xref: /linux/fs/afs/write.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /* handling of writes to regular files and writing back to the server
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/backing-dev.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17 #include <linux/pagevec.h>
18 #include "internal.h"
19 
20 /*
21  * mark a page as having been made dirty and thus needing writeback
22  */
23 int afs_set_page_dirty(struct page *page)
24 {
25 	_enter("");
26 	return __set_page_dirty_nobuffers(page);
27 }
28 
29 /*
30  * partly or wholly fill a page that's under preparation for writing
31  */
32 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
33 			 loff_t pos, unsigned int len, struct page *page)
34 {
35 	struct afs_read *req;
36 	int ret;
37 
38 	_enter(",,%llu", (unsigned long long)pos);
39 
40 	req = kzalloc(sizeof(struct afs_read) + sizeof(struct page *),
41 		      GFP_KERNEL);
42 	if (!req)
43 		return -ENOMEM;
44 
45 	atomic_set(&req->usage, 1);
46 	req->pos = pos;
47 	req->len = len;
48 	req->nr_pages = 1;
49 	req->pages[0] = page;
50 	get_page(page);
51 
52 	ret = afs_fetch_data(vnode, key, req);
53 	afs_put_read(req);
54 	if (ret < 0) {
55 		if (ret == -ENOENT) {
56 			_debug("got NOENT from server"
57 			       " - marking file deleted and stale");
58 			set_bit(AFS_VNODE_DELETED, &vnode->flags);
59 			ret = -ESTALE;
60 		}
61 	}
62 
63 	_leave(" = %d", ret);
64 	return ret;
65 }
66 
67 /*
68  * prepare to perform part of a write to a page
69  */
70 int afs_write_begin(struct file *file, struct address_space *mapping,
71 		    loff_t pos, unsigned len, unsigned flags,
72 		    struct page **pagep, void **fsdata)
73 {
74 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
75 	struct page *page;
76 	struct key *key = afs_file_key(file);
77 	unsigned long priv;
78 	unsigned f, from = pos & (PAGE_SIZE - 1);
79 	unsigned t, to = from + len;
80 	pgoff_t index = pos >> PAGE_SHIFT;
81 	int ret;
82 
83 	_enter("{%x:%u},{%lx},%u,%u",
84 	       vnode->fid.vid, vnode->fid.vnode, index, from, to);
85 
86 	/* We want to store information about how much of a page is altered in
87 	 * page->private.
88 	 */
89 	BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
90 
91 	page = grab_cache_page_write_begin(mapping, index, flags);
92 	if (!page)
93 		return -ENOMEM;
94 
95 	if (!PageUptodate(page) && len != PAGE_SIZE) {
96 		ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
97 		if (ret < 0) {
98 			unlock_page(page);
99 			put_page(page);
100 			_leave(" = %d [prep]", ret);
101 			return ret;
102 		}
103 		SetPageUptodate(page);
104 	}
105 
106 	/* page won't leak in error case: it eventually gets cleaned off LRU */
107 	*pagep = page;
108 
109 try_again:
110 	/* See if this page is already partially written in a way that we can
111 	 * merge the new write with.
112 	 */
113 	t = f = 0;
114 	if (PagePrivate(page)) {
115 		priv = page_private(page);
116 		f = priv & AFS_PRIV_MAX;
117 		t = priv >> AFS_PRIV_SHIFT;
118 		ASSERTCMP(f, <=, t);
119 	}
120 
121 	if (f != t) {
122 		if (PageWriteback(page)) {
123 			trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
124 					     page->index, priv);
125 			goto flush_conflicting_write;
126 		}
127 		if (to < f || from > t)
128 			goto flush_conflicting_write;
129 		if (from < f)
130 			f = from;
131 		if (to > t)
132 			t = to;
133 	} else {
134 		f = from;
135 		t = to;
136 	}
137 
138 	priv = (unsigned long)t << AFS_PRIV_SHIFT;
139 	priv |= f;
140 	trace_afs_page_dirty(vnode, tracepoint_string("begin"),
141 			     page->index, priv);
142 	SetPagePrivate(page);
143 	set_page_private(page, priv);
144 	_leave(" = 0");
145 	return 0;
146 
147 	/* The previous write and this write aren't adjacent or overlapping, so
148 	 * flush the page out.
149 	 */
150 flush_conflicting_write:
151 	_debug("flush conflict");
152 	ret = write_one_page(page);
153 	if (ret < 0) {
154 		_leave(" = %d", ret);
155 		return ret;
156 	}
157 
158 	ret = lock_page_killable(page);
159 	if (ret < 0) {
160 		_leave(" = %d", ret);
161 		return ret;
162 	}
163 	goto try_again;
164 }
165 
166 /*
167  * finalise part of a write to a page
168  */
169 int afs_write_end(struct file *file, struct address_space *mapping,
170 		  loff_t pos, unsigned len, unsigned copied,
171 		  struct page *page, void *fsdata)
172 {
173 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
174 	struct key *key = afs_file_key(file);
175 	loff_t i_size, maybe_i_size;
176 	int ret;
177 
178 	_enter("{%x:%u},{%lx}",
179 	       vnode->fid.vid, vnode->fid.vnode, page->index);
180 
181 	maybe_i_size = pos + copied;
182 
183 	i_size = i_size_read(&vnode->vfs_inode);
184 	if (maybe_i_size > i_size) {
185 		spin_lock(&vnode->wb_lock);
186 		i_size = i_size_read(&vnode->vfs_inode);
187 		if (maybe_i_size > i_size)
188 			i_size_write(&vnode->vfs_inode, maybe_i_size);
189 		spin_unlock(&vnode->wb_lock);
190 	}
191 
192 	if (!PageUptodate(page)) {
193 		if (copied < len) {
194 			/* Try and load any missing data from the server.  The
195 			 * unmarshalling routine will take care of clearing any
196 			 * bits that are beyond the EOF.
197 			 */
198 			ret = afs_fill_page(vnode, key, pos + copied,
199 					    len - copied, page);
200 			if (ret < 0)
201 				goto out;
202 		}
203 		SetPageUptodate(page);
204 	}
205 
206 	set_page_dirty(page);
207 	if (PageDirty(page))
208 		_debug("dirtied");
209 	ret = copied;
210 
211 out:
212 	unlock_page(page);
213 	put_page(page);
214 	return ret;
215 }
216 
217 /*
218  * kill all the pages in the given range
219  */
220 static void afs_kill_pages(struct address_space *mapping,
221 			   pgoff_t first, pgoff_t last)
222 {
223 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
224 	struct pagevec pv;
225 	unsigned count, loop;
226 
227 	_enter("{%x:%u},%lx-%lx",
228 	       vnode->fid.vid, vnode->fid.vnode, first, last);
229 
230 	pagevec_init(&pv);
231 
232 	do {
233 		_debug("kill %lx-%lx", first, last);
234 
235 		count = last - first + 1;
236 		if (count > PAGEVEC_SIZE)
237 			count = PAGEVEC_SIZE;
238 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
239 		ASSERTCMP(pv.nr, ==, count);
240 
241 		for (loop = 0; loop < count; loop++) {
242 			struct page *page = pv.pages[loop];
243 			ClearPageUptodate(page);
244 			SetPageError(page);
245 			end_page_writeback(page);
246 			if (page->index >= first)
247 				first = page->index + 1;
248 			lock_page(page);
249 			generic_error_remove_page(mapping, page);
250 		}
251 
252 		__pagevec_release(&pv);
253 	} while (first <= last);
254 
255 	_leave("");
256 }
257 
258 /*
259  * Redirty all the pages in a given range.
260  */
261 static void afs_redirty_pages(struct writeback_control *wbc,
262 			      struct address_space *mapping,
263 			      pgoff_t first, pgoff_t last)
264 {
265 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
266 	struct pagevec pv;
267 	unsigned count, loop;
268 
269 	_enter("{%x:%u},%lx-%lx",
270 	       vnode->fid.vid, vnode->fid.vnode, first, last);
271 
272 	pagevec_init(&pv);
273 
274 	do {
275 		_debug("redirty %lx-%lx", first, last);
276 
277 		count = last - first + 1;
278 		if (count > PAGEVEC_SIZE)
279 			count = PAGEVEC_SIZE;
280 		pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
281 		ASSERTCMP(pv.nr, ==, count);
282 
283 		for (loop = 0; loop < count; loop++) {
284 			struct page *page = pv.pages[loop];
285 
286 			redirty_page_for_writepage(wbc, page);
287 			end_page_writeback(page);
288 			if (page->index >= first)
289 				first = page->index + 1;
290 		}
291 
292 		__pagevec_release(&pv);
293 	} while (first <= last);
294 
295 	_leave("");
296 }
297 
298 /*
299  * write to a file
300  */
301 static int afs_store_data(struct address_space *mapping,
302 			  pgoff_t first, pgoff_t last,
303 			  unsigned offset, unsigned to)
304 {
305 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
306 	struct afs_fs_cursor fc;
307 	struct afs_wb_key *wbk = NULL;
308 	struct list_head *p;
309 	int ret = -ENOKEY, ret2;
310 
311 	_enter("%s{%x:%u.%u},%lx,%lx,%x,%x",
312 	       vnode->volume->name,
313 	       vnode->fid.vid,
314 	       vnode->fid.vnode,
315 	       vnode->fid.unique,
316 	       first, last, offset, to);
317 
318 	spin_lock(&vnode->wb_lock);
319 	p = vnode->wb_keys.next;
320 
321 	/* Iterate through the list looking for a valid key to use. */
322 try_next_key:
323 	while (p != &vnode->wb_keys) {
324 		wbk = list_entry(p, struct afs_wb_key, vnode_link);
325 		_debug("wbk %u", key_serial(wbk->key));
326 		ret2 = key_validate(wbk->key);
327 		if (ret2 == 0)
328 			goto found_key;
329 		if (ret == -ENOKEY)
330 			ret = ret2;
331 		p = p->next;
332 	}
333 
334 	spin_unlock(&vnode->wb_lock);
335 	afs_put_wb_key(wbk);
336 	_leave(" = %d [no keys]", ret);
337 	return ret;
338 
339 found_key:
340 	refcount_inc(&wbk->usage);
341 	spin_unlock(&vnode->wb_lock);
342 
343 	_debug("USE WB KEY %u", key_serial(wbk->key));
344 
345 	ret = -ERESTARTSYS;
346 	if (afs_begin_vnode_operation(&fc, vnode, wbk->key)) {
347 		while (afs_select_fileserver(&fc)) {
348 			fc.cb_break = vnode->cb_break + vnode->cb_s_break;
349 			afs_fs_store_data(&fc, mapping, first, last, offset, to);
350 		}
351 
352 		afs_check_for_remote_deletion(&fc, fc.vnode);
353 		afs_vnode_commit_status(&fc, vnode, fc.cb_break);
354 		ret = afs_end_vnode_operation(&fc);
355 	}
356 
357 	switch (ret) {
358 	case -EACCES:
359 	case -EPERM:
360 	case -ENOKEY:
361 	case -EKEYEXPIRED:
362 	case -EKEYREJECTED:
363 	case -EKEYREVOKED:
364 		_debug("next");
365 		spin_lock(&vnode->wb_lock);
366 		p = wbk->vnode_link.next;
367 		afs_put_wb_key(wbk);
368 		goto try_next_key;
369 	}
370 
371 	afs_put_wb_key(wbk);
372 	_leave(" = %d", ret);
373 	return ret;
374 }
375 
376 /*
377  * Synchronously write back the locked page and any subsequent non-locked dirty
378  * pages.
379  */
380 static int afs_write_back_from_locked_page(struct address_space *mapping,
381 					   struct writeback_control *wbc,
382 					   struct page *primary_page,
383 					   pgoff_t final_page)
384 {
385 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
386 	struct page *pages[8], *page;
387 	unsigned long count, priv;
388 	unsigned n, offset, to, f, t;
389 	pgoff_t start, first, last;
390 	int loop, ret;
391 
392 	_enter(",%lx", primary_page->index);
393 
394 	count = 1;
395 	if (test_set_page_writeback(primary_page))
396 		BUG();
397 
398 	/* Find all consecutive lockable dirty pages that have contiguous
399 	 * written regions, stopping when we find a page that is not
400 	 * immediately lockable, is not dirty or is missing, or we reach the
401 	 * end of the range.
402 	 */
403 	start = primary_page->index;
404 	priv = page_private(primary_page);
405 	offset = priv & AFS_PRIV_MAX;
406 	to = priv >> AFS_PRIV_SHIFT;
407 	trace_afs_page_dirty(vnode, tracepoint_string("store"),
408 			     primary_page->index, priv);
409 
410 	WARN_ON(offset == to);
411 	if (offset == to)
412 		trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
413 				     primary_page->index, priv);
414 
415 	if (start >= final_page || to < PAGE_SIZE)
416 		goto no_more;
417 
418 	start++;
419 	do {
420 		_debug("more %lx [%lx]", start, count);
421 		n = final_page - start + 1;
422 		if (n > ARRAY_SIZE(pages))
423 			n = ARRAY_SIZE(pages);
424 		n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
425 		_debug("fgpc %u", n);
426 		if (n == 0)
427 			goto no_more;
428 		if (pages[0]->index != start) {
429 			do {
430 				put_page(pages[--n]);
431 			} while (n > 0);
432 			goto no_more;
433 		}
434 
435 		for (loop = 0; loop < n; loop++) {
436 			if (to != PAGE_SIZE)
437 				break;
438 			page = pages[loop];
439 			if (page->index > final_page)
440 				break;
441 			if (!trylock_page(page))
442 				break;
443 			if (!PageDirty(page) || PageWriteback(page)) {
444 				unlock_page(page);
445 				break;
446 			}
447 
448 			priv = page_private(page);
449 			f = priv & AFS_PRIV_MAX;
450 			t = priv >> AFS_PRIV_SHIFT;
451 			if (f != 0) {
452 				unlock_page(page);
453 				break;
454 			}
455 			to = t;
456 
457 			trace_afs_page_dirty(vnode, tracepoint_string("store+"),
458 					     page->index, priv);
459 
460 			if (!clear_page_dirty_for_io(page))
461 				BUG();
462 			if (test_set_page_writeback(page))
463 				BUG();
464 			unlock_page(page);
465 			put_page(page);
466 		}
467 		count += loop;
468 		if (loop < n) {
469 			for (; loop < n; loop++)
470 				put_page(pages[loop]);
471 			goto no_more;
472 		}
473 
474 		start += loop;
475 	} while (start <= final_page && count < 65536);
476 
477 no_more:
478 	/* We now have a contiguous set of dirty pages, each with writeback
479 	 * set; the first page is still locked at this point, but all the rest
480 	 * have been unlocked.
481 	 */
482 	unlock_page(primary_page);
483 
484 	first = primary_page->index;
485 	last = first + count - 1;
486 
487 	_debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
488 
489 	ret = afs_store_data(mapping, first, last, offset, to);
490 	switch (ret) {
491 	case 0:
492 		ret = count;
493 		break;
494 
495 	default:
496 		pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
497 		/* Fall through */
498 	case -EACCES:
499 	case -EPERM:
500 	case -ENOKEY:
501 	case -EKEYEXPIRED:
502 	case -EKEYREJECTED:
503 	case -EKEYREVOKED:
504 		afs_redirty_pages(wbc, mapping, first, last);
505 		mapping_set_error(mapping, ret);
506 		break;
507 
508 	case -EDQUOT:
509 	case -ENOSPC:
510 		afs_redirty_pages(wbc, mapping, first, last);
511 		mapping_set_error(mapping, -ENOSPC);
512 		break;
513 
514 	case -EROFS:
515 	case -EIO:
516 	case -EREMOTEIO:
517 	case -EFBIG:
518 	case -ENOENT:
519 	case -ENOMEDIUM:
520 	case -ENXIO:
521 		afs_kill_pages(mapping, first, last);
522 		mapping_set_error(mapping, ret);
523 		break;
524 	}
525 
526 	_leave(" = %d", ret);
527 	return ret;
528 }
529 
530 /*
531  * write a page back to the server
532  * - the caller locked the page for us
533  */
534 int afs_writepage(struct page *page, struct writeback_control *wbc)
535 {
536 	int ret;
537 
538 	_enter("{%lx},", page->index);
539 
540 	ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
541 					      wbc->range_end >> PAGE_SHIFT);
542 	if (ret < 0) {
543 		_leave(" = %d", ret);
544 		return 0;
545 	}
546 
547 	wbc->nr_to_write -= ret;
548 
549 	_leave(" = 0");
550 	return 0;
551 }
552 
553 /*
554  * write a region of pages back to the server
555  */
556 static int afs_writepages_region(struct address_space *mapping,
557 				 struct writeback_control *wbc,
558 				 pgoff_t index, pgoff_t end, pgoff_t *_next)
559 {
560 	struct page *page;
561 	int ret, n;
562 
563 	_enter(",,%lx,%lx,", index, end);
564 
565 	do {
566 		n = find_get_pages_range_tag(mapping, &index, end,
567 					PAGECACHE_TAG_DIRTY, 1, &page);
568 		if (!n)
569 			break;
570 
571 		_debug("wback %lx", page->index);
572 
573 		/* at this point we hold neither mapping->tree_lock nor lock on
574 		 * the page itself: the page may be truncated or invalidated
575 		 * (changing page->mapping to NULL), or even swizzled back from
576 		 * swapper_space to tmpfs file mapping
577 		 */
578 		ret = lock_page_killable(page);
579 		if (ret < 0) {
580 			put_page(page);
581 			_leave(" = %d", ret);
582 			return ret;
583 		}
584 
585 		if (page->mapping != mapping || !PageDirty(page)) {
586 			unlock_page(page);
587 			put_page(page);
588 			continue;
589 		}
590 
591 		if (PageWriteback(page)) {
592 			unlock_page(page);
593 			if (wbc->sync_mode != WB_SYNC_NONE)
594 				wait_on_page_writeback(page);
595 			put_page(page);
596 			continue;
597 		}
598 
599 		if (!clear_page_dirty_for_io(page))
600 			BUG();
601 		ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
602 		put_page(page);
603 		if (ret < 0) {
604 			_leave(" = %d", ret);
605 			return ret;
606 		}
607 
608 		wbc->nr_to_write -= ret;
609 
610 		cond_resched();
611 	} while (index < end && wbc->nr_to_write > 0);
612 
613 	*_next = index;
614 	_leave(" = 0 [%lx]", *_next);
615 	return 0;
616 }
617 
618 /*
619  * write some of the pending data back to the server
620  */
621 int afs_writepages(struct address_space *mapping,
622 		   struct writeback_control *wbc)
623 {
624 	pgoff_t start, end, next;
625 	int ret;
626 
627 	_enter("");
628 
629 	if (wbc->range_cyclic) {
630 		start = mapping->writeback_index;
631 		end = -1;
632 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
633 		if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
634 			ret = afs_writepages_region(mapping, wbc, 0, start,
635 						    &next);
636 		mapping->writeback_index = next;
637 	} else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
638 		end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
639 		ret = afs_writepages_region(mapping, wbc, 0, end, &next);
640 		if (wbc->nr_to_write > 0)
641 			mapping->writeback_index = next;
642 	} else {
643 		start = wbc->range_start >> PAGE_SHIFT;
644 		end = wbc->range_end >> PAGE_SHIFT;
645 		ret = afs_writepages_region(mapping, wbc, start, end, &next);
646 	}
647 
648 	_leave(" = %d", ret);
649 	return ret;
650 }
651 
652 /*
653  * completion of write to server
654  */
655 void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
656 {
657 	struct pagevec pv;
658 	unsigned long priv;
659 	unsigned count, loop;
660 	pgoff_t first = call->first, last = call->last;
661 
662 	_enter("{%x:%u},{%lx-%lx}",
663 	       vnode->fid.vid, vnode->fid.vnode, first, last);
664 
665 	pagevec_init(&pv);
666 
667 	do {
668 		_debug("done %lx-%lx", first, last);
669 
670 		count = last - first + 1;
671 		if (count > PAGEVEC_SIZE)
672 			count = PAGEVEC_SIZE;
673 		pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
674 					      first, count, pv.pages);
675 		ASSERTCMP(pv.nr, ==, count);
676 
677 		for (loop = 0; loop < count; loop++) {
678 			priv = page_private(pv.pages[loop]);
679 			trace_afs_page_dirty(vnode, tracepoint_string("clear"),
680 					     pv.pages[loop]->index, priv);
681 			set_page_private(pv.pages[loop], 0);
682 			end_page_writeback(pv.pages[loop]);
683 		}
684 		first += count;
685 		__pagevec_release(&pv);
686 	} while (first <= last);
687 
688 	afs_prune_wb_keys(vnode);
689 	_leave("");
690 }
691 
692 /*
693  * write to an AFS file
694  */
695 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
696 {
697 	struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
698 	ssize_t result;
699 	size_t count = iov_iter_count(from);
700 
701 	_enter("{%x.%u},{%zu},",
702 	       vnode->fid.vid, vnode->fid.vnode, count);
703 
704 	if (IS_SWAPFILE(&vnode->vfs_inode)) {
705 		printk(KERN_INFO
706 		       "AFS: Attempt to write to active swap file!\n");
707 		return -EBUSY;
708 	}
709 
710 	if (!count)
711 		return 0;
712 
713 	result = generic_file_write_iter(iocb, from);
714 
715 	_leave(" = %zd", result);
716 	return result;
717 }
718 
719 /*
720  * flush any dirty pages for this process, and check for write errors.
721  * - the return status from this call provides a reliable indication of
722  *   whether any write errors occurred for this process.
723  */
724 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
725 {
726 	struct inode *inode = file_inode(file);
727 	struct afs_vnode *vnode = AFS_FS_I(inode);
728 
729 	_enter("{%x:%u},{n=%pD},%d",
730 	       vnode->fid.vid, vnode->fid.vnode, file,
731 	       datasync);
732 
733 	return file_write_and_wait_range(file, start, end);
734 }
735 
736 /*
737  * Flush out all outstanding writes on a file opened for writing when it is
738  * closed.
739  */
740 int afs_flush(struct file *file, fl_owner_t id)
741 {
742 	_enter("");
743 
744 	if ((file->f_mode & FMODE_WRITE) == 0)
745 		return 0;
746 
747 	return vfs_fsync(file, 0);
748 }
749 
750 /*
751  * notification that a previously read-only page is about to become writable
752  * - if it returns an error, the caller will deliver a bus error signal
753  */
754 int afs_page_mkwrite(struct vm_fault *vmf)
755 {
756 	struct file *file = vmf->vma->vm_file;
757 	struct inode *inode = file_inode(file);
758 	struct afs_vnode *vnode = AFS_FS_I(inode);
759 	unsigned long priv;
760 
761 	_enter("{{%x:%u}},{%lx}",
762 	       vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
763 
764 	sb_start_pagefault(inode->i_sb);
765 
766 	/* Wait for the page to be written to the cache before we allow it to
767 	 * be modified.  We then assume the entire page will need writing back.
768 	 */
769 #ifdef CONFIG_AFS_FSCACHE
770 	fscache_wait_on_page_write(vnode->cache, vmf->page);
771 #endif
772 
773 	if (PageWriteback(vmf->page) &&
774 	    wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
775 		return VM_FAULT_RETRY;
776 
777 	if (lock_page_killable(vmf->page) < 0)
778 		return VM_FAULT_RETRY;
779 
780 	/* We mustn't change page->private until writeback is complete as that
781 	 * details the portion of the page we need to write back and we might
782 	 * need to redirty the page if there's a problem.
783 	 */
784 	wait_on_page_writeback(vmf->page);
785 
786 	priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
787 	priv |= 0; /* From */
788 	trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
789 			     vmf->page->index, priv);
790 	SetPagePrivate(vmf->page);
791 	set_page_private(vmf->page, priv);
792 
793 	sb_end_pagefault(inode->i_sb);
794 	return VM_FAULT_LOCKED;
795 }
796 
797 /*
798  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
799  */
800 void afs_prune_wb_keys(struct afs_vnode *vnode)
801 {
802 	LIST_HEAD(graveyard);
803 	struct afs_wb_key *wbk, *tmp;
804 
805 	/* Discard unused keys */
806 	spin_lock(&vnode->wb_lock);
807 
808 	if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
809 	    !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
810 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
811 			if (refcount_read(&wbk->usage) == 1)
812 				list_move(&wbk->vnode_link, &graveyard);
813 		}
814 	}
815 
816 	spin_unlock(&vnode->wb_lock);
817 
818 	while (!list_empty(&graveyard)) {
819 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
820 		list_del(&wbk->vnode_link);
821 		afs_put_wb_key(wbk);
822 	}
823 }
824 
825 /*
826  * Clean up a page during invalidation.
827  */
828 int afs_launder_page(struct page *page)
829 {
830 	struct address_space *mapping = page->mapping;
831 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
832 	unsigned long priv;
833 	unsigned int f, t;
834 	int ret = 0;
835 
836 	_enter("{%lx}", page->index);
837 
838 	priv = page_private(page);
839 	if (clear_page_dirty_for_io(page)) {
840 		f = 0;
841 		t = PAGE_SIZE;
842 		if (PagePrivate(page)) {
843 			f = priv & AFS_PRIV_MAX;
844 			t = priv >> AFS_PRIV_SHIFT;
845 		}
846 
847 		trace_afs_page_dirty(vnode, tracepoint_string("launder"),
848 				     page->index, priv);
849 		ret = afs_store_data(mapping, page->index, page->index, t, f);
850 	}
851 
852 	trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
853 			     page->index, priv);
854 	set_page_private(page, 0);
855 	ClearPagePrivate(page);
856 
857 #ifdef CONFIG_AFS_FSCACHE
858 	if (PageFsCache(page)) {
859 		fscache_wait_on_page_write(vnode->cache, page);
860 		fscache_uncache_page(vnode->cache, page);
861 	}
862 #endif
863 	return ret;
864 }
865