1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* handling of writes to regular files and writing back to the server 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/backing-dev.h> 9 #include <linux/slab.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/netfs.h> 15 #include <linux/fscache.h> 16 #include "internal.h" 17 18 /* 19 * mark a page as having been made dirty and thus needing writeback 20 */ 21 int afs_set_page_dirty(struct page *page) 22 { 23 _enter(""); 24 return __set_page_dirty_nobuffers(page); 25 } 26 27 /* 28 * prepare to perform part of a write to a page 29 */ 30 int afs_write_begin(struct file *file, struct address_space *mapping, 31 loff_t pos, unsigned len, unsigned flags, 32 struct page **_page, void **fsdata) 33 { 34 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 35 struct page *page; 36 unsigned long priv; 37 unsigned f, from; 38 unsigned t, to; 39 pgoff_t index; 40 int ret; 41 42 _enter("{%llx:%llu},%llx,%x", 43 vnode->fid.vid, vnode->fid.vnode, pos, len); 44 45 /* Prefetch area to be written into the cache if we're caching this 46 * file. We need to do this before we get a lock on the page in case 47 * there's more than one writer competing for the same cache block. 48 */ 49 ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata, 50 &afs_req_ops, NULL); 51 if (ret < 0) 52 return ret; 53 54 index = page->index; 55 from = pos - index * PAGE_SIZE; 56 to = from + len; 57 58 try_again: 59 /* See if this page is already partially written in a way that we can 60 * merge the new write with. 61 */ 62 if (PagePrivate(page)) { 63 priv = page_private(page); 64 f = afs_page_dirty_from(page, priv); 65 t = afs_page_dirty_to(page, priv); 66 ASSERTCMP(f, <=, t); 67 68 if (PageWriteback(page)) { 69 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page); 70 goto flush_conflicting_write; 71 } 72 /* If the file is being filled locally, allow inter-write 73 * spaces to be merged into writes. If it's not, only write 74 * back what the user gives us. 75 */ 76 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && 77 (to < f || from > t)) 78 goto flush_conflicting_write; 79 } 80 81 *_page = page; 82 _leave(" = 0"); 83 return 0; 84 85 /* The previous write and this write aren't adjacent or overlapping, so 86 * flush the page out. 87 */ 88 flush_conflicting_write: 89 _debug("flush conflict"); 90 ret = write_one_page(page); 91 if (ret < 0) 92 goto error; 93 94 ret = lock_page_killable(page); 95 if (ret < 0) 96 goto error; 97 goto try_again; 98 99 error: 100 put_page(page); 101 _leave(" = %d", ret); 102 return ret; 103 } 104 105 /* 106 * finalise part of a write to a page 107 */ 108 int afs_write_end(struct file *file, struct address_space *mapping, 109 loff_t pos, unsigned len, unsigned copied, 110 struct page *page, void *fsdata) 111 { 112 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 113 unsigned long priv; 114 unsigned int f, from = pos & (thp_size(page) - 1); 115 unsigned int t, to = from + copied; 116 loff_t i_size, maybe_i_size; 117 118 _enter("{%llx:%llu},{%lx}", 119 vnode->fid.vid, vnode->fid.vnode, page->index); 120 121 if (!PageUptodate(page)) { 122 if (copied < len) { 123 copied = 0; 124 goto out; 125 } 126 127 SetPageUptodate(page); 128 } 129 130 if (copied == 0) 131 goto out; 132 133 maybe_i_size = pos + copied; 134 135 i_size = i_size_read(&vnode->vfs_inode); 136 if (maybe_i_size > i_size) { 137 write_seqlock(&vnode->cb_lock); 138 i_size = i_size_read(&vnode->vfs_inode); 139 if (maybe_i_size > i_size) 140 i_size_write(&vnode->vfs_inode, maybe_i_size); 141 write_sequnlock(&vnode->cb_lock); 142 } 143 144 if (PagePrivate(page)) { 145 priv = page_private(page); 146 f = afs_page_dirty_from(page, priv); 147 t = afs_page_dirty_to(page, priv); 148 if (from < f) 149 f = from; 150 if (to > t) 151 t = to; 152 priv = afs_page_dirty(page, f, t); 153 set_page_private(page, priv); 154 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page); 155 } else { 156 priv = afs_page_dirty(page, from, to); 157 attach_page_private(page, (void *)priv); 158 trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page); 159 } 160 161 if (set_page_dirty(page)) 162 _debug("dirtied %lx", page->index); 163 164 out: 165 unlock_page(page); 166 put_page(page); 167 return copied; 168 } 169 170 /* 171 * kill all the pages in the given range 172 */ 173 static void afs_kill_pages(struct address_space *mapping, 174 loff_t start, loff_t len) 175 { 176 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 177 struct pagevec pv; 178 unsigned int loop, psize; 179 180 _enter("{%llx:%llu},%llx @%llx", 181 vnode->fid.vid, vnode->fid.vnode, len, start); 182 183 pagevec_init(&pv); 184 185 do { 186 _debug("kill %llx @%llx", len, start); 187 188 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, 189 PAGEVEC_SIZE, pv.pages); 190 if (pv.nr == 0) 191 break; 192 193 for (loop = 0; loop < pv.nr; loop++) { 194 struct page *page = pv.pages[loop]; 195 196 if (page->index * PAGE_SIZE >= start + len) 197 break; 198 199 psize = thp_size(page); 200 start += psize; 201 len -= psize; 202 ClearPageUptodate(page); 203 end_page_writeback(page); 204 lock_page(page); 205 generic_error_remove_page(mapping, page); 206 unlock_page(page); 207 } 208 209 __pagevec_release(&pv); 210 } while (len > 0); 211 212 _leave(""); 213 } 214 215 /* 216 * Redirty all the pages in a given range. 217 */ 218 static void afs_redirty_pages(struct writeback_control *wbc, 219 struct address_space *mapping, 220 loff_t start, loff_t len) 221 { 222 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 223 struct pagevec pv; 224 unsigned int loop, psize; 225 226 _enter("{%llx:%llu},%llx @%llx", 227 vnode->fid.vid, vnode->fid.vnode, len, start); 228 229 pagevec_init(&pv); 230 231 do { 232 _debug("redirty %llx @%llx", len, start); 233 234 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE, 235 PAGEVEC_SIZE, pv.pages); 236 if (pv.nr == 0) 237 break; 238 239 for (loop = 0; loop < pv.nr; loop++) { 240 struct page *page = pv.pages[loop]; 241 242 if (page->index * PAGE_SIZE >= start + len) 243 break; 244 245 psize = thp_size(page); 246 start += psize; 247 len -= psize; 248 redirty_page_for_writepage(wbc, page); 249 end_page_writeback(page); 250 } 251 252 __pagevec_release(&pv); 253 } while (len > 0); 254 255 _leave(""); 256 } 257 258 /* 259 * completion of write to server 260 */ 261 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) 262 { 263 struct address_space *mapping = vnode->vfs_inode.i_mapping; 264 struct page *page; 265 pgoff_t end; 266 267 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 268 269 _enter("{%llx:%llu},{%x @%llx}", 270 vnode->fid.vid, vnode->fid.vnode, len, start); 271 272 rcu_read_lock(); 273 274 end = (start + len - 1) / PAGE_SIZE; 275 xas_for_each(&xas, page, end) { 276 if (!PageWriteback(page)) { 277 kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end); 278 ASSERT(PageWriteback(page)); 279 } 280 281 trace_afs_page_dirty(vnode, tracepoint_string("clear"), page); 282 detach_page_private(page); 283 page_endio(page, true, 0); 284 } 285 286 rcu_read_unlock(); 287 288 afs_prune_wb_keys(vnode); 289 _leave(""); 290 } 291 292 /* 293 * Find a key to use for the writeback. We cached the keys used to author the 294 * writes on the vnode. *_wbk will contain the last writeback key used or NULL 295 * and we need to start from there if it's set. 296 */ 297 static int afs_get_writeback_key(struct afs_vnode *vnode, 298 struct afs_wb_key **_wbk) 299 { 300 struct afs_wb_key *wbk = NULL; 301 struct list_head *p; 302 int ret = -ENOKEY, ret2; 303 304 spin_lock(&vnode->wb_lock); 305 if (*_wbk) 306 p = (*_wbk)->vnode_link.next; 307 else 308 p = vnode->wb_keys.next; 309 310 while (p != &vnode->wb_keys) { 311 wbk = list_entry(p, struct afs_wb_key, vnode_link); 312 _debug("wbk %u", key_serial(wbk->key)); 313 ret2 = key_validate(wbk->key); 314 if (ret2 == 0) { 315 refcount_inc(&wbk->usage); 316 _debug("USE WB KEY %u", key_serial(wbk->key)); 317 break; 318 } 319 320 wbk = NULL; 321 if (ret == -ENOKEY) 322 ret = ret2; 323 p = p->next; 324 } 325 326 spin_unlock(&vnode->wb_lock); 327 if (*_wbk) 328 afs_put_wb_key(*_wbk); 329 *_wbk = wbk; 330 return 0; 331 } 332 333 static void afs_store_data_success(struct afs_operation *op) 334 { 335 struct afs_vnode *vnode = op->file[0].vnode; 336 337 op->ctime = op->file[0].scb.status.mtime_client; 338 afs_vnode_commit_status(op, &op->file[0]); 339 if (op->error == 0) { 340 if (!op->store.laundering) 341 afs_pages_written_back(vnode, op->store.pos, op->store.size); 342 afs_stat_v(vnode, n_stores); 343 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); 344 } 345 } 346 347 static const struct afs_operation_ops afs_store_data_operation = { 348 .issue_afs_rpc = afs_fs_store_data, 349 .issue_yfs_rpc = yfs_fs_store_data, 350 .success = afs_store_data_success, 351 }; 352 353 /* 354 * write to a file 355 */ 356 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, 357 bool laundering) 358 { 359 struct afs_operation *op; 360 struct afs_wb_key *wbk = NULL; 361 loff_t size = iov_iter_count(iter), i_size; 362 int ret = -ENOKEY; 363 364 _enter("%s{%llx:%llu.%u},%llx,%llx", 365 vnode->volume->name, 366 vnode->fid.vid, 367 vnode->fid.vnode, 368 vnode->fid.unique, 369 size, pos); 370 371 ret = afs_get_writeback_key(vnode, &wbk); 372 if (ret) { 373 _leave(" = %d [no keys]", ret); 374 return ret; 375 } 376 377 op = afs_alloc_operation(wbk->key, vnode->volume); 378 if (IS_ERR(op)) { 379 afs_put_wb_key(wbk); 380 return -ENOMEM; 381 } 382 383 i_size = i_size_read(&vnode->vfs_inode); 384 385 afs_op_set_vnode(op, 0, vnode); 386 op->file[0].dv_delta = 1; 387 op->file[0].modification = true; 388 op->store.write_iter = iter; 389 op->store.pos = pos; 390 op->store.size = size; 391 op->store.i_size = max(pos + size, i_size); 392 op->store.laundering = laundering; 393 op->mtime = vnode->vfs_inode.i_mtime; 394 op->flags |= AFS_OPERATION_UNINTR; 395 op->ops = &afs_store_data_operation; 396 397 try_next_key: 398 afs_begin_vnode_operation(op); 399 afs_wait_for_operation(op); 400 401 switch (op->error) { 402 case -EACCES: 403 case -EPERM: 404 case -ENOKEY: 405 case -EKEYEXPIRED: 406 case -EKEYREJECTED: 407 case -EKEYREVOKED: 408 _debug("next"); 409 410 ret = afs_get_writeback_key(vnode, &wbk); 411 if (ret == 0) { 412 key_put(op->key); 413 op->key = key_get(wbk->key); 414 goto try_next_key; 415 } 416 break; 417 } 418 419 afs_put_wb_key(wbk); 420 _leave(" = %d", op->error); 421 return afs_put_operation(op); 422 } 423 424 /* 425 * Extend the region to be written back to include subsequent contiguously 426 * dirty pages if possible, but don't sleep while doing so. 427 * 428 * If this page holds new content, then we can include filler zeros in the 429 * writeback. 430 */ 431 static void afs_extend_writeback(struct address_space *mapping, 432 struct afs_vnode *vnode, 433 long *_count, 434 loff_t start, 435 loff_t max_len, 436 bool new_content, 437 unsigned int *_len) 438 { 439 struct pagevec pvec; 440 struct page *page; 441 unsigned long priv; 442 unsigned int psize, filler = 0; 443 unsigned int f, t; 444 loff_t len = *_len; 445 pgoff_t index = (start + len) / PAGE_SIZE; 446 bool stop = true; 447 unsigned int i; 448 449 XA_STATE(xas, &mapping->i_pages, index); 450 pagevec_init(&pvec); 451 452 do { 453 /* Firstly, we gather up a batch of contiguous dirty pages 454 * under the RCU read lock - but we can't clear the dirty flags 455 * there if any of those pages are mapped. 456 */ 457 rcu_read_lock(); 458 459 xas_for_each(&xas, page, ULONG_MAX) { 460 stop = true; 461 if (xas_retry(&xas, page)) 462 continue; 463 if (xa_is_value(page)) 464 break; 465 if (page->index != index) 466 break; 467 468 if (!page_cache_get_speculative(page)) { 469 xas_reset(&xas); 470 continue; 471 } 472 473 /* Has the page moved or been split? */ 474 if (unlikely(page != xas_reload(&xas))) 475 break; 476 477 if (!trylock_page(page)) 478 break; 479 if (!PageDirty(page) || PageWriteback(page)) { 480 unlock_page(page); 481 break; 482 } 483 484 psize = thp_size(page); 485 priv = page_private(page); 486 f = afs_page_dirty_from(page, priv); 487 t = afs_page_dirty_to(page, priv); 488 if (f != 0 && !new_content) { 489 unlock_page(page); 490 break; 491 } 492 493 len += filler + t; 494 filler = psize - t; 495 if (len >= max_len || *_count <= 0) 496 stop = true; 497 else if (t == psize || new_content) 498 stop = false; 499 500 index += thp_nr_pages(page); 501 if (!pagevec_add(&pvec, page)) 502 break; 503 if (stop) 504 break; 505 } 506 507 if (!stop) 508 xas_pause(&xas); 509 rcu_read_unlock(); 510 511 /* Now, if we obtained any pages, we can shift them to being 512 * writable and mark them for caching. 513 */ 514 if (!pagevec_count(&pvec)) 515 break; 516 517 for (i = 0; i < pagevec_count(&pvec); i++) { 518 page = pvec.pages[i]; 519 trace_afs_page_dirty(vnode, tracepoint_string("store+"), page); 520 521 if (!clear_page_dirty_for_io(page)) 522 BUG(); 523 if (test_set_page_writeback(page)) 524 BUG(); 525 526 *_count -= thp_nr_pages(page); 527 unlock_page(page); 528 } 529 530 pagevec_release(&pvec); 531 cond_resched(); 532 } while (!stop); 533 534 *_len = len; 535 } 536 537 /* 538 * Synchronously write back the locked page and any subsequent non-locked dirty 539 * pages. 540 */ 541 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping, 542 struct writeback_control *wbc, 543 struct page *page, 544 loff_t start, loff_t end) 545 { 546 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 547 struct iov_iter iter; 548 unsigned long priv; 549 unsigned int offset, to, len, max_len; 550 loff_t i_size = i_size_read(&vnode->vfs_inode); 551 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 552 long count = wbc->nr_to_write; 553 int ret; 554 555 _enter(",%lx,%llx-%llx", page->index, start, end); 556 557 if (test_set_page_writeback(page)) 558 BUG(); 559 560 count -= thp_nr_pages(page); 561 562 /* Find all consecutive lockable dirty pages that have contiguous 563 * written regions, stopping when we find a page that is not 564 * immediately lockable, is not dirty or is missing, or we reach the 565 * end of the range. 566 */ 567 priv = page_private(page); 568 offset = afs_page_dirty_from(page, priv); 569 to = afs_page_dirty_to(page, priv); 570 trace_afs_page_dirty(vnode, tracepoint_string("store"), page); 571 572 len = to - offset; 573 start += offset; 574 if (start < i_size) { 575 /* Trim the write to the EOF; the extra data is ignored. Also 576 * put an upper limit on the size of a single storedata op. 577 */ 578 max_len = 65536 * 4096; 579 max_len = min_t(unsigned long long, max_len, end - start + 1); 580 max_len = min_t(unsigned long long, max_len, i_size - start); 581 582 if (len < max_len && 583 (to == thp_size(page) || new_content)) 584 afs_extend_writeback(mapping, vnode, &count, 585 start, max_len, new_content, &len); 586 len = min_t(loff_t, len, max_len); 587 } 588 589 /* We now have a contiguous set of dirty pages, each with writeback 590 * set; the first page is still locked at this point, but all the rest 591 * have been unlocked. 592 */ 593 unlock_page(page); 594 595 if (start < i_size) { 596 _debug("write back %x @%llx [%llx]", len, start, i_size); 597 598 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len); 599 ret = afs_store_data(vnode, &iter, start, false); 600 } else { 601 _debug("write discard %x @%llx [%llx]", len, start, i_size); 602 603 /* The dirty region was entirely beyond the EOF. */ 604 afs_pages_written_back(vnode, start, len); 605 ret = 0; 606 } 607 608 switch (ret) { 609 case 0: 610 wbc->nr_to_write = count; 611 ret = len; 612 break; 613 614 default: 615 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); 616 fallthrough; 617 case -EACCES: 618 case -EPERM: 619 case -ENOKEY: 620 case -EKEYEXPIRED: 621 case -EKEYREJECTED: 622 case -EKEYREVOKED: 623 afs_redirty_pages(wbc, mapping, start, len); 624 mapping_set_error(mapping, ret); 625 break; 626 627 case -EDQUOT: 628 case -ENOSPC: 629 afs_redirty_pages(wbc, mapping, start, len); 630 mapping_set_error(mapping, -ENOSPC); 631 break; 632 633 case -EROFS: 634 case -EIO: 635 case -EREMOTEIO: 636 case -EFBIG: 637 case -ENOENT: 638 case -ENOMEDIUM: 639 case -ENXIO: 640 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); 641 afs_kill_pages(mapping, start, len); 642 mapping_set_error(mapping, ret); 643 break; 644 } 645 646 _leave(" = %d", ret); 647 return ret; 648 } 649 650 /* 651 * write a page back to the server 652 * - the caller locked the page for us 653 */ 654 int afs_writepage(struct page *page, struct writeback_control *wbc) 655 { 656 ssize_t ret; 657 loff_t start; 658 659 _enter("{%lx},", page->index); 660 661 start = page->index * PAGE_SIZE; 662 ret = afs_write_back_from_locked_page(page->mapping, wbc, page, 663 start, LLONG_MAX - start); 664 if (ret < 0) { 665 _leave(" = %zd", ret); 666 return ret; 667 } 668 669 _leave(" = 0"); 670 return 0; 671 } 672 673 /* 674 * write a region of pages back to the server 675 */ 676 static int afs_writepages_region(struct address_space *mapping, 677 struct writeback_control *wbc, 678 loff_t start, loff_t end, loff_t *_next) 679 { 680 struct page *page; 681 ssize_t ret; 682 int n; 683 684 _enter("%llx,%llx,", start, end); 685 686 do { 687 pgoff_t index = start / PAGE_SIZE; 688 689 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE, 690 PAGECACHE_TAG_DIRTY, 1, &page); 691 if (!n) 692 break; 693 694 start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */ 695 696 _debug("wback %lx", page->index); 697 698 /* At this point we hold neither the i_pages lock nor the 699 * page lock: the page may be truncated or invalidated 700 * (changing page->mapping to NULL), or even swizzled 701 * back from swapper_space to tmpfs file mapping 702 */ 703 if (wbc->sync_mode != WB_SYNC_NONE) { 704 ret = lock_page_killable(page); 705 if (ret < 0) { 706 put_page(page); 707 return ret; 708 } 709 } else { 710 if (!trylock_page(page)) { 711 put_page(page); 712 return 0; 713 } 714 } 715 716 if (page->mapping != mapping || !PageDirty(page)) { 717 start += thp_size(page); 718 unlock_page(page); 719 put_page(page); 720 continue; 721 } 722 723 if (PageWriteback(page)) { 724 unlock_page(page); 725 if (wbc->sync_mode != WB_SYNC_NONE) 726 wait_on_page_writeback(page); 727 put_page(page); 728 continue; 729 } 730 731 if (!clear_page_dirty_for_io(page)) 732 BUG(); 733 ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end); 734 put_page(page); 735 if (ret < 0) { 736 _leave(" = %zd", ret); 737 return ret; 738 } 739 740 start += ret; 741 742 cond_resched(); 743 } while (wbc->nr_to_write > 0); 744 745 *_next = start; 746 _leave(" = 0 [%llx]", *_next); 747 return 0; 748 } 749 750 /* 751 * write some of the pending data back to the server 752 */ 753 int afs_writepages(struct address_space *mapping, 754 struct writeback_control *wbc) 755 { 756 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 757 loff_t start, next; 758 int ret; 759 760 _enter(""); 761 762 /* We have to be careful as we can end up racing with setattr() 763 * truncating the pagecache since the caller doesn't take a lock here 764 * to prevent it. 765 */ 766 if (wbc->sync_mode == WB_SYNC_ALL) 767 down_read(&vnode->validate_lock); 768 else if (!down_read_trylock(&vnode->validate_lock)) 769 return 0; 770 771 if (wbc->range_cyclic) { 772 start = mapping->writeback_index * PAGE_SIZE; 773 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next); 774 if (ret == 0) { 775 mapping->writeback_index = next / PAGE_SIZE; 776 if (start > 0 && wbc->nr_to_write > 0) { 777 ret = afs_writepages_region(mapping, wbc, 0, 778 start, &next); 779 if (ret == 0) 780 mapping->writeback_index = 781 next / PAGE_SIZE; 782 } 783 } 784 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 785 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next); 786 if (wbc->nr_to_write > 0 && ret == 0) 787 mapping->writeback_index = next / PAGE_SIZE; 788 } else { 789 ret = afs_writepages_region(mapping, wbc, 790 wbc->range_start, wbc->range_end, &next); 791 } 792 793 up_read(&vnode->validate_lock); 794 _leave(" = %d", ret); 795 return ret; 796 } 797 798 /* 799 * write to an AFS file 800 */ 801 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) 802 { 803 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 804 ssize_t result; 805 size_t count = iov_iter_count(from); 806 807 _enter("{%llx:%llu},{%zu},", 808 vnode->fid.vid, vnode->fid.vnode, count); 809 810 if (IS_SWAPFILE(&vnode->vfs_inode)) { 811 printk(KERN_INFO 812 "AFS: Attempt to write to active swap file!\n"); 813 return -EBUSY; 814 } 815 816 if (!count) 817 return 0; 818 819 result = generic_file_write_iter(iocb, from); 820 821 _leave(" = %zd", result); 822 return result; 823 } 824 825 /* 826 * flush any dirty pages for this process, and check for write errors. 827 * - the return status from this call provides a reliable indication of 828 * whether any write errors occurred for this process. 829 */ 830 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 831 { 832 struct inode *inode = file_inode(file); 833 struct afs_vnode *vnode = AFS_FS_I(inode); 834 835 _enter("{%llx:%llu},{n=%pD},%d", 836 vnode->fid.vid, vnode->fid.vnode, file, 837 datasync); 838 839 return file_write_and_wait_range(file, start, end); 840 } 841 842 /* 843 * notification that a previously read-only page is about to become writable 844 * - if it returns an error, the caller will deliver a bus error signal 845 */ 846 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) 847 { 848 struct page *page = thp_head(vmf->page); 849 struct file *file = vmf->vma->vm_file; 850 struct inode *inode = file_inode(file); 851 struct afs_vnode *vnode = AFS_FS_I(inode); 852 unsigned long priv; 853 vm_fault_t ret = VM_FAULT_RETRY; 854 855 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index); 856 857 sb_start_pagefault(inode->i_sb); 858 859 /* Wait for the page to be written to the cache before we allow it to 860 * be modified. We then assume the entire page will need writing back. 861 */ 862 #ifdef CONFIG_AFS_FSCACHE 863 if (PageFsCache(page) && 864 wait_on_page_fscache_killable(page) < 0) 865 goto out; 866 #endif 867 868 if (wait_on_page_writeback_killable(page)) 869 goto out; 870 871 if (lock_page_killable(page) < 0) 872 goto out; 873 874 /* We mustn't change page->private until writeback is complete as that 875 * details the portion of the page we need to write back and we might 876 * need to redirty the page if there's a problem. 877 */ 878 if (wait_on_page_writeback_killable(page) < 0) { 879 unlock_page(page); 880 goto out; 881 } 882 883 priv = afs_page_dirty(page, 0, thp_size(page)); 884 priv = afs_page_dirty_mmapped(priv); 885 if (PagePrivate(page)) { 886 set_page_private(page, priv); 887 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page); 888 } else { 889 attach_page_private(page, (void *)priv); 890 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page); 891 } 892 file_update_time(file); 893 894 ret = VM_FAULT_LOCKED; 895 out: 896 sb_end_pagefault(inode->i_sb); 897 return ret; 898 } 899 900 /* 901 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. 902 */ 903 void afs_prune_wb_keys(struct afs_vnode *vnode) 904 { 905 LIST_HEAD(graveyard); 906 struct afs_wb_key *wbk, *tmp; 907 908 /* Discard unused keys */ 909 spin_lock(&vnode->wb_lock); 910 911 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) && 912 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) { 913 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { 914 if (refcount_read(&wbk->usage) == 1) 915 list_move(&wbk->vnode_link, &graveyard); 916 } 917 } 918 919 spin_unlock(&vnode->wb_lock); 920 921 while (!list_empty(&graveyard)) { 922 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); 923 list_del(&wbk->vnode_link); 924 afs_put_wb_key(wbk); 925 } 926 } 927 928 /* 929 * Clean up a page during invalidation. 930 */ 931 int afs_launder_page(struct page *page) 932 { 933 struct address_space *mapping = page->mapping; 934 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 935 struct iov_iter iter; 936 struct bio_vec bv[1]; 937 unsigned long priv; 938 unsigned int f, t; 939 int ret = 0; 940 941 _enter("{%lx}", page->index); 942 943 priv = page_private(page); 944 if (clear_page_dirty_for_io(page)) { 945 f = 0; 946 t = thp_size(page); 947 if (PagePrivate(page)) { 948 f = afs_page_dirty_from(page, priv); 949 t = afs_page_dirty_to(page, priv); 950 } 951 952 bv[0].bv_page = page; 953 bv[0].bv_offset = f; 954 bv[0].bv_len = t - f; 955 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len); 956 957 trace_afs_page_dirty(vnode, tracepoint_string("launder"), page); 958 ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE, 959 true); 960 } 961 962 trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page); 963 detach_page_private(page); 964 wait_on_page_fscache(page); 965 return ret; 966 } 967