xref: /linux/fs/afs/write.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <trace/events/netfs.h>
16 #include "internal.h"
17 
18 /*
19  * completion of write to server
20  */
21 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
22 {
23 	_enter("{%llx:%llu},{%x @%llx}",
24 	       vnode->fid.vid, vnode->fid.vnode, len, start);
25 
26 	afs_prune_wb_keys(vnode);
27 	_leave("");
28 }
29 
30 /*
31  * Find a key to use for the writeback.  We cached the keys used to author the
32  * writes on the vnode.  wreq->netfs_priv2 will contain the last writeback key
33  * record used or NULL and we need to start from there if it's set.
34  * wreq->netfs_priv will be set to the key itself or NULL.
35  */
36 static void afs_get_writeback_key(struct netfs_io_request *wreq)
37 {
38 	struct afs_wb_key *wbk, *old = wreq->netfs_priv2;
39 	struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
40 
41 	key_put(wreq->netfs_priv);
42 	wreq->netfs_priv = NULL;
43 	wreq->netfs_priv2 = NULL;
44 
45 	spin_lock(&vnode->wb_lock);
46 	if (old)
47 		wbk = list_next_entry(old, vnode_link);
48 	else
49 		wbk = list_first_entry(&vnode->wb_keys, struct afs_wb_key, vnode_link);
50 
51 	list_for_each_entry_from(wbk, &vnode->wb_keys, vnode_link) {
52 		_debug("wbk %u", key_serial(wbk->key));
53 		if (key_validate(wbk->key) == 0) {
54 			refcount_inc(&wbk->usage);
55 			wreq->netfs_priv = key_get(wbk->key);
56 			wreq->netfs_priv2 = wbk;
57 			_debug("USE WB KEY %u", key_serial(wbk->key));
58 			break;
59 		}
60 	}
61 
62 	spin_unlock(&vnode->wb_lock);
63 
64 	afs_put_wb_key(old);
65 }
66 
67 static void afs_store_data_success(struct afs_operation *op)
68 {
69 	struct afs_vnode *vnode = op->file[0].vnode;
70 
71 	op->ctime = op->file[0].scb.status.mtime_client;
72 	afs_vnode_commit_status(op, &op->file[0]);
73 	if (!afs_op_error(op)) {
74 		afs_pages_written_back(vnode, op->store.pos, op->store.size);
75 		afs_stat_v(vnode, n_stores);
76 		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
77 	}
78 }
79 
80 static const struct afs_operation_ops afs_store_data_operation = {
81 	.issue_afs_rpc	= afs_fs_store_data,
82 	.issue_yfs_rpc	= yfs_fs_store_data,
83 	.success	= afs_store_data_success,
84 };
85 
86 /*
87  * Prepare a subrequest to write to the server.  This sets the max_len
88  * parameter.
89  */
90 void afs_prepare_write(struct netfs_io_subrequest *subreq)
91 {
92 	struct netfs_io_stream *stream = &subreq->rreq->io_streams[subreq->stream_nr];
93 
94 	//if (test_bit(NETFS_SREQ_RETRYING, &subreq->flags))
95 	//	subreq->max_len = 512 * 1024;
96 	//else
97 	stream->sreq_max_len = 256 * 1024 * 1024;
98 }
99 
100 /*
101  * Issue a subrequest to write to the server.
102  */
103 static void afs_issue_write_worker(struct work_struct *work)
104 {
105 	struct netfs_io_subrequest *subreq = container_of(work, struct netfs_io_subrequest, work);
106 	struct netfs_io_request *wreq = subreq->rreq;
107 	struct afs_operation *op;
108 	struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
109 	unsigned long long pos = subreq->start + subreq->transferred;
110 	size_t len = subreq->len - subreq->transferred;
111 	int ret = -ENOKEY;
112 
113 	_enter("R=%x[%x],%s{%llx:%llu.%u},%llx,%zx",
114 	       wreq->debug_id, subreq->debug_index,
115 	       vnode->volume->name,
116 	       vnode->fid.vid,
117 	       vnode->fid.vnode,
118 	       vnode->fid.unique,
119 	       pos, len);
120 
121 #if 0 // Error injection
122 	if (subreq->debug_index == 3)
123 		return netfs_write_subrequest_terminated(subreq, -ENOANO, false);
124 
125 	if (!test_bit(NETFS_SREQ_RETRYING, &subreq->flags)) {
126 		set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
127 		return netfs_write_subrequest_terminated(subreq, -EAGAIN, false);
128 	}
129 #endif
130 
131 	op = afs_alloc_operation(wreq->netfs_priv, vnode->volume);
132 	if (IS_ERR(op))
133 		return netfs_write_subrequest_terminated(subreq, -EAGAIN, false);
134 
135 	afs_op_set_vnode(op, 0, vnode);
136 	op->file[0].dv_delta	= 1;
137 	op->file[0].modification = true;
138 	op->store.pos		= pos;
139 	op->store.size		= len;
140 	op->flags		|= AFS_OPERATION_UNINTR;
141 	op->ops			= &afs_store_data_operation;
142 
143 	afs_begin_vnode_operation(op);
144 
145 	op->store.write_iter	= &subreq->io_iter;
146 	op->store.i_size	= umax(pos + len, vnode->netfs.remote_i_size);
147 	op->mtime		= inode_get_mtime(&vnode->netfs.inode);
148 
149 	afs_wait_for_operation(op);
150 	ret = afs_put_operation(op);
151 	switch (ret) {
152 	case -EACCES:
153 	case -EPERM:
154 	case -ENOKEY:
155 	case -EKEYEXPIRED:
156 	case -EKEYREJECTED:
157 	case -EKEYREVOKED:
158 		/* If there are more keys we can try, use the retry algorithm
159 		 * to rotate the keys.
160 		 */
161 		if (wreq->netfs_priv2)
162 			set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
163 		break;
164 	}
165 
166 	netfs_write_subrequest_terminated(subreq, ret < 0 ? ret : subreq->len, false);
167 }
168 
169 void afs_issue_write(struct netfs_io_subrequest *subreq)
170 {
171 	subreq->work.func = afs_issue_write_worker;
172 	if (!queue_work(system_unbound_wq, &subreq->work))
173 		WARN_ON_ONCE(1);
174 }
175 
176 /*
177  * Writeback calls this when it finds a folio that needs uploading.  This isn't
178  * called if writeback only has copy-to-cache to deal with.
179  */
180 void afs_begin_writeback(struct netfs_io_request *wreq)
181 {
182 	afs_get_writeback_key(wreq);
183 	wreq->io_streams[0].avail = true;
184 }
185 
186 /*
187  * Prepare to retry the writes in request.  Use this to try rotating the
188  * available writeback keys.
189  */
190 void afs_retry_request(struct netfs_io_request *wreq, struct netfs_io_stream *stream)
191 {
192 	struct netfs_io_subrequest *subreq =
193 		list_first_entry(&stream->subrequests,
194 				 struct netfs_io_subrequest, rreq_link);
195 
196 	switch (subreq->error) {
197 	case -EACCES:
198 	case -EPERM:
199 	case -ENOKEY:
200 	case -EKEYEXPIRED:
201 	case -EKEYREJECTED:
202 	case -EKEYREVOKED:
203 		afs_get_writeback_key(wreq);
204 		if (!wreq->netfs_priv)
205 			stream->failed = true;
206 		break;
207 	}
208 }
209 
210 /*
211  * write some of the pending data back to the server
212  */
213 int afs_writepages(struct address_space *mapping, struct writeback_control *wbc)
214 {
215 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
216 	int ret;
217 
218 	/* We have to be careful as we can end up racing with setattr()
219 	 * truncating the pagecache since the caller doesn't take a lock here
220 	 * to prevent it.
221 	 */
222 	if (wbc->sync_mode == WB_SYNC_ALL)
223 		down_read(&vnode->validate_lock);
224 	else if (!down_read_trylock(&vnode->validate_lock))
225 		return 0;
226 
227 	ret = netfs_writepages(mapping, wbc);
228 	up_read(&vnode->validate_lock);
229 	return ret;
230 }
231 
232 /*
233  * flush any dirty pages for this process, and check for write errors.
234  * - the return status from this call provides a reliable indication of
235  *   whether any write errors occurred for this process.
236  */
237 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
238 {
239 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
240 	struct afs_file *af = file->private_data;
241 	int ret;
242 
243 	_enter("{%llx:%llu},{n=%pD},%d",
244 	       vnode->fid.vid, vnode->fid.vnode, file,
245 	       datasync);
246 
247 	ret = afs_validate(vnode, af->key);
248 	if (ret < 0)
249 		return ret;
250 
251 	return file_write_and_wait_range(file, start, end);
252 }
253 
254 /*
255  * notification that a previously read-only page is about to become writable
256  * - if it returns an error, the caller will deliver a bus error signal
257  */
258 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
259 {
260 	struct file *file = vmf->vma->vm_file;
261 
262 	if (afs_validate(AFS_FS_I(file_inode(file)), afs_file_key(file)) < 0)
263 		return VM_FAULT_SIGBUS;
264 	return netfs_page_mkwrite(vmf, NULL);
265 }
266 
267 /*
268  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
269  */
270 void afs_prune_wb_keys(struct afs_vnode *vnode)
271 {
272 	LIST_HEAD(graveyard);
273 	struct afs_wb_key *wbk, *tmp;
274 
275 	/* Discard unused keys */
276 	spin_lock(&vnode->wb_lock);
277 
278 	if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
279 	    !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
280 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
281 			if (refcount_read(&wbk->usage) == 1)
282 				list_move(&wbk->vnode_link, &graveyard);
283 		}
284 	}
285 
286 	spin_unlock(&vnode->wb_lock);
287 
288 	while (!list_empty(&graveyard)) {
289 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
290 		list_del(&wbk->vnode_link);
291 		afs_put_wb_key(wbk);
292 	}
293 }
294