1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* vnode and volume validity verification. 3 * 4 * Copyright (C) 2023 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/module.h> 10 #include <linux/sched.h> 11 #include "internal.h" 12 13 /* 14 * Data validation is managed through a number of mechanisms from the server: 15 * 16 * (1) On first contact with a server (such as if it has just been rebooted), 17 * the server sends us a CB.InitCallBackState* request. 18 * 19 * (2) On a RW volume, in response to certain vnode (inode)-accessing RPC 20 * calls, the server maintains a time-limited per-vnode promise that it 21 * will send us a CB.CallBack request if a third party alters the vnodes 22 * accessed. 23 * 24 * Note that a vnode-level callbacks may also be sent for other reasons, 25 * such as filelock release. 26 * 27 * (3) On a RO (or Backup) volume, in response to certain vnode-accessing RPC 28 * calls, each server maintains a time-limited per-volume promise that it 29 * will send us a CB.CallBack request if the RO volume is updated to a 30 * snapshot of the RW volume ("vos release"). This is an atomic event 31 * that cuts over all instances of the RO volume across multiple servers 32 * simultaneously. 33 * 34 * Note that a volume-level callbacks may also be sent for other reasons, 35 * such as the volumeserver taking over control of the volume from the 36 * fileserver. 37 * 38 * Note also that each server maintains an independent time limit on an 39 * independent callback. 40 * 41 * (4) Certain RPC calls include a volume information record "VolSync" in 42 * their reply. This contains a creation date for the volume that should 43 * remain unchanged for a RW volume (but will be changed if the volume is 44 * restored from backup) or will be bumped to the time of snapshotting 45 * when a RO volume is released. 46 * 47 * In order to track this events, the following are provided: 48 * 49 * ->cb_v_break. A counter of events that might mean that the contents of 50 * a volume have been altered since we last checked a vnode. 51 * 52 * ->cb_v_check. A counter of the number of events that we've sent a 53 * query to the server for. Everything's up to date if this equals 54 * cb_v_break. 55 * 56 * ->cb_scrub. A counter of the number of regression events for which we 57 * have to completely wipe the cache. 58 * 59 * ->cb_ro_snapshot. A counter of the number of times that we've 60 * recognised that a RO volume has been updated. 61 * 62 * ->cb_break. A counter of events that might mean that the contents of a 63 * vnode have been altered. 64 * 65 * ->cb_expires_at. The time at which the callback promise expires or 66 * AFS_NO_CB_PROMISE if we have no promise. 67 * 68 * The way we manage things is: 69 * 70 * (1) When a volume-level CB.CallBack occurs, we increment ->cb_v_break on 71 * the volume and reset ->cb_expires_at (ie. set AFS_NO_CB_PROMISE) on the 72 * volume and volume's server record. 73 * 74 * (2) When a CB.InitCallBackState occurs, we treat this as a volume-level 75 * callback break on all the volumes that have been using that volume 76 * (ie. increment ->cb_v_break and reset ->cb_expires_at). 77 * 78 * (3) When a vnode-level CB.CallBack occurs, we increment ->cb_break on the 79 * vnode and reset its ->cb_expires_at. If the vnode is mmapped, we also 80 * dispatch a work item to unmap all PTEs to the vnode's pagecache to 81 * force reentry to the filesystem for revalidation. 82 * 83 * (4) When entering the filesystem, we call afs_validate() to check the 84 * validity of a vnode. This first checks to see if ->cb_v_check and 85 * ->cb_v_break match, and if they don't, we lock volume->cb_check_lock 86 * exclusively and perform an FS.FetchStatus on the vnode. 87 * 88 * After checking the volume, we check the vnode. If there's a mismatch 89 * between the volume counters and the vnode's mirrors of those counters, 90 * we lock vnode->validate_lock and issue an FS.FetchStatus on the vnode. 91 * 92 * (5) When the reply from FS.FetchStatus arrives, the VolSync record is 93 * parsed: 94 * 95 * (A) If the Creation timestamp has changed on a RW volume or regressed 96 * on a RO volume, we try to increment ->cb_scrub; if it advances on a 97 * RO volume, we assume "vos release" happened and try to increment 98 * ->cb_ro_snapshot. 99 * 100 * (B) If the Update timestamp has regressed, we try to increment 101 * ->cb_scrub. 102 * 103 * Note that in both of these cases, we only do the increment if we can 104 * cmpxchg the value of the timestamp from the value we noted before the 105 * op. This tries to prevent parallel ops from fighting one another. 106 * 107 * volume->cb_v_check is then set to ->cb_v_break. 108 * 109 * (6) The AFSCallBack record included in the FS.FetchStatus reply is also 110 * parsed and used to set the promise in ->cb_expires_at for the vnode, 111 * the volume and the volume's server record. 112 * 113 * (7) If ->cb_scrub is seen to have advanced, we invalidate the pagecache for 114 * the vnode. 115 */ 116 117 /* 118 * Check the validity of a vnode/inode and its parent volume. 119 */ 120 bool afs_check_validity(const struct afs_vnode *vnode) 121 { 122 const struct afs_volume *volume = vnode->volume; 123 time64_t deadline = ktime_get_real_seconds() + 10; 124 125 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) 126 return true; 127 128 if (atomic_read(&volume->cb_v_check) != atomic_read(&volume->cb_v_break) || 129 atomic64_read(&vnode->cb_expires_at) <= deadline || 130 volume->cb_expires_at <= deadline || 131 vnode->cb_ro_snapshot != atomic_read(&volume->cb_ro_snapshot) || 132 vnode->cb_scrub != atomic_read(&volume->cb_scrub) || 133 test_bit(AFS_VNODE_ZAP_DATA, &vnode->flags)) { 134 _debug("inval"); 135 return false; 136 } 137 138 return true; 139 } 140 141 /* 142 * See if the server we've just talked to is currently excluded. 143 */ 144 static bool __afs_is_server_excluded(struct afs_operation *op, struct afs_volume *volume) 145 { 146 const struct afs_server_entry *se; 147 const struct afs_server_list *slist; 148 bool is_excluded = true; 149 int i; 150 151 rcu_read_lock(); 152 153 slist = rcu_dereference(volume->servers); 154 for (i = 0; i < slist->nr_servers; i++) { 155 se = &slist->servers[i]; 156 if (op->server == se->server) { 157 is_excluded = test_bit(AFS_SE_EXCLUDED, &se->flags); 158 break; 159 } 160 } 161 162 rcu_read_unlock(); 163 return is_excluded; 164 } 165 166 /* 167 * Update the volume's server list when the creation time changes and see if 168 * the server we've just talked to is currently excluded. 169 */ 170 static int afs_is_server_excluded(struct afs_operation *op, struct afs_volume *volume) 171 { 172 int ret; 173 174 if (__afs_is_server_excluded(op, volume)) 175 return 1; 176 177 set_bit(AFS_VOLUME_NEEDS_UPDATE, &volume->flags); 178 ret = afs_check_volume_status(op->volume, op); 179 if (ret < 0) 180 return ret; 181 182 return __afs_is_server_excluded(op, volume); 183 } 184 185 /* 186 * Handle a change to the volume creation time in the VolSync record. 187 */ 188 static int afs_update_volume_creation_time(struct afs_operation *op, struct afs_volume *volume) 189 { 190 unsigned int snap; 191 time64_t cur = volume->creation_time; 192 time64_t old = op->pre_volsync.creation; 193 time64_t new = op->volsync.creation; 194 int ret; 195 196 _enter("%llx,%llx,%llx->%llx", volume->vid, cur, old, new); 197 198 if (cur == TIME64_MIN) { 199 volume->creation_time = new; 200 return 0; 201 } 202 203 if (new == cur) 204 return 0; 205 206 /* Try to advance the creation timestamp from what we had before the 207 * operation to what we got back from the server. This should 208 * hopefully ensure that in a race between multiple operations only one 209 * of them will do this. 210 */ 211 if (cur != old) 212 return 0; 213 214 /* If the creation time changes in an unexpected way, we need to scrub 215 * our caches. For a RW vol, this will only change if the volume is 216 * restored from a backup; for a RO/Backup vol, this will advance when 217 * the volume is updated to a new snapshot (eg. "vos release"). 218 */ 219 if (volume->type == AFSVL_RWVOL) 220 goto regressed; 221 if (volume->type == AFSVL_BACKVOL) { 222 if (new < old) 223 goto regressed; 224 goto advance; 225 } 226 227 /* We have an RO volume, we need to query the VL server and look at the 228 * server flags to see if RW->RO replication is in progress. 229 */ 230 ret = afs_is_server_excluded(op, volume); 231 if (ret < 0) 232 return ret; 233 if (ret > 0) { 234 snap = atomic_read(&volume->cb_ro_snapshot); 235 trace_afs_cb_v_break(volume->vid, snap, afs_cb_break_volume_excluded); 236 return ret; 237 } 238 239 advance: 240 snap = atomic_inc_return(&volume->cb_ro_snapshot); 241 trace_afs_cb_v_break(volume->vid, snap, afs_cb_break_for_vos_release); 242 volume->creation_time = new; 243 return 0; 244 245 regressed: 246 atomic_inc(&volume->cb_scrub); 247 trace_afs_cb_v_break(volume->vid, 0, afs_cb_break_for_creation_regress); 248 volume->creation_time = new; 249 return 0; 250 } 251 252 /* 253 * Handle a change to the volume update time in the VolSync record. 254 */ 255 static void afs_update_volume_update_time(struct afs_operation *op, struct afs_volume *volume) 256 { 257 enum afs_cb_break_reason reason = afs_cb_break_no_break; 258 time64_t cur = volume->update_time; 259 time64_t old = op->pre_volsync.update; 260 time64_t new = op->volsync.update; 261 262 _enter("%llx,%llx,%llx->%llx", volume->vid, cur, old, new); 263 264 if (cur == TIME64_MIN) { 265 volume->update_time = new; 266 return; 267 } 268 269 if (new == cur) 270 return; 271 272 /* If the volume update time changes in an unexpected way, we need to 273 * scrub our caches. For a RW vol, this will advance on every 274 * modification op; for a RO/Backup vol, this will advance when the 275 * volume is updated to a new snapshot (eg. "vos release"). 276 */ 277 if (new < old) 278 reason = afs_cb_break_for_update_regress; 279 280 /* Try to advance the update timestamp from what we had before the 281 * operation to what we got back from the server. This should 282 * hopefully ensure that in a race between multiple operations only one 283 * of them will do this. 284 */ 285 if (cur == old) { 286 if (reason == afs_cb_break_for_update_regress) { 287 atomic_inc(&volume->cb_scrub); 288 trace_afs_cb_v_break(volume->vid, 0, reason); 289 } 290 volume->update_time = new; 291 } 292 } 293 294 static int afs_update_volume_times(struct afs_operation *op, struct afs_volume *volume) 295 { 296 int ret = 0; 297 298 if (likely(op->volsync.creation == volume->creation_time && 299 op->volsync.update == volume->update_time)) 300 return 0; 301 302 mutex_lock(&volume->volsync_lock); 303 if (op->volsync.creation != volume->creation_time) { 304 ret = afs_update_volume_creation_time(op, volume); 305 if (ret < 0) 306 goto out; 307 } 308 if (op->volsync.update != volume->update_time) 309 afs_update_volume_update_time(op, volume); 310 out: 311 mutex_unlock(&volume->volsync_lock); 312 return ret; 313 } 314 315 /* 316 * Update the state of a volume, including recording the expiration time of the 317 * callback promise. Returns 1 to redo the operation from the start. 318 */ 319 int afs_update_volume_state(struct afs_operation *op) 320 { 321 struct afs_server_list *slist = op->server_list; 322 struct afs_server_entry *se = &slist->servers[op->server_index]; 323 struct afs_callback *cb = &op->file[0].scb.callback; 324 struct afs_volume *volume = op->volume; 325 unsigned int cb_v_break = atomic_read(&volume->cb_v_break); 326 unsigned int cb_v_check = atomic_read(&volume->cb_v_check); 327 int ret; 328 329 _enter("%llx", op->volume->vid); 330 331 if (op->volsync.creation != TIME64_MIN || op->volsync.update != TIME64_MIN) { 332 ret = afs_update_volume_times(op, volume); 333 if (ret != 0) { 334 _leave(" = %d", ret); 335 return ret; 336 } 337 } 338 339 if (op->cb_v_break == cb_v_break && 340 (op->file[0].scb.have_cb || op->file[1].scb.have_cb)) { 341 time64_t expires_at = cb->expires_at; 342 343 if (!op->file[0].scb.have_cb) 344 expires_at = op->file[1].scb.callback.expires_at; 345 346 se->cb_expires_at = expires_at; 347 volume->cb_expires_at = expires_at; 348 } 349 if (cb_v_check < op->cb_v_break) 350 atomic_cmpxchg(&volume->cb_v_check, cb_v_check, op->cb_v_break); 351 return 0; 352 } 353 354 /* 355 * mark the data attached to an inode as obsolete due to a write on the server 356 * - might also want to ditch all the outstanding writes and dirty pages 357 */ 358 static void afs_zap_data(struct afs_vnode *vnode) 359 { 360 _enter("{%llx:%llu}", vnode->fid.vid, vnode->fid.vnode); 361 362 afs_invalidate_cache(vnode, 0); 363 364 /* nuke all the non-dirty pages that aren't locked, mapped or being 365 * written back in a regular file and completely discard the pages in a 366 * directory or symlink */ 367 if (S_ISREG(vnode->netfs.inode.i_mode)) 368 invalidate_remote_inode(&vnode->netfs.inode); 369 else 370 invalidate_inode_pages2(vnode->netfs.inode.i_mapping); 371 } 372 373 /* 374 * validate a vnode/inode 375 * - there are several things we need to check 376 * - parent dir data changes (rm, rmdir, rename, mkdir, create, link, 377 * symlink) 378 * - parent dir metadata changed (security changes) 379 * - dentry data changed (write, truncate) 380 * - dentry metadata changed (security changes) 381 */ 382 int afs_validate(struct afs_vnode *vnode, struct key *key) 383 { 384 struct afs_volume *volume = vnode->volume; 385 unsigned int cb_ro_snapshot, cb_scrub; 386 time64_t deadline = ktime_get_real_seconds() + 10; 387 bool zap = false, locked_vol = false; 388 int ret; 389 390 _enter("{v={%llx:%llu} fl=%lx},%x", 391 vnode->fid.vid, vnode->fid.vnode, vnode->flags, 392 key_serial(key)); 393 394 if (afs_check_validity(vnode)) 395 return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0; 396 397 ret = down_write_killable(&vnode->validate_lock); 398 if (ret < 0) 399 goto error; 400 401 if (test_bit(AFS_VNODE_DELETED, &vnode->flags)) { 402 ret = -ESTALE; 403 goto error_unlock; 404 } 405 406 /* Validate a volume after the v_break has changed or the volume 407 * callback expired. We only want to do this once per volume per 408 * v_break change. The actual work will be done when parsing the 409 * status fetch reply. 410 */ 411 if (volume->cb_expires_at <= deadline || 412 atomic_read(&volume->cb_v_check) != atomic_read(&volume->cb_v_break)) { 413 ret = mutex_lock_interruptible(&volume->cb_check_lock); 414 if (ret < 0) 415 goto error_unlock; 416 locked_vol = true; 417 } 418 419 cb_ro_snapshot = atomic_read(&volume->cb_ro_snapshot); 420 cb_scrub = atomic_read(&volume->cb_scrub); 421 if (vnode->cb_ro_snapshot != cb_ro_snapshot || 422 vnode->cb_scrub != cb_scrub) 423 unmap_mapping_pages(vnode->netfs.inode.i_mapping, 0, 0, false); 424 425 if (vnode->cb_ro_snapshot != cb_ro_snapshot || 426 vnode->cb_scrub != cb_scrub || 427 volume->cb_expires_at <= deadline || 428 atomic_read(&volume->cb_v_check) != atomic_read(&volume->cb_v_break) || 429 atomic64_read(&vnode->cb_expires_at) <= deadline 430 ) { 431 ret = afs_fetch_status(vnode, key, false, NULL); 432 if (ret < 0) { 433 if (ret == -ENOENT) { 434 set_bit(AFS_VNODE_DELETED, &vnode->flags); 435 ret = -ESTALE; 436 } 437 goto error_unlock; 438 } 439 440 _debug("new promise [fl=%lx]", vnode->flags); 441 } 442 443 /* We can drop the volume lock now as. */ 444 if (locked_vol) { 445 mutex_unlock(&volume->cb_check_lock); 446 locked_vol = false; 447 } 448 449 cb_ro_snapshot = atomic_read(&volume->cb_ro_snapshot); 450 cb_scrub = atomic_read(&volume->cb_scrub); 451 _debug("vnode inval %x==%x %x==%x", 452 vnode->cb_ro_snapshot, cb_ro_snapshot, 453 vnode->cb_scrub, cb_scrub); 454 if (vnode->cb_scrub != cb_scrub) 455 zap = true; 456 vnode->cb_ro_snapshot = cb_ro_snapshot; 457 vnode->cb_scrub = cb_scrub; 458 459 /* if the vnode's data version number changed then its contents are 460 * different */ 461 zap |= test_and_clear_bit(AFS_VNODE_ZAP_DATA, &vnode->flags); 462 if (zap) 463 afs_zap_data(vnode); 464 up_write(&vnode->validate_lock); 465 _leave(" = 0"); 466 return 0; 467 468 error_unlock: 469 if (locked_vol) 470 mutex_unlock(&volume->cb_check_lock); 471 up_write(&vnode->validate_lock); 472 error: 473 _leave(" = %d", ret); 474 return ret; 475 } 476