1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* handling of writes to regular files and writing back to the server 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/backing-dev.h> 9 #include <linux/slab.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/netfs.h> 15 #include <linux/fscache.h> 16 #include "internal.h" 17 18 /* 19 * mark a page as having been made dirty and thus needing writeback 20 */ 21 int afs_set_page_dirty(struct page *page) 22 { 23 _enter(""); 24 return __set_page_dirty_nobuffers(page); 25 } 26 27 /* 28 * prepare to perform part of a write to a page 29 */ 30 int afs_write_begin(struct file *file, struct address_space *mapping, 31 loff_t pos, unsigned len, unsigned flags, 32 struct page **_page, void **fsdata) 33 { 34 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 35 struct folio *folio; 36 unsigned long priv; 37 unsigned f, from; 38 unsigned t, to; 39 pgoff_t index; 40 int ret; 41 42 _enter("{%llx:%llu},%llx,%x", 43 vnode->fid.vid, vnode->fid.vnode, pos, len); 44 45 /* Prefetch area to be written into the cache if we're caching this 46 * file. We need to do this before we get a lock on the page in case 47 * there's more than one writer competing for the same cache block. 48 */ 49 ret = netfs_write_begin(file, mapping, pos, len, flags, &folio, fsdata, 50 &afs_req_ops, NULL); 51 if (ret < 0) 52 return ret; 53 54 index = folio_index(folio); 55 from = pos - index * PAGE_SIZE; 56 to = from + len; 57 58 try_again: 59 /* See if this page is already partially written in a way that we can 60 * merge the new write with. 61 */ 62 if (folio_test_private(folio)) { 63 priv = (unsigned long)folio_get_private(folio); 64 f = afs_folio_dirty_from(folio, priv); 65 t = afs_folio_dirty_to(folio, priv); 66 ASSERTCMP(f, <=, t); 67 68 if (folio_test_writeback(folio)) { 69 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio); 70 goto flush_conflicting_write; 71 } 72 /* If the file is being filled locally, allow inter-write 73 * spaces to be merged into writes. If it's not, only write 74 * back what the user gives us. 75 */ 76 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && 77 (to < f || from > t)) 78 goto flush_conflicting_write; 79 } 80 81 *_page = &folio->page; 82 _leave(" = 0"); 83 return 0; 84 85 /* The previous write and this write aren't adjacent or overlapping, so 86 * flush the page out. 87 */ 88 flush_conflicting_write: 89 _debug("flush conflict"); 90 ret = folio_write_one(folio); 91 if (ret < 0) 92 goto error; 93 94 ret = folio_lock_killable(folio); 95 if (ret < 0) 96 goto error; 97 goto try_again; 98 99 error: 100 folio_put(folio); 101 _leave(" = %d", ret); 102 return ret; 103 } 104 105 /* 106 * finalise part of a write to a page 107 */ 108 int afs_write_end(struct file *file, struct address_space *mapping, 109 loff_t pos, unsigned len, unsigned copied, 110 struct page *subpage, void *fsdata) 111 { 112 struct folio *folio = page_folio(subpage); 113 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 114 unsigned long priv; 115 unsigned int f, from = offset_in_folio(folio, pos); 116 unsigned int t, to = from + copied; 117 loff_t i_size, maybe_i_size; 118 119 _enter("{%llx:%llu},{%lx}", 120 vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); 121 122 if (!folio_test_uptodate(folio)) { 123 if (copied < len) { 124 copied = 0; 125 goto out; 126 } 127 128 folio_mark_uptodate(folio); 129 } 130 131 if (copied == 0) 132 goto out; 133 134 maybe_i_size = pos + copied; 135 136 i_size = i_size_read(&vnode->vfs_inode); 137 if (maybe_i_size > i_size) { 138 write_seqlock(&vnode->cb_lock); 139 i_size = i_size_read(&vnode->vfs_inode); 140 if (maybe_i_size > i_size) 141 afs_set_i_size(vnode, maybe_i_size); 142 write_sequnlock(&vnode->cb_lock); 143 } 144 145 if (folio_test_private(folio)) { 146 priv = (unsigned long)folio_get_private(folio); 147 f = afs_folio_dirty_from(folio, priv); 148 t = afs_folio_dirty_to(folio, priv); 149 if (from < f) 150 f = from; 151 if (to > t) 152 t = to; 153 priv = afs_folio_dirty(folio, f, t); 154 folio_change_private(folio, (void *)priv); 155 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio); 156 } else { 157 priv = afs_folio_dirty(folio, from, to); 158 folio_attach_private(folio, (void *)priv); 159 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio); 160 } 161 162 if (folio_mark_dirty(folio)) 163 _debug("dirtied %lx", folio_index(folio)); 164 165 out: 166 folio_unlock(folio); 167 folio_put(folio); 168 return copied; 169 } 170 171 /* 172 * kill all the pages in the given range 173 */ 174 static void afs_kill_pages(struct address_space *mapping, 175 loff_t start, loff_t len) 176 { 177 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 178 struct folio *folio; 179 pgoff_t index = start / PAGE_SIZE; 180 pgoff_t last = (start + len - 1) / PAGE_SIZE, next; 181 182 _enter("{%llx:%llu},%llx @%llx", 183 vnode->fid.vid, vnode->fid.vnode, len, start); 184 185 do { 186 _debug("kill %lx (to %lx)", index, last); 187 188 folio = filemap_get_folio(mapping, index); 189 if (!folio) { 190 next = index + 1; 191 continue; 192 } 193 194 next = folio_next_index(folio); 195 196 folio_clear_uptodate(folio); 197 folio_end_writeback(folio); 198 folio_lock(folio); 199 generic_error_remove_page(mapping, &folio->page); 200 folio_unlock(folio); 201 folio_put(folio); 202 203 } while (index = next, index <= last); 204 205 _leave(""); 206 } 207 208 /* 209 * Redirty all the pages in a given range. 210 */ 211 static void afs_redirty_pages(struct writeback_control *wbc, 212 struct address_space *mapping, 213 loff_t start, loff_t len) 214 { 215 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 216 struct folio *folio; 217 pgoff_t index = start / PAGE_SIZE; 218 pgoff_t last = (start + len - 1) / PAGE_SIZE, next; 219 220 _enter("{%llx:%llu},%llx @%llx", 221 vnode->fid.vid, vnode->fid.vnode, len, start); 222 223 do { 224 _debug("redirty %llx @%llx", len, start); 225 226 folio = filemap_get_folio(mapping, index); 227 if (!folio) { 228 next = index + 1; 229 continue; 230 } 231 232 next = index + folio_nr_pages(folio); 233 folio_redirty_for_writepage(wbc, folio); 234 folio_end_writeback(folio); 235 folio_put(folio); 236 } while (index = next, index <= last); 237 238 _leave(""); 239 } 240 241 /* 242 * completion of write to server 243 */ 244 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) 245 { 246 struct address_space *mapping = vnode->vfs_inode.i_mapping; 247 struct folio *folio; 248 pgoff_t end; 249 250 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 251 252 _enter("{%llx:%llu},{%x @%llx}", 253 vnode->fid.vid, vnode->fid.vnode, len, start); 254 255 rcu_read_lock(); 256 257 end = (start + len - 1) / PAGE_SIZE; 258 xas_for_each(&xas, folio, end) { 259 if (!folio_test_writeback(folio)) { 260 kdebug("bad %x @%llx page %lx %lx", 261 len, start, folio_index(folio), end); 262 ASSERT(folio_test_writeback(folio)); 263 } 264 265 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio); 266 folio_detach_private(folio); 267 folio_end_writeback(folio); 268 } 269 270 rcu_read_unlock(); 271 272 afs_prune_wb_keys(vnode); 273 _leave(""); 274 } 275 276 /* 277 * Find a key to use for the writeback. We cached the keys used to author the 278 * writes on the vnode. *_wbk will contain the last writeback key used or NULL 279 * and we need to start from there if it's set. 280 */ 281 static int afs_get_writeback_key(struct afs_vnode *vnode, 282 struct afs_wb_key **_wbk) 283 { 284 struct afs_wb_key *wbk = NULL; 285 struct list_head *p; 286 int ret = -ENOKEY, ret2; 287 288 spin_lock(&vnode->wb_lock); 289 if (*_wbk) 290 p = (*_wbk)->vnode_link.next; 291 else 292 p = vnode->wb_keys.next; 293 294 while (p != &vnode->wb_keys) { 295 wbk = list_entry(p, struct afs_wb_key, vnode_link); 296 _debug("wbk %u", key_serial(wbk->key)); 297 ret2 = key_validate(wbk->key); 298 if (ret2 == 0) { 299 refcount_inc(&wbk->usage); 300 _debug("USE WB KEY %u", key_serial(wbk->key)); 301 break; 302 } 303 304 wbk = NULL; 305 if (ret == -ENOKEY) 306 ret = ret2; 307 p = p->next; 308 } 309 310 spin_unlock(&vnode->wb_lock); 311 if (*_wbk) 312 afs_put_wb_key(*_wbk); 313 *_wbk = wbk; 314 return 0; 315 } 316 317 static void afs_store_data_success(struct afs_operation *op) 318 { 319 struct afs_vnode *vnode = op->file[0].vnode; 320 321 op->ctime = op->file[0].scb.status.mtime_client; 322 afs_vnode_commit_status(op, &op->file[0]); 323 if (op->error == 0) { 324 if (!op->store.laundering) 325 afs_pages_written_back(vnode, op->store.pos, op->store.size); 326 afs_stat_v(vnode, n_stores); 327 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); 328 } 329 } 330 331 static const struct afs_operation_ops afs_store_data_operation = { 332 .issue_afs_rpc = afs_fs_store_data, 333 .issue_yfs_rpc = yfs_fs_store_data, 334 .success = afs_store_data_success, 335 }; 336 337 /* 338 * write to a file 339 */ 340 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, 341 bool laundering) 342 { 343 struct afs_operation *op; 344 struct afs_wb_key *wbk = NULL; 345 loff_t size = iov_iter_count(iter), i_size; 346 int ret = -ENOKEY; 347 348 _enter("%s{%llx:%llu.%u},%llx,%llx", 349 vnode->volume->name, 350 vnode->fid.vid, 351 vnode->fid.vnode, 352 vnode->fid.unique, 353 size, pos); 354 355 ret = afs_get_writeback_key(vnode, &wbk); 356 if (ret) { 357 _leave(" = %d [no keys]", ret); 358 return ret; 359 } 360 361 op = afs_alloc_operation(wbk->key, vnode->volume); 362 if (IS_ERR(op)) { 363 afs_put_wb_key(wbk); 364 return -ENOMEM; 365 } 366 367 i_size = i_size_read(&vnode->vfs_inode); 368 369 afs_op_set_vnode(op, 0, vnode); 370 op->file[0].dv_delta = 1; 371 op->file[0].modification = true; 372 op->store.write_iter = iter; 373 op->store.pos = pos; 374 op->store.size = size; 375 op->store.i_size = max(pos + size, i_size); 376 op->store.laundering = laundering; 377 op->mtime = vnode->vfs_inode.i_mtime; 378 op->flags |= AFS_OPERATION_UNINTR; 379 op->ops = &afs_store_data_operation; 380 381 try_next_key: 382 afs_begin_vnode_operation(op); 383 afs_wait_for_operation(op); 384 385 switch (op->error) { 386 case -EACCES: 387 case -EPERM: 388 case -ENOKEY: 389 case -EKEYEXPIRED: 390 case -EKEYREJECTED: 391 case -EKEYREVOKED: 392 _debug("next"); 393 394 ret = afs_get_writeback_key(vnode, &wbk); 395 if (ret == 0) { 396 key_put(op->key); 397 op->key = key_get(wbk->key); 398 goto try_next_key; 399 } 400 break; 401 } 402 403 afs_put_wb_key(wbk); 404 _leave(" = %d", op->error); 405 return afs_put_operation(op); 406 } 407 408 /* 409 * Extend the region to be written back to include subsequent contiguously 410 * dirty pages if possible, but don't sleep while doing so. 411 * 412 * If this page holds new content, then we can include filler zeros in the 413 * writeback. 414 */ 415 static void afs_extend_writeback(struct address_space *mapping, 416 struct afs_vnode *vnode, 417 long *_count, 418 loff_t start, 419 loff_t max_len, 420 bool new_content, 421 unsigned int *_len) 422 { 423 struct pagevec pvec; 424 struct folio *folio; 425 unsigned long priv; 426 unsigned int psize, filler = 0; 427 unsigned int f, t; 428 loff_t len = *_len; 429 pgoff_t index = (start + len) / PAGE_SIZE; 430 bool stop = true; 431 unsigned int i; 432 433 XA_STATE(xas, &mapping->i_pages, index); 434 pagevec_init(&pvec); 435 436 do { 437 /* Firstly, we gather up a batch of contiguous dirty pages 438 * under the RCU read lock - but we can't clear the dirty flags 439 * there if any of those pages are mapped. 440 */ 441 rcu_read_lock(); 442 443 xas_for_each(&xas, folio, ULONG_MAX) { 444 stop = true; 445 if (xas_retry(&xas, folio)) 446 continue; 447 if (xa_is_value(folio)) 448 break; 449 if (folio_index(folio) != index) 450 break; 451 452 if (!folio_try_get_rcu(folio)) { 453 xas_reset(&xas); 454 continue; 455 } 456 457 /* Has the page moved or been split? */ 458 if (unlikely(folio != xas_reload(&xas))) { 459 folio_put(folio); 460 break; 461 } 462 463 if (!folio_trylock(folio)) { 464 folio_put(folio); 465 break; 466 } 467 if (!folio_test_dirty(folio) || folio_test_writeback(folio)) { 468 folio_unlock(folio); 469 folio_put(folio); 470 break; 471 } 472 473 psize = folio_size(folio); 474 priv = (unsigned long)folio_get_private(folio); 475 f = afs_folio_dirty_from(folio, priv); 476 t = afs_folio_dirty_to(folio, priv); 477 if (f != 0 && !new_content) { 478 folio_unlock(folio); 479 folio_put(folio); 480 break; 481 } 482 483 len += filler + t; 484 filler = psize - t; 485 if (len >= max_len || *_count <= 0) 486 stop = true; 487 else if (t == psize || new_content) 488 stop = false; 489 490 index += folio_nr_pages(folio); 491 if (!pagevec_add(&pvec, &folio->page)) 492 break; 493 if (stop) 494 break; 495 } 496 497 if (!stop) 498 xas_pause(&xas); 499 rcu_read_unlock(); 500 501 /* Now, if we obtained any pages, we can shift them to being 502 * writable and mark them for caching. 503 */ 504 if (!pagevec_count(&pvec)) 505 break; 506 507 for (i = 0; i < pagevec_count(&pvec); i++) { 508 folio = page_folio(pvec.pages[i]); 509 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio); 510 511 if (!folio_clear_dirty_for_io(folio)) 512 BUG(); 513 if (folio_start_writeback(folio)) 514 BUG(); 515 516 *_count -= folio_nr_pages(folio); 517 folio_unlock(folio); 518 } 519 520 pagevec_release(&pvec); 521 cond_resched(); 522 } while (!stop); 523 524 *_len = len; 525 } 526 527 /* 528 * Synchronously write back the locked page and any subsequent non-locked dirty 529 * pages. 530 */ 531 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping, 532 struct writeback_control *wbc, 533 struct folio *folio, 534 loff_t start, loff_t end) 535 { 536 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 537 struct iov_iter iter; 538 unsigned long priv; 539 unsigned int offset, to, len, max_len; 540 loff_t i_size = i_size_read(&vnode->vfs_inode); 541 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 542 long count = wbc->nr_to_write; 543 int ret; 544 545 _enter(",%lx,%llx-%llx", folio_index(folio), start, end); 546 547 if (folio_start_writeback(folio)) 548 BUG(); 549 550 count -= folio_nr_pages(folio); 551 552 /* Find all consecutive lockable dirty pages that have contiguous 553 * written regions, stopping when we find a page that is not 554 * immediately lockable, is not dirty or is missing, or we reach the 555 * end of the range. 556 */ 557 priv = (unsigned long)folio_get_private(folio); 558 offset = afs_folio_dirty_from(folio, priv); 559 to = afs_folio_dirty_to(folio, priv); 560 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio); 561 562 len = to - offset; 563 start += offset; 564 if (start < i_size) { 565 /* Trim the write to the EOF; the extra data is ignored. Also 566 * put an upper limit on the size of a single storedata op. 567 */ 568 max_len = 65536 * 4096; 569 max_len = min_t(unsigned long long, max_len, end - start + 1); 570 max_len = min_t(unsigned long long, max_len, i_size - start); 571 572 if (len < max_len && 573 (to == folio_size(folio) || new_content)) 574 afs_extend_writeback(mapping, vnode, &count, 575 start, max_len, new_content, &len); 576 len = min_t(loff_t, len, max_len); 577 } 578 579 /* We now have a contiguous set of dirty pages, each with writeback 580 * set; the first page is still locked at this point, but all the rest 581 * have been unlocked. 582 */ 583 folio_unlock(folio); 584 585 if (start < i_size) { 586 _debug("write back %x @%llx [%llx]", len, start, i_size); 587 588 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len); 589 ret = afs_store_data(vnode, &iter, start, false); 590 } else { 591 _debug("write discard %x @%llx [%llx]", len, start, i_size); 592 593 /* The dirty region was entirely beyond the EOF. */ 594 afs_pages_written_back(vnode, start, len); 595 ret = 0; 596 } 597 598 switch (ret) { 599 case 0: 600 wbc->nr_to_write = count; 601 ret = len; 602 break; 603 604 default: 605 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); 606 fallthrough; 607 case -EACCES: 608 case -EPERM: 609 case -ENOKEY: 610 case -EKEYEXPIRED: 611 case -EKEYREJECTED: 612 case -EKEYREVOKED: 613 afs_redirty_pages(wbc, mapping, start, len); 614 mapping_set_error(mapping, ret); 615 break; 616 617 case -EDQUOT: 618 case -ENOSPC: 619 afs_redirty_pages(wbc, mapping, start, len); 620 mapping_set_error(mapping, -ENOSPC); 621 break; 622 623 case -EROFS: 624 case -EIO: 625 case -EREMOTEIO: 626 case -EFBIG: 627 case -ENOENT: 628 case -ENOMEDIUM: 629 case -ENXIO: 630 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); 631 afs_kill_pages(mapping, start, len); 632 mapping_set_error(mapping, ret); 633 break; 634 } 635 636 _leave(" = %d", ret); 637 return ret; 638 } 639 640 /* 641 * write a page back to the server 642 * - the caller locked the page for us 643 */ 644 int afs_writepage(struct page *subpage, struct writeback_control *wbc) 645 { 646 struct folio *folio = page_folio(subpage); 647 ssize_t ret; 648 loff_t start; 649 650 _enter("{%lx},", folio_index(folio)); 651 652 start = folio_index(folio) * PAGE_SIZE; 653 ret = afs_write_back_from_locked_folio(folio_mapping(folio), wbc, 654 folio, start, LLONG_MAX - start); 655 if (ret < 0) { 656 _leave(" = %zd", ret); 657 return ret; 658 } 659 660 _leave(" = 0"); 661 return 0; 662 } 663 664 /* 665 * write a region of pages back to the server 666 */ 667 static int afs_writepages_region(struct address_space *mapping, 668 struct writeback_control *wbc, 669 loff_t start, loff_t end, loff_t *_next) 670 { 671 struct folio *folio; 672 struct page *head_page; 673 ssize_t ret; 674 int n; 675 676 _enter("%llx,%llx,", start, end); 677 678 do { 679 pgoff_t index = start / PAGE_SIZE; 680 681 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE, 682 PAGECACHE_TAG_DIRTY, 1, &head_page); 683 if (!n) 684 break; 685 686 folio = page_folio(head_page); 687 start = folio_pos(folio); /* May regress with THPs */ 688 689 _debug("wback %lx", folio_index(folio)); 690 691 /* At this point we hold neither the i_pages lock nor the 692 * page lock: the page may be truncated or invalidated 693 * (changing page->mapping to NULL), or even swizzled 694 * back from swapper_space to tmpfs file mapping 695 */ 696 if (wbc->sync_mode != WB_SYNC_NONE) { 697 ret = folio_lock_killable(folio); 698 if (ret < 0) { 699 folio_put(folio); 700 return ret; 701 } 702 } else { 703 if (!folio_trylock(folio)) { 704 folio_put(folio); 705 return 0; 706 } 707 } 708 709 if (folio_mapping(folio) != mapping || 710 !folio_test_dirty(folio)) { 711 start += folio_size(folio); 712 folio_unlock(folio); 713 folio_put(folio); 714 continue; 715 } 716 717 if (folio_test_writeback(folio)) { 718 folio_unlock(folio); 719 if (wbc->sync_mode != WB_SYNC_NONE) 720 folio_wait_writeback(folio); 721 folio_put(folio); 722 continue; 723 } 724 725 if (!folio_clear_dirty_for_io(folio)) 726 BUG(); 727 ret = afs_write_back_from_locked_folio(mapping, wbc, folio, start, end); 728 folio_put(folio); 729 if (ret < 0) { 730 _leave(" = %zd", ret); 731 return ret; 732 } 733 734 start += ret; 735 736 cond_resched(); 737 } while (wbc->nr_to_write > 0); 738 739 *_next = start; 740 _leave(" = 0 [%llx]", *_next); 741 return 0; 742 } 743 744 /* 745 * write some of the pending data back to the server 746 */ 747 int afs_writepages(struct address_space *mapping, 748 struct writeback_control *wbc) 749 { 750 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 751 loff_t start, next; 752 int ret; 753 754 _enter(""); 755 756 /* We have to be careful as we can end up racing with setattr() 757 * truncating the pagecache since the caller doesn't take a lock here 758 * to prevent it. 759 */ 760 if (wbc->sync_mode == WB_SYNC_ALL) 761 down_read(&vnode->validate_lock); 762 else if (!down_read_trylock(&vnode->validate_lock)) 763 return 0; 764 765 if (wbc->range_cyclic) { 766 start = mapping->writeback_index * PAGE_SIZE; 767 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next); 768 if (ret == 0) { 769 mapping->writeback_index = next / PAGE_SIZE; 770 if (start > 0 && wbc->nr_to_write > 0) { 771 ret = afs_writepages_region(mapping, wbc, 0, 772 start, &next); 773 if (ret == 0) 774 mapping->writeback_index = 775 next / PAGE_SIZE; 776 } 777 } 778 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 779 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next); 780 if (wbc->nr_to_write > 0 && ret == 0) 781 mapping->writeback_index = next / PAGE_SIZE; 782 } else { 783 ret = afs_writepages_region(mapping, wbc, 784 wbc->range_start, wbc->range_end, &next); 785 } 786 787 up_read(&vnode->validate_lock); 788 _leave(" = %d", ret); 789 return ret; 790 } 791 792 /* 793 * write to an AFS file 794 */ 795 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) 796 { 797 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 798 struct afs_file *af = iocb->ki_filp->private_data; 799 ssize_t result; 800 size_t count = iov_iter_count(from); 801 802 _enter("{%llx:%llu},{%zu},", 803 vnode->fid.vid, vnode->fid.vnode, count); 804 805 if (IS_SWAPFILE(&vnode->vfs_inode)) { 806 printk(KERN_INFO 807 "AFS: Attempt to write to active swap file!\n"); 808 return -EBUSY; 809 } 810 811 if (!count) 812 return 0; 813 814 result = afs_validate(vnode, af->key); 815 if (result < 0) 816 return result; 817 818 result = generic_file_write_iter(iocb, from); 819 820 _leave(" = %zd", result); 821 return result; 822 } 823 824 /* 825 * flush any dirty pages for this process, and check for write errors. 826 * - the return status from this call provides a reliable indication of 827 * whether any write errors occurred for this process. 828 */ 829 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 830 { 831 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 832 struct afs_file *af = file->private_data; 833 int ret; 834 835 _enter("{%llx:%llu},{n=%pD},%d", 836 vnode->fid.vid, vnode->fid.vnode, file, 837 datasync); 838 839 ret = afs_validate(vnode, af->key); 840 if (ret < 0) 841 return ret; 842 843 return file_write_and_wait_range(file, start, end); 844 } 845 846 /* 847 * notification that a previously read-only page is about to become writable 848 * - if it returns an error, the caller will deliver a bus error signal 849 */ 850 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) 851 { 852 struct folio *folio = page_folio(vmf->page); 853 struct file *file = vmf->vma->vm_file; 854 struct inode *inode = file_inode(file); 855 struct afs_vnode *vnode = AFS_FS_I(inode); 856 struct afs_file *af = file->private_data; 857 unsigned long priv; 858 vm_fault_t ret = VM_FAULT_RETRY; 859 860 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); 861 862 afs_validate(vnode, af->key); 863 864 sb_start_pagefault(inode->i_sb); 865 866 /* Wait for the page to be written to the cache before we allow it to 867 * be modified. We then assume the entire page will need writing back. 868 */ 869 #ifdef CONFIG_AFS_FSCACHE 870 if (folio_test_fscache(folio) && 871 folio_wait_fscache_killable(folio) < 0) 872 goto out; 873 #endif 874 875 if (folio_wait_writeback_killable(folio)) 876 goto out; 877 878 if (folio_lock_killable(folio) < 0) 879 goto out; 880 881 /* We mustn't change folio->private until writeback is complete as that 882 * details the portion of the page we need to write back and we might 883 * need to redirty the page if there's a problem. 884 */ 885 if (folio_wait_writeback_killable(folio) < 0) { 886 folio_unlock(folio); 887 goto out; 888 } 889 890 priv = afs_folio_dirty(folio, 0, folio_size(folio)); 891 priv = afs_folio_dirty_mmapped(priv); 892 if (folio_test_private(folio)) { 893 folio_change_private(folio, (void *)priv); 894 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio); 895 } else { 896 folio_attach_private(folio, (void *)priv); 897 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio); 898 } 899 file_update_time(file); 900 901 ret = VM_FAULT_LOCKED; 902 out: 903 sb_end_pagefault(inode->i_sb); 904 return ret; 905 } 906 907 /* 908 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. 909 */ 910 void afs_prune_wb_keys(struct afs_vnode *vnode) 911 { 912 LIST_HEAD(graveyard); 913 struct afs_wb_key *wbk, *tmp; 914 915 /* Discard unused keys */ 916 spin_lock(&vnode->wb_lock); 917 918 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && 919 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { 920 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { 921 if (refcount_read(&wbk->usage) == 1) 922 list_move(&wbk->vnode_link, &graveyard); 923 } 924 } 925 926 spin_unlock(&vnode->wb_lock); 927 928 while (!list_empty(&graveyard)) { 929 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); 930 list_del(&wbk->vnode_link); 931 afs_put_wb_key(wbk); 932 } 933 } 934 935 /* 936 * Clean up a page during invalidation. 937 */ 938 int afs_launder_page(struct page *subpage) 939 { 940 struct folio *folio = page_folio(subpage); 941 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); 942 struct iov_iter iter; 943 struct bio_vec bv[1]; 944 unsigned long priv; 945 unsigned int f, t; 946 int ret = 0; 947 948 _enter("{%lx}", folio_index(folio)); 949 950 priv = (unsigned long)folio_get_private(folio); 951 if (folio_clear_dirty_for_io(folio)) { 952 f = 0; 953 t = folio_size(folio); 954 if (folio_test_private(folio)) { 955 f = afs_folio_dirty_from(folio, priv); 956 t = afs_folio_dirty_to(folio, priv); 957 } 958 959 bv[0].bv_page = &folio->page; 960 bv[0].bv_offset = f; 961 bv[0].bv_len = t - f; 962 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len); 963 964 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio); 965 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true); 966 } 967 968 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio); 969 folio_detach_private(folio); 970 folio_wait_fscache(folio); 971 return ret; 972 } 973