1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* handling of writes to regular files and writing back to the server 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/backing-dev.h> 9 #include <linux/slab.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/netfs.h> 15 #include "internal.h" 16 17 static int afs_writepages_region(struct address_space *mapping, 18 struct writeback_control *wbc, 19 loff_t start, loff_t end, loff_t *_next, 20 bool max_one_loop); 21 22 static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len, 23 loff_t i_size, bool caching); 24 25 #ifdef CONFIG_AFS_FSCACHE 26 /* 27 * Mark a page as having been made dirty and thus needing writeback. We also 28 * need to pin the cache object to write back to. 29 */ 30 bool afs_dirty_folio(struct address_space *mapping, struct folio *folio) 31 { 32 return fscache_dirty_folio(mapping, folio, 33 afs_vnode_cache(AFS_FS_I(mapping->host))); 34 } 35 static void afs_folio_start_fscache(bool caching, struct folio *folio) 36 { 37 if (caching) 38 folio_start_fscache(folio); 39 } 40 #else 41 static void afs_folio_start_fscache(bool caching, struct folio *folio) 42 { 43 } 44 #endif 45 46 /* 47 * Flush out a conflicting write. This may extend the write to the surrounding 48 * pages if also dirty and contiguous to the conflicting region.. 49 */ 50 static int afs_flush_conflicting_write(struct address_space *mapping, 51 struct folio *folio) 52 { 53 struct writeback_control wbc = { 54 .sync_mode = WB_SYNC_ALL, 55 .nr_to_write = LONG_MAX, 56 .range_start = folio_pos(folio), 57 .range_end = LLONG_MAX, 58 }; 59 loff_t next; 60 61 return afs_writepages_region(mapping, &wbc, folio_pos(folio), LLONG_MAX, 62 &next, true); 63 } 64 65 /* 66 * prepare to perform part of a write to a page 67 */ 68 int afs_write_begin(struct file *file, struct address_space *mapping, 69 loff_t pos, unsigned len, 70 struct page **_page, void **fsdata) 71 { 72 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 73 struct folio *folio; 74 unsigned long priv; 75 unsigned f, from; 76 unsigned t, to; 77 pgoff_t index; 78 int ret; 79 80 _enter("{%llx:%llu},%llx,%x", 81 vnode->fid.vid, vnode->fid.vnode, pos, len); 82 83 /* Prefetch area to be written into the cache if we're caching this 84 * file. We need to do this before we get a lock on the page in case 85 * there's more than one writer competing for the same cache block. 86 */ 87 ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata); 88 if (ret < 0) 89 return ret; 90 91 index = folio_index(folio); 92 from = pos - index * PAGE_SIZE; 93 to = from + len; 94 95 try_again: 96 /* See if this page is already partially written in a way that we can 97 * merge the new write with. 98 */ 99 if (folio_test_private(folio)) { 100 priv = (unsigned long)folio_get_private(folio); 101 f = afs_folio_dirty_from(folio, priv); 102 t = afs_folio_dirty_to(folio, priv); 103 ASSERTCMP(f, <=, t); 104 105 if (folio_test_writeback(folio)) { 106 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio); 107 folio_unlock(folio); 108 goto wait_for_writeback; 109 } 110 /* If the file is being filled locally, allow inter-write 111 * spaces to be merged into writes. If it's not, only write 112 * back what the user gives us. 113 */ 114 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && 115 (to < f || from > t)) 116 goto flush_conflicting_write; 117 } 118 119 *_page = folio_file_page(folio, pos / PAGE_SIZE); 120 _leave(" = 0"); 121 return 0; 122 123 /* The previous write and this write aren't adjacent or overlapping, so 124 * flush the page out. 125 */ 126 flush_conflicting_write: 127 trace_afs_folio_dirty(vnode, tracepoint_string("confl"), folio); 128 folio_unlock(folio); 129 130 ret = afs_flush_conflicting_write(mapping, folio); 131 if (ret < 0) 132 goto error; 133 134 wait_for_writeback: 135 ret = folio_wait_writeback_killable(folio); 136 if (ret < 0) 137 goto error; 138 139 ret = folio_lock_killable(folio); 140 if (ret < 0) 141 goto error; 142 goto try_again; 143 144 error: 145 folio_put(folio); 146 _leave(" = %d", ret); 147 return ret; 148 } 149 150 /* 151 * finalise part of a write to a page 152 */ 153 int afs_write_end(struct file *file, struct address_space *mapping, 154 loff_t pos, unsigned len, unsigned copied, 155 struct page *subpage, void *fsdata) 156 { 157 struct folio *folio = page_folio(subpage); 158 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 159 unsigned long priv; 160 unsigned int f, from = offset_in_folio(folio, pos); 161 unsigned int t, to = from + copied; 162 loff_t i_size, write_end_pos; 163 164 _enter("{%llx:%llu},{%lx}", 165 vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); 166 167 if (!folio_test_uptodate(folio)) { 168 if (copied < len) { 169 copied = 0; 170 goto out; 171 } 172 173 folio_mark_uptodate(folio); 174 } 175 176 if (copied == 0) 177 goto out; 178 179 write_end_pos = pos + copied; 180 181 i_size = i_size_read(&vnode->netfs.inode); 182 if (write_end_pos > i_size) { 183 write_seqlock(&vnode->cb_lock); 184 i_size = i_size_read(&vnode->netfs.inode); 185 if (write_end_pos > i_size) 186 afs_set_i_size(vnode, write_end_pos); 187 write_sequnlock(&vnode->cb_lock); 188 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos); 189 } 190 191 if (folio_test_private(folio)) { 192 priv = (unsigned long)folio_get_private(folio); 193 f = afs_folio_dirty_from(folio, priv); 194 t = afs_folio_dirty_to(folio, priv); 195 if (from < f) 196 f = from; 197 if (to > t) 198 t = to; 199 priv = afs_folio_dirty(folio, f, t); 200 folio_change_private(folio, (void *)priv); 201 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio); 202 } else { 203 priv = afs_folio_dirty(folio, from, to); 204 folio_attach_private(folio, (void *)priv); 205 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio); 206 } 207 208 if (folio_mark_dirty(folio)) 209 _debug("dirtied %lx", folio_index(folio)); 210 211 out: 212 folio_unlock(folio); 213 folio_put(folio); 214 return copied; 215 } 216 217 /* 218 * kill all the pages in the given range 219 */ 220 static void afs_kill_pages(struct address_space *mapping, 221 loff_t start, loff_t len) 222 { 223 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 224 struct folio *folio; 225 pgoff_t index = start / PAGE_SIZE; 226 pgoff_t last = (start + len - 1) / PAGE_SIZE, next; 227 228 _enter("{%llx:%llu},%llx @%llx", 229 vnode->fid.vid, vnode->fid.vnode, len, start); 230 231 do { 232 _debug("kill %lx (to %lx)", index, last); 233 234 folio = filemap_get_folio(mapping, index); 235 if (!folio) { 236 next = index + 1; 237 continue; 238 } 239 240 next = folio_next_index(folio); 241 242 folio_clear_uptodate(folio); 243 folio_end_writeback(folio); 244 folio_lock(folio); 245 generic_error_remove_page(mapping, &folio->page); 246 folio_unlock(folio); 247 folio_put(folio); 248 249 } while (index = next, index <= last); 250 251 _leave(""); 252 } 253 254 /* 255 * Redirty all the pages in a given range. 256 */ 257 static void afs_redirty_pages(struct writeback_control *wbc, 258 struct address_space *mapping, 259 loff_t start, loff_t len) 260 { 261 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 262 struct folio *folio; 263 pgoff_t index = start / PAGE_SIZE; 264 pgoff_t last = (start + len - 1) / PAGE_SIZE, next; 265 266 _enter("{%llx:%llu},%llx @%llx", 267 vnode->fid.vid, vnode->fid.vnode, len, start); 268 269 do { 270 _debug("redirty %llx @%llx", len, start); 271 272 folio = filemap_get_folio(mapping, index); 273 if (!folio) { 274 next = index + 1; 275 continue; 276 } 277 278 next = index + folio_nr_pages(folio); 279 folio_redirty_for_writepage(wbc, folio); 280 folio_end_writeback(folio); 281 folio_put(folio); 282 } while (index = next, index <= last); 283 284 _leave(""); 285 } 286 287 /* 288 * completion of write to server 289 */ 290 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) 291 { 292 struct address_space *mapping = vnode->netfs.inode.i_mapping; 293 struct folio *folio; 294 pgoff_t end; 295 296 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 297 298 _enter("{%llx:%llu},{%x @%llx}", 299 vnode->fid.vid, vnode->fid.vnode, len, start); 300 301 rcu_read_lock(); 302 303 end = (start + len - 1) / PAGE_SIZE; 304 xas_for_each(&xas, folio, end) { 305 if (!folio_test_writeback(folio)) { 306 kdebug("bad %x @%llx page %lx %lx", 307 len, start, folio_index(folio), end); 308 ASSERT(folio_test_writeback(folio)); 309 } 310 311 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio); 312 folio_detach_private(folio); 313 folio_end_writeback(folio); 314 } 315 316 rcu_read_unlock(); 317 318 afs_prune_wb_keys(vnode); 319 _leave(""); 320 } 321 322 /* 323 * Find a key to use for the writeback. We cached the keys used to author the 324 * writes on the vnode. *_wbk will contain the last writeback key used or NULL 325 * and we need to start from there if it's set. 326 */ 327 static int afs_get_writeback_key(struct afs_vnode *vnode, 328 struct afs_wb_key **_wbk) 329 { 330 struct afs_wb_key *wbk = NULL; 331 struct list_head *p; 332 int ret = -ENOKEY, ret2; 333 334 spin_lock(&vnode->wb_lock); 335 if (*_wbk) 336 p = (*_wbk)->vnode_link.next; 337 else 338 p = vnode->wb_keys.next; 339 340 while (p != &vnode->wb_keys) { 341 wbk = list_entry(p, struct afs_wb_key, vnode_link); 342 _debug("wbk %u", key_serial(wbk->key)); 343 ret2 = key_validate(wbk->key); 344 if (ret2 == 0) { 345 refcount_inc(&wbk->usage); 346 _debug("USE WB KEY %u", key_serial(wbk->key)); 347 break; 348 } 349 350 wbk = NULL; 351 if (ret == -ENOKEY) 352 ret = ret2; 353 p = p->next; 354 } 355 356 spin_unlock(&vnode->wb_lock); 357 if (*_wbk) 358 afs_put_wb_key(*_wbk); 359 *_wbk = wbk; 360 return 0; 361 } 362 363 static void afs_store_data_success(struct afs_operation *op) 364 { 365 struct afs_vnode *vnode = op->file[0].vnode; 366 367 op->ctime = op->file[0].scb.status.mtime_client; 368 afs_vnode_commit_status(op, &op->file[0]); 369 if (op->error == 0) { 370 if (!op->store.laundering) 371 afs_pages_written_back(vnode, op->store.pos, op->store.size); 372 afs_stat_v(vnode, n_stores); 373 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); 374 } 375 } 376 377 static const struct afs_operation_ops afs_store_data_operation = { 378 .issue_afs_rpc = afs_fs_store_data, 379 .issue_yfs_rpc = yfs_fs_store_data, 380 .success = afs_store_data_success, 381 }; 382 383 /* 384 * write to a file 385 */ 386 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, 387 bool laundering) 388 { 389 struct afs_operation *op; 390 struct afs_wb_key *wbk = NULL; 391 loff_t size = iov_iter_count(iter); 392 int ret = -ENOKEY; 393 394 _enter("%s{%llx:%llu.%u},%llx,%llx", 395 vnode->volume->name, 396 vnode->fid.vid, 397 vnode->fid.vnode, 398 vnode->fid.unique, 399 size, pos); 400 401 ret = afs_get_writeback_key(vnode, &wbk); 402 if (ret) { 403 _leave(" = %d [no keys]", ret); 404 return ret; 405 } 406 407 op = afs_alloc_operation(wbk->key, vnode->volume); 408 if (IS_ERR(op)) { 409 afs_put_wb_key(wbk); 410 return -ENOMEM; 411 } 412 413 afs_op_set_vnode(op, 0, vnode); 414 op->file[0].dv_delta = 1; 415 op->file[0].modification = true; 416 op->store.write_iter = iter; 417 op->store.pos = pos; 418 op->store.size = size; 419 op->store.i_size = max(pos + size, vnode->netfs.remote_i_size); 420 op->store.laundering = laundering; 421 op->mtime = vnode->netfs.inode.i_mtime; 422 op->flags |= AFS_OPERATION_UNINTR; 423 op->ops = &afs_store_data_operation; 424 425 try_next_key: 426 afs_begin_vnode_operation(op); 427 afs_wait_for_operation(op); 428 429 switch (op->error) { 430 case -EACCES: 431 case -EPERM: 432 case -ENOKEY: 433 case -EKEYEXPIRED: 434 case -EKEYREJECTED: 435 case -EKEYREVOKED: 436 _debug("next"); 437 438 ret = afs_get_writeback_key(vnode, &wbk); 439 if (ret == 0) { 440 key_put(op->key); 441 op->key = key_get(wbk->key); 442 goto try_next_key; 443 } 444 break; 445 } 446 447 afs_put_wb_key(wbk); 448 _leave(" = %d", op->error); 449 return afs_put_operation(op); 450 } 451 452 /* 453 * Extend the region to be written back to include subsequent contiguously 454 * dirty pages if possible, but don't sleep while doing so. 455 * 456 * If this page holds new content, then we can include filler zeros in the 457 * writeback. 458 */ 459 static void afs_extend_writeback(struct address_space *mapping, 460 struct afs_vnode *vnode, 461 long *_count, 462 loff_t start, 463 loff_t max_len, 464 bool new_content, 465 bool caching, 466 unsigned int *_len) 467 { 468 struct pagevec pvec; 469 struct folio *folio; 470 unsigned long priv; 471 unsigned int psize, filler = 0; 472 unsigned int f, t; 473 loff_t len = *_len; 474 pgoff_t index = (start + len) / PAGE_SIZE; 475 bool stop = true; 476 unsigned int i; 477 478 XA_STATE(xas, &mapping->i_pages, index); 479 pagevec_init(&pvec); 480 481 do { 482 /* Firstly, we gather up a batch of contiguous dirty pages 483 * under the RCU read lock - but we can't clear the dirty flags 484 * there if any of those pages are mapped. 485 */ 486 rcu_read_lock(); 487 488 xas_for_each(&xas, folio, ULONG_MAX) { 489 stop = true; 490 if (xas_retry(&xas, folio)) 491 continue; 492 if (xa_is_value(folio)) 493 break; 494 if (folio_index(folio) != index) 495 break; 496 497 if (!folio_try_get_rcu(folio)) { 498 xas_reset(&xas); 499 continue; 500 } 501 502 /* Has the page moved or been split? */ 503 if (unlikely(folio != xas_reload(&xas))) { 504 folio_put(folio); 505 break; 506 } 507 508 if (!folio_trylock(folio)) { 509 folio_put(folio); 510 break; 511 } 512 if (!folio_test_dirty(folio) || 513 folio_test_writeback(folio) || 514 folio_test_fscache(folio)) { 515 folio_unlock(folio); 516 folio_put(folio); 517 break; 518 } 519 520 psize = folio_size(folio); 521 priv = (unsigned long)folio_get_private(folio); 522 f = afs_folio_dirty_from(folio, priv); 523 t = afs_folio_dirty_to(folio, priv); 524 if (f != 0 && !new_content) { 525 folio_unlock(folio); 526 folio_put(folio); 527 break; 528 } 529 530 len += filler + t; 531 filler = psize - t; 532 if (len >= max_len || *_count <= 0) 533 stop = true; 534 else if (t == psize || new_content) 535 stop = false; 536 537 index += folio_nr_pages(folio); 538 if (!pagevec_add(&pvec, &folio->page)) 539 break; 540 if (stop) 541 break; 542 } 543 544 if (!stop) 545 xas_pause(&xas); 546 rcu_read_unlock(); 547 548 /* Now, if we obtained any pages, we can shift them to being 549 * writable and mark them for caching. 550 */ 551 if (!pagevec_count(&pvec)) 552 break; 553 554 for (i = 0; i < pagevec_count(&pvec); i++) { 555 folio = page_folio(pvec.pages[i]); 556 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio); 557 558 if (!folio_clear_dirty_for_io(folio)) 559 BUG(); 560 if (folio_start_writeback(folio)) 561 BUG(); 562 afs_folio_start_fscache(caching, folio); 563 564 *_count -= folio_nr_pages(folio); 565 folio_unlock(folio); 566 } 567 568 pagevec_release(&pvec); 569 cond_resched(); 570 } while (!stop); 571 572 *_len = len; 573 } 574 575 /* 576 * Synchronously write back the locked page and any subsequent non-locked dirty 577 * pages. 578 */ 579 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping, 580 struct writeback_control *wbc, 581 struct folio *folio, 582 loff_t start, loff_t end) 583 { 584 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 585 struct iov_iter iter; 586 unsigned long priv; 587 unsigned int offset, to, len, max_len; 588 loff_t i_size = i_size_read(&vnode->netfs.inode); 589 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 590 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode)); 591 long count = wbc->nr_to_write; 592 int ret; 593 594 _enter(",%lx,%llx-%llx", folio_index(folio), start, end); 595 596 if (folio_start_writeback(folio)) 597 BUG(); 598 afs_folio_start_fscache(caching, folio); 599 600 count -= folio_nr_pages(folio); 601 602 /* Find all consecutive lockable dirty pages that have contiguous 603 * written regions, stopping when we find a page that is not 604 * immediately lockable, is not dirty or is missing, or we reach the 605 * end of the range. 606 */ 607 priv = (unsigned long)folio_get_private(folio); 608 offset = afs_folio_dirty_from(folio, priv); 609 to = afs_folio_dirty_to(folio, priv); 610 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio); 611 612 len = to - offset; 613 start += offset; 614 if (start < i_size) { 615 /* Trim the write to the EOF; the extra data is ignored. Also 616 * put an upper limit on the size of a single storedata op. 617 */ 618 max_len = 65536 * 4096; 619 max_len = min_t(unsigned long long, max_len, end - start + 1); 620 max_len = min_t(unsigned long long, max_len, i_size - start); 621 622 if (len < max_len && 623 (to == folio_size(folio) || new_content)) 624 afs_extend_writeback(mapping, vnode, &count, 625 start, max_len, new_content, 626 caching, &len); 627 len = min_t(loff_t, len, max_len); 628 } 629 630 /* We now have a contiguous set of dirty pages, each with writeback 631 * set; the first page is still locked at this point, but all the rest 632 * have been unlocked. 633 */ 634 folio_unlock(folio); 635 636 if (start < i_size) { 637 _debug("write back %x @%llx [%llx]", len, start, i_size); 638 639 /* Speculatively write to the cache. We have to fix this up 640 * later if the store fails. 641 */ 642 afs_write_to_cache(vnode, start, len, i_size, caching); 643 644 iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len); 645 ret = afs_store_data(vnode, &iter, start, false); 646 } else { 647 _debug("write discard %x @%llx [%llx]", len, start, i_size); 648 649 /* The dirty region was entirely beyond the EOF. */ 650 fscache_clear_page_bits(mapping, start, len, caching); 651 afs_pages_written_back(vnode, start, len); 652 ret = 0; 653 } 654 655 switch (ret) { 656 case 0: 657 wbc->nr_to_write = count; 658 ret = len; 659 break; 660 661 default: 662 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); 663 fallthrough; 664 case -EACCES: 665 case -EPERM: 666 case -ENOKEY: 667 case -EKEYEXPIRED: 668 case -EKEYREJECTED: 669 case -EKEYREVOKED: 670 case -ENETRESET: 671 afs_redirty_pages(wbc, mapping, start, len); 672 mapping_set_error(mapping, ret); 673 break; 674 675 case -EDQUOT: 676 case -ENOSPC: 677 afs_redirty_pages(wbc, mapping, start, len); 678 mapping_set_error(mapping, -ENOSPC); 679 break; 680 681 case -EROFS: 682 case -EIO: 683 case -EREMOTEIO: 684 case -EFBIG: 685 case -ENOENT: 686 case -ENOMEDIUM: 687 case -ENXIO: 688 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); 689 afs_kill_pages(mapping, start, len); 690 mapping_set_error(mapping, ret); 691 break; 692 } 693 694 _leave(" = %d", ret); 695 return ret; 696 } 697 698 /* 699 * write a region of pages back to the server 700 */ 701 static int afs_writepages_region(struct address_space *mapping, 702 struct writeback_control *wbc, 703 loff_t start, loff_t end, loff_t *_next, 704 bool max_one_loop) 705 { 706 struct folio *folio; 707 struct folio_batch fbatch; 708 ssize_t ret; 709 unsigned int i; 710 int n, skips = 0; 711 712 _enter("%llx,%llx,", start, end); 713 folio_batch_init(&fbatch); 714 715 do { 716 pgoff_t index = start / PAGE_SIZE; 717 718 n = filemap_get_folios_tag(mapping, &index, end / PAGE_SIZE, 719 PAGECACHE_TAG_DIRTY, &fbatch); 720 721 if (!n) 722 break; 723 for (i = 0; i < n; i++) { 724 folio = fbatch.folios[i]; 725 start = folio_pos(folio); /* May regress with THPs */ 726 727 _debug("wback %lx", folio_index(folio)); 728 729 /* At this point we hold neither the i_pages lock nor the 730 * page lock: the page may be truncated or invalidated 731 * (changing page->mapping to NULL), or even swizzled 732 * back from swapper_space to tmpfs file mapping 733 */ 734 if (wbc->sync_mode != WB_SYNC_NONE) { 735 ret = folio_lock_killable(folio); 736 if (ret < 0) { 737 folio_batch_release(&fbatch); 738 return ret; 739 } 740 } else { 741 if (!folio_trylock(folio)) 742 continue; 743 } 744 745 if (folio->mapping != mapping || 746 !folio_test_dirty(folio)) { 747 start += folio_size(folio); 748 folio_unlock(folio); 749 continue; 750 } 751 752 if (folio_test_writeback(folio) || 753 folio_test_fscache(folio)) { 754 folio_unlock(folio); 755 if (wbc->sync_mode != WB_SYNC_NONE) { 756 folio_wait_writeback(folio); 757 #ifdef CONFIG_AFS_FSCACHE 758 folio_wait_fscache(folio); 759 #endif 760 } else { 761 start += folio_size(folio); 762 } 763 if (wbc->sync_mode == WB_SYNC_NONE) { 764 if (skips >= 5 || need_resched()) { 765 *_next = start; 766 _leave(" = 0 [%llx]", *_next); 767 return 0; 768 } 769 skips++; 770 } 771 continue; 772 } 773 774 if (!folio_clear_dirty_for_io(folio)) 775 BUG(); 776 ret = afs_write_back_from_locked_folio(mapping, wbc, 777 folio, start, end); 778 if (ret < 0) { 779 _leave(" = %zd", ret); 780 folio_batch_release(&fbatch); 781 return ret; 782 } 783 784 start += ret; 785 } 786 787 folio_batch_release(&fbatch); 788 cond_resched(); 789 } while (wbc->nr_to_write > 0); 790 791 *_next = start; 792 _leave(" = 0 [%llx]", *_next); 793 return 0; 794 } 795 796 /* 797 * write some of the pending data back to the server 798 */ 799 int afs_writepages(struct address_space *mapping, 800 struct writeback_control *wbc) 801 { 802 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 803 loff_t start, next; 804 int ret; 805 806 _enter(""); 807 808 /* We have to be careful as we can end up racing with setattr() 809 * truncating the pagecache since the caller doesn't take a lock here 810 * to prevent it. 811 */ 812 if (wbc->sync_mode == WB_SYNC_ALL) 813 down_read(&vnode->validate_lock); 814 else if (!down_read_trylock(&vnode->validate_lock)) 815 return 0; 816 817 if (wbc->range_cyclic) { 818 start = mapping->writeback_index * PAGE_SIZE; 819 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, 820 &next, false); 821 if (ret == 0) { 822 mapping->writeback_index = next / PAGE_SIZE; 823 if (start > 0 && wbc->nr_to_write > 0) { 824 ret = afs_writepages_region(mapping, wbc, 0, 825 start, &next, false); 826 if (ret == 0) 827 mapping->writeback_index = 828 next / PAGE_SIZE; 829 } 830 } 831 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 832 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, 833 &next, false); 834 if (wbc->nr_to_write > 0 && ret == 0) 835 mapping->writeback_index = next / PAGE_SIZE; 836 } else { 837 ret = afs_writepages_region(mapping, wbc, 838 wbc->range_start, wbc->range_end, 839 &next, false); 840 } 841 842 up_read(&vnode->validate_lock); 843 _leave(" = %d", ret); 844 return ret; 845 } 846 847 /* 848 * write to an AFS file 849 */ 850 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) 851 { 852 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 853 struct afs_file *af = iocb->ki_filp->private_data; 854 ssize_t result; 855 size_t count = iov_iter_count(from); 856 857 _enter("{%llx:%llu},{%zu},", 858 vnode->fid.vid, vnode->fid.vnode, count); 859 860 if (IS_SWAPFILE(&vnode->netfs.inode)) { 861 printk(KERN_INFO 862 "AFS: Attempt to write to active swap file!\n"); 863 return -EBUSY; 864 } 865 866 if (!count) 867 return 0; 868 869 result = afs_validate(vnode, af->key); 870 if (result < 0) 871 return result; 872 873 result = generic_file_write_iter(iocb, from); 874 875 _leave(" = %zd", result); 876 return result; 877 } 878 879 /* 880 * flush any dirty pages for this process, and check for write errors. 881 * - the return status from this call provides a reliable indication of 882 * whether any write errors occurred for this process. 883 */ 884 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 885 { 886 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 887 struct afs_file *af = file->private_data; 888 int ret; 889 890 _enter("{%llx:%llu},{n=%pD},%d", 891 vnode->fid.vid, vnode->fid.vnode, file, 892 datasync); 893 894 ret = afs_validate(vnode, af->key); 895 if (ret < 0) 896 return ret; 897 898 return file_write_and_wait_range(file, start, end); 899 } 900 901 /* 902 * notification that a previously read-only page is about to become writable 903 * - if it returns an error, the caller will deliver a bus error signal 904 */ 905 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) 906 { 907 struct folio *folio = page_folio(vmf->page); 908 struct file *file = vmf->vma->vm_file; 909 struct inode *inode = file_inode(file); 910 struct afs_vnode *vnode = AFS_FS_I(inode); 911 struct afs_file *af = file->private_data; 912 unsigned long priv; 913 vm_fault_t ret = VM_FAULT_RETRY; 914 915 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); 916 917 afs_validate(vnode, af->key); 918 919 sb_start_pagefault(inode->i_sb); 920 921 /* Wait for the page to be written to the cache before we allow it to 922 * be modified. We then assume the entire page will need writing back. 923 */ 924 #ifdef CONFIG_AFS_FSCACHE 925 if (folio_test_fscache(folio) && 926 folio_wait_fscache_killable(folio) < 0) 927 goto out; 928 #endif 929 930 if (folio_wait_writeback_killable(folio)) 931 goto out; 932 933 if (folio_lock_killable(folio) < 0) 934 goto out; 935 936 /* We mustn't change folio->private until writeback is complete as that 937 * details the portion of the page we need to write back and we might 938 * need to redirty the page if there's a problem. 939 */ 940 if (folio_wait_writeback_killable(folio) < 0) { 941 folio_unlock(folio); 942 goto out; 943 } 944 945 priv = afs_folio_dirty(folio, 0, folio_size(folio)); 946 priv = afs_folio_dirty_mmapped(priv); 947 if (folio_test_private(folio)) { 948 folio_change_private(folio, (void *)priv); 949 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio); 950 } else { 951 folio_attach_private(folio, (void *)priv); 952 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio); 953 } 954 file_update_time(file); 955 956 ret = VM_FAULT_LOCKED; 957 out: 958 sb_end_pagefault(inode->i_sb); 959 return ret; 960 } 961 962 /* 963 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. 964 */ 965 void afs_prune_wb_keys(struct afs_vnode *vnode) 966 { 967 LIST_HEAD(graveyard); 968 struct afs_wb_key *wbk, *tmp; 969 970 /* Discard unused keys */ 971 spin_lock(&vnode->wb_lock); 972 973 if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) && 974 !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) { 975 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { 976 if (refcount_read(&wbk->usage) == 1) 977 list_move(&wbk->vnode_link, &graveyard); 978 } 979 } 980 981 spin_unlock(&vnode->wb_lock); 982 983 while (!list_empty(&graveyard)) { 984 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); 985 list_del(&wbk->vnode_link); 986 afs_put_wb_key(wbk); 987 } 988 } 989 990 /* 991 * Clean up a page during invalidation. 992 */ 993 int afs_launder_folio(struct folio *folio) 994 { 995 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); 996 struct iov_iter iter; 997 struct bio_vec bv; 998 unsigned long priv; 999 unsigned int f, t; 1000 int ret = 0; 1001 1002 _enter("{%lx}", folio->index); 1003 1004 priv = (unsigned long)folio_get_private(folio); 1005 if (folio_clear_dirty_for_io(folio)) { 1006 f = 0; 1007 t = folio_size(folio); 1008 if (folio_test_private(folio)) { 1009 f = afs_folio_dirty_from(folio, priv); 1010 t = afs_folio_dirty_to(folio, priv); 1011 } 1012 1013 bvec_set_folio(&bv, folio, t - f, f); 1014 iov_iter_bvec(&iter, ITER_SOURCE, &bv, 1, bv.bv_len); 1015 1016 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio); 1017 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true); 1018 } 1019 1020 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio); 1021 folio_detach_private(folio); 1022 folio_wait_fscache(folio); 1023 return ret; 1024 } 1025 1026 /* 1027 * Deal with the completion of writing the data to the cache. 1028 */ 1029 static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error, 1030 bool was_async) 1031 { 1032 struct afs_vnode *vnode = priv; 1033 1034 if (IS_ERR_VALUE(transferred_or_error) && 1035 transferred_or_error != -ENOBUFS) 1036 afs_invalidate_cache(vnode, 0); 1037 } 1038 1039 /* 1040 * Save the write to the cache also. 1041 */ 1042 static void afs_write_to_cache(struct afs_vnode *vnode, 1043 loff_t start, size_t len, loff_t i_size, 1044 bool caching) 1045 { 1046 fscache_write_to_cache(afs_vnode_cache(vnode), 1047 vnode->netfs.inode.i_mapping, start, len, i_size, 1048 afs_write_to_cache_done, vnode, caching); 1049 } 1050