio is interpreted as an I/O scheduling
1530 		 * class and priority.
1531 		 */
1532 		ret = ioprio_check_cap(iocb->aio_reqprio);
1533 		if (ret) {
1534 			pr_debug("aio ioprio check cap error: %d\n", ret);
1535 			return ret;
1536 		}
1537 
1538 		req->ki_ioprio = iocb->aio_reqprio;
1539 	} else
1540 		req->ki_ioprio = get_current_ioprio();
1541 
1542 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1543 	if (unlikely(ret))
1544 		return ret;
1545 
1546 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1547 	return 0;
1548 }
1549 
1550 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1551 		struct iovec **iovec, bool vectored, bool compat,
1552 		struct iov_iter *iter)
1553 {
1554 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1555 	size_t len = iocb->aio_nbytes;
1556 
1557 	if (!vectored) {
1558 		ssize_t ret = import_ubuf(rw, buf, len, iter);
1559 		*iovec = NULL;
1560 		return ret;
1561 	}
1562 
1563 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1564 }
1565 
1566 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1567 {
1568 	switch (ret) {
1569 	case -EIOCBQUEUED:
1570 		break;
1571 	case -ERESTARTSYS:
1572 	case -ERESTARTNOINTR:
1573 	case -ERESTARTNOHAND:
1574 	case -ERESTART_RESTARTBLOCK:
1575 		/*
1576 		 * There's no easy way to restart the syscall since other AIO's
1577 		 * may be already running. Just fail this IO with EINTR.
1578 		 */
1579 		ret = -EINTR;
1580 		fallthrough;
1581 	default:
1582 		req->ki_complete(req, ret);
1583 	}
1584 }
1585 
1586 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1587 			bool vectored, bool compat)
1588 {
1589 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1590 	struct iov_iter iter;
1591 	struct file *file;
1592 	int ret;
1593 
1594 	ret = aio_prep_rw(req, iocb);
1595 	if (ret)
1596 		return ret;
1597 	file = req->ki_filp;
1598 	if (unlikely(!(file->f_mode & FMODE_READ)))
1599 		return -EBADF;
1600 	if (unlikely(!file->f_op->read_iter))
1601 		return -EINVAL;
1602 
1603 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1604 	if (ret < 0)
1605 		return ret;
1606 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1607 	if (!ret)
1608 		aio_rw_done(req, call_read_iter(file, req, &iter));
1609 	kfree(iovec);
1610 	return ret;
1611 }
1612 
1613 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1614 			 bool vectored, bool compat)
1615 {
1616 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1617 	struct iov_iter iter;
1618 	struct file *file;
1619 	int ret;
1620 
1621 	ret = aio_prep_rw(req, iocb);
1622 	if (ret)
1623 		return ret;
1624 	file = req->ki_filp;
1625 
1626 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1627 		return -EBADF;
1628 	if (unlikely(!file->f_op->write_iter))
1629 		return -EINVAL;
1630 
1631 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1632 	if (ret < 0)
1633 		return ret;
1634 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1635 	if (!ret) {
1636 		if (S_ISREG(file_inode(file)->i_mode))
1637 			kiocb_start_write(req);
1638 		req->ki_flags |= IOCB_WRITE;
1639 		aio_rw_done(req, call_write_iter(file, req, &iter));
1640 	}
1641 	kfree(iovec);
1642 	return ret;
1643 }
1644 
1645 static void aio_fsync_work(struct work_struct *work)
1646 {
1647 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1648 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1649 
1650 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1651 	revert_creds(old_cred);
1652 	put_cred(iocb->fsync.creds);
1653 	iocb_put(iocb);
1654 }
1655 
1656 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1657 		     bool datasync)
1658 {
1659 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1660 			iocb->aio_rw_flags))
1661 		return -EINVAL;
1662 
1663 	if (unlikely(!req->file->f_op->fsync))
1664 		return -EINVAL;
1665 
1666 	req->creds = prepare_creds();
1667 	if (!req->creds)
1668 		return -ENOMEM;
1669 
1670 	req->datasync = datasync;
1671 	INIT_WORK(&req->work, aio_fsync_work);
1672 	schedule_work(&req->work);
1673 	return 0;
1674 }
1675 
1676 static void aio_poll_put_work(struct work_struct *work)
1677 {
1678 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1679 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1680 
1681 	iocb_put(iocb);
1682 }
1683 
1684 /*
1685  * Safely lock the waitqueue which the request is on, synchronizing with the
1686  * case where the ->poll() provider decides to free its waitqueue early.
1687  *
1688  * Returns true on success, meaning that req->head->lock was locked, req->wait
1689  * is on req->head, and an RCU read lock was taken.  Returns false if the
1690  * request was already removed from its waitqueue (which might no longer exist).
1691  */
1692 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1693 {
1694 	wait_queue_head_t *head;
1695 
1696 	/*
1697 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1698 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1699 	 * lock in the first place can race with the waitqueue being freed.
1700 	 *
1701 	 * We solve this as eventpoll does: by taking advantage of the fact that
1702 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1703 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1704 	 * non-NULL, we can then lock it without the memory being freed out from
1705 	 * under us, then check whether the request is still on the queue.
1706 	 *
1707 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1708 	 * case the caller deletes the entry from the queue, leaving it empty.
1709 	 * In that case, only RCU prevents the queue memory from being freed.
1710 	 */
1711 	rcu_read_lock();
1712 	head = smp_load_acquire(&req->head);
1713 	if (head) {
1714 		spin_lock(&head->lock);
1715 		if (!list_empty(&req->wait.entry))
1716 			return true;
1717 		spin_unlock(&head->lock);
1718 	}
1719 	rcu_read_unlock();
1720 	return false;
1721 }
1722 
1723 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1724 {
1725 	spin_unlock(&req->head->lock);
1726 	rcu_read_unlock();
1727 }
1728 
1729 static void aio_poll_complete_work(struct work_struct *work)
1730 {
1731 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1732 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1733 	struct poll_table_struct pt = { ._key = req->events };
1734 	struct kioctx *ctx = iocb->ki_ctx;
1735 	__poll_t mask = 0;
1736 
1737 	if (!READ_ONCE(req->cancelled))
1738 		mask = vfs_poll(req->file, &pt) & req->events;
1739 
1740 	/*
1741 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1742 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1743 	 * synchronize with them.  In the cancellation case the list_del_init
1744 	 * itself is not actually needed, but harmless so we keep it in to
1745 	 * avoid further branches in the fast path.
1746 	 */
1747 	spin_lock_irq(&ctx->ctx_lock);
1748 	if (poll_iocb_lock_wq(req)) {
1749 		if (!mask && !READ_ONCE(req->cancelled)) {
1750 			/*
1751 			 * The request isn't actually ready to be completed yet.
1752 			 * Reschedule completion if another wakeup came in.
1753 			 */
1754 			if (req->work_need_resched) {
1755 				schedule_work(&req->work);
1756 				req->work_need_resched = false;
1757 			} else {
1758 				req->work_scheduled = false;
1759 			}
1760 			poll_iocb_unlock_wq(req);
1761 			spin_unlock_irq(&ctx->ctx_lock);
1762 			return;
1763 		}
1764 		list_del_init(&req->wait.entry);
1765 		poll_iocb_unlock_wq(req);
1766 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1767 	list_del_init(&iocb->ki_list);
1768 	iocb->ki_res.res = mangle_poll(mask);
1769 	spin_unlock_irq(&ctx->ctx_lock);
1770 
1771 	iocb_put(iocb);
1772 }
1773 
1774 /* assumes we are called with irqs disabled */
1775 static int aio_poll_cancel(struct kiocb *iocb)
1776 {
1777 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1778 	struct poll_iocb *req = &aiocb->poll;
1779 
1780 	if (poll_iocb_lock_wq(req)) {
1781 		WRITE_ONCE(req->cancelled, true);
1782 		if (!req->work_scheduled) {
1783 			schedule_work(&aiocb->poll.work);
1784 			req->work_scheduled = true;
1785 		}
1786 		poll_iocb_unlock_wq(req);
1787 	} /* else, the request was force-cancelled by POLLFREE already */
1788 
1789 	return 0;
1790 }
1791 
1792 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1793 		void *key)
1794 {
1795 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1796 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1797 	__poll_t mask = key_to_poll(key);
1798 	unsigned long flags;
1799 
1800 	/* for instances that support it check for an event match first: */
1801 	if (mask && !(mask & req->events))
1802 		return 0;
1803 
1804 	/*
1805 	 * Complete the request inline if possible.  This requires that three
1806 	 * conditions be met:
1807 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1808 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1809 	 *	the events, so inline completion isn't possible.
1810 	 *   2. The completion work must not have already been scheduled.
1811 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1812 	 *	already hold the waitqueue lock, so this inverts the normal
1813 	 *	locking order.  Use irqsave/irqrestore because not all
1814 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1815 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1816 	 */
1817 	if (mask && !req->work_scheduled &&
1818 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1819 		struct kioctx *ctx = iocb->ki_ctx;
1820 
1821 		list_del_init(&req->wait.entry);
1822 		list_del(&iocb->ki_list);
1823 		iocb->ki_res.res = mangle_poll(mask);
1824 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1825 			iocb = NULL;
1826 			INIT_WORK(&req->work, aio_poll_put_work);
1827 			schedule_work(&req->work);
1828 		}
1829 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1830 		if (iocb)
1831 			iocb_put(iocb);
1832 	} else {
1833 		/*
1834 		 * Schedule the completion work if needed.  If it was already
1835 		 * scheduled, record that another wakeup came in.
1836 		 *
1837 		 * Don't remove the request from the waitqueue here, as it might
1838 		 * not actually be complete yet (we won't know until vfs_poll()
1839 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1840 		 * exception to this; see below.
1841 		 */
1842 		if (req->work_scheduled) {
1843 			req->work_need_resched = true;
1844 		} else {
1845 			schedule_work(&req->work);
1846 			req->work_scheduled = true;
1847 		}
1848 
1849 		/*
1850 		 * If the waitqueue is being freed early but we can't complete
1851 		 * the request inline, we have to tear down the request as best
1852 		 * we can.  That means immediately removing the request from its
1853 		 * waitqueue and preventing all further accesses to the
1854 		 * waitqueue via the request.  We also need to schedule the
1855 		 * completion work (done above).  Also mark the request as
1856 		 * cancelled, to potentially skip an unneeded call to ->poll().
1857 		 */
1858 		if (mask & POLLFREE) {
1859 			WRITE_ONCE(req->cancelled, true);
1860 			list_del_init(&req->wait.entry);
1861 
1862 			/*
1863 			 * Careful: this *must* be the last step, since as soon
1864 			 * as req->head is NULL'ed out, the request can be
1865 			 * completed and freed, since aio_poll_complete_work()
1866 			 * will no longer need to take the waitqueue lock.
1867 			 */
1868 			smp_store_release(&req->head, NULL);
1869 		}
1870 	}
1871 	return 1;
1872 }
1873 
1874 struct aio_poll_table {
1875 	struct poll_table_struct	pt;
1876 	struct aio_kiocb		*iocb;
1877 	bool				queued;
1878 	int				error;
1879 };
1880 
1881 static void
1882 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1883 		struct poll_table_struct *p)
1884 {
1885 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1886 
1887 	/* multiple wait queues per file are not supported */
1888 	if (unlikely(pt->queued)) {
1889 		pt->error = -EINVAL;
1890 		return;
1891 	}
1892 
1893 	pt->queued = true;
1894 	pt->error = 0;
1895 	pt->iocb->poll.head = head;
1896 	add_wait_queue(head, &pt->iocb->poll.wait);
1897 }
1898 
1899 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1900 {
1901 	struct kioctx *ctx = aiocb->ki_ctx;
1902 	struct poll_iocb *req = &aiocb->poll;
1903 	struct aio_poll_table apt;
1904 	bool cancel = false;
1905 	__poll_t mask;
1906 
1907 	/* reject any unknown events outside the normal event mask. */
1908 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1909 		return -EINVAL;
1910 	/* reject fields that are not defined for poll */
1911 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1912 		return -EINVAL;
1913 
1914 	INIT_WORK(&req->work, aio_poll_complete_work);
1915 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1916 
1917 	req->head = NULL;
1918 	req->cancelled = false;
1919 	req->work_scheduled = false;
1920 	req->work_need_resched = false;
1921 
1922 	apt.pt._qproc = aio_poll_queue_proc;
1923 	apt.pt._key = req->events;
1924 	apt.iocb = aiocb;
1925 	apt.queued = false;
1926 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1927 
1928 	/* initialized the list so that we can do list_empty checks */
1929 	INIT_LIST_HEAD(&req->wait.entry);
1930 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1931 
1932 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1933 	spin_lock_irq(&ctx->ctx_lock);
1934 	if (likely(apt.queued)) {
1935 		bool on_queue = poll_iocb_lock_wq(req);
1936 
1937 		if (!on_queue || req->work_scheduled) {
1938 			/*
1939 			 * aio_poll_wake() already either scheduled the async
1940 			 * completion work, or completed the request inline.
1941 			 */
1942 			if (apt.error) /* unsupported case: multiple queues */
1943 				cancel = true;
1944 			apt.error = 0;
1945 			mask = 0;
1946 		}
1947 		if (mask || apt.error) {
1948 			/* Steal to complete synchronously. */
1949 			list_del_init(&req->wait.entry);
1950 		} else if (cancel) {
1951 			/* Cancel if possible (may be too late though). */
1952 			WRITE_ONCE(req->cancelled, true);
1953 		} else if (on_queue) {
1954 			/*
1955 			 * Actually waiting for an event, so add the request to
1956 			 * active_reqs so that it can be cancelled if needed.
1957 			 */
1958 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1959 			aiocb->ki_cancel = aio_poll_cancel;
1960 		}
1961 		if (on_queue)
1962 			poll_iocb_unlock_wq(req);
1963 	}
1964 	if (mask) { /* no async, we'd stolen it */
1965 		aiocb->ki_res.res = mangle_poll(mask);
1966 		apt.error = 0;
1967 	}
1968 	spin_unlock_irq(&ctx->ctx_lock);
1969 	if (mask)
1970 		iocb_put(aiocb);
1971 	return apt.error;
1972 }
1973 
1974 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1975 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1976 			   bool compat)
1977 {
1978 	req->ki_filp = fget(iocb->aio_fildes);
1979 	if (unlikely(!req->ki_filp))
1980 		return -EBADF;
1981 
1982 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1983 		struct eventfd_ctx *eventfd;
1984 		/*
1985 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1986 		 * instance of the file* now. The file descriptor must be
1987 		 * an eventfd() fd, and will be signaled for each completed
1988 		 * event using the eventfd_signal() function.
1989 		 */
1990 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1991 		if (IS_ERR(eventfd))
1992 			return PTR_ERR(eventfd);
1993 
1994 		req->ki_eventfd = eventfd;
1995 	}
1996 
1997 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1998 		pr_debug("EFAULT: aio_key\n");
1999 		return -EFAULT;
2000 	}
2001 
2002 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
2003 	req->ki_res.data = iocb->aio_data;
2004 	req->ki_res.res = 0;
2005 	req->ki_res.res2 = 0;
2006 
2007 	switch (iocb->aio_lio_opcode) {
2008 	case IOCB_CMD_PREAD:
2009 		return aio_read(&req->rw, iocb, false, compat);
2010 	case IOCB_CMD_PWRITE:
2011 		return aio_write(&req->rw, iocb, false, compat);
2012 	case IOCB_CMD_PREADV:
2013 		return aio_read(&req->rw, iocb, true, compat);
2014 	case IOCB_CMD_PWRITEV:
2015 		return aio_write(&req->rw, iocb, true, compat);
2016 	case IOCB_CMD_FSYNC:
2017 		return aio_fsync(&req->fsync, iocb, false);
2018 	case IOCB_CMD_FDSYNC:
2019 		return aio_fsync(&req->fsync, iocb, true);
2020 	case IOCB_CMD_POLL:
2021 		return aio_poll(req, iocb);
2022 	default:
2023 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2024 		return -EINVAL;
2025 	}
2026 }
2027 
2028 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2029 			 bool compat)
2030 {
2031 	struct aio_kiocb *req;
2032 	struct iocb iocb;
2033 	int err;
2034 
2035 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2036 		return -EFAULT;
2037 
2038 	/* enforce forwards compatibility on users */
2039 	if (unlikely(iocb.aio_reserved2)) {
2040 		pr_debug("EINVAL: reserve field set\n");
2041 		return -EINVAL;
2042 	}
2043 
2044 	/* prevent overflows */
2045 	if (unlikely(
2046 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2047 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2048 	    ((ssize_t)iocb.aio_nbytes < 0)
2049 	   )) {
2050 		pr_debug("EINVAL: overflow check\n");
2051 		return -EINVAL;
2052 	}
2053 
2054 	req = aio_get_req(ctx);
2055 	if (unlikely(!req))
2056 		return -EAGAIN;
2057 
2058 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2059 
2060 	/* Done with the synchronous reference */
2061 	iocb_put(req);
2062 
2063 	/*
2064 	 * If err is 0, we'd either done aio_complete() ourselves or have
2065 	 * arranged for that to be done asynchronously.  Anything non-zero
2066 	 * means that we need to destroy req ourselves.
2067 	 */
2068 	if (unlikely(err)) {
2069 		iocb_destroy(req);
2070 		put_reqs_available(ctx, 1);
2071 	}
2072 	return err;
2073 }
2074 
2075 /* sys_io_submit:
2076  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2077  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2078  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2079  *	*iocbpp[0] is not properly initialized, if the operation specified
2080  *	is invalid for the file descriptor in the iocb.  May fail with
2081  *	-EFAULT if any of the data structures point to invalid data.  May
2082  *	fail with -EBADF if the file descriptor specified in the first
2083  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2084  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2085  *	fail with -ENOSYS if not implemented.
2086  */
2087 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2088 		struct iocb __user * __user *, iocbpp)
2089 {
2090 	struct kioctx *ctx;
2091 	long ret = 0;
2092 	int i = 0;
2093 	struct blk_plug plug;
2094 
2095 	if (unlikely(nr < 0))
2096 		return -EINVAL;
2097 
2098 	ctx = lookup_ioctx(ctx_id);
2099 	if (unlikely(!ctx)) {
2100 		pr_debug("EINVAL: invalid context id\n");
2101 		return -EINVAL;
2102 	}
2103 
2104 	if (nr > ctx->nr_events)
2105 		nr = ctx->nr_events;
2106 
2107 	if (nr > AIO_PLUG_THRESHOLD)
2108 		blk_start_plug(&plug);
2109 	for (i = 0; i < nr; i++) {
2110 		struct iocb __user *user_iocb;
2111 
2112 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2113 			ret = -EFAULT;
2114 			break;
2115 		}
2116 
2117 		ret = io_submit_one(ctx, user_iocb, false);
2118 		if (ret)
2119 			break;
2120 	}
2121 	if (nr > AIO_PLUG_THRESHOLD)
2122 		blk_finish_plug(&plug);
2123 
2124 	percpu_ref_put(&ctx->users);
2125 	return i ? i : ret;
2126 }
2127 
2128 #ifdef CONFIG_COMPAT
2129 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2130 		       int, nr, compat_uptr_t __user *, iocbpp)
2131 {
2132 	struct kioctx *ctx;
2133 	long ret = 0;
2134 	int i = 0;
2135 	struct blk_plug plug;
2136 
2137 	if (unlikely(nr < 0))
2138 		return -EINVAL;
2139 
2140 	ctx = lookup_ioctx(ctx_id);
2141 	if (unlikely(!ctx)) {
2142 		pr_debug("EINVAL: invalid context id\n");
2143 		return -EINVAL;
2144 	}
2145 
2146 	if (nr > ctx->nr_events)
2147 		nr = ctx->nr_events;
2148 
2149 	if (nr > AIO_PLUG_THRESHOLD)
2150 		blk_start_plug(&plug);
2151 	for (i = 0; i < nr; i++) {
2152 		compat_uptr_t user_iocb;
2153 
2154 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2155 			ret = -EFAULT;
2156 			break;
2157 		}
2158 
2159 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2160 		if (ret)
2161 			break;
2162 	}
2163 	if (nr > AIO_PLUG_THRESHOLD)
2164 		blk_finish_plug(&plug);
2165 
2166 	percpu_ref_put(&ctx->users);
2167 	return i ? i : ret;
2168 }
2169 #endif
2170 
2171 /* sys_io_cancel:
2172  *	Attempts to cancel an iocb previously passed to io_submit.  If
2173  *	the operation is successfully cancelled, the resulting event is
2174  *	copied into the memory pointed to by result without being placed
2175  *	into the completion queue and 0 is returned.  May fail with
2176  *	-EFAULT if any of the data structures pointed to are invalid.
2177  *	May fail with -EINVAL if aio_context specified by ctx_id is
2178  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2179  *	cancelled.  Will fail with -ENOSYS if not implemented.
2180  */
2181 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2182 		struct io_event __user *, result)
2183 {
2184 	struct kioctx *ctx;
2185 	struct aio_kiocb *kiocb;
2186 	int ret = -EINVAL;
2187 	u32 key;
2188 	u64 obj = (u64)(unsigned long)iocb;
2189 
2190 	if (unlikely(get_user(key, &iocb->aio_key)))
2191 		return -EFAULT;
2192 	if (unlikely(key != KIOCB_KEY))
2193 		return -EINVAL;
2194 
2195 	ctx = lookup_ioctx(ctx_id);
2196 	if (unlikely(!ctx))
2197 		return -EINVAL;
2198 
2199 	spin_lock_irq(&ctx->ctx_lock);
2200 	/* TODO: use a hash or array, this sucks. */
2201 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2202 		if (kiocb->ki_res.obj == obj) {
2203 			ret = kiocb->ki_cancel(&kiocb->rw);
2204 			list_del_init(&kiocb->ki_list);
2205 			break;
2206 		}
2207 	}
2208 	spin_unlock_irq(&ctx->ctx_lock);
2209 
2210 	if (!ret) {
2211 		/*
2212 		 * The result argument is no longer used - the io_event is
2213 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2214 		 * cancellation is progress:
2215 		 */
2216 		ret = -EINPROGRESS;
2217 	}
2218 
2219 	percpu_ref_put(&ctx->users);
2220 
2221 	return ret;
2222 }
2223 
2224 static long do_io_getevents(aio_context_t ctx_id,
2225 		long min_nr,
2226 		long nr,
2227 		struct io_event __user *events,
2228 		struct timespec64 *ts)
2229 {
2230 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2231 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2232 	long ret = -EINVAL;
2233 
2234 	if (likely(ioctx)) {
2235 		if (likely(min_nr <= nr && min_nr >= 0))
2236 			ret = read_events(ioctx, min_nr, nr, events, until);
2237 		percpu_ref_put(&ioctx->users);
2238 	}
2239 
2240 	return ret;
2241 }
2242 
2243 /* io_getevents:
2244  *	Attempts to read at least min_nr events and up to nr events from
2245  *	the completion queue for the aio_context specified by ctx_id. If
2246  *	it succeeds, the number of read events is returned. May fail with
2247  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2248  *	out of range, if timeout is out of range.  May fail with -EFAULT
2249  *	if any of the memory specified is invalid.  May return 0 or
2250  *	< min_nr if the timeout specified by timeout has elapsed
2251  *	before sufficient events are available, where timeout == NULL
2252  *	specifies an infinite timeout. Note that the timeout pointed to by
2253  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2254  */
2255 #ifdef CONFIG_64BIT
2256 
2257 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2258 		long, min_nr,
2259 		long, nr,
2260 		struct io_event __user *, events,
2261 		struct __kernel_timespec __user *, timeout)
2262 {
2263 	struct timespec64	ts;
2264 	int			ret;
2265 
2266 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2267 		return -EFAULT;
2268 
2269 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2270 	if (!ret && signal_pending(current))
2271 		ret = -EINTR;
2272 	return ret;
2273 }
2274 
2275 #endif
2276 
2277 struct __aio_sigset {
2278 	const sigset_t __user	*sigmask;
2279 	size_t		sigsetsize;
2280 };
2281 
2282 SYSCALL_DEFINE6(io_pgetevents,
2283 		aio_context_t, ctx_id,
2284 		long, min_nr,
2285 		long, nr,
2286 		struct io_event __user *, events,
2287 		struct __kernel_timespec __user *, timeout,
2288 		const struct __aio_sigset __user *, usig)
2289 {
2290 	struct __aio_sigset	ksig = { NULL, };
2291 	struct timespec64	ts;
2292 	bool interrupted;
2293 	int ret;
2294 
2295 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2296 		return -EFAULT;
2297 
2298 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2299 		return -EFAULT;
2300 
2301 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2302 	if (ret)
2303 		return ret;
2304 
2305 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2306 
2307 	interrupted = signal_pending(current);
2308 	restore_saved_sigmask_unless(interrupted);
2309 	if (interrupted && !ret)
2310 		ret = -ERESTARTNOHAND;
2311 
2312 	return ret;
2313 }
2314 
2315 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2316 
2317 SYSCALL_DEFINE6(io_pgetevents_time32,
2318 		aio_context_t, ctx_id,
2319 		long, min_nr,
2320 		long, nr,
2321 		struct io_event __user *, events,
2322 		struct old_timespec32 __user *, timeout,
2323 		const struct __aio_sigset __user *, usig)
2324 {
2325 	struct __aio_sigset	ksig = { NULL, };
2326 	struct timespec64	ts;
2327 	bool interrupted;
2328 	int ret;
2329 
2330 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2331 		return -EFAULT;
2332 
2333 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2334 		return -EFAULT;
2335 
2336 
2337 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2338 	if (ret)
2339 		return ret;
2340 
2341 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2342 
2343 	interrupted = signal_pending(current);
2344 	restore_saved_sigmask_unless(interrupted);
2345 	if (interrupted && !ret)
2346 		ret = -ERESTARTNOHAND;
2347 
2348 	return ret;
2349 }
2350 
2351 #endif
2352 
2353 #if defined(CONFIG_COMPAT_32BIT_TIME)
2354 
2355 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2356 		__s32, min_nr,
2357 		__s32, nr,
2358 		struct io_event __user *, events,
2359 		struct old_timespec32 __user *, timeout)
2360 {
2361 	struct timespec64 t;
2362 	int ret;
2363 
2364 	if (timeout && get_old_timespec32(&t, timeout))
2365 		return -EFAULT;
2366 
2367 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2368 	if (!ret && signal_pending(current))
2369 		ret = -EINTR;
2370 	return ret;
2371 }
2372 
2373 #endif
2374 
2375 #ifdef CONFIG_COMPAT
2376 
2377 struct __compat_aio_sigset {
2378 	compat_uptr_t		sigmask;
2379 	compat_size_t		sigsetsize;
2380 };
2381 
2382 #if defined(CONFIG_COMPAT_32BIT_TIME)
2383 
2384 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2385 		compat_aio_context_t, ctx_id,
2386 		compat_long_t, min_nr,
2387 		compat_long_t, nr,
2388 		struct io_event __user *, events,
2389 		struct old_timespec32 __user *, timeout,
2390 		const struct __compat_aio_sigset __user *, usig)
2391 {
2392 	struct __compat_aio_sigset ksig = { 0, };
2393 	struct timespec64 t;
2394 	bool interrupted;
2395 	int ret;
2396 
2397 	if (timeout && get_old_timespec32(&t, timeout))
2398 		return -EFAULT;
2399 
2400 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2401 		return -EFAULT;
2402 
2403 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2404 	if (ret)
2405 		return ret;
2406 
2407 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2408 
2409 	interrupted = signal_pending(current);
2410 	restore_saved_sigmask_unless(interrupted);
2411 	if (interrupted && !ret)
2412 		ret = -ERESTARTNOHAND;
2413 
2414 	return ret;
2415 }
2416 
2417 #endif
2418 
2419 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2420 		compat_aio_context_t, ctx_id,
2421 		compat_long_t, min_nr,
2422 		compat_long_t, nr,
2423 		struct io_event __user *, events,
2424 		struct __kernel_timespec __user *, timeout,
2425 		const struct __compat_aio_sigset __user *, usig)
2426 {
2427 	struct __compat_aio_sigset ksig = { 0, };
2428 	struct timespec64 t;
2429 	bool interrupted;
2430 	int ret;
2431 
2432 	if (timeout && get_timespec64(&t, timeout))
2433 		return -EFAULT;
2434 
2435 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2436 		return -EFAULT;
2437 
2438 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2439 	if (ret)
2440 		return ret;
2441 
2442 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2443 
2444 	interrupted = signal_pending(current);
2445 	restore_saved_sigmask_unless(interrupted);
2446 	if (interrupted && !ret)
2447 		ret = -ERESTARTNOHAND;
2448 
2449 	return ret;
2450 }
2451 #endif
2452