1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* handling of writes to regular files and writing back to the server 3 * 4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/backing-dev.h> 9 #include <linux/slab.h> 10 #include <linux/fs.h> 11 #include <linux/pagemap.h> 12 #include <linux/writeback.h> 13 #include <linux/pagevec.h> 14 #include <linux/netfs.h> 15 #include "internal.h" 16 17 static int afs_writepages_region(struct address_space *mapping, 18 struct writeback_control *wbc, 19 loff_t start, loff_t end, loff_t *_next, 20 bool max_one_loop); 21 22 static void afs_write_to_cache(struct afs_vnode *vnode, loff_t start, size_t len, 23 loff_t i_size, bool caching); 24 25 #ifdef CONFIG_AFS_FSCACHE 26 /* 27 * Mark a page as having been made dirty and thus needing writeback. We also 28 * need to pin the cache object to write back to. 29 */ 30 bool afs_dirty_folio(struct address_space *mapping, struct folio *folio) 31 { 32 return fscache_dirty_folio(mapping, folio, 33 afs_vnode_cache(AFS_FS_I(mapping->host))); 34 } 35 static void afs_folio_start_fscache(bool caching, struct folio *folio) 36 { 37 if (caching) 38 folio_start_fscache(folio); 39 } 40 #else 41 static void afs_folio_start_fscache(bool caching, struct folio *folio) 42 { 43 } 44 #endif 45 46 /* 47 * Flush out a conflicting write. This may extend the write to the surrounding 48 * pages if also dirty and contiguous to the conflicting region.. 49 */ 50 static int afs_flush_conflicting_write(struct address_space *mapping, 51 struct folio *folio) 52 { 53 struct writeback_control wbc = { 54 .sync_mode = WB_SYNC_ALL, 55 .nr_to_write = LONG_MAX, 56 .range_start = folio_pos(folio), 57 .range_end = LLONG_MAX, 58 }; 59 loff_t next; 60 61 return afs_writepages_region(mapping, &wbc, folio_pos(folio), LLONG_MAX, 62 &next, true); 63 } 64 65 /* 66 * prepare to perform part of a write to a page 67 */ 68 int afs_write_begin(struct file *file, struct address_space *mapping, 69 loff_t pos, unsigned len, 70 struct page **_page, void **fsdata) 71 { 72 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 73 struct folio *folio; 74 unsigned long priv; 75 unsigned f, from; 76 unsigned t, to; 77 pgoff_t index; 78 int ret; 79 80 _enter("{%llx:%llu},%llx,%x", 81 vnode->fid.vid, vnode->fid.vnode, pos, len); 82 83 /* Prefetch area to be written into the cache if we're caching this 84 * file. We need to do this before we get a lock on the page in case 85 * there's more than one writer competing for the same cache block. 86 */ 87 ret = netfs_write_begin(&vnode->netfs, file, mapping, pos, len, &folio, fsdata); 88 if (ret < 0) 89 return ret; 90 91 index = folio_index(folio); 92 from = pos - index * PAGE_SIZE; 93 to = from + len; 94 95 try_again: 96 /* See if this page is already partially written in a way that we can 97 * merge the new write with. 98 */ 99 if (folio_test_private(folio)) { 100 priv = (unsigned long)folio_get_private(folio); 101 f = afs_folio_dirty_from(folio, priv); 102 t = afs_folio_dirty_to(folio, priv); 103 ASSERTCMP(f, <=, t); 104 105 if (folio_test_writeback(folio)) { 106 trace_afs_folio_dirty(vnode, tracepoint_string("alrdy"), folio); 107 folio_unlock(folio); 108 goto wait_for_writeback; 109 } 110 /* If the file is being filled locally, allow inter-write 111 * spaces to be merged into writes. If it's not, only write 112 * back what the user gives us. 113 */ 114 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) && 115 (to < f || from > t)) 116 goto flush_conflicting_write; 117 } 118 119 *_page = folio_file_page(folio, pos / PAGE_SIZE); 120 _leave(" = 0"); 121 return 0; 122 123 /* The previous write and this write aren't adjacent or overlapping, so 124 * flush the page out. 125 */ 126 flush_conflicting_write: 127 trace_afs_folio_dirty(vnode, tracepoint_string("confl"), folio); 128 folio_unlock(folio); 129 130 ret = afs_flush_conflicting_write(mapping, folio); 131 if (ret < 0) 132 goto error; 133 134 wait_for_writeback: 135 ret = folio_wait_writeback_killable(folio); 136 if (ret < 0) 137 goto error; 138 139 ret = folio_lock_killable(folio); 140 if (ret < 0) 141 goto error; 142 goto try_again; 143 144 error: 145 folio_put(folio); 146 _leave(" = %d", ret); 147 return ret; 148 } 149 150 /* 151 * finalise part of a write to a page 152 */ 153 int afs_write_end(struct file *file, struct address_space *mapping, 154 loff_t pos, unsigned len, unsigned copied, 155 struct page *subpage, void *fsdata) 156 { 157 struct folio *folio = page_folio(subpage); 158 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 159 unsigned long priv; 160 unsigned int f, from = offset_in_folio(folio, pos); 161 unsigned int t, to = from + copied; 162 loff_t i_size, write_end_pos; 163 164 _enter("{%llx:%llu},{%lx}", 165 vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); 166 167 if (!folio_test_uptodate(folio)) { 168 if (copied < len) { 169 copied = 0; 170 goto out; 171 } 172 173 folio_mark_uptodate(folio); 174 } 175 176 if (copied == 0) 177 goto out; 178 179 write_end_pos = pos + copied; 180 181 i_size = i_size_read(&vnode->netfs.inode); 182 if (write_end_pos > i_size) { 183 write_seqlock(&vnode->cb_lock); 184 i_size = i_size_read(&vnode->netfs.inode); 185 if (write_end_pos > i_size) 186 afs_set_i_size(vnode, write_end_pos); 187 write_sequnlock(&vnode->cb_lock); 188 fscache_update_cookie(afs_vnode_cache(vnode), NULL, &write_end_pos); 189 } 190 191 if (folio_test_private(folio)) { 192 priv = (unsigned long)folio_get_private(folio); 193 f = afs_folio_dirty_from(folio, priv); 194 t = afs_folio_dirty_to(folio, priv); 195 if (from < f) 196 f = from; 197 if (to > t) 198 t = to; 199 priv = afs_folio_dirty(folio, f, t); 200 folio_change_private(folio, (void *)priv); 201 trace_afs_folio_dirty(vnode, tracepoint_string("dirty+"), folio); 202 } else { 203 priv = afs_folio_dirty(folio, from, to); 204 folio_attach_private(folio, (void *)priv); 205 trace_afs_folio_dirty(vnode, tracepoint_string("dirty"), folio); 206 } 207 208 if (folio_mark_dirty(folio)) 209 _debug("dirtied %lx", folio_index(folio)); 210 211 out: 212 folio_unlock(folio); 213 folio_put(folio); 214 return copied; 215 } 216 217 /* 218 * kill all the pages in the given range 219 */ 220 static void afs_kill_pages(struct address_space *mapping, 221 loff_t start, loff_t len) 222 { 223 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 224 struct folio *folio; 225 pgoff_t index = start / PAGE_SIZE; 226 pgoff_t last = (start + len - 1) / PAGE_SIZE, next; 227 228 _enter("{%llx:%llu},%llx @%llx", 229 vnode->fid.vid, vnode->fid.vnode, len, start); 230 231 do { 232 _debug("kill %lx (to %lx)", index, last); 233 234 folio = filemap_get_folio(mapping, index); 235 if (IS_ERR(folio)) { 236 next = index + 1; 237 continue; 238 } 239 240 next = folio_next_index(folio); 241 242 folio_clear_uptodate(folio); 243 folio_end_writeback(folio); 244 folio_lock(folio); 245 generic_error_remove_page(mapping, &folio->page); 246 folio_unlock(folio); 247 folio_put(folio); 248 249 } while (index = next, index <= last); 250 251 _leave(""); 252 } 253 254 /* 255 * Redirty all the pages in a given range. 256 */ 257 static void afs_redirty_pages(struct writeback_control *wbc, 258 struct address_space *mapping, 259 loff_t start, loff_t len) 260 { 261 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 262 struct folio *folio; 263 pgoff_t index = start / PAGE_SIZE; 264 pgoff_t last = (start + len - 1) / PAGE_SIZE, next; 265 266 _enter("{%llx:%llu},%llx @%llx", 267 vnode->fid.vid, vnode->fid.vnode, len, start); 268 269 do { 270 _debug("redirty %llx @%llx", len, start); 271 272 folio = filemap_get_folio(mapping, index); 273 if (IS_ERR(folio)) { 274 next = index + 1; 275 continue; 276 } 277 278 next = index + folio_nr_pages(folio); 279 folio_redirty_for_writepage(wbc, folio); 280 folio_end_writeback(folio); 281 folio_put(folio); 282 } while (index = next, index <= last); 283 284 _leave(""); 285 } 286 287 /* 288 * completion of write to server 289 */ 290 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len) 291 { 292 struct address_space *mapping = vnode->netfs.inode.i_mapping; 293 struct folio *folio; 294 pgoff_t end; 295 296 XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE); 297 298 _enter("{%llx:%llu},{%x @%llx}", 299 vnode->fid.vid, vnode->fid.vnode, len, start); 300 301 rcu_read_lock(); 302 303 end = (start + len - 1) / PAGE_SIZE; 304 xas_for_each(&xas, folio, end) { 305 if (!folio_test_writeback(folio)) { 306 kdebug("bad %x @%llx page %lx %lx", 307 len, start, folio_index(folio), end); 308 ASSERT(folio_test_writeback(folio)); 309 } 310 311 trace_afs_folio_dirty(vnode, tracepoint_string("clear"), folio); 312 folio_detach_private(folio); 313 folio_end_writeback(folio); 314 } 315 316 rcu_read_unlock(); 317 318 afs_prune_wb_keys(vnode); 319 _leave(""); 320 } 321 322 /* 323 * Find a key to use for the writeback. We cached the keys used to author the 324 * writes on the vnode. *_wbk will contain the last writeback key used or NULL 325 * and we need to start from there if it's set. 326 */ 327 static int afs_get_writeback_key(struct afs_vnode *vnode, 328 struct afs_wb_key **_wbk) 329 { 330 struct afs_wb_key *wbk = NULL; 331 struct list_head *p; 332 int ret = -ENOKEY, ret2; 333 334 spin_lock(&vnode->wb_lock); 335 if (*_wbk) 336 p = (*_wbk)->vnode_link.next; 337 else 338 p = vnode->wb_keys.next; 339 340 while (p != &vnode->wb_keys) { 341 wbk = list_entry(p, struct afs_wb_key, vnode_link); 342 _debug("wbk %u", key_serial(wbk->key)); 343 ret2 = key_validate(wbk->key); 344 if (ret2 == 0) { 345 refcount_inc(&wbk->usage); 346 _debug("USE WB KEY %u", key_serial(wbk->key)); 347 break; 348 } 349 350 wbk = NULL; 351 if (ret == -ENOKEY) 352 ret = ret2; 353 p = p->next; 354 } 355 356 spin_unlock(&vnode->wb_lock); 357 if (*_wbk) 358 afs_put_wb_key(*_wbk); 359 *_wbk = wbk; 360 return 0; 361 } 362 363 static void afs_store_data_success(struct afs_operation *op) 364 { 365 struct afs_vnode *vnode = op->file[0].vnode; 366 367 op->ctime = op->file[0].scb.status.mtime_client; 368 afs_vnode_commit_status(op, &op->file[0]); 369 if (op->error == 0) { 370 if (!op->store.laundering) 371 afs_pages_written_back(vnode, op->store.pos, op->store.size); 372 afs_stat_v(vnode, n_stores); 373 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes); 374 } 375 } 376 377 static const struct afs_operation_ops afs_store_data_operation = { 378 .issue_afs_rpc = afs_fs_store_data, 379 .issue_yfs_rpc = yfs_fs_store_data, 380 .success = afs_store_data_success, 381 }; 382 383 /* 384 * write to a file 385 */ 386 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos, 387 bool laundering) 388 { 389 struct afs_operation *op; 390 struct afs_wb_key *wbk = NULL; 391 loff_t size = iov_iter_count(iter); 392 int ret = -ENOKEY; 393 394 _enter("%s{%llx:%llu.%u},%llx,%llx", 395 vnode->volume->name, 396 vnode->fid.vid, 397 vnode->fid.vnode, 398 vnode->fid.unique, 399 size, pos); 400 401 ret = afs_get_writeback_key(vnode, &wbk); 402 if (ret) { 403 _leave(" = %d [no keys]", ret); 404 return ret; 405 } 406 407 op = afs_alloc_operation(wbk->key, vnode->volume); 408 if (IS_ERR(op)) { 409 afs_put_wb_key(wbk); 410 return -ENOMEM; 411 } 412 413 afs_op_set_vnode(op, 0, vnode); 414 op->file[0].dv_delta = 1; 415 op->file[0].modification = true; 416 op->store.pos = pos; 417 op->store.size = size; 418 op->store.laundering = laundering; 419 op->flags |= AFS_OPERATION_UNINTR; 420 op->ops = &afs_store_data_operation; 421 422 try_next_key: 423 afs_begin_vnode_operation(op); 424 425 op->store.write_iter = iter; 426 op->store.i_size = max(pos + size, vnode->netfs.remote_i_size); 427 op->mtime = inode_get_mtime(&vnode->netfs.inode); 428 429 afs_wait_for_operation(op); 430 431 switch (op->error) { 432 case -EACCES: 433 case -EPERM: 434 case -ENOKEY: 435 case -EKEYEXPIRED: 436 case -EKEYREJECTED: 437 case -EKEYREVOKED: 438 _debug("next"); 439 440 ret = afs_get_writeback_key(vnode, &wbk); 441 if (ret == 0) { 442 key_put(op->key); 443 op->key = key_get(wbk->key); 444 goto try_next_key; 445 } 446 break; 447 } 448 449 afs_put_wb_key(wbk); 450 _leave(" = %d", op->error); 451 return afs_put_operation(op); 452 } 453 454 /* 455 * Extend the region to be written back to include subsequent contiguously 456 * dirty pages if possible, but don't sleep while doing so. 457 * 458 * If this page holds new content, then we can include filler zeros in the 459 * writeback. 460 */ 461 static void afs_extend_writeback(struct address_space *mapping, 462 struct afs_vnode *vnode, 463 long *_count, 464 loff_t start, 465 loff_t max_len, 466 bool new_content, 467 bool caching, 468 unsigned int *_len) 469 { 470 struct folio_batch fbatch; 471 struct folio *folio; 472 unsigned long priv; 473 unsigned int psize, filler = 0; 474 unsigned int f, t; 475 loff_t len = *_len; 476 pgoff_t index = (start + len) / PAGE_SIZE; 477 bool stop = true; 478 unsigned int i; 479 480 XA_STATE(xas, &mapping->i_pages, index); 481 folio_batch_init(&fbatch); 482 483 do { 484 /* Firstly, we gather up a batch of contiguous dirty pages 485 * under the RCU read lock - but we can't clear the dirty flags 486 * there if any of those pages are mapped. 487 */ 488 rcu_read_lock(); 489 490 xas_for_each(&xas, folio, ULONG_MAX) { 491 stop = true; 492 if (xas_retry(&xas, folio)) 493 continue; 494 if (xa_is_value(folio)) 495 break; 496 if (folio_index(folio) != index) 497 break; 498 499 if (!folio_try_get_rcu(folio)) { 500 xas_reset(&xas); 501 continue; 502 } 503 504 /* Has the page moved or been split? */ 505 if (unlikely(folio != xas_reload(&xas))) { 506 folio_put(folio); 507 break; 508 } 509 510 if (!folio_trylock(folio)) { 511 folio_put(folio); 512 break; 513 } 514 if (!folio_test_dirty(folio) || 515 folio_test_writeback(folio) || 516 folio_test_fscache(folio)) { 517 folio_unlock(folio); 518 folio_put(folio); 519 break; 520 } 521 522 psize = folio_size(folio); 523 priv = (unsigned long)folio_get_private(folio); 524 f = afs_folio_dirty_from(folio, priv); 525 t = afs_folio_dirty_to(folio, priv); 526 if (f != 0 && !new_content) { 527 folio_unlock(folio); 528 folio_put(folio); 529 break; 530 } 531 532 len += filler + t; 533 filler = psize - t; 534 if (len >= max_len || *_count <= 0) 535 stop = true; 536 else if (t == psize || new_content) 537 stop = false; 538 539 index += folio_nr_pages(folio); 540 if (!folio_batch_add(&fbatch, folio)) 541 break; 542 if (stop) 543 break; 544 } 545 546 if (!stop) 547 xas_pause(&xas); 548 rcu_read_unlock(); 549 550 /* Now, if we obtained any folios, we can shift them to being 551 * writable and mark them for caching. 552 */ 553 if (!folio_batch_count(&fbatch)) 554 break; 555 556 for (i = 0; i < folio_batch_count(&fbatch); i++) { 557 folio = fbatch.folios[i]; 558 trace_afs_folio_dirty(vnode, tracepoint_string("store+"), folio); 559 560 if (!folio_clear_dirty_for_io(folio)) 561 BUG(); 562 if (folio_start_writeback(folio)) 563 BUG(); 564 afs_folio_start_fscache(caching, folio); 565 566 *_count -= folio_nr_pages(folio); 567 folio_unlock(folio); 568 } 569 570 folio_batch_release(&fbatch); 571 cond_resched(); 572 } while (!stop); 573 574 *_len = len; 575 } 576 577 /* 578 * Synchronously write back the locked page and any subsequent non-locked dirty 579 * pages. 580 */ 581 static ssize_t afs_write_back_from_locked_folio(struct address_space *mapping, 582 struct writeback_control *wbc, 583 struct folio *folio, 584 loff_t start, loff_t end) 585 { 586 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 587 struct iov_iter iter; 588 unsigned long priv; 589 unsigned int offset, to, len, max_len; 590 loff_t i_size = i_size_read(&vnode->netfs.inode); 591 bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags); 592 bool caching = fscache_cookie_enabled(afs_vnode_cache(vnode)); 593 long count = wbc->nr_to_write; 594 int ret; 595 596 _enter(",%lx,%llx-%llx", folio_index(folio), start, end); 597 598 if (folio_start_writeback(folio)) 599 BUG(); 600 afs_folio_start_fscache(caching, folio); 601 602 count -= folio_nr_pages(folio); 603 604 /* Find all consecutive lockable dirty pages that have contiguous 605 * written regions, stopping when we find a page that is not 606 * immediately lockable, is not dirty or is missing, or we reach the 607 * end of the range. 608 */ 609 priv = (unsigned long)folio_get_private(folio); 610 offset = afs_folio_dirty_from(folio, priv); 611 to = afs_folio_dirty_to(folio, priv); 612 trace_afs_folio_dirty(vnode, tracepoint_string("store"), folio); 613 614 len = to - offset; 615 start += offset; 616 if (start < i_size) { 617 /* Trim the write to the EOF; the extra data is ignored. Also 618 * put an upper limit on the size of a single storedata op. 619 */ 620 max_len = 65536 * 4096; 621 max_len = min_t(unsigned long long, max_len, end - start + 1); 622 max_len = min_t(unsigned long long, max_len, i_size - start); 623 624 if (len < max_len && 625 (to == folio_size(folio) || new_content)) 626 afs_extend_writeback(mapping, vnode, &count, 627 start, max_len, new_content, 628 caching, &len); 629 len = min_t(loff_t, len, max_len); 630 } 631 632 /* We now have a contiguous set of dirty pages, each with writeback 633 * set; the first page is still locked at this point, but all the rest 634 * have been unlocked. 635 */ 636 folio_unlock(folio); 637 638 if (start < i_size) { 639 _debug("write back %x @%llx [%llx]", len, start, i_size); 640 641 /* Speculatively write to the cache. We have to fix this up 642 * later if the store fails. 643 */ 644 afs_write_to_cache(vnode, start, len, i_size, caching); 645 646 iov_iter_xarray(&iter, ITER_SOURCE, &mapping->i_pages, start, len); 647 ret = afs_store_data(vnode, &iter, start, false); 648 } else { 649 _debug("write discard %x @%llx [%llx]", len, start, i_size); 650 651 /* The dirty region was entirely beyond the EOF. */ 652 fscache_clear_page_bits(mapping, start, len, caching); 653 afs_pages_written_back(vnode, start, len); 654 ret = 0; 655 } 656 657 switch (ret) { 658 case 0: 659 wbc->nr_to_write = count; 660 ret = len; 661 break; 662 663 default: 664 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret); 665 fallthrough; 666 case -EACCES: 667 case -EPERM: 668 case -ENOKEY: 669 case -EKEYEXPIRED: 670 case -EKEYREJECTED: 671 case -EKEYREVOKED: 672 case -ENETRESET: 673 afs_redirty_pages(wbc, mapping, start, len); 674 mapping_set_error(mapping, ret); 675 break; 676 677 case -EDQUOT: 678 case -ENOSPC: 679 afs_redirty_pages(wbc, mapping, start, len); 680 mapping_set_error(mapping, -ENOSPC); 681 break; 682 683 case -EROFS: 684 case -EIO: 685 case -EREMOTEIO: 686 case -EFBIG: 687 case -ENOENT: 688 case -ENOMEDIUM: 689 case -ENXIO: 690 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail); 691 afs_kill_pages(mapping, start, len); 692 mapping_set_error(mapping, ret); 693 break; 694 } 695 696 _leave(" = %d", ret); 697 return ret; 698 } 699 700 /* 701 * write a region of pages back to the server 702 */ 703 static int afs_writepages_region(struct address_space *mapping, 704 struct writeback_control *wbc, 705 loff_t start, loff_t end, loff_t *_next, 706 bool max_one_loop) 707 { 708 struct folio *folio; 709 struct folio_batch fbatch; 710 ssize_t ret; 711 unsigned int i; 712 int n, skips = 0; 713 714 _enter("%llx,%llx,", start, end); 715 folio_batch_init(&fbatch); 716 717 do { 718 pgoff_t index = start / PAGE_SIZE; 719 720 n = filemap_get_folios_tag(mapping, &index, end / PAGE_SIZE, 721 PAGECACHE_TAG_DIRTY, &fbatch); 722 723 if (!n) 724 break; 725 for (i = 0; i < n; i++) { 726 folio = fbatch.folios[i]; 727 start = folio_pos(folio); /* May regress with THPs */ 728 729 _debug("wback %lx", folio_index(folio)); 730 731 /* At this point we hold neither the i_pages lock nor the 732 * page lock: the page may be truncated or invalidated 733 * (changing page->mapping to NULL), or even swizzled 734 * back from swapper_space to tmpfs file mapping 735 */ 736 try_again: 737 if (wbc->sync_mode != WB_SYNC_NONE) { 738 ret = folio_lock_killable(folio); 739 if (ret < 0) { 740 folio_batch_release(&fbatch); 741 return ret; 742 } 743 } else { 744 if (!folio_trylock(folio)) 745 continue; 746 } 747 748 if (folio->mapping != mapping || 749 !folio_test_dirty(folio)) { 750 start += folio_size(folio); 751 folio_unlock(folio); 752 continue; 753 } 754 755 if (folio_test_writeback(folio) || 756 folio_test_fscache(folio)) { 757 folio_unlock(folio); 758 if (wbc->sync_mode != WB_SYNC_NONE) { 759 folio_wait_writeback(folio); 760 #ifdef CONFIG_AFS_FSCACHE 761 folio_wait_fscache(folio); 762 #endif 763 goto try_again; 764 } 765 766 start += folio_size(folio); 767 if (wbc->sync_mode == WB_SYNC_NONE) { 768 if (skips >= 5 || need_resched()) { 769 *_next = start; 770 folio_batch_release(&fbatch); 771 _leave(" = 0 [%llx]", *_next); 772 return 0; 773 } 774 skips++; 775 } 776 continue; 777 } 778 779 if (!folio_clear_dirty_for_io(folio)) 780 BUG(); 781 ret = afs_write_back_from_locked_folio(mapping, wbc, 782 folio, start, end); 783 if (ret < 0) { 784 _leave(" = %zd", ret); 785 folio_batch_release(&fbatch); 786 return ret; 787 } 788 789 start += ret; 790 } 791 792 folio_batch_release(&fbatch); 793 cond_resched(); 794 } while (wbc->nr_to_write > 0); 795 796 *_next = start; 797 _leave(" = 0 [%llx]", *_next); 798 return 0; 799 } 800 801 /* 802 * write some of the pending data back to the server 803 */ 804 int afs_writepages(struct address_space *mapping, 805 struct writeback_control *wbc) 806 { 807 struct afs_vnode *vnode = AFS_FS_I(mapping->host); 808 loff_t start, next; 809 int ret; 810 811 _enter(""); 812 813 /* We have to be careful as we can end up racing with setattr() 814 * truncating the pagecache since the caller doesn't take a lock here 815 * to prevent it. 816 */ 817 if (wbc->sync_mode == WB_SYNC_ALL) 818 down_read(&vnode->validate_lock); 819 else if (!down_read_trylock(&vnode->validate_lock)) 820 return 0; 821 822 if (wbc->range_cyclic) { 823 start = mapping->writeback_index * PAGE_SIZE; 824 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, 825 &next, false); 826 if (ret == 0) { 827 mapping->writeback_index = next / PAGE_SIZE; 828 if (start > 0 && wbc->nr_to_write > 0) { 829 ret = afs_writepages_region(mapping, wbc, 0, 830 start, &next, false); 831 if (ret == 0) 832 mapping->writeback_index = 833 next / PAGE_SIZE; 834 } 835 } 836 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) { 837 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, 838 &next, false); 839 if (wbc->nr_to_write > 0 && ret == 0) 840 mapping->writeback_index = next / PAGE_SIZE; 841 } else { 842 ret = afs_writepages_region(mapping, wbc, 843 wbc->range_start, wbc->range_end, 844 &next, false); 845 } 846 847 up_read(&vnode->validate_lock); 848 _leave(" = %d", ret); 849 return ret; 850 } 851 852 /* 853 * write to an AFS file 854 */ 855 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from) 856 { 857 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp)); 858 struct afs_file *af = iocb->ki_filp->private_data; 859 ssize_t result; 860 size_t count = iov_iter_count(from); 861 862 _enter("{%llx:%llu},{%zu},", 863 vnode->fid.vid, vnode->fid.vnode, count); 864 865 if (IS_SWAPFILE(&vnode->netfs.inode)) { 866 printk(KERN_INFO 867 "AFS: Attempt to write to active swap file!\n"); 868 return -EBUSY; 869 } 870 871 if (!count) 872 return 0; 873 874 result = afs_validate(vnode, af->key); 875 if (result < 0) 876 return result; 877 878 result = generic_file_write_iter(iocb, from); 879 880 _leave(" = %zd", result); 881 return result; 882 } 883 884 /* 885 * flush any dirty pages for this process, and check for write errors. 886 * - the return status from this call provides a reliable indication of 887 * whether any write errors occurred for this process. 888 */ 889 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 890 { 891 struct afs_vnode *vnode = AFS_FS_I(file_inode(file)); 892 struct afs_file *af = file->private_data; 893 int ret; 894 895 _enter("{%llx:%llu},{n=%pD},%d", 896 vnode->fid.vid, vnode->fid.vnode, file, 897 datasync); 898 899 ret = afs_validate(vnode, af->key); 900 if (ret < 0) 901 return ret; 902 903 return file_write_and_wait_range(file, start, end); 904 } 905 906 /* 907 * notification that a previously read-only page is about to become writable 908 * - if it returns an error, the caller will deliver a bus error signal 909 */ 910 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf) 911 { 912 struct folio *folio = page_folio(vmf->page); 913 struct file *file = vmf->vma->vm_file; 914 struct inode *inode = file_inode(file); 915 struct afs_vnode *vnode = AFS_FS_I(inode); 916 struct afs_file *af = file->private_data; 917 unsigned long priv; 918 vm_fault_t ret = VM_FAULT_RETRY; 919 920 _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, folio_index(folio)); 921 922 afs_validate(vnode, af->key); 923 924 sb_start_pagefault(inode->i_sb); 925 926 /* Wait for the page to be written to the cache before we allow it to 927 * be modified. We then assume the entire page will need writing back. 928 */ 929 #ifdef CONFIG_AFS_FSCACHE 930 if (folio_test_fscache(folio) && 931 folio_wait_fscache_killable(folio) < 0) 932 goto out; 933 #endif 934 935 if (folio_wait_writeback_killable(folio)) 936 goto out; 937 938 if (folio_lock_killable(folio) < 0) 939 goto out; 940 941 /* We mustn't change folio->private until writeback is complete as that 942 * details the portion of the page we need to write back and we might 943 * need to redirty the page if there's a problem. 944 */ 945 if (folio_wait_writeback_killable(folio) < 0) { 946 folio_unlock(folio); 947 goto out; 948 } 949 950 priv = afs_folio_dirty(folio, 0, folio_size(folio)); 951 priv = afs_folio_dirty_mmapped(priv); 952 if (folio_test_private(folio)) { 953 folio_change_private(folio, (void *)priv); 954 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite+"), folio); 955 } else { 956 folio_attach_private(folio, (void *)priv); 957 trace_afs_folio_dirty(vnode, tracepoint_string("mkwrite"), folio); 958 } 959 file_update_time(file); 960 961 ret = VM_FAULT_LOCKED; 962 out: 963 sb_end_pagefault(inode->i_sb); 964 return ret; 965 } 966 967 /* 968 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock. 969 */ 970 void afs_prune_wb_keys(struct afs_vnode *vnode) 971 { 972 LIST_HEAD(graveyard); 973 struct afs_wb_key *wbk, *tmp; 974 975 /* Discard unused keys */ 976 spin_lock(&vnode->wb_lock); 977 978 if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) && 979 !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) { 980 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) { 981 if (refcount_read(&wbk->usage) == 1) 982 list_move(&wbk->vnode_link, &graveyard); 983 } 984 } 985 986 spin_unlock(&vnode->wb_lock); 987 988 while (!list_empty(&graveyard)) { 989 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link); 990 list_del(&wbk->vnode_link); 991 afs_put_wb_key(wbk); 992 } 993 } 994 995 /* 996 * Clean up a page during invalidation. 997 */ 998 int afs_launder_folio(struct folio *folio) 999 { 1000 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio)); 1001 struct iov_iter iter; 1002 struct bio_vec bv; 1003 unsigned long priv; 1004 unsigned int f, t; 1005 int ret = 0; 1006 1007 _enter("{%lx}", folio->index); 1008 1009 priv = (unsigned long)folio_get_private(folio); 1010 if (folio_clear_dirty_for_io(folio)) { 1011 f = 0; 1012 t = folio_size(folio); 1013 if (folio_test_private(folio)) { 1014 f = afs_folio_dirty_from(folio, priv); 1015 t = afs_folio_dirty_to(folio, priv); 1016 } 1017 1018 bvec_set_folio(&bv, folio, t - f, f); 1019 iov_iter_bvec(&iter, ITER_SOURCE, &bv, 1, bv.bv_len); 1020 1021 trace_afs_folio_dirty(vnode, tracepoint_string("launder"), folio); 1022 ret = afs_store_data(vnode, &iter, folio_pos(folio) + f, true); 1023 } 1024 1025 trace_afs_folio_dirty(vnode, tracepoint_string("laundered"), folio); 1026 folio_detach_private(folio); 1027 folio_wait_fscache(folio); 1028 return ret; 1029 } 1030 1031 /* 1032 * Deal with the completion of writing the data to the cache. 1033 */ 1034 static void afs_write_to_cache_done(void *priv, ssize_t transferred_or_error, 1035 bool was_async) 1036 { 1037 struct afs_vnode *vnode = priv; 1038 1039 if (IS_ERR_VALUE(transferred_or_error) && 1040 transferred_or_error != -ENOBUFS) 1041 afs_invalidate_cache(vnode, 0); 1042 } 1043 1044 /* 1045 * Save the write to the cache also. 1046 */ 1047 static void afs_write_to_cache(struct afs_vnode *vnode, 1048 loff_t start, size_t len, loff_t i_size, 1049 bool caching) 1050 { 1051 fscache_write_to_cache(afs_vnode_cache(vnode), 1052 vnode->netfs.inode.i_mapping, start, len, i_size, 1053 afs_write_to_cache_done, vnode, caching); 1054 } 1055