1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* vnode and volume validity verification. 3 * 4 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/sched.h> 11 #include "internal.h" 12 13 /* 14 * Data validation is managed through a number of mechanisms from the server: 15 * 16 * (1) On first contact with a server (such as if it has just been rebooted), 17 * the server sends us a CB.InitCallBackState* request. 18 * 19 * (2) On a RW volume, in response to certain vnode (inode)-accessing RPC 20 * calls, the server maintains a time-limited per-vnode promise that it 21 * will send us a CB.CallBack request if a third party alters the vnodes 22 * accessed. 23 * 24 * Note that a vnode-level callbacks may also be sent for other reasons, 25 * such as filelock release. 26 * 27 * (3) On a RO (or Backup) volume, in response to certain vnode-accessing RPC 28 * calls, each server maintains a time-limited per-volume promise that it 29 * will send us a CB.CallBack request if the RO volume is updated to a 30 * snapshot of the RW volume ("vos release"). This is an atomic event 31 * that cuts over all instances of the RO volume across multiple servers 32 * simultaneously. 33 * 34 * Note that a volume-level callbacks may also be sent for other reasons, 35 * such as the volumeserver taking over control of the volume from the 36 * fileserver. 37 * 38 * Note also that each server maintains an independent time limit on an 39 * independent callback. 40 * 41 * (4) Certain RPC calls include a volume information record "VolSync" in 42 * their reply. This contains a creation date for the volume that should 43 * remain unchanged for a RW volume (but will be changed if the volume is 44 * restored from backup) or will be bumped to the time of snapshotting 45 * when a RO volume is released. 46 * 47 * In order to track this events, the following are provided: 48 * 49 * ->cb_v_break. A counter of events that might mean that the contents of 50 * a volume have been altered since we last checked a vnode. 51 * 52 * ->cb_v_check. A counter of the number of events that we've sent a 53 * query to the server for. Everything's up to date if this equals 54 * cb_v_break. 55 * 56 * ->cb_scrub. A counter of the number of regression events for which we 57 * have to completely wipe the cache. 58 * 59 * ->cb_ro_snapshot. A counter of the number of times that we've 60 * recognised that a RO volume has been updated. 61 * 62 * ->cb_break. A counter of events that might mean that the contents of a 63 * vnode have been altered. 64 * 65 * ->cb_expires_at. The time at which the callback promise expires or 66 * AFS_NO_CB_PROMISE if we have no promise. 67 * 68 * The way we manage things is: 69 * 70 * (1) When a volume-level CB.CallBack occurs, we increment ->cb_v_break on 71 * the volume and reset ->cb_expires_at (ie. set AFS_NO_CB_PROMISE) on the 72 * volume and volume's server record. 73 * 74 * (2) When a CB.InitCallBackState occurs, we treat this as a volume-level 75 * callback break on all the volumes that have been using that volume 76 * (ie. increment ->cb_v_break and reset ->cb_expires_at). 77 * 78 * (3) When a vnode-level CB.CallBack occurs, we increment ->cb_break on the 79 * vnode and reset its ->cb_expires_at. If the vnode is mmapped, we also 80 * dispatch a work item to unmap all PTEs to the vnode's pagecache to 81 * force reentry to the filesystem for revalidation. 82 * 83 * (4) When entering the filesystem, we call afs_validate() to check the 84 * validity of a vnode. This first checks to see if ->cb_v_check and 85 * ->cb_v_break match, and if they don't, we lock volume->cb_check_lock 86 * exclusively and perform an FS.FetchStatus on the vnode. 87 * 88 * After checking the volume, we check the vnode. If there's a mismatch 89 * between the volume counters and the vnode's mirrors of those counters, 90 * we lock vnode->validate_lock and issue an FS.FetchStatus on the vnode. 91 * 92 * (5) When the reply from FS.FetchStatus arrives, the VolSync record is 93 * parsed: 94 * 95 * (A) If the Creation timestamp has changed on a RW volume or regressed 96 * on a RO volume, we try to increment ->cb_scrub; if it advances on a 97 * RO volume, we assume "vos release" happened and try to increment 98 * ->cb_ro_snapshot. 99 * 100 * (B) If the Update timestamp has regressed, we try to increment 101 * ->cb_scrub. 102 * 103 * Note that in both of these cases, we only do the increment if we can 104 * cmpxchg the value of the timestamp from the value we noted before the 105 * op. This tries to prevent parallel ops from fighting one another. 106 * 107 * volume->cb_v_check is then set to ->cb_v_break. 108 * 109 * (6) The AFSCallBack record included in the FS.FetchStatus reply is also 110 * parsed and used to set the promise in ->cb_expires_at for the vnode, 111 * the volume and the volume's server record. 112 * 113 * (7) If ->cb_scrub is seen to have advanced, we invalidate the pagecache for 114 * the vnode. 115 */ 116 117 /* 118 * Check the validity of a vnode/inode and its parent volume. 119 */ 120 bool afs_check_validity(const struct afs_vnode *vnode) 121 { 122 const struct afs_volume *volume = vnode->volume; 123 time64_t deadline = ktime_get_real_seconds() + 10; 124 125 if (atomic_read(&volume->cb_v_check) != atomic_read(&volume->cb_v_break) || 126 atomic64_read(&vnode->cb_expires_at) <= deadline || 127 volume->cb_expires_at <= deadline || 128 vnode->cb_ro_snapshot != atomic_read(&volume->cb_ro_snapshot) || 129 vnode->cb_scrub != atomic_read(&volume->cb_scrub) || 130 test_bit(AFS_VNODE_ZAP_DATA, &vnode->flags)) { 131 _debug("inval"); 132 return false; 133 } 134 135 return true; 136 } 137 138 /* 139 * See if the server we've just talked to is currently excluded. 140 */ 141 static bool __afs_is_server_excluded(struct afs_operation *op, struct afs_volume *volume) 142 { 143 const struct afs_server_entry *se; 144 const struct afs_server_list *slist; 145 bool is_excluded = true; 146 int i; 147 148 rcu_read_lock(); 149 150 slist = rcu_dereference(volume->servers); 151 for (i = 0; i < slist->nr_servers; i++) { 152 se = &slist->servers[i]; 153 if (op->server == se->server) { 154 is_excluded = test_bit(AFS_SE_EXCLUDED, &se->flags); 155 break; 156 } 157 } 158 159 rcu_read_unlock(); 160 return is_excluded; 161 } 162 163 /* 164 * Update the volume's server list when the creation time changes and see if 165 * the server we've just talked to is currently excluded. 166 */ 167 static int afs_is_server_excluded(struct afs_operation *op, struct afs_volume *volume) 168 { 169 int ret; 170 171 if (__afs_is_server_excluded(op, volume)) 172 return 1; 173 174 set_bit(AFS_VOLUME_NEEDS_UPDATE, &volume->flags); 175 ret = afs_check_volume_status(op->volume, op); 176 if (ret < 0) 177 return ret; 178 179 return __afs_is_server_excluded(op, volume); 180 } 181 182 /* 183 * Handle a change to the volume creation time in the VolSync record. 184 */ 185 static int afs_update_volume_creation_time(struct afs_operation *op, struct afs_volume *volume) 186 { 187 unsigned int snap; 188 time64_t cur = volume->creation_time; 189 time64_t old = op->pre_volsync.creation; 190 time64_t new = op->volsync.creation; 191 int ret; 192 193 _enter("%llx,%llx,%llx->%llx", volume->vid, cur, old, new); 194 195 if (cur == TIME64_MIN) { 196 volume->creation_time = new; 197 return 0; 198 } 199 200 if (new == cur) 201 return 0; 202 203 /* Try to advance the creation timestamp from what we had before the 204 * operation to what we got back from the server. This should 205 * hopefully ensure that in a race between multiple operations only one 206 * of them will do this. 207 */ 208 if (cur != old) 209 return 0; 210 211 /* If the creation time changes in an unexpected way, we need to scrub 212 * our caches. For a RW vol, this will only change if the volume is 213 * restored from a backup; for a RO/Backup vol, this will advance when 214 * the volume is updated to a new snapshot (eg. "vos release"). 215 */ 216 if (volume->type == AFSVL_RWVOL) 217 goto regressed; 218 if (volume->type == AFSVL_BACKVOL) { 219 if (new < old) 220 goto regressed; 221 goto advance; 222 } 223 224 /* We have an RO volume, we need to query the VL server and look at the 225 * server flags to see if RW->RO replication is in progress. 226 */ 227 ret = afs_is_server_excluded(op, volume); 228 if (ret < 0) 229 return ret; 230 if (ret > 0) { 231 snap = atomic_read(&volume->cb_ro_snapshot); 232 trace_afs_cb_v_break(volume->vid, snap, afs_cb_break_volume_excluded); 233 return ret; 234 } 235 236 advance: 237 snap = atomic_inc_return(&volume->cb_ro_snapshot); 238 trace_afs_cb_v_break(volume->vid, snap, afs_cb_break_for_vos_release); 239 volume->creation_time = new; 240 return 0; 241 242 regressed: 243 atomic_inc(&volume->cb_scrub); 244 trace_afs_cb_v_break(volume->vid, 0, afs_cb_break_for_creation_regress); 245 volume->creation_time = new; 246 return 0; 247 } 248 249 /* 250 * Handle a change to the volume update time in the VolSync record. 251 */ 252 static void afs_update_volume_update_time(struct afs_operation *op, struct afs_volume *volume) 253 { 254 enum afs_cb_break_reason reason = afs_cb_break_no_break; 255 time64_t cur = volume->update_time; 256 time64_t old = op->pre_volsync.update; 257 time64_t new = op->volsync.update; 258 259 _enter("%llx,%llx,%llx->%llx", volume->vid, cur, old, new); 260 261 if (cur == TIME64_MIN) { 262 volume->update_time = new; 263 return; 264 } 265 266 if (new == cur) 267 return; 268 269 /* If the volume update time changes in an unexpected way, we need to 270 * scrub our caches. For a RW vol, this will advance on every 271 * modification op; for a RO/Backup vol, this will advance when the 272 * volume is updated to a new snapshot (eg. "vos release"). 273 */ 274 if (new < old) 275 reason = afs_cb_break_for_update_regress; 276 277 /* Try to advance the update timestamp from what we had before the 278 * operation to what we got back from the server. This should 279 * hopefully ensure that in a race between multiple operations only one 280 * of them will do this. 281 */ 282 if (cur == old) { 283 if (reason == afs_cb_break_for_update_regress) { 284 atomic_inc(&volume->cb_scrub); 285 trace_afs_cb_v_break(volume->vid, 0, reason); 286 } 287 volume->update_time = new; 288 } 289 } 290 291 static int afs_update_volume_times(struct afs_operation *op, struct afs_volume *volume) 292 { 293 int ret = 0; 294 295 if (likely(op->volsync.creation == volume->creation_time && 296 op->volsync.update == volume->update_time)) 297 return 0; 298 299 mutex_lock(&volume->volsync_lock); 300 if (op->volsync.creation != volume->creation_time) { 301 ret = afs_update_volume_creation_time(op, volume); 302 if (ret < 0) 303 goto out; 304 } 305 if (op->volsync.update != volume->update_time) 306 afs_update_volume_update_time(op, volume); 307 out: 308 mutex_unlock(&volume->volsync_lock); 309 return ret; 310 } 311 312 /* 313 * Update the state of a volume, including recording the expiration time of the 314 * callback promise. Returns 1 to redo the operation from the start. 315 */ 316 int afs_update_volume_state(struct afs_operation *op) 317 { 318 struct afs_server_list *slist = op->server_list; 319 struct afs_server_entry *se = &slist->servers[op->server_index]; 320 struct afs_callback *cb = &op->file[0].scb.callback; 321 struct afs_volume *volume = op->volume; 322 unsigned int cb_v_break = atomic_read(&volume->cb_v_break); 323 unsigned int cb_v_check = atomic_read(&volume->cb_v_check); 324 int ret; 325 326 _enter("%llx", op->volume->vid); 327 328 if (op->volsync.creation != TIME64_MIN || op->volsync.update != TIME64_MIN) { 329 ret = afs_update_volume_times(op, volume); 330 if (ret != 0) { 331 _leave(" = %d", ret); 332 return ret; 333 } 334 } 335 336 if (op->cb_v_break == cb_v_break && 337 (op->file[0].scb.have_cb || op->file[1].scb.have_cb)) { 338 time64_t expires_at = cb->expires_at; 339 340 if (!op->file[0].scb.have_cb) 341 expires_at = op->file[1].scb.callback.expires_at; 342 343 se->cb_expires_at = expires_at; 344 volume->cb_expires_at = expires_at; 345 } 346 if (cb_v_check < op->cb_v_break) 347 atomic_cmpxchg(&volume->cb_v_check, cb_v_check, op->cb_v_break); 348 return 0; 349 } 350 351 /* 352 * mark the data attached to an inode as obsolete due to a write on the server 353 * - might also want to ditch all the outstanding writes and dirty pages 354 */ 355 static void afs_zap_data(struct afs_vnode *vnode) 356 { 357 _enter("{%llx:%llu}", vnode->fid.vid, vnode->fid.vnode); 358 359 afs_invalidate_cache(vnode, 0); 360 361 /* nuke all the non-dirty pages that aren't locked, mapped or being 362 * written back in a regular file and completely discard the pages in a 363 * directory or symlink */ 364 if (S_ISREG(vnode->netfs.inode.i_mode)) 365 invalidate_remote_inode(&vnode->netfs.inode); 366 else 367 invalidate_inode_pages2(vnode->netfs.inode.i_mapping); 368 } 369 370 /* 371 * validate a vnode/inode 372 * - there are several things we need to check 373 * - parent dir data changes (rm, rmdir, rename, mkdir, create, link, 374 * symlink) 375 * - parent dir metadata changed (security changes) 376 * - dentry data changed (write, truncate) 377 * - dentry metadata changed (security changes) 378 */ 379 int afs_validate(struct afs_vnode *vnode, struct key *key) 380 { 381 struct afs_volume *volume = vnode->volume; 382 unsigned int cb_ro_snapshot, cb_scrub; 383 time64_t deadline = ktime_get_real_seconds() + 10; 384 bool zap = false, locked_vol = false; 385 int ret; 386 387 _enter("{v={%llx:%llu} fl=%lx},%x", 388 vnode->fid.vid, vnode->fid.vnode, vnode->flags, 389 key_serial(key)); 390 391 if (afs_check_validity(vnode)) 392 return 0; 393 394 ret = down_write_killable(&vnode->validate_lock); 395 if (ret < 0) 396 goto error; 397 398 /* Validate a volume after the v_break has changed or the volume 399 * callback expired. We only want to do this once per volume per 400 * v_break change. The actual work will be done when parsing the 401 * status fetch reply. 402 */ 403 if (volume->cb_expires_at <= deadline || 404 atomic_read(&volume->cb_v_check) != atomic_read(&volume->cb_v_break)) { 405 ret = mutex_lock_interruptible(&volume->cb_check_lock); 406 if (ret < 0) 407 goto error_unlock; 408 locked_vol = true; 409 } 410 411 cb_ro_snapshot = atomic_read(&volume->cb_ro_snapshot); 412 cb_scrub = atomic_read(&volume->cb_scrub); 413 if (vnode->cb_ro_snapshot != cb_ro_snapshot || 414 vnode->cb_scrub != cb_scrub) 415 unmap_mapping_pages(vnode->netfs.inode.i_mapping, 0, 0, false); 416 417 if (vnode->cb_ro_snapshot != cb_ro_snapshot || 418 vnode->cb_scrub != cb_scrub || 419 volume->cb_expires_at <= deadline || 420 atomic_read(&volume->cb_v_check) != atomic_read(&volume->cb_v_break) || 421 atomic64_read(&vnode->cb_expires_at) <= deadline 422 ) { 423 ret = afs_fetch_status(vnode, key, false, NULL); 424 if (ret < 0) { 425 if (ret == -ENOENT) { 426 set_bit(AFS_VNODE_DELETED, &vnode->flags); 427 ret = -ESTALE; 428 } 429 goto error_unlock; 430 } 431 432 _debug("new promise [fl=%lx]", vnode->flags); 433 } 434 435 /* We can drop the volume lock now as. */ 436 if (locked_vol) { 437 mutex_unlock(&volume->cb_check_lock); 438 locked_vol = false; 439 } 440 441 cb_ro_snapshot = atomic_read(&volume->cb_ro_snapshot); 442 cb_scrub = atomic_read(&volume->cb_scrub); 443 _debug("vnode inval %x==%x %x==%x", 444 vnode->cb_ro_snapshot, cb_ro_snapshot, 445 vnode->cb_scrub, cb_scrub); 446 if (vnode->cb_scrub != cb_scrub) 447 zap = true; 448 vnode->cb_ro_snapshot = cb_ro_snapshot; 449 vnode->cb_scrub = cb_scrub; 450 451 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) { 452 _debug("file already deleted"); 453 ret = -ESTALE; 454 goto error_unlock; 455 } 456 457 /* if the vnode's data version number changed then its contents are 458 * different */ 459 zap |= test_and_clear_bit(AFS_VNODE_ZAP_DATA, &vnode->flags); 460 if (zap) 461 afs_zap_data(vnode); 462 up_write(&vnode->validate_lock); 463 _leave(" = 0"); 464 return 0; 465 466 error_unlock: 467 if (locked_vol) 468 mutex_unlock(&volume->cb_check_lock); 469 up_write(&vnode->validate_lock); 470 error: 471 _leave(" = %d", ret); 472 return ret; 473 } 474