xref: /linux/fs/aio.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34 
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 static void ctx_rcu_free(struct rcu_head *head)
195 {
196 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
197 	unsigned nr_events = ctx->max_reqs;
198 
199 	kmem_cache_free(kioctx_cachep, ctx);
200 
201 	if (nr_events) {
202 		spin_lock(&aio_nr_lock);
203 		BUG_ON(aio_nr - nr_events > aio_nr);
204 		aio_nr -= nr_events;
205 		spin_unlock(&aio_nr_lock);
206 	}
207 }
208 
209 /* __put_ioctx
210  *	Called when the last user of an aio context has gone away,
211  *	and the struct needs to be freed.
212  */
213 static void __put_ioctx(struct kioctx *ctx)
214 {
215 	BUG_ON(ctx->reqs_active);
216 
217 	cancel_delayed_work(&ctx->wq);
218 	cancel_work_sync(&ctx->wq.work);
219 	aio_free_ring(ctx);
220 	mmdrop(ctx->mm);
221 	ctx->mm = NULL;
222 	pr_debug("__put_ioctx: freeing %p\n", ctx);
223 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
224 }
225 
226 #define get_ioctx(kioctx) do {						\
227 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
228 	atomic_inc(&(kioctx)->users);					\
229 } while (0)
230 #define put_ioctx(kioctx) do {						\
231 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
232 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
233 		__put_ioctx(kioctx);					\
234 } while (0)
235 
236 /* ioctx_alloc
237  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
238  */
239 static struct kioctx *ioctx_alloc(unsigned nr_events)
240 {
241 	struct mm_struct *mm;
242 	struct kioctx *ctx;
243 	int did_sync = 0;
244 
245 	/* Prevent overflows */
246 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
247 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
248 		pr_debug("ENOMEM: nr_events too high\n");
249 		return ERR_PTR(-EINVAL);
250 	}
251 
252 	if ((unsigned long)nr_events > aio_max_nr)
253 		return ERR_PTR(-EAGAIN);
254 
255 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
256 	if (!ctx)
257 		return ERR_PTR(-ENOMEM);
258 
259 	ctx->max_reqs = nr_events;
260 	mm = ctx->mm = current->mm;
261 	atomic_inc(&mm->mm_count);
262 
263 	atomic_set(&ctx->users, 1);
264 	spin_lock_init(&ctx->ctx_lock);
265 	spin_lock_init(&ctx->ring_info.ring_lock);
266 	init_waitqueue_head(&ctx->wait);
267 
268 	INIT_LIST_HEAD(&ctx->active_reqs);
269 	INIT_LIST_HEAD(&ctx->run_list);
270 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
271 
272 	if (aio_setup_ring(ctx) < 0)
273 		goto out_freectx;
274 
275 	/* limit the number of system wide aios */
276 	do {
277 		spin_lock_bh(&aio_nr_lock);
278 		if (aio_nr + nr_events > aio_max_nr ||
279 		    aio_nr + nr_events < aio_nr)
280 			ctx->max_reqs = 0;
281 		else
282 			aio_nr += ctx->max_reqs;
283 		spin_unlock_bh(&aio_nr_lock);
284 		if (ctx->max_reqs || did_sync)
285 			break;
286 
287 		/* wait for rcu callbacks to have completed before giving up */
288 		synchronize_rcu();
289 		did_sync = 1;
290 		ctx->max_reqs = nr_events;
291 	} while (1);
292 
293 	if (ctx->max_reqs == 0)
294 		goto out_cleanup;
295 
296 	/* now link into global list. */
297 	spin_lock(&mm->ioctx_lock);
298 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
299 	spin_unlock(&mm->ioctx_lock);
300 
301 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
303 	return ctx;
304 
305 out_cleanup:
306 	__put_ioctx(ctx);
307 	return ERR_PTR(-EAGAIN);
308 
309 out_freectx:
310 	mmdrop(mm);
311 	kmem_cache_free(kioctx_cachep, ctx);
312 	ctx = ERR_PTR(-ENOMEM);
313 
314 	dprintk("aio: error allocating ioctx %p\n", ctx);
315 	return ctx;
316 }
317 
318 /* aio_cancel_all
319  *	Cancels all outstanding aio requests on an aio context.  Used
320  *	when the processes owning a context have all exited to encourage
321  *	the rapid destruction of the kioctx.
322  */
323 static void aio_cancel_all(struct kioctx *ctx)
324 {
325 	int (*cancel)(struct kiocb *, struct io_event *);
326 	struct io_event res;
327 	spin_lock_irq(&ctx->ctx_lock);
328 	ctx->dead = 1;
329 	while (!list_empty(&ctx->active_reqs)) {
330 		struct list_head *pos = ctx->active_reqs.next;
331 		struct kiocb *iocb = list_kiocb(pos);
332 		list_del_init(&iocb->ki_list);
333 		cancel = iocb->ki_cancel;
334 		kiocbSetCancelled(iocb);
335 		if (cancel) {
336 			iocb->ki_users++;
337 			spin_unlock_irq(&ctx->ctx_lock);
338 			cancel(iocb, &res);
339 			spin_lock_irq(&ctx->ctx_lock);
340 		}
341 	}
342 	spin_unlock_irq(&ctx->ctx_lock);
343 }
344 
345 static void wait_for_all_aios(struct kioctx *ctx)
346 {
347 	struct task_struct *tsk = current;
348 	DECLARE_WAITQUEUE(wait, tsk);
349 
350 	spin_lock_irq(&ctx->ctx_lock);
351 	if (!ctx->reqs_active)
352 		goto out;
353 
354 	add_wait_queue(&ctx->wait, &wait);
355 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
356 	while (ctx->reqs_active) {
357 		spin_unlock_irq(&ctx->ctx_lock);
358 		io_schedule();
359 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
360 		spin_lock_irq(&ctx->ctx_lock);
361 	}
362 	__set_task_state(tsk, TASK_RUNNING);
363 	remove_wait_queue(&ctx->wait, &wait);
364 
365 out:
366 	spin_unlock_irq(&ctx->ctx_lock);
367 }
368 
369 /* wait_on_sync_kiocb:
370  *	Waits on the given sync kiocb to complete.
371  */
372 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
373 {
374 	while (iocb->ki_users) {
375 		set_current_state(TASK_UNINTERRUPTIBLE);
376 		if (!iocb->ki_users)
377 			break;
378 		io_schedule();
379 	}
380 	__set_current_state(TASK_RUNNING);
381 	return iocb->ki_user_data;
382 }
383 
384 /* exit_aio: called when the last user of mm goes away.  At this point,
385  * there is no way for any new requests to be submited or any of the
386  * io_* syscalls to be called on the context.  However, there may be
387  * outstanding requests which hold references to the context; as they
388  * go away, they will call put_ioctx and release any pinned memory
389  * associated with the request (held via struct page * references).
390  */
391 void exit_aio(struct mm_struct *mm)
392 {
393 	struct kioctx *ctx;
394 
395 	while (!hlist_empty(&mm->ioctx_list)) {
396 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
397 		hlist_del_rcu(&ctx->list);
398 
399 		aio_cancel_all(ctx);
400 
401 		wait_for_all_aios(ctx);
402 		/*
403 		 * Ensure we don't leave the ctx on the aio_wq
404 		 */
405 		cancel_work_sync(&ctx->wq.work);
406 
407 		if (1 != atomic_read(&ctx->users))
408 			printk(KERN_DEBUG
409 				"exit_aio:ioctx still alive: %d %d %d\n",
410 				atomic_read(&ctx->users), ctx->dead,
411 				ctx->reqs_active);
412 		put_ioctx(ctx);
413 	}
414 }
415 
416 /* aio_get_req
417  *	Allocate a slot for an aio request.  Increments the users count
418  * of the kioctx so that the kioctx stays around until all requests are
419  * complete.  Returns NULL if no requests are free.
420  *
421  * Returns with kiocb->users set to 2.  The io submit code path holds
422  * an extra reference while submitting the i/o.
423  * This prevents races between the aio code path referencing the
424  * req (after submitting it) and aio_complete() freeing the req.
425  */
426 static struct kiocb *__aio_get_req(struct kioctx *ctx)
427 {
428 	struct kiocb *req = NULL;
429 	struct aio_ring *ring;
430 	int okay = 0;
431 
432 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
433 	if (unlikely(!req))
434 		return NULL;
435 
436 	req->ki_flags = 0;
437 	req->ki_users = 2;
438 	req->ki_key = 0;
439 	req->ki_ctx = ctx;
440 	req->ki_cancel = NULL;
441 	req->ki_retry = NULL;
442 	req->ki_dtor = NULL;
443 	req->private = NULL;
444 	req->ki_iovec = NULL;
445 	INIT_LIST_HEAD(&req->ki_run_list);
446 	req->ki_eventfd = NULL;
447 
448 	/* Check if the completion queue has enough free space to
449 	 * accept an event from this io.
450 	 */
451 	spin_lock_irq(&ctx->ctx_lock);
452 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
453 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
454 		list_add(&req->ki_list, &ctx->active_reqs);
455 		ctx->reqs_active++;
456 		okay = 1;
457 	}
458 	kunmap_atomic(ring, KM_USER0);
459 	spin_unlock_irq(&ctx->ctx_lock);
460 
461 	if (!okay) {
462 		kmem_cache_free(kiocb_cachep, req);
463 		req = NULL;
464 	}
465 
466 	return req;
467 }
468 
469 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
470 {
471 	struct kiocb *req;
472 	/* Handle a potential starvation case -- should be exceedingly rare as
473 	 * requests will be stuck on fput_head only if the aio_fput_routine is
474 	 * delayed and the requests were the last user of the struct file.
475 	 */
476 	req = __aio_get_req(ctx);
477 	if (unlikely(NULL == req)) {
478 		aio_fput_routine(NULL);
479 		req = __aio_get_req(ctx);
480 	}
481 	return req;
482 }
483 
484 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
485 {
486 	assert_spin_locked(&ctx->ctx_lock);
487 
488 	if (req->ki_eventfd != NULL)
489 		eventfd_ctx_put(req->ki_eventfd);
490 	if (req->ki_dtor)
491 		req->ki_dtor(req);
492 	if (req->ki_iovec != &req->ki_inline_vec)
493 		kfree(req->ki_iovec);
494 	kmem_cache_free(kiocb_cachep, req);
495 	ctx->reqs_active--;
496 
497 	if (unlikely(!ctx->reqs_active && ctx->dead))
498 		wake_up(&ctx->wait);
499 }
500 
501 static void aio_fput_routine(struct work_struct *data)
502 {
503 	spin_lock_irq(&fput_lock);
504 	while (likely(!list_empty(&fput_head))) {
505 		struct kiocb *req = list_kiocb(fput_head.next);
506 		struct kioctx *ctx = req->ki_ctx;
507 
508 		list_del(&req->ki_list);
509 		spin_unlock_irq(&fput_lock);
510 
511 		/* Complete the fput(s) */
512 		if (req->ki_filp != NULL)
513 			__fput(req->ki_filp);
514 
515 		/* Link the iocb into the context's free list */
516 		spin_lock_irq(&ctx->ctx_lock);
517 		really_put_req(ctx, req);
518 		spin_unlock_irq(&ctx->ctx_lock);
519 
520 		put_ioctx(ctx);
521 		spin_lock_irq(&fput_lock);
522 	}
523 	spin_unlock_irq(&fput_lock);
524 }
525 
526 /* __aio_put_req
527  *	Returns true if this put was the last user of the request.
528  */
529 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
530 {
531 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
532 		req, atomic_long_read(&req->ki_filp->f_count));
533 
534 	assert_spin_locked(&ctx->ctx_lock);
535 
536 	req->ki_users--;
537 	BUG_ON(req->ki_users < 0);
538 	if (likely(req->ki_users))
539 		return 0;
540 	list_del(&req->ki_list);		/* remove from active_reqs */
541 	req->ki_cancel = NULL;
542 	req->ki_retry = NULL;
543 
544 	/*
545 	 * Try to optimize the aio and eventfd file* puts, by avoiding to
546 	 * schedule work in case it is not __fput() time. In normal cases,
547 	 * we would not be holding the last reference to the file*, so
548 	 * this function will be executed w/out any aio kthread wakeup.
549 	 */
550 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
551 		get_ioctx(ctx);
552 		spin_lock(&fput_lock);
553 		list_add(&req->ki_list, &fput_head);
554 		spin_unlock(&fput_lock);
555 		queue_work(aio_wq, &fput_work);
556 	} else {
557 		req->ki_filp = NULL;
558 		really_put_req(ctx, req);
559 	}
560 	return 1;
561 }
562 
563 /* aio_put_req
564  *	Returns true if this put was the last user of the kiocb,
565  *	false if the request is still in use.
566  */
567 int aio_put_req(struct kiocb *req)
568 {
569 	struct kioctx *ctx = req->ki_ctx;
570 	int ret;
571 	spin_lock_irq(&ctx->ctx_lock);
572 	ret = __aio_put_req(ctx, req);
573 	spin_unlock_irq(&ctx->ctx_lock);
574 	return ret;
575 }
576 
577 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
578 {
579 	struct mm_struct *mm = current->mm;
580 	struct kioctx *ctx, *ret = NULL;
581 	struct hlist_node *n;
582 
583 	rcu_read_lock();
584 
585 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
586 		if (ctx->user_id == ctx_id && !ctx->dead) {
587 			get_ioctx(ctx);
588 			ret = ctx;
589 			break;
590 		}
591 	}
592 
593 	rcu_read_unlock();
594 	return ret;
595 }
596 
597 /*
598  * use_mm
599  *	Makes the calling kernel thread take on the specified
600  *	mm context.
601  *	Called by the retry thread execute retries within the
602  *	iocb issuer's mm context, so that copy_from/to_user
603  *	operations work seamlessly for aio.
604  *	(Note: this routine is intended to be called only
605  *	from a kernel thread context)
606  */
607 static void use_mm(struct mm_struct *mm)
608 {
609 	struct mm_struct *active_mm;
610 	struct task_struct *tsk = current;
611 
612 	task_lock(tsk);
613 	active_mm = tsk->active_mm;
614 	atomic_inc(&mm->mm_count);
615 	tsk->mm = mm;
616 	tsk->active_mm = mm;
617 	switch_mm(active_mm, mm, tsk);
618 	task_unlock(tsk);
619 
620 	mmdrop(active_mm);
621 }
622 
623 /*
624  * unuse_mm
625  *	Reverses the effect of use_mm, i.e. releases the
626  *	specified mm context which was earlier taken on
627  *	by the calling kernel thread
628  *	(Note: this routine is intended to be called only
629  *	from a kernel thread context)
630  */
631 static void unuse_mm(struct mm_struct *mm)
632 {
633 	struct task_struct *tsk = current;
634 
635 	task_lock(tsk);
636 	tsk->mm = NULL;
637 	/* active_mm is still 'mm' */
638 	enter_lazy_tlb(mm, tsk);
639 	task_unlock(tsk);
640 }
641 
642 /*
643  * Queue up a kiocb to be retried. Assumes that the kiocb
644  * has already been marked as kicked, and places it on
645  * the retry run list for the corresponding ioctx, if it
646  * isn't already queued. Returns 1 if it actually queued
647  * the kiocb (to tell the caller to activate the work
648  * queue to process it), or 0, if it found that it was
649  * already queued.
650  */
651 static inline int __queue_kicked_iocb(struct kiocb *iocb)
652 {
653 	struct kioctx *ctx = iocb->ki_ctx;
654 
655 	assert_spin_locked(&ctx->ctx_lock);
656 
657 	if (list_empty(&iocb->ki_run_list)) {
658 		list_add_tail(&iocb->ki_run_list,
659 			&ctx->run_list);
660 		return 1;
661 	}
662 	return 0;
663 }
664 
665 /* aio_run_iocb
666  *	This is the core aio execution routine. It is
667  *	invoked both for initial i/o submission and
668  *	subsequent retries via the aio_kick_handler.
669  *	Expects to be invoked with iocb->ki_ctx->lock
670  *	already held. The lock is released and reacquired
671  *	as needed during processing.
672  *
673  * Calls the iocb retry method (already setup for the
674  * iocb on initial submission) for operation specific
675  * handling, but takes care of most of common retry
676  * execution details for a given iocb. The retry method
677  * needs to be non-blocking as far as possible, to avoid
678  * holding up other iocbs waiting to be serviced by the
679  * retry kernel thread.
680  *
681  * The trickier parts in this code have to do with
682  * ensuring that only one retry instance is in progress
683  * for a given iocb at any time. Providing that guarantee
684  * simplifies the coding of individual aio operations as
685  * it avoids various potential races.
686  */
687 static ssize_t aio_run_iocb(struct kiocb *iocb)
688 {
689 	struct kioctx	*ctx = iocb->ki_ctx;
690 	ssize_t (*retry)(struct kiocb *);
691 	ssize_t ret;
692 
693 	if (!(retry = iocb->ki_retry)) {
694 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
695 		return 0;
696 	}
697 
698 	/*
699 	 * We don't want the next retry iteration for this
700 	 * operation to start until this one has returned and
701 	 * updated the iocb state. However, wait_queue functions
702 	 * can trigger a kick_iocb from interrupt context in the
703 	 * meantime, indicating that data is available for the next
704 	 * iteration. We want to remember that and enable the
705 	 * next retry iteration _after_ we are through with
706 	 * this one.
707 	 *
708 	 * So, in order to be able to register a "kick", but
709 	 * prevent it from being queued now, we clear the kick
710 	 * flag, but make the kick code *think* that the iocb is
711 	 * still on the run list until we are actually done.
712 	 * When we are done with this iteration, we check if
713 	 * the iocb was kicked in the meantime and if so, queue
714 	 * it up afresh.
715 	 */
716 
717 	kiocbClearKicked(iocb);
718 
719 	/*
720 	 * This is so that aio_complete knows it doesn't need to
721 	 * pull the iocb off the run list (We can't just call
722 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
723 	 * queue this on the run list yet)
724 	 */
725 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
726 	spin_unlock_irq(&ctx->ctx_lock);
727 
728 	/* Quit retrying if the i/o has been cancelled */
729 	if (kiocbIsCancelled(iocb)) {
730 		ret = -EINTR;
731 		aio_complete(iocb, ret, 0);
732 		/* must not access the iocb after this */
733 		goto out;
734 	}
735 
736 	/*
737 	 * Now we are all set to call the retry method in async
738 	 * context.
739 	 */
740 	ret = retry(iocb);
741 
742 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
743 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
744 		aio_complete(iocb, ret, 0);
745 	}
746 out:
747 	spin_lock_irq(&ctx->ctx_lock);
748 
749 	if (-EIOCBRETRY == ret) {
750 		/*
751 		 * OK, now that we are done with this iteration
752 		 * and know that there is more left to go,
753 		 * this is where we let go so that a subsequent
754 		 * "kick" can start the next iteration
755 		 */
756 
757 		/* will make __queue_kicked_iocb succeed from here on */
758 		INIT_LIST_HEAD(&iocb->ki_run_list);
759 		/* we must queue the next iteration ourselves, if it
760 		 * has already been kicked */
761 		if (kiocbIsKicked(iocb)) {
762 			__queue_kicked_iocb(iocb);
763 
764 			/*
765 			 * __queue_kicked_iocb will always return 1 here, because
766 			 * iocb->ki_run_list is empty at this point so it should
767 			 * be safe to unconditionally queue the context into the
768 			 * work queue.
769 			 */
770 			aio_queue_work(ctx);
771 		}
772 	}
773 	return ret;
774 }
775 
776 /*
777  * __aio_run_iocbs:
778  * 	Process all pending retries queued on the ioctx
779  * 	run list.
780  * Assumes it is operating within the aio issuer's mm
781  * context.
782  */
783 static int __aio_run_iocbs(struct kioctx *ctx)
784 {
785 	struct kiocb *iocb;
786 	struct list_head run_list;
787 
788 	assert_spin_locked(&ctx->ctx_lock);
789 
790 	list_replace_init(&ctx->run_list, &run_list);
791 	while (!list_empty(&run_list)) {
792 		iocb = list_entry(run_list.next, struct kiocb,
793 			ki_run_list);
794 		list_del(&iocb->ki_run_list);
795 		/*
796 		 * Hold an extra reference while retrying i/o.
797 		 */
798 		iocb->ki_users++;       /* grab extra reference */
799 		aio_run_iocb(iocb);
800 		__aio_put_req(ctx, iocb);
801  	}
802 	if (!list_empty(&ctx->run_list))
803 		return 1;
804 	return 0;
805 }
806 
807 static void aio_queue_work(struct kioctx * ctx)
808 {
809 	unsigned long timeout;
810 	/*
811 	 * if someone is waiting, get the work started right
812 	 * away, otherwise, use a longer delay
813 	 */
814 	smp_mb();
815 	if (waitqueue_active(&ctx->wait))
816 		timeout = 1;
817 	else
818 		timeout = HZ/10;
819 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
820 }
821 
822 
823 /*
824  * aio_run_iocbs:
825  * 	Process all pending retries queued on the ioctx
826  * 	run list.
827  * Assumes it is operating within the aio issuer's mm
828  * context.
829  */
830 static inline void aio_run_iocbs(struct kioctx *ctx)
831 {
832 	int requeue;
833 
834 	spin_lock_irq(&ctx->ctx_lock);
835 
836 	requeue = __aio_run_iocbs(ctx);
837 	spin_unlock_irq(&ctx->ctx_lock);
838 	if (requeue)
839 		aio_queue_work(ctx);
840 }
841 
842 /*
843  * just like aio_run_iocbs, but keeps running them until
844  * the list stays empty
845  */
846 static inline void aio_run_all_iocbs(struct kioctx *ctx)
847 {
848 	spin_lock_irq(&ctx->ctx_lock);
849 	while (__aio_run_iocbs(ctx))
850 		;
851 	spin_unlock_irq(&ctx->ctx_lock);
852 }
853 
854 /*
855  * aio_kick_handler:
856  * 	Work queue handler triggered to process pending
857  * 	retries on an ioctx. Takes on the aio issuer's
858  *	mm context before running the iocbs, so that
859  *	copy_xxx_user operates on the issuer's address
860  *      space.
861  * Run on aiod's context.
862  */
863 static void aio_kick_handler(struct work_struct *work)
864 {
865 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
866 	mm_segment_t oldfs = get_fs();
867 	struct mm_struct *mm;
868 	int requeue;
869 
870 	set_fs(USER_DS);
871 	use_mm(ctx->mm);
872 	spin_lock_irq(&ctx->ctx_lock);
873 	requeue =__aio_run_iocbs(ctx);
874 	mm = ctx->mm;
875 	spin_unlock_irq(&ctx->ctx_lock);
876  	unuse_mm(mm);
877 	set_fs(oldfs);
878 	/*
879 	 * we're in a worker thread already, don't use queue_delayed_work,
880 	 */
881 	if (requeue)
882 		queue_delayed_work(aio_wq, &ctx->wq, 0);
883 }
884 
885 
886 /*
887  * Called by kick_iocb to queue the kiocb for retry
888  * and if required activate the aio work queue to process
889  * it
890  */
891 static void try_queue_kicked_iocb(struct kiocb *iocb)
892 {
893  	struct kioctx	*ctx = iocb->ki_ctx;
894 	unsigned long flags;
895 	int run = 0;
896 
897 	/* We're supposed to be the only path putting the iocb back on the run
898 	 * list.  If we find that the iocb is *back* on a wait queue already
899 	 * than retry has happened before we could queue the iocb.  This also
900 	 * means that the retry could have completed and freed our iocb, no
901 	 * good. */
902 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
903 
904 	spin_lock_irqsave(&ctx->ctx_lock, flags);
905 	/* set this inside the lock so that we can't race with aio_run_iocb()
906 	 * testing it and putting the iocb on the run list under the lock */
907 	if (!kiocbTryKick(iocb))
908 		run = __queue_kicked_iocb(iocb);
909 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
910 	if (run)
911 		aio_queue_work(ctx);
912 }
913 
914 /*
915  * kick_iocb:
916  *      Called typically from a wait queue callback context
917  *      (aio_wake_function) to trigger a retry of the iocb.
918  *      The retry is usually executed by aio workqueue
919  *      threads (See aio_kick_handler).
920  */
921 void kick_iocb(struct kiocb *iocb)
922 {
923 	/* sync iocbs are easy: they can only ever be executing from a
924 	 * single context. */
925 	if (is_sync_kiocb(iocb)) {
926 		kiocbSetKicked(iocb);
927 	        wake_up_process(iocb->ki_obj.tsk);
928 		return;
929 	}
930 
931 	try_queue_kicked_iocb(iocb);
932 }
933 EXPORT_SYMBOL(kick_iocb);
934 
935 /* aio_complete
936  *	Called when the io request on the given iocb is complete.
937  *	Returns true if this is the last user of the request.  The
938  *	only other user of the request can be the cancellation code.
939  */
940 int aio_complete(struct kiocb *iocb, long res, long res2)
941 {
942 	struct kioctx	*ctx = iocb->ki_ctx;
943 	struct aio_ring_info	*info;
944 	struct aio_ring	*ring;
945 	struct io_event	*event;
946 	unsigned long	flags;
947 	unsigned long	tail;
948 	int		ret;
949 
950 	/*
951 	 * Special case handling for sync iocbs:
952 	 *  - events go directly into the iocb for fast handling
953 	 *  - the sync task with the iocb in its stack holds the single iocb
954 	 *    ref, no other paths have a way to get another ref
955 	 *  - the sync task helpfully left a reference to itself in the iocb
956 	 */
957 	if (is_sync_kiocb(iocb)) {
958 		BUG_ON(iocb->ki_users != 1);
959 		iocb->ki_user_data = res;
960 		iocb->ki_users = 0;
961 		wake_up_process(iocb->ki_obj.tsk);
962 		return 1;
963 	}
964 
965 	info = &ctx->ring_info;
966 
967 	/* add a completion event to the ring buffer.
968 	 * must be done holding ctx->ctx_lock to prevent
969 	 * other code from messing with the tail
970 	 * pointer since we might be called from irq
971 	 * context.
972 	 */
973 	spin_lock_irqsave(&ctx->ctx_lock, flags);
974 
975 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
976 		list_del_init(&iocb->ki_run_list);
977 
978 	/*
979 	 * cancelled requests don't get events, userland was given one
980 	 * when the event got cancelled.
981 	 */
982 	if (kiocbIsCancelled(iocb))
983 		goto put_rq;
984 
985 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
986 
987 	tail = info->tail;
988 	event = aio_ring_event(info, tail, KM_IRQ0);
989 	if (++tail >= info->nr)
990 		tail = 0;
991 
992 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
993 	event->data = iocb->ki_user_data;
994 	event->res = res;
995 	event->res2 = res2;
996 
997 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
998 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
999 		res, res2);
1000 
1001 	/* after flagging the request as done, we
1002 	 * must never even look at it again
1003 	 */
1004 	smp_wmb();	/* make event visible before updating tail */
1005 
1006 	info->tail = tail;
1007 	ring->tail = tail;
1008 
1009 	put_aio_ring_event(event, KM_IRQ0);
1010 	kunmap_atomic(ring, KM_IRQ1);
1011 
1012 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1013 
1014 	/*
1015 	 * Check if the user asked us to deliver the result through an
1016 	 * eventfd. The eventfd_signal() function is safe to be called
1017 	 * from IRQ context.
1018 	 */
1019 	if (iocb->ki_eventfd != NULL)
1020 		eventfd_signal(iocb->ki_eventfd, 1);
1021 
1022 put_rq:
1023 	/* everything turned out well, dispose of the aiocb. */
1024 	ret = __aio_put_req(ctx, iocb);
1025 
1026 	/*
1027 	 * We have to order our ring_info tail store above and test
1028 	 * of the wait list below outside the wait lock.  This is
1029 	 * like in wake_up_bit() where clearing a bit has to be
1030 	 * ordered with the unlocked test.
1031 	 */
1032 	smp_mb();
1033 
1034 	if (waitqueue_active(&ctx->wait))
1035 		wake_up(&ctx->wait);
1036 
1037 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1038 	return ret;
1039 }
1040 
1041 /* aio_read_evt
1042  *	Pull an event off of the ioctx's event ring.  Returns the number of
1043  *	events fetched (0 or 1 ;-)
1044  *	FIXME: make this use cmpxchg.
1045  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1046  */
1047 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1048 {
1049 	struct aio_ring_info *info = &ioctx->ring_info;
1050 	struct aio_ring *ring;
1051 	unsigned long head;
1052 	int ret = 0;
1053 
1054 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1055 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1056 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1057 		 (unsigned long)ring->nr);
1058 
1059 	if (ring->head == ring->tail)
1060 		goto out;
1061 
1062 	spin_lock(&info->ring_lock);
1063 
1064 	head = ring->head % info->nr;
1065 	if (head != ring->tail) {
1066 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1067 		*ent = *evp;
1068 		head = (head + 1) % info->nr;
1069 		smp_mb(); /* finish reading the event before updatng the head */
1070 		ring->head = head;
1071 		ret = 1;
1072 		put_aio_ring_event(evp, KM_USER1);
1073 	}
1074 	spin_unlock(&info->ring_lock);
1075 
1076 out:
1077 	kunmap_atomic(ring, KM_USER0);
1078 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1079 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1080 	return ret;
1081 }
1082 
1083 struct aio_timeout {
1084 	struct timer_list	timer;
1085 	int			timed_out;
1086 	struct task_struct	*p;
1087 };
1088 
1089 static void timeout_func(unsigned long data)
1090 {
1091 	struct aio_timeout *to = (struct aio_timeout *)data;
1092 
1093 	to->timed_out = 1;
1094 	wake_up_process(to->p);
1095 }
1096 
1097 static inline void init_timeout(struct aio_timeout *to)
1098 {
1099 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1100 	to->timed_out = 0;
1101 	to->p = current;
1102 }
1103 
1104 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1105 			       const struct timespec *ts)
1106 {
1107 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1108 	if (time_after(to->timer.expires, jiffies))
1109 		add_timer(&to->timer);
1110 	else
1111 		to->timed_out = 1;
1112 }
1113 
1114 static inline void clear_timeout(struct aio_timeout *to)
1115 {
1116 	del_singleshot_timer_sync(&to->timer);
1117 }
1118 
1119 static int read_events(struct kioctx *ctx,
1120 			long min_nr, long nr,
1121 			struct io_event __user *event,
1122 			struct timespec __user *timeout)
1123 {
1124 	long			start_jiffies = jiffies;
1125 	struct task_struct	*tsk = current;
1126 	DECLARE_WAITQUEUE(wait, tsk);
1127 	int			ret;
1128 	int			i = 0;
1129 	struct io_event		ent;
1130 	struct aio_timeout	to;
1131 	int			retry = 0;
1132 
1133 	/* needed to zero any padding within an entry (there shouldn't be
1134 	 * any, but C is fun!
1135 	 */
1136 	memset(&ent, 0, sizeof(ent));
1137 retry:
1138 	ret = 0;
1139 	while (likely(i < nr)) {
1140 		ret = aio_read_evt(ctx, &ent);
1141 		if (unlikely(ret <= 0))
1142 			break;
1143 
1144 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1145 			ent.data, ent.obj, ent.res, ent.res2);
1146 
1147 		/* Could we split the check in two? */
1148 		ret = -EFAULT;
1149 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1150 			dprintk("aio: lost an event due to EFAULT.\n");
1151 			break;
1152 		}
1153 		ret = 0;
1154 
1155 		/* Good, event copied to userland, update counts. */
1156 		event ++;
1157 		i ++;
1158 	}
1159 
1160 	if (min_nr <= i)
1161 		return i;
1162 	if (ret)
1163 		return ret;
1164 
1165 	/* End fast path */
1166 
1167 	/* racey check, but it gets redone */
1168 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1169 		retry = 1;
1170 		aio_run_all_iocbs(ctx);
1171 		goto retry;
1172 	}
1173 
1174 	init_timeout(&to);
1175 	if (timeout) {
1176 		struct timespec	ts;
1177 		ret = -EFAULT;
1178 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1179 			goto out;
1180 
1181 		set_timeout(start_jiffies, &to, &ts);
1182 	}
1183 
1184 	while (likely(i < nr)) {
1185 		add_wait_queue_exclusive(&ctx->wait, &wait);
1186 		do {
1187 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1188 			ret = aio_read_evt(ctx, &ent);
1189 			if (ret)
1190 				break;
1191 			if (min_nr <= i)
1192 				break;
1193 			if (unlikely(ctx->dead)) {
1194 				ret = -EINVAL;
1195 				break;
1196 			}
1197 			if (to.timed_out)	/* Only check after read evt */
1198 				break;
1199 			/* Try to only show up in io wait if there are ops
1200 			 *  in flight */
1201 			if (ctx->reqs_active)
1202 				io_schedule();
1203 			else
1204 				schedule();
1205 			if (signal_pending(tsk)) {
1206 				ret = -EINTR;
1207 				break;
1208 			}
1209 			/*ret = aio_read_evt(ctx, &ent);*/
1210 		} while (1) ;
1211 
1212 		set_task_state(tsk, TASK_RUNNING);
1213 		remove_wait_queue(&ctx->wait, &wait);
1214 
1215 		if (unlikely(ret <= 0))
1216 			break;
1217 
1218 		ret = -EFAULT;
1219 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1220 			dprintk("aio: lost an event due to EFAULT.\n");
1221 			break;
1222 		}
1223 
1224 		/* Good, event copied to userland, update counts. */
1225 		event ++;
1226 		i ++;
1227 	}
1228 
1229 	if (timeout)
1230 		clear_timeout(&to);
1231 out:
1232 	destroy_timer_on_stack(&to.timer);
1233 	return i ? i : ret;
1234 }
1235 
1236 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1237  * against races with itself via ->dead.
1238  */
1239 static void io_destroy(struct kioctx *ioctx)
1240 {
1241 	struct mm_struct *mm = current->mm;
1242 	int was_dead;
1243 
1244 	/* delete the entry from the list is someone else hasn't already */
1245 	spin_lock(&mm->ioctx_lock);
1246 	was_dead = ioctx->dead;
1247 	ioctx->dead = 1;
1248 	hlist_del_rcu(&ioctx->list);
1249 	spin_unlock(&mm->ioctx_lock);
1250 
1251 	dprintk("aio_release(%p)\n", ioctx);
1252 	if (likely(!was_dead))
1253 		put_ioctx(ioctx);	/* twice for the list */
1254 
1255 	aio_cancel_all(ioctx);
1256 	wait_for_all_aios(ioctx);
1257 
1258 	/*
1259 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1260 	 * by other CPUs at this point.  Right now, we rely on the
1261 	 * locking done by the above calls to ensure this consistency.
1262 	 */
1263 	wake_up(&ioctx->wait);
1264 	put_ioctx(ioctx);	/* once for the lookup */
1265 }
1266 
1267 /* sys_io_setup:
1268  *	Create an aio_context capable of receiving at least nr_events.
1269  *	ctxp must not point to an aio_context that already exists, and
1270  *	must be initialized to 0 prior to the call.  On successful
1271  *	creation of the aio_context, *ctxp is filled in with the resulting
1272  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1273  *	if the specified nr_events exceeds internal limits.  May fail
1274  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1275  *	of available events.  May fail with -ENOMEM if insufficient kernel
1276  *	resources are available.  May fail with -EFAULT if an invalid
1277  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1278  *	implemented.
1279  */
1280 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1281 {
1282 	struct kioctx *ioctx = NULL;
1283 	unsigned long ctx;
1284 	long ret;
1285 
1286 	ret = get_user(ctx, ctxp);
1287 	if (unlikely(ret))
1288 		goto out;
1289 
1290 	ret = -EINVAL;
1291 	if (unlikely(ctx || nr_events == 0)) {
1292 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1293 		         ctx, nr_events);
1294 		goto out;
1295 	}
1296 
1297 	ioctx = ioctx_alloc(nr_events);
1298 	ret = PTR_ERR(ioctx);
1299 	if (!IS_ERR(ioctx)) {
1300 		ret = put_user(ioctx->user_id, ctxp);
1301 		if (!ret)
1302 			return 0;
1303 
1304 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1305 		io_destroy(ioctx);
1306 	}
1307 
1308 out:
1309 	return ret;
1310 }
1311 
1312 /* sys_io_destroy:
1313  *	Destroy the aio_context specified.  May cancel any outstanding
1314  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1315  *	implemented.  May fail with -EFAULT if the context pointed to
1316  *	is invalid.
1317  */
1318 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1319 {
1320 	struct kioctx *ioctx = lookup_ioctx(ctx);
1321 	if (likely(NULL != ioctx)) {
1322 		io_destroy(ioctx);
1323 		return 0;
1324 	}
1325 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1326 	return -EINVAL;
1327 }
1328 
1329 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1330 {
1331 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1332 
1333 	BUG_ON(ret <= 0);
1334 
1335 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1336 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1337 		iov->iov_base += this;
1338 		iov->iov_len -= this;
1339 		iocb->ki_left -= this;
1340 		ret -= this;
1341 		if (iov->iov_len == 0) {
1342 			iocb->ki_cur_seg++;
1343 			iov++;
1344 		}
1345 	}
1346 
1347 	/* the caller should not have done more io than what fit in
1348 	 * the remaining iovecs */
1349 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1350 }
1351 
1352 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1353 {
1354 	struct file *file = iocb->ki_filp;
1355 	struct address_space *mapping = file->f_mapping;
1356 	struct inode *inode = mapping->host;
1357 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1358 			 unsigned long, loff_t);
1359 	ssize_t ret = 0;
1360 	unsigned short opcode;
1361 
1362 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1363 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1364 		rw_op = file->f_op->aio_read;
1365 		opcode = IOCB_CMD_PREADV;
1366 	} else {
1367 		rw_op = file->f_op->aio_write;
1368 		opcode = IOCB_CMD_PWRITEV;
1369 	}
1370 
1371 	/* This matches the pread()/pwrite() logic */
1372 	if (iocb->ki_pos < 0)
1373 		return -EINVAL;
1374 
1375 	do {
1376 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1377 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1378 			    iocb->ki_pos);
1379 		if (ret > 0)
1380 			aio_advance_iovec(iocb, ret);
1381 
1382 	/* retry all partial writes.  retry partial reads as long as its a
1383 	 * regular file. */
1384 	} while (ret > 0 && iocb->ki_left > 0 &&
1385 		 (opcode == IOCB_CMD_PWRITEV ||
1386 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1387 
1388 	/* This means we must have transferred all that we could */
1389 	/* No need to retry anymore */
1390 	if ((ret == 0) || (iocb->ki_left == 0))
1391 		ret = iocb->ki_nbytes - iocb->ki_left;
1392 
1393 	/* If we managed to write some out we return that, rather than
1394 	 * the eventual error. */
1395 	if (opcode == IOCB_CMD_PWRITEV
1396 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1397 	    && iocb->ki_nbytes - iocb->ki_left)
1398 		ret = iocb->ki_nbytes - iocb->ki_left;
1399 
1400 	return ret;
1401 }
1402 
1403 static ssize_t aio_fdsync(struct kiocb *iocb)
1404 {
1405 	struct file *file = iocb->ki_filp;
1406 	ssize_t ret = -EINVAL;
1407 
1408 	if (file->f_op->aio_fsync)
1409 		ret = file->f_op->aio_fsync(iocb, 1);
1410 	return ret;
1411 }
1412 
1413 static ssize_t aio_fsync(struct kiocb *iocb)
1414 {
1415 	struct file *file = iocb->ki_filp;
1416 	ssize_t ret = -EINVAL;
1417 
1418 	if (file->f_op->aio_fsync)
1419 		ret = file->f_op->aio_fsync(iocb, 0);
1420 	return ret;
1421 }
1422 
1423 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1424 {
1425 	ssize_t ret;
1426 
1427 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1428 				    kiocb->ki_nbytes, 1,
1429 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1430 	if (ret < 0)
1431 		goto out;
1432 
1433 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1434 	kiocb->ki_cur_seg = 0;
1435 	/* ki_nbytes/left now reflect bytes instead of segs */
1436 	kiocb->ki_nbytes = ret;
1437 	kiocb->ki_left = ret;
1438 
1439 	ret = 0;
1440 out:
1441 	return ret;
1442 }
1443 
1444 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1445 {
1446 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1447 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1448 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1449 	kiocb->ki_nr_segs = 1;
1450 	kiocb->ki_cur_seg = 0;
1451 	return 0;
1452 }
1453 
1454 /*
1455  * aio_setup_iocb:
1456  *	Performs the initial checks and aio retry method
1457  *	setup for the kiocb at the time of io submission.
1458  */
1459 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1460 {
1461 	struct file *file = kiocb->ki_filp;
1462 	ssize_t ret = 0;
1463 
1464 	switch (kiocb->ki_opcode) {
1465 	case IOCB_CMD_PREAD:
1466 		ret = -EBADF;
1467 		if (unlikely(!(file->f_mode & FMODE_READ)))
1468 			break;
1469 		ret = -EFAULT;
1470 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1471 			kiocb->ki_left)))
1472 			break;
1473 		ret = security_file_permission(file, MAY_READ);
1474 		if (unlikely(ret))
1475 			break;
1476 		ret = aio_setup_single_vector(kiocb);
1477 		if (ret)
1478 			break;
1479 		ret = -EINVAL;
1480 		if (file->f_op->aio_read)
1481 			kiocb->ki_retry = aio_rw_vect_retry;
1482 		break;
1483 	case IOCB_CMD_PWRITE:
1484 		ret = -EBADF;
1485 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1486 			break;
1487 		ret = -EFAULT;
1488 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1489 			kiocb->ki_left)))
1490 			break;
1491 		ret = security_file_permission(file, MAY_WRITE);
1492 		if (unlikely(ret))
1493 			break;
1494 		ret = aio_setup_single_vector(kiocb);
1495 		if (ret)
1496 			break;
1497 		ret = -EINVAL;
1498 		if (file->f_op->aio_write)
1499 			kiocb->ki_retry = aio_rw_vect_retry;
1500 		break;
1501 	case IOCB_CMD_PREADV:
1502 		ret = -EBADF;
1503 		if (unlikely(!(file->f_mode & FMODE_READ)))
1504 			break;
1505 		ret = security_file_permission(file, MAY_READ);
1506 		if (unlikely(ret))
1507 			break;
1508 		ret = aio_setup_vectored_rw(READ, kiocb);
1509 		if (ret)
1510 			break;
1511 		ret = -EINVAL;
1512 		if (file->f_op->aio_read)
1513 			kiocb->ki_retry = aio_rw_vect_retry;
1514 		break;
1515 	case IOCB_CMD_PWRITEV:
1516 		ret = -EBADF;
1517 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1518 			break;
1519 		ret = security_file_permission(file, MAY_WRITE);
1520 		if (unlikely(ret))
1521 			break;
1522 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1523 		if (ret)
1524 			break;
1525 		ret = -EINVAL;
1526 		if (file->f_op->aio_write)
1527 			kiocb->ki_retry = aio_rw_vect_retry;
1528 		break;
1529 	case IOCB_CMD_FDSYNC:
1530 		ret = -EINVAL;
1531 		if (file->f_op->aio_fsync)
1532 			kiocb->ki_retry = aio_fdsync;
1533 		break;
1534 	case IOCB_CMD_FSYNC:
1535 		ret = -EINVAL;
1536 		if (file->f_op->aio_fsync)
1537 			kiocb->ki_retry = aio_fsync;
1538 		break;
1539 	default:
1540 		dprintk("EINVAL: io_submit: no operation provided\n");
1541 		ret = -EINVAL;
1542 	}
1543 
1544 	if (!kiocb->ki_retry)
1545 		return ret;
1546 
1547 	return 0;
1548 }
1549 
1550 /*
1551  * aio_wake_function:
1552  * 	wait queue callback function for aio notification,
1553  * 	Simply triggers a retry of the operation via kick_iocb.
1554  *
1555  * 	This callback is specified in the wait queue entry in
1556  *	a kiocb.
1557  *
1558  * Note:
1559  * This routine is executed with the wait queue lock held.
1560  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1561  * the ioctx lock inside the wait queue lock. This is safe
1562  * because this callback isn't used for wait queues which
1563  * are nested inside ioctx lock (i.e. ctx->wait)
1564  */
1565 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1566 			     int sync, void *key)
1567 {
1568 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1569 
1570 	list_del_init(&wait->task_list);
1571 	kick_iocb(iocb);
1572 	return 1;
1573 }
1574 
1575 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1576 			 struct iocb *iocb)
1577 {
1578 	struct kiocb *req;
1579 	struct file *file;
1580 	ssize_t ret;
1581 
1582 	/* enforce forwards compatibility on users */
1583 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1584 		pr_debug("EINVAL: io_submit: reserve field set\n");
1585 		return -EINVAL;
1586 	}
1587 
1588 	/* prevent overflows */
1589 	if (unlikely(
1590 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1591 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1592 	    ((ssize_t)iocb->aio_nbytes < 0)
1593 	   )) {
1594 		pr_debug("EINVAL: io_submit: overflow check\n");
1595 		return -EINVAL;
1596 	}
1597 
1598 	file = fget(iocb->aio_fildes);
1599 	if (unlikely(!file))
1600 		return -EBADF;
1601 
1602 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1603 	if (unlikely(!req)) {
1604 		fput(file);
1605 		return -EAGAIN;
1606 	}
1607 	req->ki_filp = file;
1608 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1609 		/*
1610 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1611 		 * instance of the file* now. The file descriptor must be
1612 		 * an eventfd() fd, and will be signaled for each completed
1613 		 * event using the eventfd_signal() function.
1614 		 */
1615 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1616 		if (IS_ERR(req->ki_eventfd)) {
1617 			ret = PTR_ERR(req->ki_eventfd);
1618 			req->ki_eventfd = NULL;
1619 			goto out_put_req;
1620 		}
1621 	}
1622 
1623 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1624 	if (unlikely(ret)) {
1625 		dprintk("EFAULT: aio_key\n");
1626 		goto out_put_req;
1627 	}
1628 
1629 	req->ki_obj.user = user_iocb;
1630 	req->ki_user_data = iocb->aio_data;
1631 	req->ki_pos = iocb->aio_offset;
1632 
1633 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1634 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1635 	req->ki_opcode = iocb->aio_lio_opcode;
1636 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1637 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1638 
1639 	ret = aio_setup_iocb(req);
1640 
1641 	if (ret)
1642 		goto out_put_req;
1643 
1644 	spin_lock_irq(&ctx->ctx_lock);
1645 	aio_run_iocb(req);
1646 	if (!list_empty(&ctx->run_list)) {
1647 		/* drain the run list */
1648 		while (__aio_run_iocbs(ctx))
1649 			;
1650 	}
1651 	spin_unlock_irq(&ctx->ctx_lock);
1652 	aio_put_req(req);	/* drop extra ref to req */
1653 	return 0;
1654 
1655 out_put_req:
1656 	aio_put_req(req);	/* drop extra ref to req */
1657 	aio_put_req(req);	/* drop i/o ref to req */
1658 	return ret;
1659 }
1660 
1661 /* sys_io_submit:
1662  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1663  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1664  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1665  *	*iocbpp[0] is not properly initialized, if the operation specified
1666  *	is invalid for the file descriptor in the iocb.  May fail with
1667  *	-EFAULT if any of the data structures point to invalid data.  May
1668  *	fail with -EBADF if the file descriptor specified in the first
1669  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1670  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1671  *	fail with -ENOSYS if not implemented.
1672  */
1673 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1674 		struct iocb __user * __user *, iocbpp)
1675 {
1676 	struct kioctx *ctx;
1677 	long ret = 0;
1678 	int i;
1679 
1680 	if (unlikely(nr < 0))
1681 		return -EINVAL;
1682 
1683 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1684 		return -EFAULT;
1685 
1686 	ctx = lookup_ioctx(ctx_id);
1687 	if (unlikely(!ctx)) {
1688 		pr_debug("EINVAL: io_submit: invalid context id\n");
1689 		return -EINVAL;
1690 	}
1691 
1692 	/*
1693 	 * AKPM: should this return a partial result if some of the IOs were
1694 	 * successfully submitted?
1695 	 */
1696 	for (i=0; i<nr; i++) {
1697 		struct iocb __user *user_iocb;
1698 		struct iocb tmp;
1699 
1700 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1701 			ret = -EFAULT;
1702 			break;
1703 		}
1704 
1705 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1706 			ret = -EFAULT;
1707 			break;
1708 		}
1709 
1710 		ret = io_submit_one(ctx, user_iocb, &tmp);
1711 		if (ret)
1712 			break;
1713 	}
1714 
1715 	put_ioctx(ctx);
1716 	return i ? i : ret;
1717 }
1718 
1719 /* lookup_kiocb
1720  *	Finds a given iocb for cancellation.
1721  */
1722 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1723 				  u32 key)
1724 {
1725 	struct list_head *pos;
1726 
1727 	assert_spin_locked(&ctx->ctx_lock);
1728 
1729 	/* TODO: use a hash or array, this sucks. */
1730 	list_for_each(pos, &ctx->active_reqs) {
1731 		struct kiocb *kiocb = list_kiocb(pos);
1732 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1733 			return kiocb;
1734 	}
1735 	return NULL;
1736 }
1737 
1738 /* sys_io_cancel:
1739  *	Attempts to cancel an iocb previously passed to io_submit.  If
1740  *	the operation is successfully cancelled, the resulting event is
1741  *	copied into the memory pointed to by result without being placed
1742  *	into the completion queue and 0 is returned.  May fail with
1743  *	-EFAULT if any of the data structures pointed to are invalid.
1744  *	May fail with -EINVAL if aio_context specified by ctx_id is
1745  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1746  *	cancelled.  Will fail with -ENOSYS if not implemented.
1747  */
1748 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1749 		struct io_event __user *, result)
1750 {
1751 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1752 	struct kioctx *ctx;
1753 	struct kiocb *kiocb;
1754 	u32 key;
1755 	int ret;
1756 
1757 	ret = get_user(key, &iocb->aio_key);
1758 	if (unlikely(ret))
1759 		return -EFAULT;
1760 
1761 	ctx = lookup_ioctx(ctx_id);
1762 	if (unlikely(!ctx))
1763 		return -EINVAL;
1764 
1765 	spin_lock_irq(&ctx->ctx_lock);
1766 	ret = -EAGAIN;
1767 	kiocb = lookup_kiocb(ctx, iocb, key);
1768 	if (kiocb && kiocb->ki_cancel) {
1769 		cancel = kiocb->ki_cancel;
1770 		kiocb->ki_users ++;
1771 		kiocbSetCancelled(kiocb);
1772 	} else
1773 		cancel = NULL;
1774 	spin_unlock_irq(&ctx->ctx_lock);
1775 
1776 	if (NULL != cancel) {
1777 		struct io_event tmp;
1778 		pr_debug("calling cancel\n");
1779 		memset(&tmp, 0, sizeof(tmp));
1780 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1781 		tmp.data = kiocb->ki_user_data;
1782 		ret = cancel(kiocb, &tmp);
1783 		if (!ret) {
1784 			/* Cancellation succeeded -- copy the result
1785 			 * into the user's buffer.
1786 			 */
1787 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1788 				ret = -EFAULT;
1789 		}
1790 	} else
1791 		ret = -EINVAL;
1792 
1793 	put_ioctx(ctx);
1794 
1795 	return ret;
1796 }
1797 
1798 /* io_getevents:
1799  *	Attempts to read at least min_nr events and up to nr events from
1800  *	the completion queue for the aio_context specified by ctx_id.  May
1801  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1802  *	if nr is out of range, if when is out of range.  May fail with
1803  *	-EFAULT if any of the memory specified to is invalid.  May return
1804  *	0 or < min_nr if no events are available and the timeout specified
1805  *	by when	has elapsed, where when == NULL specifies an infinite
1806  *	timeout.  Note that the timeout pointed to by when is relative and
1807  *	will be updated if not NULL and the operation blocks.  Will fail
1808  *	with -ENOSYS if not implemented.
1809  */
1810 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1811 		long, min_nr,
1812 		long, nr,
1813 		struct io_event __user *, events,
1814 		struct timespec __user *, timeout)
1815 {
1816 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1817 	long ret = -EINVAL;
1818 
1819 	if (likely(ioctx)) {
1820 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1821 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1822 		put_ioctx(ioctx);
1823 	}
1824 
1825 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1826 	return ret;
1827 }
1828 
1829 __initcall(aio_setup);
1830 
1831 EXPORT_SYMBOL(aio_complete);
1832 EXPORT_SYMBOL(aio_put_req);
1833 EXPORT_SYMBOL(wait_on_sync_kiocb);
1834