xref: /linux/fs/afs/write.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <trace/events/netfs.h>
16 #include "internal.h"
17 
18 /*
19  * completion of write to server
20  */
21 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
22 {
23 	_enter("{%llx:%llu},{%x @%llx}",
24 	       vnode->fid.vid, vnode->fid.vnode, len, start);
25 
26 	afs_prune_wb_keys(vnode);
27 	_leave("");
28 }
29 
30 /*
31  * Find a key to use for the writeback.  We cached the keys used to author the
32  * writes on the vnode.  wreq->netfs_priv2 will contain the last writeback key
33  * record used or NULL and we need to start from there if it's set.
34  * wreq->netfs_priv will be set to the key itself or NULL.
35  */
36 static void afs_get_writeback_key(struct netfs_io_request *wreq)
37 {
38 	struct afs_wb_key *wbk, *old = wreq->netfs_priv2;
39 	struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
40 
41 	key_put(wreq->netfs_priv);
42 	wreq->netfs_priv = NULL;
43 	wreq->netfs_priv2 = NULL;
44 
45 	spin_lock(&vnode->wb_lock);
46 	if (old)
47 		wbk = list_next_entry(old, vnode_link);
48 	else
49 		wbk = list_first_entry(&vnode->wb_keys, struct afs_wb_key, vnode_link);
50 
51 	list_for_each_entry_from(wbk, &vnode->wb_keys, vnode_link) {
52 		_debug("wbk %u", key_serial(wbk->key));
53 		if (key_validate(wbk->key) == 0) {
54 			refcount_inc(&wbk->usage);
55 			wreq->netfs_priv = key_get(wbk->key);
56 			wreq->netfs_priv2 = wbk;
57 			_debug("USE WB KEY %u", key_serial(wbk->key));
58 			break;
59 		}
60 	}
61 
62 	spin_unlock(&vnode->wb_lock);
63 
64 	afs_put_wb_key(old);
65 }
66 
67 static void afs_store_data_success(struct afs_operation *op)
68 {
69 	struct afs_vnode *vnode = op->file[0].vnode;
70 
71 	op->ctime = op->file[0].scb.status.mtime_client;
72 	afs_vnode_commit_status(op, &op->file[0]);
73 	if (!afs_op_error(op)) {
74 		afs_pages_written_back(vnode, op->store.pos, op->store.size);
75 		afs_stat_v(vnode, n_stores);
76 		atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
77 	}
78 }
79 
80 static const struct afs_operation_ops afs_store_data_operation = {
81 	.issue_afs_rpc	= afs_fs_store_data,
82 	.issue_yfs_rpc	= yfs_fs_store_data,
83 	.success	= afs_store_data_success,
84 };
85 
86 /*
87  * Prepare a subrequest to write to the server.  This sets the max_len
88  * parameter.
89  */
90 void afs_prepare_write(struct netfs_io_subrequest *subreq)
91 {
92 	struct netfs_io_stream *stream = &subreq->rreq->io_streams[subreq->stream_nr];
93 
94 	//if (test_bit(NETFS_SREQ_RETRYING, &subreq->flags))
95 	//	subreq->max_len = 512 * 1024;
96 	//else
97 	stream->sreq_max_len = 256 * 1024 * 1024;
98 }
99 
100 /*
101  * Issue a subrequest to write to the server.
102  */
103 static void afs_issue_write_worker(struct work_struct *work)
104 {
105 	struct netfs_io_subrequest *subreq = container_of(work, struct netfs_io_subrequest, work);
106 	struct netfs_io_request *wreq = subreq->rreq;
107 	struct afs_operation *op;
108 	struct afs_vnode *vnode = AFS_FS_I(wreq->inode);
109 	unsigned long long pos = subreq->start + subreq->transferred;
110 	size_t len = subreq->len - subreq->transferred;
111 	int ret = -ENOKEY;
112 
113 	_enter("R=%x[%x],%s{%llx:%llu.%u},%llx,%zx",
114 	       wreq->debug_id, subreq->debug_index,
115 	       vnode->volume->name,
116 	       vnode->fid.vid,
117 	       vnode->fid.vnode,
118 	       vnode->fid.unique,
119 	       pos, len);
120 
121 #if 0 // Error injection
122 	if (subreq->debug_index == 3)
123 		return netfs_write_subrequest_terminated(subreq, -ENOANO, false);
124 
125 	if (!subreq->retry_count) {
126 		set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
127 		return netfs_write_subrequest_terminated(subreq, -EAGAIN, false);
128 	}
129 #endif
130 
131 	op = afs_alloc_operation(wreq->netfs_priv, vnode->volume);
132 	if (IS_ERR(op))
133 		return netfs_write_subrequest_terminated(subreq, -EAGAIN, false);
134 
135 	afs_op_set_vnode(op, 0, vnode);
136 	op->file[0].dv_delta	= 1;
137 	op->file[0].modification = true;
138 	op->store.pos		= pos;
139 	op->store.size		= len;
140 	op->flags		|= AFS_OPERATION_UNINTR;
141 	op->ops			= &afs_store_data_operation;
142 
143 	afs_begin_vnode_operation(op);
144 
145 	op->store.write_iter	= &subreq->io_iter;
146 	op->store.i_size	= umax(pos + len, vnode->netfs.remote_i_size);
147 	op->mtime		= inode_get_mtime(&vnode->netfs.inode);
148 
149 	afs_wait_for_operation(op);
150 	ret = afs_put_operation(op);
151 	switch (ret) {
152 	case 0:
153 		__set_bit(NETFS_SREQ_MADE_PROGRESS, &subreq->flags);
154 		break;
155 	case -EACCES:
156 	case -EPERM:
157 	case -ENOKEY:
158 	case -EKEYEXPIRED:
159 	case -EKEYREJECTED:
160 	case -EKEYREVOKED:
161 		/* If there are more keys we can try, use the retry algorithm
162 		 * to rotate the keys.
163 		 */
164 		if (wreq->netfs_priv2)
165 			set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
166 		break;
167 	}
168 
169 	netfs_write_subrequest_terminated(subreq, ret < 0 ? ret : subreq->len, false);
170 }
171 
172 void afs_issue_write(struct netfs_io_subrequest *subreq)
173 {
174 	subreq->work.func = afs_issue_write_worker;
175 	if (!queue_work(system_unbound_wq, &subreq->work))
176 		WARN_ON_ONCE(1);
177 }
178 
179 /*
180  * Writeback calls this when it finds a folio that needs uploading.  This isn't
181  * called if writeback only has copy-to-cache to deal with.
182  */
183 void afs_begin_writeback(struct netfs_io_request *wreq)
184 {
185 	afs_get_writeback_key(wreq);
186 	wreq->io_streams[0].avail = true;
187 }
188 
189 /*
190  * Prepare to retry the writes in request.  Use this to try rotating the
191  * available writeback keys.
192  */
193 void afs_retry_request(struct netfs_io_request *wreq, struct netfs_io_stream *stream)
194 {
195 	struct netfs_io_subrequest *subreq =
196 		list_first_entry(&stream->subrequests,
197 				 struct netfs_io_subrequest, rreq_link);
198 
199 	switch (subreq->error) {
200 	case -EACCES:
201 	case -EPERM:
202 	case -ENOKEY:
203 	case -EKEYEXPIRED:
204 	case -EKEYREJECTED:
205 	case -EKEYREVOKED:
206 		afs_get_writeback_key(wreq);
207 		if (!wreq->netfs_priv)
208 			stream->failed = true;
209 		break;
210 	}
211 }
212 
213 /*
214  * write some of the pending data back to the server
215  */
216 int afs_writepages(struct address_space *mapping, struct writeback_control *wbc)
217 {
218 	struct afs_vnode *vnode = AFS_FS_I(mapping->host);
219 	int ret;
220 
221 	/* We have to be careful as we can end up racing with setattr()
222 	 * truncating the pagecache since the caller doesn't take a lock here
223 	 * to prevent it.
224 	 */
225 	if (wbc->sync_mode == WB_SYNC_ALL)
226 		down_read(&vnode->validate_lock);
227 	else if (!down_read_trylock(&vnode->validate_lock))
228 		return 0;
229 
230 	ret = netfs_writepages(mapping, wbc);
231 	up_read(&vnode->validate_lock);
232 	return ret;
233 }
234 
235 /*
236  * flush any dirty pages for this process, and check for write errors.
237  * - the return status from this call provides a reliable indication of
238  *   whether any write errors occurred for this process.
239  */
240 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
241 {
242 	struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
243 	struct afs_file *af = file->private_data;
244 	int ret;
245 
246 	_enter("{%llx:%llu},{n=%pD},%d",
247 	       vnode->fid.vid, vnode->fid.vnode, file,
248 	       datasync);
249 
250 	ret = afs_validate(vnode, af->key);
251 	if (ret < 0)
252 		return ret;
253 
254 	return file_write_and_wait_range(file, start, end);
255 }
256 
257 /*
258  * notification that a previously read-only page is about to become writable
259  * - if it returns an error, the caller will deliver a bus error signal
260  */
261 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
262 {
263 	struct file *file = vmf->vma->vm_file;
264 
265 	if (afs_validate(AFS_FS_I(file_inode(file)), afs_file_key(file)) < 0)
266 		return VM_FAULT_SIGBUS;
267 	return netfs_page_mkwrite(vmf, NULL);
268 }
269 
270 /*
271  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
272  */
273 void afs_prune_wb_keys(struct afs_vnode *vnode)
274 {
275 	LIST_HEAD(graveyard);
276 	struct afs_wb_key *wbk, *tmp;
277 
278 	/* Discard unused keys */
279 	spin_lock(&vnode->wb_lock);
280 
281 	if (!mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
282 	    !mapping_tagged(&vnode->netfs.inode.i_data, PAGECACHE_TAG_DIRTY)) {
283 		list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
284 			if (refcount_read(&wbk->usage) == 1)
285 				list_move(&wbk->vnode_link, &graveyard);
286 		}
287 	}
288 
289 	spin_unlock(&vnode->wb_lock);
290 
291 	while (!list_empty(&graveyard)) {
292 		wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
293 		list_del(&wbk->vnode_link);
294 		afs_put_wb_key(wbk);
295 	}
296 }
297