xref: /linux/fs/aio.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			done;
185 	bool			cancelled;
186 	struct wait_queue_entry	wait;
187 	struct work_struct	work;
188 };
189 
190 /*
191  * NOTE! Each of the iocb union members has the file pointer
192  * as the first entry in their struct definition. So you can
193  * access the file pointer through any of the sub-structs,
194  * or directly as just 'ki_filp' in this struct.
195  */
196 struct aio_kiocb {
197 	union {
198 		struct file		*ki_filp;
199 		struct kiocb		rw;
200 		struct fsync_iocb	fsync;
201 		struct poll_iocb	poll;
202 	};
203 
204 	struct kioctx		*ki_ctx;
205 	kiocb_cancel_fn		*ki_cancel;
206 
207 	struct io_event		ki_res;
208 
209 	struct list_head	ki_list;	/* the aio core uses this
210 						 * for cancellation */
211 	refcount_t		ki_refcnt;
212 
213 	/*
214 	 * If the aio_resfd field of the userspace iocb is not zero,
215 	 * this is the underlying eventfd context to deliver events to.
216 	 */
217 	struct eventfd_ctx	*ki_eventfd;
218 };
219 
220 /*------ sysctl variables----*/
221 static DEFINE_SPINLOCK(aio_nr_lock);
222 unsigned long aio_nr;		/* current system wide number of aio requests */
223 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
224 /*----end sysctl variables---*/
225 
226 static struct kmem_cache	*kiocb_cachep;
227 static struct kmem_cache	*kioctx_cachep;
228 
229 static struct vfsmount *aio_mnt;
230 
231 static const struct file_operations aio_ring_fops;
232 static const struct address_space_operations aio_ctx_aops;
233 
234 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
235 {
236 	struct file *file;
237 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
238 	if (IS_ERR(inode))
239 		return ERR_CAST(inode);
240 
241 	inode->i_mapping->a_ops = &aio_ctx_aops;
242 	inode->i_mapping->private_data = ctx;
243 	inode->i_size = PAGE_SIZE * nr_pages;
244 
245 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
246 				O_RDWR, &aio_ring_fops);
247 	if (IS_ERR(file))
248 		iput(inode);
249 	return file;
250 }
251 
252 static int aio_init_fs_context(struct fs_context *fc)
253 {
254 	if (!init_pseudo(fc, AIO_RING_MAGIC))
255 		return -ENOMEM;
256 	fc->s_iflags |= SB_I_NOEXEC;
257 	return 0;
258 }
259 
260 /* aio_setup
261  *	Creates the slab caches used by the aio routines, panic on
262  *	failure as this is done early during the boot sequence.
263  */
264 static int __init aio_setup(void)
265 {
266 	static struct file_system_type aio_fs = {
267 		.name		= "aio",
268 		.init_fs_context = aio_init_fs_context,
269 		.kill_sb	= kill_anon_super,
270 	};
271 	aio_mnt = kern_mount(&aio_fs);
272 	if (IS_ERR(aio_mnt))
273 		panic("Failed to create aio fs mount.");
274 
275 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
276 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
277 	return 0;
278 }
279 __initcall(aio_setup);
280 
281 static void put_aio_ring_file(struct kioctx *ctx)
282 {
283 	struct file *aio_ring_file = ctx->aio_ring_file;
284 	struct address_space *i_mapping;
285 
286 	if (aio_ring_file) {
287 		truncate_setsize(file_inode(aio_ring_file), 0);
288 
289 		/* Prevent further access to the kioctx from migratepages */
290 		i_mapping = aio_ring_file->f_mapping;
291 		spin_lock(&i_mapping->private_lock);
292 		i_mapping->private_data = NULL;
293 		ctx->aio_ring_file = NULL;
294 		spin_unlock(&i_mapping->private_lock);
295 
296 		fput(aio_ring_file);
297 	}
298 }
299 
300 static void aio_free_ring(struct kioctx *ctx)
301 {
302 	int i;
303 
304 	/* Disconnect the kiotx from the ring file.  This prevents future
305 	 * accesses to the kioctx from page migration.
306 	 */
307 	put_aio_ring_file(ctx);
308 
309 	for (i = 0; i < ctx->nr_pages; i++) {
310 		struct page *page;
311 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
312 				page_count(ctx->ring_pages[i]));
313 		page = ctx->ring_pages[i];
314 		if (!page)
315 			continue;
316 		ctx->ring_pages[i] = NULL;
317 		put_page(page);
318 	}
319 
320 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
321 		kfree(ctx->ring_pages);
322 		ctx->ring_pages = NULL;
323 	}
324 }
325 
326 static int aio_ring_mremap(struct vm_area_struct *vma)
327 {
328 	struct file *file = vma->vm_file;
329 	struct mm_struct *mm = vma->vm_mm;
330 	struct kioctx_table *table;
331 	int i, res = -EINVAL;
332 
333 	spin_lock(&mm->ioctx_lock);
334 	rcu_read_lock();
335 	table = rcu_dereference(mm->ioctx_table);
336 	for (i = 0; i < table->nr; i++) {
337 		struct kioctx *ctx;
338 
339 		ctx = rcu_dereference(table->table[i]);
340 		if (ctx && ctx->aio_ring_file == file) {
341 			if (!atomic_read(&ctx->dead)) {
342 				ctx->user_id = ctx->mmap_base = vma->vm_start;
343 				res = 0;
344 			}
345 			break;
346 		}
347 	}
348 
349 	rcu_read_unlock();
350 	spin_unlock(&mm->ioctx_lock);
351 	return res;
352 }
353 
354 static const struct vm_operations_struct aio_ring_vm_ops = {
355 	.mremap		= aio_ring_mremap,
356 #if IS_ENABLED(CONFIG_MMU)
357 	.fault		= filemap_fault,
358 	.map_pages	= filemap_map_pages,
359 	.page_mkwrite	= filemap_page_mkwrite,
360 #endif
361 };
362 
363 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
364 {
365 	vma->vm_flags |= VM_DONTEXPAND;
366 	vma->vm_ops = &aio_ring_vm_ops;
367 	return 0;
368 }
369 
370 static const struct file_operations aio_ring_fops = {
371 	.mmap = aio_ring_mmap,
372 };
373 
374 #if IS_ENABLED(CONFIG_MIGRATION)
375 static int aio_migratepage(struct address_space *mapping, struct page *new,
376 			struct page *old, enum migrate_mode mode)
377 {
378 	struct kioctx *ctx;
379 	unsigned long flags;
380 	pgoff_t idx;
381 	int rc;
382 
383 	/*
384 	 * We cannot support the _NO_COPY case here, because copy needs to
385 	 * happen under the ctx->completion_lock. That does not work with the
386 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
387 	 */
388 	if (mode == MIGRATE_SYNC_NO_COPY)
389 		return -EINVAL;
390 
391 	rc = 0;
392 
393 	/* mapping->private_lock here protects against the kioctx teardown.  */
394 	spin_lock(&mapping->private_lock);
395 	ctx = mapping->private_data;
396 	if (!ctx) {
397 		rc = -EINVAL;
398 		goto out;
399 	}
400 
401 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
402 	 * to the ring's head, and prevents page migration from mucking in
403 	 * a partially initialized kiotx.
404 	 */
405 	if (!mutex_trylock(&ctx->ring_lock)) {
406 		rc = -EAGAIN;
407 		goto out;
408 	}
409 
410 	idx = old->index;
411 	if (idx < (pgoff_t)ctx->nr_pages) {
412 		/* Make sure the old page hasn't already been changed */
413 		if (ctx->ring_pages[idx] != old)
414 			rc = -EAGAIN;
415 	} else
416 		rc = -EINVAL;
417 
418 	if (rc != 0)
419 		goto out_unlock;
420 
421 	/* Writeback must be complete */
422 	BUG_ON(PageWriteback(old));
423 	get_page(new);
424 
425 	rc = migrate_page_move_mapping(mapping, new, old, 1);
426 	if (rc != MIGRATEPAGE_SUCCESS) {
427 		put_page(new);
428 		goto out_unlock;
429 	}
430 
431 	/* Take completion_lock to prevent other writes to the ring buffer
432 	 * while the old page is copied to the new.  This prevents new
433 	 * events from being lost.
434 	 */
435 	spin_lock_irqsave(&ctx->completion_lock, flags);
436 	migrate_page_copy(new, old);
437 	BUG_ON(ctx->ring_pages[idx] != old);
438 	ctx->ring_pages[idx] = new;
439 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
440 
441 	/* The old page is no longer accessible. */
442 	put_page(old);
443 
444 out_unlock:
445 	mutex_unlock(&ctx->ring_lock);
446 out:
447 	spin_unlock(&mapping->private_lock);
448 	return rc;
449 }
450 #endif
451 
452 static const struct address_space_operations aio_ctx_aops = {
453 	.set_page_dirty = __set_page_dirty_no_writeback,
454 #if IS_ENABLED(CONFIG_MIGRATION)
455 	.migratepage	= aio_migratepage,
456 #endif
457 };
458 
459 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
460 {
461 	struct aio_ring *ring;
462 	struct mm_struct *mm = current->mm;
463 	unsigned long size, unused;
464 	int nr_pages;
465 	int i;
466 	struct file *file;
467 
468 	/* Compensate for the ring buffer's head/tail overlap entry */
469 	nr_events += 2;	/* 1 is required, 2 for good luck */
470 
471 	size = sizeof(struct aio_ring);
472 	size += sizeof(struct io_event) * nr_events;
473 
474 	nr_pages = PFN_UP(size);
475 	if (nr_pages < 0)
476 		return -EINVAL;
477 
478 	file = aio_private_file(ctx, nr_pages);
479 	if (IS_ERR(file)) {
480 		ctx->aio_ring_file = NULL;
481 		return -ENOMEM;
482 	}
483 
484 	ctx->aio_ring_file = file;
485 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
486 			/ sizeof(struct io_event);
487 
488 	ctx->ring_pages = ctx->internal_pages;
489 	if (nr_pages > AIO_RING_PAGES) {
490 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
491 					  GFP_KERNEL);
492 		if (!ctx->ring_pages) {
493 			put_aio_ring_file(ctx);
494 			return -ENOMEM;
495 		}
496 	}
497 
498 	for (i = 0; i < nr_pages; i++) {
499 		struct page *page;
500 		page = find_or_create_page(file->f_mapping,
501 					   i, GFP_HIGHUSER | __GFP_ZERO);
502 		if (!page)
503 			break;
504 		pr_debug("pid(%d) page[%d]->count=%d\n",
505 			 current->pid, i, page_count(page));
506 		SetPageUptodate(page);
507 		unlock_page(page);
508 
509 		ctx->ring_pages[i] = page;
510 	}
511 	ctx->nr_pages = i;
512 
513 	if (unlikely(i != nr_pages)) {
514 		aio_free_ring(ctx);
515 		return -ENOMEM;
516 	}
517 
518 	ctx->mmap_size = nr_pages * PAGE_SIZE;
519 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
520 
521 	if (mmap_write_lock_killable(mm)) {
522 		ctx->mmap_size = 0;
523 		aio_free_ring(ctx);
524 		return -EINTR;
525 	}
526 
527 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
528 				 PROT_READ | PROT_WRITE,
529 				 MAP_SHARED, 0, &unused, NULL);
530 	mmap_write_unlock(mm);
531 	if (IS_ERR((void *)ctx->mmap_base)) {
532 		ctx->mmap_size = 0;
533 		aio_free_ring(ctx);
534 		return -ENOMEM;
535 	}
536 
537 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
538 
539 	ctx->user_id = ctx->mmap_base;
540 	ctx->nr_events = nr_events; /* trusted copy */
541 
542 	ring = kmap_atomic(ctx->ring_pages[0]);
543 	ring->nr = nr_events;	/* user copy */
544 	ring->id = ~0U;
545 	ring->head = ring->tail = 0;
546 	ring->magic = AIO_RING_MAGIC;
547 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
548 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
549 	ring->header_length = sizeof(struct aio_ring);
550 	kunmap_atomic(ring);
551 	flush_dcache_page(ctx->ring_pages[0]);
552 
553 	return 0;
554 }
555 
556 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
557 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
558 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
559 
560 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
561 {
562 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
563 	struct kioctx *ctx = req->ki_ctx;
564 	unsigned long flags;
565 
566 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
567 		return;
568 
569 	spin_lock_irqsave(&ctx->ctx_lock, flags);
570 	list_add_tail(&req->ki_list, &ctx->active_reqs);
571 	req->ki_cancel = cancel;
572 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
573 }
574 EXPORT_SYMBOL(kiocb_set_cancel_fn);
575 
576 /*
577  * free_ioctx() should be RCU delayed to synchronize against the RCU
578  * protected lookup_ioctx() and also needs process context to call
579  * aio_free_ring().  Use rcu_work.
580  */
581 static void free_ioctx(struct work_struct *work)
582 {
583 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
584 					  free_rwork);
585 	pr_debug("freeing %p\n", ctx);
586 
587 	aio_free_ring(ctx);
588 	free_percpu(ctx->cpu);
589 	percpu_ref_exit(&ctx->reqs);
590 	percpu_ref_exit(&ctx->users);
591 	kmem_cache_free(kioctx_cachep, ctx);
592 }
593 
594 static void free_ioctx_reqs(struct percpu_ref *ref)
595 {
596 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
597 
598 	/* At this point we know that there are no any in-flight requests */
599 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
600 		complete(&ctx->rq_wait->comp);
601 
602 	/* Synchronize against RCU protected table->table[] dereferences */
603 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
604 	queue_rcu_work(system_wq, &ctx->free_rwork);
605 }
606 
607 /*
608  * When this function runs, the kioctx has been removed from the "hash table"
609  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
610  * now it's safe to cancel any that need to be.
611  */
612 static void free_ioctx_users(struct percpu_ref *ref)
613 {
614 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
615 	struct aio_kiocb *req;
616 
617 	spin_lock_irq(&ctx->ctx_lock);
618 
619 	while (!list_empty(&ctx->active_reqs)) {
620 		req = list_first_entry(&ctx->active_reqs,
621 				       struct aio_kiocb, ki_list);
622 		req->ki_cancel(&req->rw);
623 		list_del_init(&req->ki_list);
624 	}
625 
626 	spin_unlock_irq(&ctx->ctx_lock);
627 
628 	percpu_ref_kill(&ctx->reqs);
629 	percpu_ref_put(&ctx->reqs);
630 }
631 
632 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
633 {
634 	unsigned i, new_nr;
635 	struct kioctx_table *table, *old;
636 	struct aio_ring *ring;
637 
638 	spin_lock(&mm->ioctx_lock);
639 	table = rcu_dereference_raw(mm->ioctx_table);
640 
641 	while (1) {
642 		if (table)
643 			for (i = 0; i < table->nr; i++)
644 				if (!rcu_access_pointer(table->table[i])) {
645 					ctx->id = i;
646 					rcu_assign_pointer(table->table[i], ctx);
647 					spin_unlock(&mm->ioctx_lock);
648 
649 					/* While kioctx setup is in progress,
650 					 * we are protected from page migration
651 					 * changes ring_pages by ->ring_lock.
652 					 */
653 					ring = kmap_atomic(ctx->ring_pages[0]);
654 					ring->id = ctx->id;
655 					kunmap_atomic(ring);
656 					return 0;
657 				}
658 
659 		new_nr = (table ? table->nr : 1) * 4;
660 		spin_unlock(&mm->ioctx_lock);
661 
662 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
663 				new_nr, GFP_KERNEL);
664 		if (!table)
665 			return -ENOMEM;
666 
667 		table->nr = new_nr;
668 
669 		spin_lock(&mm->ioctx_lock);
670 		old = rcu_dereference_raw(mm->ioctx_table);
671 
672 		if (!old) {
673 			rcu_assign_pointer(mm->ioctx_table, table);
674 		} else if (table->nr > old->nr) {
675 			memcpy(table->table, old->table,
676 			       old->nr * sizeof(struct kioctx *));
677 
678 			rcu_assign_pointer(mm->ioctx_table, table);
679 			kfree_rcu(old, rcu);
680 		} else {
681 			kfree(table);
682 			table = old;
683 		}
684 	}
685 }
686 
687 static void aio_nr_sub(unsigned nr)
688 {
689 	spin_lock(&aio_nr_lock);
690 	if (WARN_ON(aio_nr - nr > aio_nr))
691 		aio_nr = 0;
692 	else
693 		aio_nr -= nr;
694 	spin_unlock(&aio_nr_lock);
695 }
696 
697 /* ioctx_alloc
698  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
699  */
700 static struct kioctx *ioctx_alloc(unsigned nr_events)
701 {
702 	struct mm_struct *mm = current->mm;
703 	struct kioctx *ctx;
704 	int err = -ENOMEM;
705 
706 	/*
707 	 * Store the original nr_events -- what userspace passed to io_setup(),
708 	 * for counting against the global limit -- before it changes.
709 	 */
710 	unsigned int max_reqs = nr_events;
711 
712 	/*
713 	 * We keep track of the number of available ringbuffer slots, to prevent
714 	 * overflow (reqs_available), and we also use percpu counters for this.
715 	 *
716 	 * So since up to half the slots might be on other cpu's percpu counters
717 	 * and unavailable, double nr_events so userspace sees what they
718 	 * expected: additionally, we move req_batch slots to/from percpu
719 	 * counters at a time, so make sure that isn't 0:
720 	 */
721 	nr_events = max(nr_events, num_possible_cpus() * 4);
722 	nr_events *= 2;
723 
724 	/* Prevent overflows */
725 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
726 		pr_debug("ENOMEM: nr_events too high\n");
727 		return ERR_PTR(-EINVAL);
728 	}
729 
730 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
731 		return ERR_PTR(-EAGAIN);
732 
733 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
734 	if (!ctx)
735 		return ERR_PTR(-ENOMEM);
736 
737 	ctx->max_reqs = max_reqs;
738 
739 	spin_lock_init(&ctx->ctx_lock);
740 	spin_lock_init(&ctx->completion_lock);
741 	mutex_init(&ctx->ring_lock);
742 	/* Protect against page migration throughout kiotx setup by keeping
743 	 * the ring_lock mutex held until setup is complete. */
744 	mutex_lock(&ctx->ring_lock);
745 	init_waitqueue_head(&ctx->wait);
746 
747 	INIT_LIST_HEAD(&ctx->active_reqs);
748 
749 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
750 		goto err;
751 
752 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
753 		goto err;
754 
755 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
756 	if (!ctx->cpu)
757 		goto err;
758 
759 	err = aio_setup_ring(ctx, nr_events);
760 	if (err < 0)
761 		goto err;
762 
763 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
764 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
765 	if (ctx->req_batch < 1)
766 		ctx->req_batch = 1;
767 
768 	/* limit the number of system wide aios */
769 	spin_lock(&aio_nr_lock);
770 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
771 	    aio_nr + ctx->max_reqs < aio_nr) {
772 		spin_unlock(&aio_nr_lock);
773 		err = -EAGAIN;
774 		goto err_ctx;
775 	}
776 	aio_nr += ctx->max_reqs;
777 	spin_unlock(&aio_nr_lock);
778 
779 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
780 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
781 
782 	err = ioctx_add_table(ctx, mm);
783 	if (err)
784 		goto err_cleanup;
785 
786 	/* Release the ring_lock mutex now that all setup is complete. */
787 	mutex_unlock(&ctx->ring_lock);
788 
789 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
790 		 ctx, ctx->user_id, mm, ctx->nr_events);
791 	return ctx;
792 
793 err_cleanup:
794 	aio_nr_sub(ctx->max_reqs);
795 err_ctx:
796 	atomic_set(&ctx->dead, 1);
797 	if (ctx->mmap_size)
798 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
799 	aio_free_ring(ctx);
800 err:
801 	mutex_unlock(&ctx->ring_lock);
802 	free_percpu(ctx->cpu);
803 	percpu_ref_exit(&ctx->reqs);
804 	percpu_ref_exit(&ctx->users);
805 	kmem_cache_free(kioctx_cachep, ctx);
806 	pr_debug("error allocating ioctx %d\n", err);
807 	return ERR_PTR(err);
808 }
809 
810 /* kill_ioctx
811  *	Cancels all outstanding aio requests on an aio context.  Used
812  *	when the processes owning a context have all exited to encourage
813  *	the rapid destruction of the kioctx.
814  */
815 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
816 		      struct ctx_rq_wait *wait)
817 {
818 	struct kioctx_table *table;
819 
820 	spin_lock(&mm->ioctx_lock);
821 	if (atomic_xchg(&ctx->dead, 1)) {
822 		spin_unlock(&mm->ioctx_lock);
823 		return -EINVAL;
824 	}
825 
826 	table = rcu_dereference_raw(mm->ioctx_table);
827 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
828 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
829 	spin_unlock(&mm->ioctx_lock);
830 
831 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
832 	wake_up_all(&ctx->wait);
833 
834 	/*
835 	 * It'd be more correct to do this in free_ioctx(), after all
836 	 * the outstanding kiocbs have finished - but by then io_destroy
837 	 * has already returned, so io_setup() could potentially return
838 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
839 	 *  could tell).
840 	 */
841 	aio_nr_sub(ctx->max_reqs);
842 
843 	if (ctx->mmap_size)
844 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
845 
846 	ctx->rq_wait = wait;
847 	percpu_ref_kill(&ctx->users);
848 	return 0;
849 }
850 
851 /*
852  * exit_aio: called when the last user of mm goes away.  At this point, there is
853  * no way for any new requests to be submited or any of the io_* syscalls to be
854  * called on the context.
855  *
856  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
857  * them.
858  */
859 void exit_aio(struct mm_struct *mm)
860 {
861 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
862 	struct ctx_rq_wait wait;
863 	int i, skipped;
864 
865 	if (!table)
866 		return;
867 
868 	atomic_set(&wait.count, table->nr);
869 	init_completion(&wait.comp);
870 
871 	skipped = 0;
872 	for (i = 0; i < table->nr; ++i) {
873 		struct kioctx *ctx =
874 			rcu_dereference_protected(table->table[i], true);
875 
876 		if (!ctx) {
877 			skipped++;
878 			continue;
879 		}
880 
881 		/*
882 		 * We don't need to bother with munmap() here - exit_mmap(mm)
883 		 * is coming and it'll unmap everything. And we simply can't,
884 		 * this is not necessarily our ->mm.
885 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
886 		 * that it needs to unmap the area, just set it to 0.
887 		 */
888 		ctx->mmap_size = 0;
889 		kill_ioctx(mm, ctx, &wait);
890 	}
891 
892 	if (!atomic_sub_and_test(skipped, &wait.count)) {
893 		/* Wait until all IO for the context are done. */
894 		wait_for_completion(&wait.comp);
895 	}
896 
897 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
898 	kfree(table);
899 }
900 
901 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
902 {
903 	struct kioctx_cpu *kcpu;
904 	unsigned long flags;
905 
906 	local_irq_save(flags);
907 	kcpu = this_cpu_ptr(ctx->cpu);
908 	kcpu->reqs_available += nr;
909 
910 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
911 		kcpu->reqs_available -= ctx->req_batch;
912 		atomic_add(ctx->req_batch, &ctx->reqs_available);
913 	}
914 
915 	local_irq_restore(flags);
916 }
917 
918 static bool __get_reqs_available(struct kioctx *ctx)
919 {
920 	struct kioctx_cpu *kcpu;
921 	bool ret = false;
922 	unsigned long flags;
923 
924 	local_irq_save(flags);
925 	kcpu = this_cpu_ptr(ctx->cpu);
926 	if (!kcpu->reqs_available) {
927 		int old, avail = atomic_read(&ctx->reqs_available);
928 
929 		do {
930 			if (avail < ctx->req_batch)
931 				goto out;
932 
933 			old = avail;
934 			avail = atomic_cmpxchg(&ctx->reqs_available,
935 					       avail, avail - ctx->req_batch);
936 		} while (avail != old);
937 
938 		kcpu->reqs_available += ctx->req_batch;
939 	}
940 
941 	ret = true;
942 	kcpu->reqs_available--;
943 out:
944 	local_irq_restore(flags);
945 	return ret;
946 }
947 
948 /* refill_reqs_available
949  *	Updates the reqs_available reference counts used for tracking the
950  *	number of free slots in the completion ring.  This can be called
951  *	from aio_complete() (to optimistically update reqs_available) or
952  *	from aio_get_req() (the we're out of events case).  It must be
953  *	called holding ctx->completion_lock.
954  */
955 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
956                                   unsigned tail)
957 {
958 	unsigned events_in_ring, completed;
959 
960 	/* Clamp head since userland can write to it. */
961 	head %= ctx->nr_events;
962 	if (head <= tail)
963 		events_in_ring = tail - head;
964 	else
965 		events_in_ring = ctx->nr_events - (head - tail);
966 
967 	completed = ctx->completed_events;
968 	if (events_in_ring < completed)
969 		completed -= events_in_ring;
970 	else
971 		completed = 0;
972 
973 	if (!completed)
974 		return;
975 
976 	ctx->completed_events -= completed;
977 	put_reqs_available(ctx, completed);
978 }
979 
980 /* user_refill_reqs_available
981  *	Called to refill reqs_available when aio_get_req() encounters an
982  *	out of space in the completion ring.
983  */
984 static void user_refill_reqs_available(struct kioctx *ctx)
985 {
986 	spin_lock_irq(&ctx->completion_lock);
987 	if (ctx->completed_events) {
988 		struct aio_ring *ring;
989 		unsigned head;
990 
991 		/* Access of ring->head may race with aio_read_events_ring()
992 		 * here, but that's okay since whether we read the old version
993 		 * or the new version, and either will be valid.  The important
994 		 * part is that head cannot pass tail since we prevent
995 		 * aio_complete() from updating tail by holding
996 		 * ctx->completion_lock.  Even if head is invalid, the check
997 		 * against ctx->completed_events below will make sure we do the
998 		 * safe/right thing.
999 		 */
1000 		ring = kmap_atomic(ctx->ring_pages[0]);
1001 		head = ring->head;
1002 		kunmap_atomic(ring);
1003 
1004 		refill_reqs_available(ctx, head, ctx->tail);
1005 	}
1006 
1007 	spin_unlock_irq(&ctx->completion_lock);
1008 }
1009 
1010 static bool get_reqs_available(struct kioctx *ctx)
1011 {
1012 	if (__get_reqs_available(ctx))
1013 		return true;
1014 	user_refill_reqs_available(ctx);
1015 	return __get_reqs_available(ctx);
1016 }
1017 
1018 /* aio_get_req
1019  *	Allocate a slot for an aio request.
1020  * Returns NULL if no requests are free.
1021  *
1022  * The refcount is initialized to 2 - one for the async op completion,
1023  * one for the synchronous code that does this.
1024  */
1025 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1026 {
1027 	struct aio_kiocb *req;
1028 
1029 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1030 	if (unlikely(!req))
1031 		return NULL;
1032 
1033 	if (unlikely(!get_reqs_available(ctx))) {
1034 		kmem_cache_free(kiocb_cachep, req);
1035 		return NULL;
1036 	}
1037 
1038 	percpu_ref_get(&ctx->reqs);
1039 	req->ki_ctx = ctx;
1040 	INIT_LIST_HEAD(&req->ki_list);
1041 	refcount_set(&req->ki_refcnt, 2);
1042 	req->ki_eventfd = NULL;
1043 	return req;
1044 }
1045 
1046 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1047 {
1048 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1049 	struct mm_struct *mm = current->mm;
1050 	struct kioctx *ctx, *ret = NULL;
1051 	struct kioctx_table *table;
1052 	unsigned id;
1053 
1054 	if (get_user(id, &ring->id))
1055 		return NULL;
1056 
1057 	rcu_read_lock();
1058 	table = rcu_dereference(mm->ioctx_table);
1059 
1060 	if (!table || id >= table->nr)
1061 		goto out;
1062 
1063 	id = array_index_nospec(id, table->nr);
1064 	ctx = rcu_dereference(table->table[id]);
1065 	if (ctx && ctx->user_id == ctx_id) {
1066 		if (percpu_ref_tryget_live(&ctx->users))
1067 			ret = ctx;
1068 	}
1069 out:
1070 	rcu_read_unlock();
1071 	return ret;
1072 }
1073 
1074 static inline void iocb_destroy(struct aio_kiocb *iocb)
1075 {
1076 	if (iocb->ki_eventfd)
1077 		eventfd_ctx_put(iocb->ki_eventfd);
1078 	if (iocb->ki_filp)
1079 		fput(iocb->ki_filp);
1080 	percpu_ref_put(&iocb->ki_ctx->reqs);
1081 	kmem_cache_free(kiocb_cachep, iocb);
1082 }
1083 
1084 /* aio_complete
1085  *	Called when the io request on the given iocb is complete.
1086  */
1087 static void aio_complete(struct aio_kiocb *iocb)
1088 {
1089 	struct kioctx	*ctx = iocb->ki_ctx;
1090 	struct aio_ring	*ring;
1091 	struct io_event	*ev_page, *event;
1092 	unsigned tail, pos, head;
1093 	unsigned long	flags;
1094 
1095 	/*
1096 	 * Add a completion event to the ring buffer. Must be done holding
1097 	 * ctx->completion_lock to prevent other code from messing with the tail
1098 	 * pointer since we might be called from irq context.
1099 	 */
1100 	spin_lock_irqsave(&ctx->completion_lock, flags);
1101 
1102 	tail = ctx->tail;
1103 	pos = tail + AIO_EVENTS_OFFSET;
1104 
1105 	if (++tail >= ctx->nr_events)
1106 		tail = 0;
1107 
1108 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1109 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1110 
1111 	*event = iocb->ki_res;
1112 
1113 	kunmap_atomic(ev_page);
1114 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1115 
1116 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1117 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1118 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1119 
1120 	/* after flagging the request as done, we
1121 	 * must never even look at it again
1122 	 */
1123 	smp_wmb();	/* make event visible before updating tail */
1124 
1125 	ctx->tail = tail;
1126 
1127 	ring = kmap_atomic(ctx->ring_pages[0]);
1128 	head = ring->head;
1129 	ring->tail = tail;
1130 	kunmap_atomic(ring);
1131 	flush_dcache_page(ctx->ring_pages[0]);
1132 
1133 	ctx->completed_events++;
1134 	if (ctx->completed_events > 1)
1135 		refill_reqs_available(ctx, head, tail);
1136 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1137 
1138 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1139 
1140 	/*
1141 	 * Check if the user asked us to deliver the result through an
1142 	 * eventfd. The eventfd_signal() function is safe to be called
1143 	 * from IRQ context.
1144 	 */
1145 	if (iocb->ki_eventfd)
1146 		eventfd_signal(iocb->ki_eventfd, 1);
1147 
1148 	/*
1149 	 * We have to order our ring_info tail store above and test
1150 	 * of the wait list below outside the wait lock.  This is
1151 	 * like in wake_up_bit() where clearing a bit has to be
1152 	 * ordered with the unlocked test.
1153 	 */
1154 	smp_mb();
1155 
1156 	if (waitqueue_active(&ctx->wait))
1157 		wake_up(&ctx->wait);
1158 }
1159 
1160 static inline void iocb_put(struct aio_kiocb *iocb)
1161 {
1162 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1163 		aio_complete(iocb);
1164 		iocb_destroy(iocb);
1165 	}
1166 }
1167 
1168 /* aio_read_events_ring
1169  *	Pull an event off of the ioctx's event ring.  Returns the number of
1170  *	events fetched
1171  */
1172 static long aio_read_events_ring(struct kioctx *ctx,
1173 				 struct io_event __user *event, long nr)
1174 {
1175 	struct aio_ring *ring;
1176 	unsigned head, tail, pos;
1177 	long ret = 0;
1178 	int copy_ret;
1179 
1180 	/*
1181 	 * The mutex can block and wake us up and that will cause
1182 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183 	 * and repeat. This should be rare enough that it doesn't cause
1184 	 * peformance issues. See the comment in read_events() for more detail.
1185 	 */
1186 	sched_annotate_sleep();
1187 	mutex_lock(&ctx->ring_lock);
1188 
1189 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1190 	ring = kmap_atomic(ctx->ring_pages[0]);
1191 	head = ring->head;
1192 	tail = ring->tail;
1193 	kunmap_atomic(ring);
1194 
1195 	/*
1196 	 * Ensure that once we've read the current tail pointer, that
1197 	 * we also see the events that were stored up to the tail.
1198 	 */
1199 	smp_rmb();
1200 
1201 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1202 
1203 	if (head == tail)
1204 		goto out;
1205 
1206 	head %= ctx->nr_events;
1207 	tail %= ctx->nr_events;
1208 
1209 	while (ret < nr) {
1210 		long avail;
1211 		struct io_event *ev;
1212 		struct page *page;
1213 
1214 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1215 		if (head == tail)
1216 			break;
1217 
1218 		pos = head + AIO_EVENTS_OFFSET;
1219 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1220 		pos %= AIO_EVENTS_PER_PAGE;
1221 
1222 		avail = min(avail, nr - ret);
1223 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1224 
1225 		ev = kmap(page);
1226 		copy_ret = copy_to_user(event + ret, ev + pos,
1227 					sizeof(*ev) * avail);
1228 		kunmap(page);
1229 
1230 		if (unlikely(copy_ret)) {
1231 			ret = -EFAULT;
1232 			goto out;
1233 		}
1234 
1235 		ret += avail;
1236 		head += avail;
1237 		head %= ctx->nr_events;
1238 	}
1239 
1240 	ring = kmap_atomic(ctx->ring_pages[0]);
1241 	ring->head = head;
1242 	kunmap_atomic(ring);
1243 	flush_dcache_page(ctx->ring_pages[0]);
1244 
1245 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1246 out:
1247 	mutex_unlock(&ctx->ring_lock);
1248 
1249 	return ret;
1250 }
1251 
1252 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1253 			    struct io_event __user *event, long *i)
1254 {
1255 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1256 
1257 	if (ret > 0)
1258 		*i += ret;
1259 
1260 	if (unlikely(atomic_read(&ctx->dead)))
1261 		ret = -EINVAL;
1262 
1263 	if (!*i)
1264 		*i = ret;
1265 
1266 	return ret < 0 || *i >= min_nr;
1267 }
1268 
1269 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1270 			struct io_event __user *event,
1271 			ktime_t until)
1272 {
1273 	long ret = 0;
1274 
1275 	/*
1276 	 * Note that aio_read_events() is being called as the conditional - i.e.
1277 	 * we're calling it after prepare_to_wait() has set task state to
1278 	 * TASK_INTERRUPTIBLE.
1279 	 *
1280 	 * But aio_read_events() can block, and if it blocks it's going to flip
1281 	 * the task state back to TASK_RUNNING.
1282 	 *
1283 	 * This should be ok, provided it doesn't flip the state back to
1284 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1285 	 * will only happen if the mutex_lock() call blocks, and we then find
1286 	 * the ringbuffer empty. So in practice we should be ok, but it's
1287 	 * something to be aware of when touching this code.
1288 	 */
1289 	if (until == 0)
1290 		aio_read_events(ctx, min_nr, nr, event, &ret);
1291 	else
1292 		wait_event_interruptible_hrtimeout(ctx->wait,
1293 				aio_read_events(ctx, min_nr, nr, event, &ret),
1294 				until);
1295 	return ret;
1296 }
1297 
1298 /* sys_io_setup:
1299  *	Create an aio_context capable of receiving at least nr_events.
1300  *	ctxp must not point to an aio_context that already exists, and
1301  *	must be initialized to 0 prior to the call.  On successful
1302  *	creation of the aio_context, *ctxp is filled in with the resulting
1303  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1304  *	if the specified nr_events exceeds internal limits.  May fail
1305  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1306  *	of available events.  May fail with -ENOMEM if insufficient kernel
1307  *	resources are available.  May fail with -EFAULT if an invalid
1308  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1309  *	implemented.
1310  */
1311 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1312 {
1313 	struct kioctx *ioctx = NULL;
1314 	unsigned long ctx;
1315 	long ret;
1316 
1317 	ret = get_user(ctx, ctxp);
1318 	if (unlikely(ret))
1319 		goto out;
1320 
1321 	ret = -EINVAL;
1322 	if (unlikely(ctx || nr_events == 0)) {
1323 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1324 		         ctx, nr_events);
1325 		goto out;
1326 	}
1327 
1328 	ioctx = ioctx_alloc(nr_events);
1329 	ret = PTR_ERR(ioctx);
1330 	if (!IS_ERR(ioctx)) {
1331 		ret = put_user(ioctx->user_id, ctxp);
1332 		if (ret)
1333 			kill_ioctx(current->mm, ioctx, NULL);
1334 		percpu_ref_put(&ioctx->users);
1335 	}
1336 
1337 out:
1338 	return ret;
1339 }
1340 
1341 #ifdef CONFIG_COMPAT
1342 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1343 {
1344 	struct kioctx *ioctx = NULL;
1345 	unsigned long ctx;
1346 	long ret;
1347 
1348 	ret = get_user(ctx, ctx32p);
1349 	if (unlikely(ret))
1350 		goto out;
1351 
1352 	ret = -EINVAL;
1353 	if (unlikely(ctx || nr_events == 0)) {
1354 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1355 		         ctx, nr_events);
1356 		goto out;
1357 	}
1358 
1359 	ioctx = ioctx_alloc(nr_events);
1360 	ret = PTR_ERR(ioctx);
1361 	if (!IS_ERR(ioctx)) {
1362 		/* truncating is ok because it's a user address */
1363 		ret = put_user((u32)ioctx->user_id, ctx32p);
1364 		if (ret)
1365 			kill_ioctx(current->mm, ioctx, NULL);
1366 		percpu_ref_put(&ioctx->users);
1367 	}
1368 
1369 out:
1370 	return ret;
1371 }
1372 #endif
1373 
1374 /* sys_io_destroy:
1375  *	Destroy the aio_context specified.  May cancel any outstanding
1376  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1377  *	implemented.  May fail with -EINVAL if the context pointed to
1378  *	is invalid.
1379  */
1380 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1381 {
1382 	struct kioctx *ioctx = lookup_ioctx(ctx);
1383 	if (likely(NULL != ioctx)) {
1384 		struct ctx_rq_wait wait;
1385 		int ret;
1386 
1387 		init_completion(&wait.comp);
1388 		atomic_set(&wait.count, 1);
1389 
1390 		/* Pass requests_done to kill_ioctx() where it can be set
1391 		 * in a thread-safe way. If we try to set it here then we have
1392 		 * a race condition if two io_destroy() called simultaneously.
1393 		 */
1394 		ret = kill_ioctx(current->mm, ioctx, &wait);
1395 		percpu_ref_put(&ioctx->users);
1396 
1397 		/* Wait until all IO for the context are done. Otherwise kernel
1398 		 * keep using user-space buffers even if user thinks the context
1399 		 * is destroyed.
1400 		 */
1401 		if (!ret)
1402 			wait_for_completion(&wait.comp);
1403 
1404 		return ret;
1405 	}
1406 	pr_debug("EINVAL: invalid context id\n");
1407 	return -EINVAL;
1408 }
1409 
1410 static void aio_remove_iocb(struct aio_kiocb *iocb)
1411 {
1412 	struct kioctx *ctx = iocb->ki_ctx;
1413 	unsigned long flags;
1414 
1415 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1416 	list_del(&iocb->ki_list);
1417 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1418 }
1419 
1420 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1421 {
1422 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1423 
1424 	if (!list_empty_careful(&iocb->ki_list))
1425 		aio_remove_iocb(iocb);
1426 
1427 	if (kiocb->ki_flags & IOCB_WRITE) {
1428 		struct inode *inode = file_inode(kiocb->ki_filp);
1429 
1430 		/*
1431 		 * Tell lockdep we inherited freeze protection from submission
1432 		 * thread.
1433 		 */
1434 		if (S_ISREG(inode->i_mode))
1435 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1436 		file_end_write(kiocb->ki_filp);
1437 	}
1438 
1439 	iocb->ki_res.res = res;
1440 	iocb->ki_res.res2 = res2;
1441 	iocb_put(iocb);
1442 }
1443 
1444 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1445 {
1446 	int ret;
1447 
1448 	req->ki_complete = aio_complete_rw;
1449 	req->private = NULL;
1450 	req->ki_pos = iocb->aio_offset;
1451 	req->ki_flags = iocb_flags(req->ki_filp);
1452 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1453 		req->ki_flags |= IOCB_EVENTFD;
1454 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1455 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1456 		/*
1457 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1458 		 * aio_reqprio is interpreted as an I/O scheduling
1459 		 * class and priority.
1460 		 */
1461 		ret = ioprio_check_cap(iocb->aio_reqprio);
1462 		if (ret) {
1463 			pr_debug("aio ioprio check cap error: %d\n", ret);
1464 			return ret;
1465 		}
1466 
1467 		req->ki_ioprio = iocb->aio_reqprio;
1468 	} else
1469 		req->ki_ioprio = get_current_ioprio();
1470 
1471 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1472 	if (unlikely(ret))
1473 		return ret;
1474 
1475 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1476 	return 0;
1477 }
1478 
1479 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1480 		struct iovec **iovec, bool vectored, bool compat,
1481 		struct iov_iter *iter)
1482 {
1483 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1484 	size_t len = iocb->aio_nbytes;
1485 
1486 	if (!vectored) {
1487 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1488 		*iovec = NULL;
1489 		return ret;
1490 	}
1491 
1492 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1493 }
1494 
1495 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1496 {
1497 	switch (ret) {
1498 	case -EIOCBQUEUED:
1499 		break;
1500 	case -ERESTARTSYS:
1501 	case -ERESTARTNOINTR:
1502 	case -ERESTARTNOHAND:
1503 	case -ERESTART_RESTARTBLOCK:
1504 		/*
1505 		 * There's no easy way to restart the syscall since other AIO's
1506 		 * may be already running. Just fail this IO with EINTR.
1507 		 */
1508 		ret = -EINTR;
1509 		fallthrough;
1510 	default:
1511 		req->ki_complete(req, ret, 0);
1512 	}
1513 }
1514 
1515 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1516 			bool vectored, bool compat)
1517 {
1518 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1519 	struct iov_iter iter;
1520 	struct file *file;
1521 	int ret;
1522 
1523 	ret = aio_prep_rw(req, iocb);
1524 	if (ret)
1525 		return ret;
1526 	file = req->ki_filp;
1527 	if (unlikely(!(file->f_mode & FMODE_READ)))
1528 		return -EBADF;
1529 	ret = -EINVAL;
1530 	if (unlikely(!file->f_op->read_iter))
1531 		return -EINVAL;
1532 
1533 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1534 	if (ret < 0)
1535 		return ret;
1536 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1537 	if (!ret)
1538 		aio_rw_done(req, call_read_iter(file, req, &iter));
1539 	kfree(iovec);
1540 	return ret;
1541 }
1542 
1543 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1544 			 bool vectored, bool compat)
1545 {
1546 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1547 	struct iov_iter iter;
1548 	struct file *file;
1549 	int ret;
1550 
1551 	ret = aio_prep_rw(req, iocb);
1552 	if (ret)
1553 		return ret;
1554 	file = req->ki_filp;
1555 
1556 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1557 		return -EBADF;
1558 	if (unlikely(!file->f_op->write_iter))
1559 		return -EINVAL;
1560 
1561 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1562 	if (ret < 0)
1563 		return ret;
1564 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1565 	if (!ret) {
1566 		/*
1567 		 * Open-code file_start_write here to grab freeze protection,
1568 		 * which will be released by another thread in
1569 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1570 		 * released so that it doesn't complain about the held lock when
1571 		 * we return to userspace.
1572 		 */
1573 		if (S_ISREG(file_inode(file)->i_mode)) {
1574 			sb_start_write(file_inode(file)->i_sb);
1575 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1576 		}
1577 		req->ki_flags |= IOCB_WRITE;
1578 		aio_rw_done(req, call_write_iter(file, req, &iter));
1579 	}
1580 	kfree(iovec);
1581 	return ret;
1582 }
1583 
1584 static void aio_fsync_work(struct work_struct *work)
1585 {
1586 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1587 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1588 
1589 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1590 	revert_creds(old_cred);
1591 	put_cred(iocb->fsync.creds);
1592 	iocb_put(iocb);
1593 }
1594 
1595 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1596 		     bool datasync)
1597 {
1598 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1599 			iocb->aio_rw_flags))
1600 		return -EINVAL;
1601 
1602 	if (unlikely(!req->file->f_op->fsync))
1603 		return -EINVAL;
1604 
1605 	req->creds = prepare_creds();
1606 	if (!req->creds)
1607 		return -ENOMEM;
1608 
1609 	req->datasync = datasync;
1610 	INIT_WORK(&req->work, aio_fsync_work);
1611 	schedule_work(&req->work);
1612 	return 0;
1613 }
1614 
1615 static void aio_poll_put_work(struct work_struct *work)
1616 {
1617 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1618 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1619 
1620 	iocb_put(iocb);
1621 }
1622 
1623 static void aio_poll_complete_work(struct work_struct *work)
1624 {
1625 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1626 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1627 	struct poll_table_struct pt = { ._key = req->events };
1628 	struct kioctx *ctx = iocb->ki_ctx;
1629 	__poll_t mask = 0;
1630 
1631 	if (!READ_ONCE(req->cancelled))
1632 		mask = vfs_poll(req->file, &pt) & req->events;
1633 
1634 	/*
1635 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1636 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1637 	 * synchronize with them.  In the cancellation case the list_del_init
1638 	 * itself is not actually needed, but harmless so we keep it in to
1639 	 * avoid further branches in the fast path.
1640 	 */
1641 	spin_lock_irq(&ctx->ctx_lock);
1642 	if (!mask && !READ_ONCE(req->cancelled)) {
1643 		add_wait_queue(req->head, &req->wait);
1644 		spin_unlock_irq(&ctx->ctx_lock);
1645 		return;
1646 	}
1647 	list_del_init(&iocb->ki_list);
1648 	iocb->ki_res.res = mangle_poll(mask);
1649 	req->done = true;
1650 	spin_unlock_irq(&ctx->ctx_lock);
1651 
1652 	iocb_put(iocb);
1653 }
1654 
1655 /* assumes we are called with irqs disabled */
1656 static int aio_poll_cancel(struct kiocb *iocb)
1657 {
1658 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1659 	struct poll_iocb *req = &aiocb->poll;
1660 
1661 	spin_lock(&req->head->lock);
1662 	WRITE_ONCE(req->cancelled, true);
1663 	if (!list_empty(&req->wait.entry)) {
1664 		list_del_init(&req->wait.entry);
1665 		schedule_work(&aiocb->poll.work);
1666 	}
1667 	spin_unlock(&req->head->lock);
1668 
1669 	return 0;
1670 }
1671 
1672 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1673 		void *key)
1674 {
1675 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1676 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1677 	__poll_t mask = key_to_poll(key);
1678 	unsigned long flags;
1679 
1680 	/* for instances that support it check for an event match first: */
1681 	if (mask && !(mask & req->events))
1682 		return 0;
1683 
1684 	list_del_init(&req->wait.entry);
1685 
1686 	if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1687 		struct kioctx *ctx = iocb->ki_ctx;
1688 
1689 		/*
1690 		 * Try to complete the iocb inline if we can. Use
1691 		 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1692 		 * call this function with IRQs disabled and because IRQs
1693 		 * have to be disabled before ctx_lock is obtained.
1694 		 */
1695 		list_del(&iocb->ki_list);
1696 		iocb->ki_res.res = mangle_poll(mask);
1697 		req->done = true;
1698 		if (iocb->ki_eventfd && eventfd_signal_count()) {
1699 			iocb = NULL;
1700 			INIT_WORK(&req->work, aio_poll_put_work);
1701 			schedule_work(&req->work);
1702 		}
1703 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1704 		if (iocb)
1705 			iocb_put(iocb);
1706 	} else {
1707 		schedule_work(&req->work);
1708 	}
1709 	return 1;
1710 }
1711 
1712 struct aio_poll_table {
1713 	struct poll_table_struct	pt;
1714 	struct aio_kiocb		*iocb;
1715 	int				error;
1716 };
1717 
1718 static void
1719 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1720 		struct poll_table_struct *p)
1721 {
1722 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1723 
1724 	/* multiple wait queues per file are not supported */
1725 	if (unlikely(pt->iocb->poll.head)) {
1726 		pt->error = -EINVAL;
1727 		return;
1728 	}
1729 
1730 	pt->error = 0;
1731 	pt->iocb->poll.head = head;
1732 	add_wait_queue(head, &pt->iocb->poll.wait);
1733 }
1734 
1735 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1736 {
1737 	struct kioctx *ctx = aiocb->ki_ctx;
1738 	struct poll_iocb *req = &aiocb->poll;
1739 	struct aio_poll_table apt;
1740 	bool cancel = false;
1741 	__poll_t mask;
1742 
1743 	/* reject any unknown events outside the normal event mask. */
1744 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1745 		return -EINVAL;
1746 	/* reject fields that are not defined for poll */
1747 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1748 		return -EINVAL;
1749 
1750 	INIT_WORK(&req->work, aio_poll_complete_work);
1751 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1752 
1753 	req->head = NULL;
1754 	req->done = false;
1755 	req->cancelled = false;
1756 
1757 	apt.pt._qproc = aio_poll_queue_proc;
1758 	apt.pt._key = req->events;
1759 	apt.iocb = aiocb;
1760 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1761 
1762 	/* initialized the list so that we can do list_empty checks */
1763 	INIT_LIST_HEAD(&req->wait.entry);
1764 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1765 
1766 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1767 	spin_lock_irq(&ctx->ctx_lock);
1768 	if (likely(req->head)) {
1769 		spin_lock(&req->head->lock);
1770 		if (unlikely(list_empty(&req->wait.entry))) {
1771 			if (apt.error)
1772 				cancel = true;
1773 			apt.error = 0;
1774 			mask = 0;
1775 		}
1776 		if (mask || apt.error) {
1777 			list_del_init(&req->wait.entry);
1778 		} else if (cancel) {
1779 			WRITE_ONCE(req->cancelled, true);
1780 		} else if (!req->done) { /* actually waiting for an event */
1781 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1782 			aiocb->ki_cancel = aio_poll_cancel;
1783 		}
1784 		spin_unlock(&req->head->lock);
1785 	}
1786 	if (mask) { /* no async, we'd stolen it */
1787 		aiocb->ki_res.res = mangle_poll(mask);
1788 		apt.error = 0;
1789 	}
1790 	spin_unlock_irq(&ctx->ctx_lock);
1791 	if (mask)
1792 		iocb_put(aiocb);
1793 	return apt.error;
1794 }
1795 
1796 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1797 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1798 			   bool compat)
1799 {
1800 	req->ki_filp = fget(iocb->aio_fildes);
1801 	if (unlikely(!req->ki_filp))
1802 		return -EBADF;
1803 
1804 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1805 		struct eventfd_ctx *eventfd;
1806 		/*
1807 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1808 		 * instance of the file* now. The file descriptor must be
1809 		 * an eventfd() fd, and will be signaled for each completed
1810 		 * event using the eventfd_signal() function.
1811 		 */
1812 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1813 		if (IS_ERR(eventfd))
1814 			return PTR_ERR(eventfd);
1815 
1816 		req->ki_eventfd = eventfd;
1817 	}
1818 
1819 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1820 		pr_debug("EFAULT: aio_key\n");
1821 		return -EFAULT;
1822 	}
1823 
1824 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1825 	req->ki_res.data = iocb->aio_data;
1826 	req->ki_res.res = 0;
1827 	req->ki_res.res2 = 0;
1828 
1829 	switch (iocb->aio_lio_opcode) {
1830 	case IOCB_CMD_PREAD:
1831 		return aio_read(&req->rw, iocb, false, compat);
1832 	case IOCB_CMD_PWRITE:
1833 		return aio_write(&req->rw, iocb, false, compat);
1834 	case IOCB_CMD_PREADV:
1835 		return aio_read(&req->rw, iocb, true, compat);
1836 	case IOCB_CMD_PWRITEV:
1837 		return aio_write(&req->rw, iocb, true, compat);
1838 	case IOCB_CMD_FSYNC:
1839 		return aio_fsync(&req->fsync, iocb, false);
1840 	case IOCB_CMD_FDSYNC:
1841 		return aio_fsync(&req->fsync, iocb, true);
1842 	case IOCB_CMD_POLL:
1843 		return aio_poll(req, iocb);
1844 	default:
1845 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1846 		return -EINVAL;
1847 	}
1848 }
1849 
1850 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1851 			 bool compat)
1852 {
1853 	struct aio_kiocb *req;
1854 	struct iocb iocb;
1855 	int err;
1856 
1857 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1858 		return -EFAULT;
1859 
1860 	/* enforce forwards compatibility on users */
1861 	if (unlikely(iocb.aio_reserved2)) {
1862 		pr_debug("EINVAL: reserve field set\n");
1863 		return -EINVAL;
1864 	}
1865 
1866 	/* prevent overflows */
1867 	if (unlikely(
1868 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1869 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1870 	    ((ssize_t)iocb.aio_nbytes < 0)
1871 	   )) {
1872 		pr_debug("EINVAL: overflow check\n");
1873 		return -EINVAL;
1874 	}
1875 
1876 	req = aio_get_req(ctx);
1877 	if (unlikely(!req))
1878 		return -EAGAIN;
1879 
1880 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1881 
1882 	/* Done with the synchronous reference */
1883 	iocb_put(req);
1884 
1885 	/*
1886 	 * If err is 0, we'd either done aio_complete() ourselves or have
1887 	 * arranged for that to be done asynchronously.  Anything non-zero
1888 	 * means that we need to destroy req ourselves.
1889 	 */
1890 	if (unlikely(err)) {
1891 		iocb_destroy(req);
1892 		put_reqs_available(ctx, 1);
1893 	}
1894 	return err;
1895 }
1896 
1897 /* sys_io_submit:
1898  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1899  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1900  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1901  *	*iocbpp[0] is not properly initialized, if the operation specified
1902  *	is invalid for the file descriptor in the iocb.  May fail with
1903  *	-EFAULT if any of the data structures point to invalid data.  May
1904  *	fail with -EBADF if the file descriptor specified in the first
1905  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1906  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1907  *	fail with -ENOSYS if not implemented.
1908  */
1909 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1910 		struct iocb __user * __user *, iocbpp)
1911 {
1912 	struct kioctx *ctx;
1913 	long ret = 0;
1914 	int i = 0;
1915 	struct blk_plug plug;
1916 
1917 	if (unlikely(nr < 0))
1918 		return -EINVAL;
1919 
1920 	ctx = lookup_ioctx(ctx_id);
1921 	if (unlikely(!ctx)) {
1922 		pr_debug("EINVAL: invalid context id\n");
1923 		return -EINVAL;
1924 	}
1925 
1926 	if (nr > ctx->nr_events)
1927 		nr = ctx->nr_events;
1928 
1929 	if (nr > AIO_PLUG_THRESHOLD)
1930 		blk_start_plug(&plug);
1931 	for (i = 0; i < nr; i++) {
1932 		struct iocb __user *user_iocb;
1933 
1934 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1935 			ret = -EFAULT;
1936 			break;
1937 		}
1938 
1939 		ret = io_submit_one(ctx, user_iocb, false);
1940 		if (ret)
1941 			break;
1942 	}
1943 	if (nr > AIO_PLUG_THRESHOLD)
1944 		blk_finish_plug(&plug);
1945 
1946 	percpu_ref_put(&ctx->users);
1947 	return i ? i : ret;
1948 }
1949 
1950 #ifdef CONFIG_COMPAT
1951 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1952 		       int, nr, compat_uptr_t __user *, iocbpp)
1953 {
1954 	struct kioctx *ctx;
1955 	long ret = 0;
1956 	int i = 0;
1957 	struct blk_plug plug;
1958 
1959 	if (unlikely(nr < 0))
1960 		return -EINVAL;
1961 
1962 	ctx = lookup_ioctx(ctx_id);
1963 	if (unlikely(!ctx)) {
1964 		pr_debug("EINVAL: invalid context id\n");
1965 		return -EINVAL;
1966 	}
1967 
1968 	if (nr > ctx->nr_events)
1969 		nr = ctx->nr_events;
1970 
1971 	if (nr > AIO_PLUG_THRESHOLD)
1972 		blk_start_plug(&plug);
1973 	for (i = 0; i < nr; i++) {
1974 		compat_uptr_t user_iocb;
1975 
1976 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1977 			ret = -EFAULT;
1978 			break;
1979 		}
1980 
1981 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1982 		if (ret)
1983 			break;
1984 	}
1985 	if (nr > AIO_PLUG_THRESHOLD)
1986 		blk_finish_plug(&plug);
1987 
1988 	percpu_ref_put(&ctx->users);
1989 	return i ? i : ret;
1990 }
1991 #endif
1992 
1993 /* sys_io_cancel:
1994  *	Attempts to cancel an iocb previously passed to io_submit.  If
1995  *	the operation is successfully cancelled, the resulting event is
1996  *	copied into the memory pointed to by result without being placed
1997  *	into the completion queue and 0 is returned.  May fail with
1998  *	-EFAULT if any of the data structures pointed to are invalid.
1999  *	May fail with -EINVAL if aio_context specified by ctx_id is
2000  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2001  *	cancelled.  Will fail with -ENOSYS if not implemented.
2002  */
2003 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2004 		struct io_event __user *, result)
2005 {
2006 	struct kioctx *ctx;
2007 	struct aio_kiocb *kiocb;
2008 	int ret = -EINVAL;
2009 	u32 key;
2010 	u64 obj = (u64)(unsigned long)iocb;
2011 
2012 	if (unlikely(get_user(key, &iocb->aio_key)))
2013 		return -EFAULT;
2014 	if (unlikely(key != KIOCB_KEY))
2015 		return -EINVAL;
2016 
2017 	ctx = lookup_ioctx(ctx_id);
2018 	if (unlikely(!ctx))
2019 		return -EINVAL;
2020 
2021 	spin_lock_irq(&ctx->ctx_lock);
2022 	/* TODO: use a hash or array, this sucks. */
2023 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2024 		if (kiocb->ki_res.obj == obj) {
2025 			ret = kiocb->ki_cancel(&kiocb->rw);
2026 			list_del_init(&kiocb->ki_list);
2027 			break;
2028 		}
2029 	}
2030 	spin_unlock_irq(&ctx->ctx_lock);
2031 
2032 	if (!ret) {
2033 		/*
2034 		 * The result argument is no longer used - the io_event is
2035 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2036 		 * cancellation is progress:
2037 		 */
2038 		ret = -EINPROGRESS;
2039 	}
2040 
2041 	percpu_ref_put(&ctx->users);
2042 
2043 	return ret;
2044 }
2045 
2046 static long do_io_getevents(aio_context_t ctx_id,
2047 		long min_nr,
2048 		long nr,
2049 		struct io_event __user *events,
2050 		struct timespec64 *ts)
2051 {
2052 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2053 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2054 	long ret = -EINVAL;
2055 
2056 	if (likely(ioctx)) {
2057 		if (likely(min_nr <= nr && min_nr >= 0))
2058 			ret = read_events(ioctx, min_nr, nr, events, until);
2059 		percpu_ref_put(&ioctx->users);
2060 	}
2061 
2062 	return ret;
2063 }
2064 
2065 /* io_getevents:
2066  *	Attempts to read at least min_nr events and up to nr events from
2067  *	the completion queue for the aio_context specified by ctx_id. If
2068  *	it succeeds, the number of read events is returned. May fail with
2069  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2070  *	out of range, if timeout is out of range.  May fail with -EFAULT
2071  *	if any of the memory specified is invalid.  May return 0 or
2072  *	< min_nr if the timeout specified by timeout has elapsed
2073  *	before sufficient events are available, where timeout == NULL
2074  *	specifies an infinite timeout. Note that the timeout pointed to by
2075  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2076  */
2077 #ifdef CONFIG_64BIT
2078 
2079 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2080 		long, min_nr,
2081 		long, nr,
2082 		struct io_event __user *, events,
2083 		struct __kernel_timespec __user *, timeout)
2084 {
2085 	struct timespec64	ts;
2086 	int			ret;
2087 
2088 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2089 		return -EFAULT;
2090 
2091 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2092 	if (!ret && signal_pending(current))
2093 		ret = -EINTR;
2094 	return ret;
2095 }
2096 
2097 #endif
2098 
2099 struct __aio_sigset {
2100 	const sigset_t __user	*sigmask;
2101 	size_t		sigsetsize;
2102 };
2103 
2104 SYSCALL_DEFINE6(io_pgetevents,
2105 		aio_context_t, ctx_id,
2106 		long, min_nr,
2107 		long, nr,
2108 		struct io_event __user *, events,
2109 		struct __kernel_timespec __user *, timeout,
2110 		const struct __aio_sigset __user *, usig)
2111 {
2112 	struct __aio_sigset	ksig = { NULL, };
2113 	struct timespec64	ts;
2114 	bool interrupted;
2115 	int ret;
2116 
2117 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2118 		return -EFAULT;
2119 
2120 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2121 		return -EFAULT;
2122 
2123 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2124 	if (ret)
2125 		return ret;
2126 
2127 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2128 
2129 	interrupted = signal_pending(current);
2130 	restore_saved_sigmask_unless(interrupted);
2131 	if (interrupted && !ret)
2132 		ret = -ERESTARTNOHAND;
2133 
2134 	return ret;
2135 }
2136 
2137 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2138 
2139 SYSCALL_DEFINE6(io_pgetevents_time32,
2140 		aio_context_t, ctx_id,
2141 		long, min_nr,
2142 		long, nr,
2143 		struct io_event __user *, events,
2144 		struct old_timespec32 __user *, timeout,
2145 		const struct __aio_sigset __user *, usig)
2146 {
2147 	struct __aio_sigset	ksig = { NULL, };
2148 	struct timespec64	ts;
2149 	bool interrupted;
2150 	int ret;
2151 
2152 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2153 		return -EFAULT;
2154 
2155 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2156 		return -EFAULT;
2157 
2158 
2159 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2160 	if (ret)
2161 		return ret;
2162 
2163 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2164 
2165 	interrupted = signal_pending(current);
2166 	restore_saved_sigmask_unless(interrupted);
2167 	if (interrupted && !ret)
2168 		ret = -ERESTARTNOHAND;
2169 
2170 	return ret;
2171 }
2172 
2173 #endif
2174 
2175 #if defined(CONFIG_COMPAT_32BIT_TIME)
2176 
2177 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2178 		__s32, min_nr,
2179 		__s32, nr,
2180 		struct io_event __user *, events,
2181 		struct old_timespec32 __user *, timeout)
2182 {
2183 	struct timespec64 t;
2184 	int ret;
2185 
2186 	if (timeout && get_old_timespec32(&t, timeout))
2187 		return -EFAULT;
2188 
2189 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2190 	if (!ret && signal_pending(current))
2191 		ret = -EINTR;
2192 	return ret;
2193 }
2194 
2195 #endif
2196 
2197 #ifdef CONFIG_COMPAT
2198 
2199 struct __compat_aio_sigset {
2200 	compat_uptr_t		sigmask;
2201 	compat_size_t		sigsetsize;
2202 };
2203 
2204 #if defined(CONFIG_COMPAT_32BIT_TIME)
2205 
2206 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2207 		compat_aio_context_t, ctx_id,
2208 		compat_long_t, min_nr,
2209 		compat_long_t, nr,
2210 		struct io_event __user *, events,
2211 		struct old_timespec32 __user *, timeout,
2212 		const struct __compat_aio_sigset __user *, usig)
2213 {
2214 	struct __compat_aio_sigset ksig = { 0, };
2215 	struct timespec64 t;
2216 	bool interrupted;
2217 	int ret;
2218 
2219 	if (timeout && get_old_timespec32(&t, timeout))
2220 		return -EFAULT;
2221 
2222 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2223 		return -EFAULT;
2224 
2225 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2226 	if (ret)
2227 		return ret;
2228 
2229 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2230 
2231 	interrupted = signal_pending(current);
2232 	restore_saved_sigmask_unless(interrupted);
2233 	if (interrupted && !ret)
2234 		ret = -ERESTARTNOHAND;
2235 
2236 	return ret;
2237 }
2238 
2239 #endif
2240 
2241 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2242 		compat_aio_context_t, ctx_id,
2243 		compat_long_t, min_nr,
2244 		compat_long_t, nr,
2245 		struct io_event __user *, events,
2246 		struct __kernel_timespec __user *, timeout,
2247 		const struct __compat_aio_sigset __user *, usig)
2248 {
2249 	struct __compat_aio_sigset ksig = { 0, };
2250 	struct timespec64 t;
2251 	bool interrupted;
2252 	int ret;
2253 
2254 	if (timeout && get_timespec64(&t, timeout))
2255 		return -EFAULT;
2256 
2257 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2258 		return -EFAULT;
2259 
2260 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2261 	if (ret)
2262 		return ret;
2263 
2264 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2265 
2266 	interrupted = signal_pending(current);
2267 	restore_saved_sigmask_unless(interrupted);
2268 	if (interrupted && !ret)
2269 		ret = -ERESTARTNOHAND;
2270 
2271 	return ret;
2272 }
2273 #endif
2274